
Dynamic Price Competition:

Theory and Evidence from Airline Markets*

Ali Hortaçsu

University of Chicago and NBER

Aniko Öry

Yale University

Kevin R. Williams†

Yale University and NBER

July 2022

Abstract

We estimate welfare effects of dynamic price competition in the airline industry.
To do so, we introduce a general dynamic pricing game where sellers are endowed with
finite capacities and face uncertain demands toward a sales deadline. We establish suf-
ficient conditions for equilibrium existence and uniqueness, and for convergence to a
system of differential equations. With the equilibrium characterization and compre-
hensive pricing and bookings data for competing airlines, we estimate that dynamic
pricing results in higher output but lower welfare than under uniform pricing.

*The views expressed herein are those of the authors and do not necessarily reflect the views of the
National Bureau of Economic Research. We thank the anonymous airline for giving us access to the data
used in this study. Under the agreement with the authors, the airline had "the right to delete any trade secret,
proprietary, or Confidential Information" supplied by the airline. We agreed to take comments in good faith
regarding statements that would lead a reader to identify the airline and damage the airline’s reputation.
All authors have no material financial relationships with entities related to this research. We thank Jose
Betancourt for his excellent research assistance. We thank seminar participants at NYU, Yale, and SICS
2022 for comments.

†Emails: hortacsu@gmail.com, aniko.oery@yale.edu, kevin.williams@yale.edu

1



1 Introduction

Dynamic pricing is commonly used by firms selling fixed inventory by a set deadline.

Examples range from seats on airlines and trains, tickets for entertainment events, to reser-

vations for cruises, and inventory in retailing. In these markets, capacity influences prices

in important ways. First, prices adjust as the opportunity cost of selling changes with

scarcity—the value of a capacity unit depends on the ability to sell it in the future. Second,

demand may change over time which can provide an incentive to hold inventory for certain

customers. In all of the aforementioned examples, firms also face competition. Therefore,

there exists a third force in that the opportunity cost of selling also depends on other firms’

inventories as they affect future prices. An open theoretical and empirical question is how

scarcity among competing firms affects dynamic prices and welfare.

In this paper we estimate the welfare effects of dynamic price competition in the airline

industry using new theoretical insights and granular data on competing airlines. We intro-

duce a general dynamic pricing game and establish sufficient conditions for equilibrium

existence and uniqueness, and for convergence to a system of differential equations for an

arbitrary number of firms and products. Our theoretical results show how little intuition

from the well-studied single-firm setting carries over to markets where firms compete be-

cause of sellers’ incentives to soften future price competition. For example, a firm may

fire-sale units even if it has the smallest inventory in the industry in order to increase future

prices. Or, a firm with excess capacity may charge high prices in order to get a com-

petitor to sell out early. We undercover these strategic incentives in the airline industry

by first estimating a model of air travel demand using daily pricing and bookings data of

competing airlines in U.S. oligopoly markets. With the continuous-time equilibrium char-

acterization of the model, we estimate that dynamic pricing expands output, increases firm

revenues, lowers consumer surplus, and decreases total welfare compared to uniform pric-

ing. Our results contrast recent empirical studies, largely focused on single-firm settings,

where dynamic pricing is found to increase welfare (Hendel and Nevo, 2013; Castillo,

2020; Williams, 2022).
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Our dynamic pricing game extends earlier single-firm frameworks (Gallego and

Van Ryzin, 1994; Zhao and Zheng, 2000; Talluri and Van Ryzin, 2004) to oligopoly.1 In the

main text we focus on a duopoly where each firm offers a single product. In the appendix,

we extend our results to an arbitrary number of firms, each offering an arbitrary number

of products. Each firm is exogenously endowed with limited initial capacity that must be

sold by a deadline.2 After the deadline has passed, unsold capacities are scrapped with

zero value. Firms are not allowed to oversell. Products are imperfect substitutes and satisfy

general regularity conditions. Consumers arrive randomly according to time-varying arrival

rates with time-varying preferences. Each consumer is short-lived and decides whether to

purchase an available product or select an outside option. Our demand assumptions are

motivated by recent empirical evidence (Hortaçsu et al., 2021b). In every period, firms si-

multaneously choose prices after observing remaining capacities for all products; demand

is realized, capacity constraints are updated, and the process repeats until the perishability

date or until all products are sold out. We call this game the benchmark model.

Our model produces a rich set of equilibrium strategies because competitor prices af-

fect both current demand and opportunity costs of remaining capacity. This can create

incentives to offer fire sales as in Dilme and Li (2019), where a single firm competes with

its future self for forward-looking buyers.3 However, a firm might also want to charge a

high price in order to drive the competitor to sell out as in Martínez-de Albéniz and Talluri

(2011), where firms offer perfect substitutes.4

We show that the incentive to soften future competition puts upward pressure on a firm’s

price today depending on whether a sale of the competitor increases the firm’s expected

future profits. We introduce the concept of the “competitor scarcity effect” defined as

the loss in continuation profit when the competitor sells. Simulations suggest that the

1There exists a large literature on dynamic price competition in various other settings, e.g., Maskin and
Tirole (1988); Dana (1999); Bergemann and Välimäki (2006); Sweeting et al. (2020).

2See Dana and Williams (2022) for a related model that endogenizes the capacity decision.
3Board and Skrzypacz (2016); Gershkov et al. (2018) consider forward-looking buyers when the firm can

fully commit to a selling mechanism and hence, resist the temptation to fire-sale.
4Similar incentives also arise in Edgeworth cycles (Dudey, 1992).
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competitor scarcity effect is typically negative, i.e., a firm benefits from shifting demand

to its rival, so that each firm generally prefers that its rival sells out early. It can then raise

prices later on. The “own-product scarcity effect”—defined as the loss in continuation

value if an own product sells—is typically positive which puts upward pressure on the own

price. However, we show that all scarcity effects can be positive or negative and can cause

the competitor’s price to become a strategic substitute of the firm’s price. We establish a

link between scarcity effects and remaining capacity; we formally show that the scarcity

effects increase the most in size when the firm with the lowest capacity sells. Competition

is fiercest when firms have the same number of units remaining.

The presence of competitor scarcity effects implies that firms’ payoffs in the stage game

are generally neither supermodular nor log-supermodular (Milgrom and Roberts, 1990).

They are also not of the form studied in either Caplin and Nalebuff (1991) or Nocke and

Schutz (2018). To make further progress, we derive sufficient conditions for existence and

uniqueness of equilibria of the stage game using a theorem in Kellogg (1976). Although we

show that even simple parametrizations of the model using logit demand may yield multiple

equilibria and price jumps, we prove that close to the deadline, our sufficient conditions for

existence and uniqueness are always satisfied for commonly used demand systems. These

conditions also ensure that the unique equilibrium price paths in the continuous-time limit

of a discrete-time game satisfy a system of differential equations.

We use our theoretical framework and comprehensive data on competing airlines to

quantify the welfare effects of dynamic price competition in the airline industry. This

industry has been noted for significant price dispersion within and across routes (Borenstein

and Rose, 1994; Stavins, 2001; Gerardi and Shapiro, 2009; Berry and Jia, 2010; Puller et

al., 2012; Sengupta and Wiggins, 2014; Siegert and Ulbricht, 2020). We use new data

sources that provide not only prices, but also all bookings (specifically, booking counts)

for all competing carriers on a given route. The booking counts include tickets purchased

directly with the airline and all other sources, e.g., online travel agencies, for every flight.

We estimate a Poisson demand model, where aggregate demand uncertainty is captured
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through Poisson arrivals, and preferences are modeled through discrete choice nested logit

demand. We use search data for one airline to inform arrival process parameters that are

then scaled up to account for unobserved searches, e.g., via online travel agencies or a

competitor’s website. In total, we estimate demand for 58 duopoly routes. We find sig-

nificant variation in willingness to pay across routes and across days from departure for a

given route. In general, demand becomes more inelastic as the departure date approaches.

Average own-price elasticities are -1.4.

With the demand estimates, we simulate equilibrium market outcomes using the dif-

ferential equation characterization. This allows us to recover the own/competitor scarcity

effects and firm strategies for all potential states—some games (route-departure dates) fea-

ture over 131 million potential states. We find that overwhelmingly (but not all) of the

realized stage games are of strategic complements.

We compare market outcomes of dynamic pricing to uniform pricing where each firm

commits to a single price for each flight over time. We find the opposite welfare effect com-

pared to earlier analyses, including Hendel and Nevo (2013) in retailing, Castillo (2020)

in ride-share, and Williams (2022) for single-carrier airline markets, in that dynamic pric-

ing expands output but lowers total welfare compared to uniform pricing. This occurs

because dynamic pricing softens price competition toward the departure date, despite fea-

turing lower average prices on average. Our estimates suggest that uniform pricing would

increase total welfare by 2.2% but lower quantity sold by 6.4%.

We also investigate two pricing heuristics that mimic some industry pricing practices.5

The algorithms differ from recent work in economics that study reinforcement algorithms

(Calvano et al., 2020; Asker et al., 2021; Leisten, 2021; Hansen et al., 2021) in that the

airline does not learn over time (within a departure date). We find that heuristics lead to

ambiguous effects on firm revenues but result in higher welfare than under the benchmark

model. That is, the full-information, dynamic pricing game results in the lowest welfare

among all counterfactuals.

5We observe how one airline incorporates competition into their models via their documentation.
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2 Model of Dynamic Price Competition

We begin by detailing the demand assumptions that we use in our analysis in Section 2.1.

Our exposition of demand is for an arbitrary number of products. In Section 2.2 we intro-

duce supply-side notation by examining the single firm case. We then introduce a duopoly

pricing game with two products in Section 2.3 which we analyze in Section 3. In Appendix

A, we generalize all results to a pricing game with arbitrary number of firms and products.

2.1 Demand Model

We consider an economy with a set of products denoted by J := {1, . . . , J }. Products

are imperfect substitutes and must be scrapped with zero value at a deadline T > 0. We

analyze a discrete-time environment with periods t ∈ {0,∆, . . . , T −∆}, ∆ > 0, and later

study the continuous-time approximation as ∆→ 0. In every period, a consumer arrives

with probability∆λt . Therefore, each consumer can be indexed by the time t of her arrival.

If all products are available, then given a vector of prices p = (pj ) j∈J , consumer t

purchases product j with probability s j (p ; θ t ,J ), where θ t ∈Θ ⊂Rn is a vector of n ≥ 1

parameters that are smooth and deterministic in time t . We impose the following regularity

conditions on the demand system.

Assumption 1. For all θ ∈Θ and p ∈RJ , the following hold:

i) Convergence for infinite prices: For any j , limpj→∞ s j (p;θ ,J ) = 0. For any subset

A ⊂J and j ∈A , the limit6

s j (p
A ;θ ,A ) := lim

pj ′→∞
j ′ ̸∈A

s j (p;θ ,J ) ∈ [0, 1]

exists, where pj ′ = pAj ′ for all j ′ ∈A , pA ∈RA ;

ii) Products are imperfect substitutes: For all j , s j (p;θ ,J ) is strictly decreasing in pj

and strictly increasing in pj ′ , j ′ ̸= j ;

6The limit takes all prices of products j ̸∈A to infinity where the order does not matter.
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iii) Differentiability and diagonally dominant Jacobi matrix: For all subsetsA ⊂J and

j ∈A , s j (pA ;θ ,A ) is smooth in θ and pA , and

�

�

�

�

∂ s j

∂ pj
(pA ;θ ,A )

�

�

�

�

>
∑

j ′∈A\{ j }

�

�

�

�

∂ s j ′

∂ pj
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�

�

�

; (1)

Furthermore, for any subsetA ⊂J there exists a C > 0 such that for all pA

|s j (p
A ;θ ,A )|<C ·
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�
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∂ s j

∂ pj
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�

�

�

�

−
∑

j ′∈A\{ j }

�

�

�

�

∂ s j ′

∂ pj
(pA ;θ ,A )

�

�

�

�

!

. (2)

Assumption 1-i) ensures that the demand system is well-defined when products sell

out. The first condition in Assumption 1-iii) (Equation 1) ensures that the Jacobi matrix

Dps (p) is non-singular by the Levy-Desplanques Theorem (see e.g. Theorem 6.1.10. in

Horn and Johnson (2012)). This condition intuitively means that a price change of product

j should impact demand of product j more than it impacts the sum of demand of all other

products. The second condition in Assumption 1-iii) (Equation 2) ensures that the demand

for each product is bounded away from 1 and the differential impact of price changes is

large relative to demand. We will use this condition to establish that optimal prices for a

single firm and best responses for each firm in a oligopoly game are uniformly bounded

given any parameter value θ and set of available productsA .

Given Assumption 1, and denoting s to be the vector of s j s, we can define for any θ ,A ,

and finite price vector p ∈RA the vector of inverse quasi own-price elasticities of demand

as

ε̂(p;θ ,A ) :=
�

Dps (p;θ ,A )
�−1

s (p;θ ,A ).

Assumption 2 details the assumption that we place on demand elasticities.

Assumption 2. The vector of inverse quasi own-price elasticities ε̂(p;θ ,A ) satisfies

det
�

−Dpε̂(p;θ ,A )− I
�

̸= 0 for all p ∈ RA , θ ∈ Θ and, A ⊂ J , where I is the iden-

tity matrix.
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Recall that Assumption 1 guarantees that maxp∈RA s(p)⊺(p − c) has an interior solu-

tion. Assumption 2 guarantees that the system of first-order conditions of this problem has

a unique solution. Together, these assumptions replace the assumption of log-concavity

commonly made in single-product, single-firm setting.

We now omit the conditioning arguments θ andA in demand and demand elasticities

whenever the meaning is unambiguous. When the time index is relevant, we write s j ,t (p) :=

s j (p;θ t ,At ). Further, we let the probability of choosing the outside option be equal to

s0,t (p) := 1−
∑

j∈J
s j ,t (p).

2.1.1 Parametric Demand Models

We illustrate theoretical insights with a simple logit demand specification, i.e.,

s j ,t (p) =
exp

¦

δ j−αt pj

ρ

©

1+
∑

j ′∈At

exp
¦

δ j ′−αt pj ′

ρ

© . (3)

We set θ t = αt so that αt /ρ is the time-variant marginal utility to income, and ρ > 0 is a

scaling factor. The parameter δ j/ρ is the product-specific value of product j . Note that

when ρ → 0, competition collapses to standard Bertrand. As ρ →∞, products become

perfectly differentiated. In our empirical analysis, we consider the more flexible nested

logit demand model. Both classic logit and nested logit demand functions satisfy Assump-

tions 1 and 2 (see Appendix C).

2.2 Single Firm Model

We first discuss a single firm, multi-product dynamic pricing model with two goals in mind.

The first is to introduce supply-side notation that we carry over to the competitive model.

The second is to showcase that the single-firm problem is well behaved and exhibits nice

properties. All of them fail in the oligopoly model.

A single firm M offers J products for sale with an initial inventory K j ,0 ∈ N of each
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product j . We do not model the initial capacity choice. Let Kt = (K j ,t ) j∈J denote the

capacity vector at time t . The firm’s continuation payoff at time t ≤ T , given capacity

vector K, satisfies the dynamic program

ΠM ,t (K;∆) =

max
p
∆λt

∑

j∈J

s j ,t (p)
�

pj +ΠM ,t+∆(K−e j ;∆)
�

+
�

1−∆λt

∑

j∈J

s j ,t (p)
�

ΠM ,t+∆(K;∆),

where e j ∈ NJ is a vector of zeros with a one in the j th position. The firm faces three

boundary conditions: (i) ΠM ,T+∆(·;∆) = 0, (ii) ΠM ,t (0;∆) = 0 for all t , where 0 is a vector

of zeros, and (iii) ΠM ,t (K;∆) = −∞ if K j < 0 for a j ∈ J . These boundary conditions are

simply stating that any remaining capacity is scrapped with zero value after the deadline

T , and that the firm cannot oversell. Note that the prices in period t do not directly affect

the continuation values in period t +∆. Hence, the optimal price in each period solves a

static maximization problem given the continuation payoffs. We denote this static profit-

maximizing price vector parameterized by ω j := ΠM ,t (K;∆)−ΠM ,t (K− e j ;∆), commonly

referred to as the opportunity cost of selling product j , by

pM (ω) := arg max
p

∑

j∈J

s j (p)
�

pj −ω j

�

,

where ω = (ω j ) j∈J .7 By Lemma 2 in Konovalov and Sándor (2010), Assumption 2 im-

mediately implies that there is a unique optimal price vector which is continuous in ω and

θ . Then, by Lemma 5 in the Appendix, the continuous-time limit of this dynamic program

exists, is unique, and solves the differential equation specified in the following lemma.

The lemma formalizes that the loss in continuation profit if no sale occurs is given by the

forgone expected flow revenue λt max
p

∑

j∈J
s j ,t (p)

�

pj − (ΠM ,t (K)−ΠM ,t (K−e j ))
�

.

Lemma 1. Let Assumptions 1 and 2 hold. Then, ΠM ,t (K;∆) converges uniformly toΠM ,t (K)

7Note that strictly speaking, the opportunity cost of selling product j is given by ω j −
∑

j ′ ̸= j

s ′j (p)
1−s j (p)

ω j ′ as
by selling product j , the firm forgoes the opportunity to sell any other product to the customer.
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as ∆→ 0, which satisfies

Π̇M ,t (K) =−λt max
p

∑

j∈J

s j ,t (p)

�

pj −
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

�

with boundary conditions (i) ΠM ,T (K) = 0 for all K, (ii) ΠM ,t (0) = 0 for all t , and ΠM ,t (K) =

−∞ if K j < 0 for a j ∈J .

Given a capacity vector K, corresponding available products A = { j : K j ̸= 0}, and

the vector of opportunity costs ωM ,t (K) of products j ∈ A , the first-order condition for

profit-maximizing prices pM ,t (K) ∈RA can be written in matrix form,

pM ,t (K) = ωM ,t (K)
︸ ︷︷ ︸

opportunity costs

−
�

Dpst (pM ,t (K))
�−1

st (pM ,t (K)))
︸ ︷︷ ︸

= ε̂(p;θ ,A )
inverse quasi own-price elasticities

. (4)

Hence, the pricing policy pM ,t (K) is continuous in time and well behaved. The evolu-

tion of the price vector pM ,t (Kt ) is then governed by the evolution of the random variable

representing the opportunity costs and quasi-price elasticities of demand. The following

proposition summarizes well-known properties of an optimal control problem, including

monotonicity and concavity of the value function in the capacity vector. We also derive

properties of the stochastic process governing the opportunity costs ω j ,t (Kt ).

Proposition 1. The solution to the continuous-time single-firm revenue maximization prob-

lem in Lemma 1 satisfies the following:

i) ΠM ,t (K) is decreasing in t for K ̸= 0 and increasing in K j for all j ∈J and t < T ;

ii) ω j ,t (K) is decreasing in t for K ̸= 0 and decreasing in K j for all j and t < T ;

iii) The stochastic process ω j ,t (Kt ) is a submartingale.

Statements i) and ii) of Proposition 1 simply state that more capacity and more time

remaining increase continuation profits, that every additional unit of capacity increases
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profits by less (concavity of profits in capacity), and that opportunity costs are increasing

towards the deadline if K is held fixed. Statement (iii) implies that on average opportunity

costs are increasing, i.e., prices are increasing if θ t ≡ θ by (4). This formal result has been

shown in simulations, e.g., in McAfee and Te Velde (2006), where close to the deadline,

observed prices decrease since the infinite prices of sold out products are ignored.

2.3 Duopoly Model

We introduce a duopoly pricing game with two firms f ∈ {1, 2}. Each firm controls exactly

one product, i.e., J = {1, 2}. Therefore, we set j = f and use the subscript f to denote

both the firm and product of interest. We generalize the results in this section to multiple

firms with multiple products in Appendix A. Our exposition here focuses on the duopoly

case with two products since this case is sufficient to highlight the key forces relevant for

our analysis. Each firm f is initially endowed with K f ,0 units of its own product. In every

period, firms simultaneously set prices pf ,t , and then a consumer arrives with probability

∆λt . If a consumer arrives, she buys a product from firm f with probability s f ,t (p1,t , p2,t ).

As in the single firm case, the payoff-relevant state is given by the vector of inventories

K := (K1, K2) at time t . We study Markov perfect equilibria in which each firm’s strategy is

measurable with respect to (K1, K2, t ). We denote a Markov strategy of firm f by pf ,t (K).

Given equilibrium price vectors p∗t (K) := (p
∗

1,t (K), p ∗2,t (K)), firm f ’s value function satisfies8

Π f ,t (K;∆) =∆λt

�

s f ,t

�

p∗t (K)
�

�

p ∗f ,t (K) +Π f ,t+∆(K−e f ;∆)
�

︸ ︷︷ ︸

revenue from own sale

+

s f ′,t

�

p∗t (K)
�

Π f ,t+∆(K−e f ′ ;∆)
︸ ︷︷ ︸

continuation value if f ′ sells

�

+
�

1−∆λt

∑

h={1,2}

sh ,t

�

p∗t (K)
�

�

︸ ︷︷ ︸

probability of no purchase

·Π f ,t+∆(K;∆),
(5)

where we denote the competitor by f ′ ̸= f . The boundary conditions are analogous to

8Formally, equilibrium prices are a function of ∆, which we omit in the main text for readability.
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the single-firm case: (i) Π f ,T+∆(K;∆) = 0 for all K, (ii) Π f ,t (K;∆) = 0 if K f = 0, (iii)

Π f ,t (K;∆) =−∞ if K f < 0, (iv) Π f ,t (K−e f ′ ;∆) =Π f ,t (K;∆) if K f ′ = 0, K f ≥ 0.

Similar to the single-firm setup, the period-t price vector does not impact the continua-

tion payoffs in period t +∆. Hence, p∗t (K) is an equilibrium of a stage game in which firm

f ’s payoff is given by Π f ,t (K;∆)−Π f ,t+∆(K;∆). In order to describe this stage game, we

denote for each firm f ∈ {1, 2} the change in continuation profit if product h ∈ {1, 2} by

ω
f
h ,t (K) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−eh ;∆),

which we call the scarcity effect of product h on firm f . We refer to ω f
f ,t as the own-

product scarcity effect and ω f
f ′,t , f ′ ̸= f as the competitor scarcity effect. We set ω f

f ′,t := 0

if K f ′ = 0.9 Then, the stage game is parameterized by the matrix of scarcity effects

Ωt (K) =





ω1
1,t (K) ω

1
2,t (K)

ω2
1,t (K) ω

2
2,t (K)



 ,

where by Equation (5), firm f ’s flow payoff is equal to

Π f ,t (K;∆)−Π f ,t+∆(K;∆) =∆λt

�

s f ,t

�

p∗t (K)
�

�

p ∗f ,t (K)−ω
f
f ,t (K)

�

− s f ′,t

�

p∗t (K)
�

ω
f
f ′,t (K)

�

.

Hence, in the stage game, firms simultaneously choose prices and receive payoffs

s f ,t (p)(pf −ω
f
f ,t (K))− s f ′,t (p)ω

f
f ′,t (K), f ′ ̸= f .

Intuitively, the firm incurs an opportunity cost of selling its own product as in the single-

firm setting, but future prices are also affected by the future degree of competition. For

example, firm f benefits from a sale of the competitor if ω f
f ′ < 0. This provides the firm

an incentive to shift demand to the competitor. The stage game can have different strategic

properties depending on the size and sign of the scarcity effects. We introduce the following

9We do not call the ωs opportunity costs for the same reason as discussed in Footnote 7.
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terminology.

Definition 1. We say that a competitor’s sale intensifies competition in a state (K, t ) if

ω
f
f ′,t (K)> 0 and that a competitor’s sale softens competition in a state (K, t ) if ω f

f ′,t (K)< 0.

For a stage game with ω f
f ′,t ̸= 0, we cannot apply results from Caplin and Nalebuff

(1991) or Nocke and Schutz (2018). Payoffs are also neither super-modular nor log-

supermodular (Milgrom and Roberts, 1990), and the stage game is also not a potential

game. In the next section, we derive conditions on the stage game that guarantee unique-

ness of equilibrium outcomes to show in how far Lemma 1 generalizes to a duopoly.

3 Analysis of the Duopoly Model

In this section, we derive theoretical properties of the dynamic pricing game. We start

with an analysis of uniqueness and continuity of stage game equilibria, which allows us to

generalize Lemma 1. We also provide additional theoretical insights on competition, the

role of capacity, and pricing dynamics.

3.1 Equilibrium Existence, Uniqueness, and Continuity

3.1.1 Sufficient Condition for Equilibrium Uniqueness in the Stage Game

We consider the stage game for an arbitrary matrix of opportunity costs Ω. We drop the

time index and capacity argument in all expressions temporarily. Our first result presents

sufficient conditions for existence and uniqueness of an equilibrium of the stage game.

Recall that the best responses of both firms are uniformly bounded by Assumption 1-(iii)

and hence, must satisfy a first-order condition. We can write the first-order condition of

firm f ’s profit maximization problem as

g f (p) = pf ,
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where

g f (p) := ω
f
f +

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
ω

f
f ′

︸ ︷︷ ︸

net opportunity cost
of selling

− s f (p)

�

∂ s f (p)

∂ pf

�−1

︸ ︷︷ ︸

inverse quasi
own-price elasticity

. (6)

By Kellogg (1976),10 the following assumption then guarantees that there is a unique solu-

tion to this system of equations.

Assumption 3. Suppose the following two conditions hold:

i) ∂ g f

∂ pf
(p)−1 ̸= 0 for all p and f = 1, 2;

ii) det

�

Dp

�

g(p)
�

− I

�

̸= 0 for all p, where g(p) := (g1(p), g2(p)).

To better understand Assumption 3, first note that with a single firm, the assumption

guarantees that the first-order condition of the firm is either increasing or decreasing ev-

erywhere in its price. Assumption 3-(i) is always satisfied for demand functions that are

log-concave in each dimension. Mathematically, Assumption 3-(ii) is related to Assump-

tion 2, but the inverse quasi-own price elasticity is replaced by the function g(p). If the

competitor scarcity effect is zero, one can see from Equation (6) that Assumption 2 implies

Assumption 3. If the competitor scarcity effect is not zero, the first-order condition is more

complex than in the single-firm setting since the net opportunity cost of selling depends on

the ratio of derivatives of the demand of the two firms.

Lemma 2. Let Assumptions 1, 2 and 3 hold. Then, the stage game admits a unique equi-

librium.

Note that Lemma 2 establishes uniqueness and existence simultaneously. Under the

commonly made assumption of independence of irrelevant alternatives (IIA) that is satisfied

by a classic logit demand specification, existence of an equilibrium is always guaranteed.

Finally, note that the conditions in Assumption 3 depend onΩ, i.e., they might not guarantee

10See Lemma 2 in Konovalov and Sándor (2010).
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uniqueness for arbitrary stage games. In the next subsection we provide an example for Ω

that yield multiple equilibria.

3.1.2 Continuity of Equilibrium Prices in Scarcity Effect Matrix Ω

Next, we study the stage game parameterized by scarcity effects Ω and demand parameters

θ . We show that if Ω and θ remain in a compact neighborhood in which the stage game

admits a unique solution, then equilibrium prices denoted by p ∗(Ω,θ ) are continuous in

Ω and θ . Consequently, a small change in the opportunity costs does not change prices

substantially. In the dynamic game, as long as no sales occur, prices do not jump over time

provided Ω and θ stay in the compact neighborhood. This property turns out useful for

generalizing Lemma 1 and simulating equilibrium price paths.

Lemma 3. Let Assumptions 1 and 2 hold. If the equilibrium of the stage game is unique

for a compact set of (Ω,θ ) ∈ O , then there exists an equilibrium price vector p∗(Ω,θ ) for

any (Ω,θ ) such that p∗(Ω,θ ) is continuous in (Ω,θ ) on O .

Given Assumption 2, Assumption 3-ii) is satisfied for any matrix of scarcity effects Ω in

a neighborhood O that contains the zero matrix Ω= 0 by continuity. However, Assumption

3-ii) can fail for non-zero values of scarcity effects. In such cases, we can get multiplicities

of equilibria that can potentially result in price jumps that are not caused by a change in

inventory in the dynamic game. The following discussion illustrates this point.

Lemma 3 can fail if Assumption 3 is violated. To see this, consider logit demand such

that δ1 =δ2 = 0, and ρ = 1. In this case, Assumption 3 is equivalent to

�

s1(p) +αω
1
2s0(p)

��

s2(p) +αω
2
1s0(p)

�

̸= 1+
1− s1(p)− s2(p)

s1(p)s2(p)
.

Note that this condition does not depend on the firms’ own-product scarcity effects ω1
1

and ω2
2. Therefore, we set own-product scarcity effects equal to zero and parameterize

competitor scarcity effects using a continuous function. We plot the parameterization of

(ω2
1,ω1

2) in Figure 1-(a). We plot the corresponding equilibrium prices for both firms in
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1-(b). The figure shows that multiplicity of equilibria can occur and there are jumps in

prices—even when scarcity effects change continuously.

Figure 1: Multiplicities in stage-game equilibria
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(b) Multiplicity in equilibrium prices
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, x ∈ [0, 1], where we set
(ω1

1,ω2
2) = (0, 0), and assume logit demand with δ= (1, 1), αt = 1 and scaling factor ρ = 1. Panel (a) depicts the parameterized curve and

panel (b) equilibrium prices of both firms given (ω2
1,ω1

2) at varying values of x .

3.1.3 Characterization of Continuous-time Limit

Using Lemma 3 and Lemma 5 in the appendix, we can generalize Lemma 1 to a duopoly as

long as the time horizon is not too long. We state the result formally below. The equilibrium

characterization is useful because it allows us to simulate equilibrium outcomes in our

empirical analysis for high-dimensional games.

Proposition 2 (Continuous-time Limit). Let Assumptions 1, 2, and 3 hold for Ω = 0. For

every K, there exists a T0(K) > 0, non-increasing in K, so that for any T ≤ T0(K) there

exists a unique equilibrium of the dynamic pricing game for sufficiently small ∆. The

corresponding value function Π f ,t (K;∆) converges to a limit Π f ,t (K) as ∆→ 0 that solves

the differential equation

Π̇ f ,t (K) =−λt

�

s f ,t (p∗(Ωt (K),θ t ))
�

p ∗f (Ωt (K),θ t )− (Π f ,t (K)−Π f ,t (K−e j ))
�

−s f ′,t (p∗(Ωt (K),θ t ))
�

Π f ,t (K)−Π f ,t (K−e f ′ )
�

�

,
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where f ′ ̸= f , with boundary conditions (i) Π f ,T (K) = 0 for all K, (ii) Π f ,t (K) = 0 if K f = 0,

(iii) Π f ,t (K) =−∞ if K f < 0, and (iv) Π f ,t (K−e f ′) =Π f ,t (K) if K f ′ = 0, K f ≥ 0.

Figure 2: Simulated profits and own-product scarcity effects when K2 = 3 and K1 varies

(a) Firm 1 equilibrium profit, Π1
t (K1, 3)
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(b) Firm 1 own-product ω1
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Notes: The simulations assume δ = (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05. Panel (a) shows firm 1’s profits over
time, t ∈ [0, 1], for K= (2, 3) and K= (4, 3). Panel (b) shows firm 2’s profits over time, t ∈ [0, 1], for the same states.

The characterization also allows us to illustrate that the general insights from the single-

firm setting (Proposition 1) do not hold in an oligopoly. In Figure 2, we consider a simu-

lation using logit demand. We fix the capacity of firm 2 to be K2 = 3 and vary the level of

firm 1 capacity K1 (either 2 or 4). In panel (a), we plot firm 1 profits over time for given

capacities. The figure shows that firm 1 expects higher profits with K1 = 4 than with K1 = 2

far from the deadline, however, the firm also expects higher profits with K1 = 2 versus

K1 = 4 close to the deadline. That is, the value function is non-monotonic in own capacity.

In panel (b), we plot the own-product scarcity effect of firm 1. Contrary to the single-firm

case, we see that the own-product scarcity effect is also not monotonic in own capacity.

In addition, note that the own-product scarcity effect is negative close to the deadline but

positive later on. In Figure 11 in Appendix D, we present additional figures that highlight

that the sign of all scarcity effects can be positive or negative.
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3.2 Additional Theoretical Results on Dynamic Price Competition

3.2.1 Prices as Strategic Substitutes vs Strategic Complements

In a static Bertrand game with imperfect substitutes, prices are strategic complements

for commonly used demand specifications, including logit and nested logit demand sys-

tems. Hence, competition unambiguously lowers prices. Due to the presence of competitor

scarcity effects, our model results in pricing games that may be strategic substitutes or

strategic complements, even for a simple demand systems.

In order to understand the strategic incentives when a competitor changes its price,

recall that the first derivative with respect to pf of firm f ’s payoff function is given by

pf 7→
∂ s f

∂ pf

�

pf − g f (p)
�

. By Assumption 1-ii), the first-order condition is satisfied if and

only if pf = g f (p). Furthermore, by Assumptions 1-i) and 3-i), there is a unique interior

maximum of firm f ’s payoff function for any competitor price pf ′ and g f (p) is strictly

decreasing.

How does firm f ’s best-response change if the competitor raises its price? Firm f ’s best

response increases, i.e., the competitor’s price is a strategic complement, if ∂ g f

∂ pf ′
> 0 and it

decreases, i.e., the competitor’s price is a strategic substitute, if ∂ g f

∂ pf ′
< 0. Typically, the

literature assumes monotonicity of the own-price elasticity in the competitor’s price, which

is, for example, guaranteed for log-concave demands. In this case, prices are strategic

complements. However, in our setting, the strategic forces are less straightforward due to

the competitor scarcity effect.11 Given the payoffs in the stage game, we have

∂

∂ pf ′
g f (p) =

∂

∂ pf ′

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
ω

f
f ′ −

∂

∂ pf ′

�

s f (p)

�

∂ s f (p)

∂ pf

�−1

︸ ︷︷ ︸

inverse quasi
own-price elasticity

�

. (7)

To gain some concrete intuition, it is useful to to consider the simple logit specification

11As has been noted for example by Vives (2018); Nocke and Schutz (2018), in general, static oligopoly
games in multi-product environments are, however, not games of strategic complements.

18



introduced in Section 2.1. Then, we have that

∂ s f ′

∂ pf
(p)

∂ s f

∂ pf
(p)
=−

s f ′(p)

1− s f (p)
=−

exp
�

δ f ′ −αpf ′
	

1+exp
�

δ f ′ −αpf ′
	 ,

which corresponds to the negative of the competitor’s demand if firm f ’s product is ex-

cluded from the market. By Assumption 1, this expression is increasing in pf ′ .12 Plugging

this expression into Equation (7), it follows that if the competitor scarcity effectω f
f ′ is pos-

itive, an increase in competitor price increases a firm’s cost of selling a product. This puts

upward pressure on the own price pf . In contrast, for negative ω f
f ′ , the cost is decreasing

in the competitor’s price—firm f benefits if the competitor sells a unit. In an extreme case,

when ω f
f ′ is very negative, it might be that ∂ g f

∂ pf ′
< 0. As a result, the competitor’s price can

became a strategic substitute to the firm’s own price. See Figure 12 in Appendix D for an

example using logit demand where adjusting ω f
f ′ changes the stage game from being one

of strategic complements to strategic substitutes.

3.2.2 The Influence of Remaining Capacities on Prices

Next, we link remaining capacity to incentives to soften price competition. We focus on a

demand system that is constant over time, i.e., λt = λ, θ t = θ , to single out the effects of

remaining capacities. However, similar forces occur with time-dependent parameters, as

we describe in our empirical analysis.

Starting at the deadline, note that equilibrium prices, p∗T , are equal to the stage game

equilibrium prices where all scarcity effects are zero. As we move away from the deadline,

capacity can influence pricing dynamics. We establish that the order of change of prices

towards the deadline is determined by the product with the minimum capacity in the market.

The order of change is reduced by one only if a unit of the product with the minimum

capacity is sold. The proposition is formally stated below.

12A similar expression can be derived for the more flexible nested logit demand specification as shown in
Appendix C.
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Proposition 3. Let λt ≡λ, αt ≡α. Then, for K with K :=min
f

K f , the following holds:

pf ,t (K) = p ∗f ,T +O (|T − t |K ), t → T for f = 1, 2,

i.e., price changes close to the deadline are at most of order K . If lim
t→0

∂ K

(∂ t )K Πh ,t (K− eh ) ̸= 0

for all f with Kh = K , then13

pf ,t (K) = p ∗f ,T +Θ(|T − t |K ), t → T for f = 1, 2,

i.e., price changes are exactly of order K .

The proposition establishes that prices change the most after the sale of the firm with

the lower capacity as the prospect of significant future price changes are manifested in

the scarcity effects of the product with minimum capacity. If capacities are asymmetrically

distributed, the competitor scarcity effect of the firm with more capacity is negative because

a sale of the competitor increases prices significantly. In contrast, the competitor scarcity

effect of the firm with less capacity is small because prices remain nearly unchanged even

if the competitor sells. Thus, only the firm with more capacity has an incentive to set a

higher price. The firm with less capacity has an incentive to set a lower price.

In contrast, if firms have the same capacity, then any sale leads to a price jump, regard-

less of which firm sells. That is, firms would like to sell a unit in order to soften price

competition, but with symmetric capacities, both competitor scarcity effects are negative

and own-product scarcity effects are small (and possibly negative). Although firms would

like to set high prices competitor scarcity effects are negative), there is a countervailing

force: high prices implies the probability of any sale is low, and hence, firms would be

unable to soften future price competition unless one firm sells. Therefore, firms actually

engage in fierce competition—they set very low prices, possibly even lower than p∗T , in

order to leave the competitive state quickly.

13Recall that f (t ) = O (g (t )) as t → T if ∃δ, C1 > 0 so that for all t with 0 < |T − t | < δ, | f (t )| ≤ C1g (t ).
f (t ) =Θ(g (t )) if additionally ∃C2 > 0 so that C2g (t )≤ | f (t )|.
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We illustrate these price competition effects in Figure 14 in Appendix D. We consider

firms with K =(5,4); (4,4); and (3,4) capacities. Note that (4,4) prices are the lowest, and

the firm with the lowest capacity XX14

Empirically, this means that we expect firms to benefit from dynamic pricing whenever

remaining capacities are distributed unequally across firms, as equally distributed capacities

result in intense price competition.

3.2.3 Independence of Irrelevant Alternatives and Markup Formula

Finally, we show that for demand specifications that satisfy the commonly used assumption

of “Independence of Irrelevant Alternatives (IIA),” the stage game admits an equilibrium

for any scarcity matrix Ω. Moreover, the game satisfies a markup formula.

Assumption 4 (Independence of Irrelevant Alternatives (IIA)). Suppose the following

holds,
∂

∂ p1

s2(p)
s0(p)

=
∂

∂ p2

s1(p)
s0(p)

= 0.

Given Assumptions 1, 2 and 4, we establish the following proposition:15

Proposition 4 (Mark-up formula under IIA). Let Assumptions 1, 2 and 4 hold. Then, there

exists an equilibrium p∗(Ω,θ ) of the above stage game for any scarcity matrix Ω. Further,

there exist functions d f (pf ′ ;ω,α), f ̸= f ′ so that p∗(Ω,θ ) is the unique price vector such

that

p ∗f (Ω,θ ) ∈ arg max
pf

s1(pf , p ∗f ′(Ω,θ ))(pf − c f (pf ′ ;Ω,θ ))+d f (pf ′ ;Ω,θ )

for f ∈ {1, 2}, f ′ ̸= f , where c f (pf ′ ;ω,θ ) := ω f
f + s̃ f ′(pf ′)ω

f
f ′ , and s̃ f ′(pf ′) :=

s f ′ (p)
s0(p)

is the

demand of firms f ′ conditional on firm f not selling.

14The relationship between prices and competing firms’ inventories has been explored in other contexts,
e.g., see Israeli et al. (2022) on car dealership pricing.

15The general result in Appendix A additionally shows that with multiple products for each firm, the game
can be transformed to a game in which each product is managed by its own firm given transformed payoff
functions.
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Proposition 4 implies that equilibrium prices p∗(Ω,θ ) satisfy a markup formula

p ∗f (Ω,θ )− c f (pf ′ ;Ω,θ )

pf
=−

1

ε f (p)
, (8)

where ε f (p) =
∂ s f (p)
∂ pf

pf

s f (p)
is the elasticity of demand. Equation (8) shows that price dynamics

are governed by the evolution of the net opportunity cost c f and the change in demand

elasticity. The net opportunity cost c f (pf ′ ;Ω,θ ) is a function of both the own-product

scarcity effect and the competitor scarcity effect, weighted by the relative market share of

the competitor relative to the outside option. Thus, if many consumers pick the outside

option, or if the competitor is small, a firm’s decision is less affected by the competitor.

If the competitor is large, the competitor scarcity effect has a larger weight, putting more

upwards pressure on own prices.

4 Data and Descriptive Evidence

4.1 Data Description

Our empirical insights are derived from data provided to us through a research partnership

with a large U.S. airline.16 The core data set contains booking and pricing information

covering competing airlines and was assembled by third parties that collect and combine

contributed data. The data have strong parallels with other contributed data sets, such as

the the Nielsen scanner data used to study retailing, in that we observe prices and quantities

for competing firms.

The bookings data track flight-level sales counts over time. We use the tuple j , t , d

to denote an airline-flight number, day before departure, departure date combination. The

frequency of the data is daily. We observe separate booking counts for passengers flying

between an origin-destination pair (OD) and consumers making connections. We call these

consumers local and flow passengers, respectively. Our structural analysis focuses on lo-

16The airline has elected to remain anonymous.
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cal, nonstop traffic. We do not model the potential for consumers to connect while flying

between an origin-destination pair.

We observe bookings for consumers who purchased directly with the airline and on

other booking channels, e.g., online travel agencies. We label these bookings direct and

indirect, respectively. Because we observe all booking counts, we can construct the load

factor for each flight over time. We do not know the exact itinerary involved for each

booking, e.g., a round-trip versus a one-way booking. Therefore, we assume that the price

paid for each nonstop booking corresponds to the lowest available nonstop, one-way fare

for that flight.

Our pricing data come from a separate third-party data provider that gathers and dis-

seminates fare information for the airline industry. The data frequency matches the book-

ing information, i.e., we observe daily prices at the flight level. We observe fares even

when there are no bookings. Several prices are tracked, including tickets of different qual-

ities (cabins, fully refundable, etc.). We concentrate our analysis on the lowest available

economy class ticket because travelers overwhelmingly purchase the lowest fare offered

(Hortaçsu et al., 2021b). We do not model consumers choosing between cabins (economy

vs. first class) nor the pricing decision for different versions of tickets.

In order to gauge market sizes, we use clickstream search data provided to us by the air

carrier. See Hortaçsu et al. (2021a) and Hortaçsu et al. (2021b) for more details. Observed

searches understate true arrivals because some consumers may search and purchase through

online travel agencies or directly with competitors. We extrapolate total arrivals by scaling

up observed searches using hyperparameters that we describe below.

4.2 Route Selection

Our analysis concentrates on nonstop flight competition. We limit ourselves to routes where

nonstop service is provided by exactly two airlines—by our data provider and one competi-

tor. Our data contain more than one competitor airline, however, we will always refer to

the competing airline as “the competitor.” We eliminate routes where the third-party data is
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incomplete, e.g., where a carrier provides direct bookings to the data provider but indirect

bookings are missing. In addition to these criteria, we select routes in which most OD traf-

fic is traveling nonstop. This selection criteria allows us to avoid the additional complexity

of modeling connecting traffic.

Figure 3: Summary Analysis from the DB1B Data

(a) Local versus Flow Traffic
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(b) CDF of Passenger-Weighted Fares
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(c) Total Passenger Counts
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Note: Panel (a) records the percentage of flow (connecting) vs local traffic and the percentage of non-stop traffic in the DB1B data. Panel
(b) plots the cdf of prices for selected routes and all dual-carrier markets. Panel (c) reports total passenger counts for both competitors.
Panel (d) reports the number of aggregate monthly departures for the routes in our sample.

In Figure 3 we provide summary analysis of the 58 routes in our data using the publicly

available DB1B data. These data contain 10% of bookings in the U.S. but lack information

on the booking and departure date. In panel (a), we show the percentage of total traffic

that is local versus the percentage of local traffic flying nonstop for our data compared to

all dual-carrier nonstop markets in the U.S. The selected markets primarily contain local
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traffic that are traveling nonstop. In panel (b) we show that the distribution of fares in our

markets is similar to the universe of dual-carrier markets.

In panels (c) we use the DB1B data to compute the quarterly passenger counts of the

competing airlines in our data set. The panel shows the total passenger count for “Com-

petitor A” and “Competitor B,” which we use to denote our air carrier and the nonstop

competitor, respectively. Each dot represents an OD-quarter. The panel shows the diversity

of routes in our sample. There is considerable variation in the total size of the market (dis-

tance from the origin) as well as the relative size of the airlines for each OD. There is also

variation in the passenger count of nonstop traffic within an OD across carriers.

Finally, in panel (d) we use the publicly available T100 segment data to plot the to-

tal number of monthly departures for the routes in our sample. Over half of our sample

contains routes in which there are less than five daily frequencies between the origin and

destination. Several routes feature twice daily service (one flight per airline). At the other

extreme, one route in our data contains nearly 10 daily frequencies.

4.3 Descriptive Evidence

Table 1: Summary statistics

Data Series Variable Mean Std. Dev. Median 5th pctile 95th pctile

Fares
One-Way Fare ($) 233.7 111.4 218.6 92.1 390.7
Num. Fare Changes 6.4 2.4 6.0 3.0 11.0

Bookings
Booking Rate-local 0.2 0.6 0.0 0.0 1.0
Booking Rate-all 0.5 1.2 0.0 0.0 3.0
Ending LF (%) 72.1 19.8 76.0 32.9 98.0

Note: One-Way fare is for the lowest economy class ticket available for purchase. Number of fare changes records the number of price
adjustments observed for each flight. Booking rate-local excludes flow traffic. Booking rate-all includes both local and flow traffic.
Ending load factor (LF) reports the percentage of seats occupied at departure time.

We provide a summary of the main data in Table 1. All flights departed in the first nine

months of 2019. Average fares across airlines in our sample are $233. On average, each
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flight experiences about six price adjustments within 90 days. In terms of bookings, the

average daily booking rate is less than one. Roughly 40% of observed bookings are for

local traffic, the remaining are flow bookings. At the departure time, average load factors

are 72%, which is lower than the industry average of about 80% for this time period. We

do observe sellouts for all competitors in the data.

In Figure 4 we plot average fares and booking rates by day before departure. The left

panel (prices) shows that average fares are fairly flat between 90 and 21 days before depar-

ture. The top end of the distribution is decreasing in this time window. There are noticeable

“steps” in the last 21 days before departure which highlights the use of advance purchase

(AP) discounts in the industry. In the routes examined, we observe AP requirements at 21,

14, 7, and 3 days before departure. In the right panel (bookings) we highlight that book-

ings increase as the departure date approaches. This coincides with increasing prices and

suggests that demand becomes more inelastic over time. The booking rate is greater than

one per flight over the last month before departure.

Figure 4: Prices and Bookings by Day Before Departure

(a) Prices over Time
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(b) Bookings per Route-Departure Date over Time
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Note: Panel (a) shows the average and interquartile range of flight prices over time. Panel (b) shows the average and interquartile range
of flight booking rates over time. Greater than 30 days before departure, the 25th and 75th percentiles coincide.

In Figure 5 we focus on outcomes across competitors. The left panel provides a scatter

plot of ending load factor at the route-departure date level for the entire data sample. The

orange squares present route-level load factors. Note there exists a large mass of points
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both above and below the 45-degree line—one competitor does not consistently sell a larger

fraction of capacity than the other carrier for all routes. We do observe some flights with

substantial overselling. In our analysis, we restrict firms to selling at most their capacity.

In the right panel we plot the average fare difference across competitors over time when

exactly two flights are offered. Note that fares tend to be similar across competitors—

the average difference is less than $10. However, the gradient of the prices differs. One

competitor has relatively higher prices well in advance of departure and relatively lower

prices close to departure. Note that for over 50% of the data, prices across firms are equal,

that is, there is substantial price matching.

Figure 5: Load Factor and Price Differences across Carriers

(a) Load Factors
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Note: Panel (a) shows the average load factor (across all flights) at the route-departure date level for both competitors in blue. The
orange squares report average route-level load factors. The diagonal line is the 45-degree line. Panel (b) shows the average and the 25th
and 75 percentiles of the difference in prices for markets in which exactly two flights across firms are offered (one flight per airline).

5 Demand Model and Estimates

5.1 Empirical Specification

We model nonstop air travel demand using a nested logit demand model. Our model differs

from recent empirical work on airlines that use a mixed-logit model to model “business”

and “leisure” travelers (Lazarev, 2013; Williams, 2022; Aryal et al., 2021; Hortaçsu et al.,
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2021b). We use a flexible nested-logit model with time-varying as it better maps to our

theoretical model and results in unique equilibrium price paths.17

Define a market as an origin-destination (r ), departure date (d ), and day before depar-

ture (t ) combination. Each flight j , leaving on date d , is modeled across t ∈ {0, ..., T }. The

first period of sale is t = 0, and the flight departs at T . We use a 90-day time horizon. With

daily data, we model demand at the daily level. Arriving consumers choose flights from the

choice set Jt ,d ,r that maximize their individual utilities, or select the outside option, j = 0.

There are two nests. The outside good belongs to its own nest, and all inside goods belong

to the second nest.

We specify consumer arrivals to be

λt ,d ,r = exp
�

τOD
r +τ

DD
d +τ

SD
t ,d + f (DFD)t

�

,

where τ denote fixed effects for the route, departure date, and search date; f (·) is a polyno-

mial series of degree three. We scale up these estimated arrival rates using hyperparameters

to account for unobserved searches.

Conditional on arrival, we specify consumer utilities as

ui , j ,t ,d ,r = x j ,t ,d ,rβ −αt pj ,t ,d ,r +ζi ,J + (1−σ)ϵi , j ,t ,d ,r ,

where ζi ,J + (1−σ)ϵi , j ,t ,d ,r follows a type-1 extreme value distribution, and ζi ,J is an id-

iosyncratic preference for the inside goods. The parameter σ ∈ [0, 1] denotes correlation

in preferences within the nests. We allow the price sensitivity parameter to vary over time

(αt ) using three-day intervals of time; hence, we estimate 30 price sensitivity parameters.

We include a number of covariates in x where preferences are assumed to not vary across

t : departure week of the year, departure day of the week, route, carrier, and departure time

fixed effects.

Each arriving consumer solves their utility maximization problem such that consumer

17The mass-point random coefficients models yields multiple equilibria in our setting.
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i chooses flight j if, and only if,

ui , j ,t ,d ,r ≥ ui , j ′,d ,t ,r , ∀ j ′ ∈Jt ,d ,r ∪{0}.

Temporarily dropping the t , d , r subscripts, we define

DJ :=
∑

j∈J

exp

�

x jβ −αt pj

1−σ

�

,

so that the probability that a consumer purchases j within the set of inside goods is equal

to

s j | J =
exp

�

x jβ t−αt pj

1−σ

�

DJ
.

It follows that the probability that a consumer purchases any inside good product is equal

to

sJ =
D 1−σ

J

1+D 1−σ
J

.

We define overall product shares to be equal to s j = s j | J · sJ , which are implicitly at the

market level (t , d , r ).

Our assumptions imply that demand is distributed Poisson with a product purchase rate

equal to min
�

λt ,d ,r · s j ,t ,d ,r , C j ,t ,d ,r

	

. Note as the length of a period decreases, at most one

seat will be sold in any period.

5.2 Demand Estimates

We estimate the model in two steps. In the first step, we estimate the arrival process pa-

rameters using Poisson regressions. We then estimate preferences of the Poisson demand

model using maximum likelihood. We estimate standard errors using bootstrap.

We follow Hortaçsu et al. (2021b) in constructing arrivals using clickstream data for

one airline. These data track all “clicks” or interactions on the firm’s websites. We first

sum the number of searches corresponding to each market (r, d , t ) and then we scale up
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estimated arrival rates to account for unobserved searches. This follows from a property of

the Poisson distribution and the assumption that consumers who search/purchase through

alternative platforms (travel agents, other carriers’ websites) have the same underlying pref-

erences. We first calculate the fraction of direct bookings by day before departure and then

scale up the estimated arrival rates using these these fractions. This adjusts arrivals for a

single carrier. In our preferred specification, we then double these arrival rates to account

for competitor indirect and direct searches, both of which are unobserved to us. We conduct

robustness to this hyperparameter in Appendix D.

We summarize the demand estimates in Table 2. We estimate the nesting parameter to

be 0.5 so that there is substantial substitution within inside goods. The price sensitivity

parameters vary by nearly a factor of ten over time. We present a time series plot of αt in

Figure 6. Almost all of our controls are significant, with day of the week and week of the

year having the most influence on market shares. The competitor FE is significantly less

important in driving variation in shares. We estimate the average own-price elasticity to be

-1.4.

Table 2: Demand Estimates Summary Table

Variable Symbol Estimate Std. Error. Range % Sig.

Nesting Parameter σ 0.498 0.010 − −

Price Sens. α − − [-0.511 ,-0.074 ] 100.0

Competitor FE − 0.071 0.003 − −

Day of Week FE − − − [-1.637 ,-0.961 ] 100.0

Departure Time FE − − − [-0.462 ,-0.050 ] 100.0

Route FE − − − [-0.177 ,0.226 ] 94.4

Week FE − − − [-0.953 ,0.699 ] 86.0

Sample Size N 2,814,686

Avg Elasticity e D -1.438

Note: Demand estimates for the 58 routes in our sample.
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In Figure 6-(a), we plot average adjusted arrival rates as well as parts of the distribution

(5%, 25%, 75%, 95%) across markets. We estimate just a few arrivals per market 90

days before departure that then increases to over 10 passengers per day close to departure.

Recall that the average booking rate across flights is less than 2.0 (see Figure 4) so that

market shares are low. An increase in interest in travel is a general findings across all of

the routes in our sample. Note that while the 75th percentile closely followed the mean, the

top part of the distribution is substantially higher, which corresponds to the routes in the

upper-right of Figure 3-(d).

Figure 6: Arrival Rates and the Price Sensitivity Parameters

(a) Arrival Rates
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Note: Panel (a) shows fixed values, adjusted for unobserved searches, of arrival rates over time. The mean is the average arrival rate
across all markets. The percentiles are also over markets. Panel (b) shows our estimates of the price sensitivity parameters in 3-day
groupings.

6 Counterfactual Analysis

With our demand estimates, we quantify the welfare effects of dynamic price competi-

tion using three sets of counterfactuals—the benchmark, lagged, and deterministic models

presented in our theoretical analysis.

Although the benchmark model holds for an arbitrary number of firms and products,

computing equilibria of the game is difficult. We adjust our empirical estimates in a number

of ways for computational reasons:
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i) We consider only two products. Instead of investigating pricing in routes where we

observe a single flight operating by each firm, we adjust the choice set, utilities, and

capacities for all routes.

ii) We take the mean utilities across observed flights for each departure date and an

input.

iii) We take the maximum observed capacity for each route-carrier-departure date. Al-

though it may be natural to sum the capacities when restricting the choice set, we

have found that large capacities presents a significant computational burden.

iv) We use the observed arrival process for each route-departure date. We do not adjust

the estimated arrival processes as the inside good shares tend to be small. That is,

because most consumers choose the outside good, we do not scale down arrival rates

to account for smaller choice sets.

v) Finally, we handle flow (connecting traffic) bookings two ways. In our reported coun-

terfactuals here, we model these bookings via Poisson processes that the firm does

not internalize when pricing local demand. In the appendix we report counterfactuals

where we subtract off all connecting bookings at the start of the game. This affects

market outcomes because it reduces uncertainty for firms.

Benchmark Model

We approximate the continuous time model to solve for equilibrium prices for every depar-

ture date. We consider hourly decisions over 90 days. Both firms start with initial capacities

K f and K f ′ . We solve via backward induction, which we outline here. In the last pricing

period, t = T , both ΠT (K) = 0 and ΩT (K) = 0. Therefore, both firms solve static revenue

maximize problems. We set the first-order conditions corresponding to the best response

functions equal to zero and solve for the fixed point. We denote the fixed-point price vector

by pT = p∗(ΩT ,αT )where ΩT = 0. Let us denote the stage-game payoff of firm f in period t
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given price vector p and Ω by π f ,t (p,Ω). Then, using the differential equation, we can write

Π̇ f ,T (K) =−λTπ f ,T (pT (K), 0), which allows us to calculate Π f ,T−∆(K) =Π f ,T (K)−∆·Π̇ f ,T (K)

andω f
f ′,T−∆(K) =Π f ,T−∆(K)−Π f ,T−∆(K−e f ′). Given the updated own and scarcity effect pa-

rameters we again solve for equilibrium prices, pT−∆ = p∗T−∆(ΩT−∆,αT−∆).18 We continue

the induction backwards in time to t = 0.

Due to the large number of state variables, we storeΩt and pt every 24 hours (at the start

of a day) in order to use them in counterfactual simulations. We then appeal to modeling

demand via multinomial distributions after drawing arrivals from a Poisson distributions in

lieu of studying each consumer’s individual choice after drawing arrivals from a Bernoulli

distributions as in the theoretical model.

6.0.1 Pricing with Heuristics

We compare the benchmark model to two pricing heuristics where firms do not internalize

the scarcity of their competitor and firms also do not explicitly account for the fact that their

competitor is a strategic agent solving a dynamic pricing problem. In both heuristics, we

consider discrete prices as they are used in actual airline pricing practices. Applied theory

work, including Asker et al. (2021), also consider discrete prices. The pricing menu (set of

discrete prices for all time periods) is taken as given.

We label the heuristics “Lagged Model” and “Deterministic Model,” respectively. In

the lagged model, each firm, having observed its competitor’s last period price, assumes

this price will also be charged in the current and all future periods. Each firm then calcu-

lates its residual demand curves in all remaining periods and solves a single-firm dynamic

programming problem. In the deterministic model, each firm simply assumes its competi-

tor will price at the lowest possible price in all remaining periods. Our simulations show

that price levels can be higher or lower than in the benchmark model depending on demand

parameters.19 In the next section we will feed in estimated demand models into the bench-

18We use a modified Powell method from MINPACK’s hybrid routine to solve the system of first order
conditions corresponding to the best-response functions.

19Interested readers can find example price paths of the heuristics in Figure 16 in Appendix D.

33



mark model and heuristic models to empirically estimate the implications of profits, total

welfare, consumer surplus, and prices.

Lagged-Price and Deterministic Models

Recall that both the lagged-price and deterministic models use discrete fares. All airlines

use discrete fares, and our data allow us to create fare menus for all carrier, route combi-

nations.20 More specifically, airlines file fares for “buckets.” Typically, each carrier fills

between seven and fifteen buckets per route. Buckets can change by day before departure,

i.e., the fare for a given bucket increases. However, the data suggests that a more conse-

quential change in buckets over time is their availability. Oftentimes, a fare is restricted for

a certain time period before departure—an advance purchase discount.

Figure 15-(a) in Appendix D shows an example fare menu for a given carrier-route in

the data. Prices vary from less than $200 to over $3,000. In Figure 15-(b) and Figure 15-

(c), we provide example price paths for the lagged and deterministic models using our

empirical estimates.

Implementation

We conduct 10,000 Monte Carlo experiments for every route, departure date combina-

tion. We simulate all counterfactuals twice, one where flow traffic is subtracted from initial

observed capacity is advance, and one where flow traffic is modeled through Poisson pro-

cesses, not internalized when pricing local demand. We store prices, arrivals, quantities

sold, and calculate consumer surplus and revenues for every market.

6.1 Welfare Effects of Dynamic Price Competition

20See Hortaçsu et al. (2021b) for more details.
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Figure 7: Benchmark Model Opportunity Costs
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.

Table 3: Counterfactual Results

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Deterministic 98.3 96.8 97.6 108.4 103.9 103.2 101.2 109.9

Lagged 105.2 101.7 102.7 103.9 103.2 99.6 99.9 98.8

Uniform 118.2 85.7 87.4 112.9 102.2 93.6 97.5 72.6

Note:
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Figure 8: Counterfactual Summary Plots

(a) Prices over Time
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(d) Cumulative Welfare Comparison
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Note: Panel (a) shows the average price over time for the benchmark, deterministic and uniform models. Panel (b) shows the average
load factors over time for the same three models. Panel (c) shows the average sellouts over time for the same three models. Panel (d)
shows the ratio of average cumulative welfare for the benchmark model with respect to the deterministic one, and for the benchmark
model with respect to the uniform one.
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Figure 9: Cumulative Surplus Differences Across Counterfatuals
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.

Figure 10: Heuristic Counterfactuals Prices and Load Factors

(a) Prices over Time
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Note: Panel (a) shows the average prices over time for the two heuristic models. Panel (b) shows the average load factors over time for
the same two models.
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A General Model with Many Firms and Many Products

In Appendix A, we formulate the generalized results stated in Section 3 for the duopoly

case. We directly prove those general statements in Appendix B.

A.1 Model Setup

We consider a market with F ≥ 1 firms and J ≥ F products, denoting the set of firms by

F := {1, . . . , F } and the set of products byJ := {1, . . . , J }. Each firm f sells products inJ f ,

where (J f ) f ∈F is a partition of J ; that is, J =
⋃

f ∈F
J f and J f ∩J f ′ = ; for f ̸= f ′. Thus,

no product is sold by more than one firm. Each firm f is equipped with an initial inventory

of their products j ∈ J f , denoted by K j ,0 ∈N. We assume that the demand system for the

products in J is as introduced in Section 2.1, and satisfies Assumptions 1 and 2.

The dynamic pricing game is the canonical generalization of the duopoly game intro-

duced in Section 2.3. In every period t , each firm f simultaneously sets prices pj ,t for its

products j ∈J f , and then a consumer arrives with probability ∆λt . If a consumer arrives,

she buys product j with probability s j ,t (pt ).

Like for the duopoly, the payoff-relevant state is given by the vector of inventories

K := (K j ) j∈J and the time t . We study Markov perfect equilibria in which each firm’s

strategy is measurable with respect to (K, t ). We denote a Markov pricing strategy of firm

f by p f ,t (K) = (pj ,t (K)) j∈J f
.

Given equilibrium price vectors p∗t (K) := (p
∗
j ,t (K)) j∈J , firm f ’s value function satisfies21

Π f ,t (K;∆) = ∆λt

�

∑

j∈J f

s j ,t (p
∗
t (K)) (p

∗
j ,t (K) +Π f ,t+∆(K−e j ;∆))

︸ ︷︷ ︸

revenue from own sale

+

∑

j ′ ̸=J \J f

s j ′,t (p
∗
t (K))Π f ,t+∆(K−e j ′ ;∆)

︸ ︷︷ ︸

continuation value if j ′ sells

�

+
�

1−∆λt

∑

j ′∈J

s j ′(p
∗
t (K))

�

︸ ︷︷ ︸

probability of no purchase

Π f ,t+∆(K;∆),

21Formally, equilibrium prices are a function of ∆, which we omit here for readability.

42



with boundary conditions (i) Π f ,T+∆(K;∆) ≡ 0 for all K, (ii) Π f ,t (K;∆) ≡ 0 if K j = 0 for all

j ∈J f and (iii) Π f ,t (K;∆) =−∞ if K j < 0 for a j ∈J f , (iv) Π f ,t (K−e j ;∆) =Π f ,t (K;∆) if

K j = 0 for a j ̸∈ J f K j ≥ 0 for all j ∈J f .. Then, we denote the scarcity effect of product j

on firm f in state (K, t ) by

ω
f
j ,t (K) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−e j ;∆).

Then, the stage game is parameterized by the matrix of scarcity effects

Ωt (K) = (ω
f
j ,t (K)) f , j ∈RF ×RJ ,

where firm f ’s flow payoff Π f ,t (K;∆)−Π f ,t+∆(K;∆) is equal to

∆λ
∑

j∈J f

s j ,t (p
∗
t (K))(pj −ω

f
j ,t (K))−

∑

j ′ ̸∈J f

s j ′,t (p
∗
t (K))ω

f
j ′,t (K).

Hence, the equilibrium prices in period t correspond to equilibria of the stage game where

each firm f simultaneously chooses prices to maximize

∑

j∈J f

s j ,t (p)(pj −ω
f
j ,t (K))−

∑

j ′ ̸∈J f

s j ′,t (p)ω
f
j ′,t (K).

A.2 Analysis of Oligopoly Market

We follow closely the structue of Section 2.3 and state the generalized results here.

A.2.1 Equilibrium Existence, Uniqueness, and Continuity

Analogously to Equation 6, we define

g f (p) :=
�

Dp f s f (p)
�−1

Dp f

�

s(p)⊺ω f
�

︸ ︷︷ ︸

net opportunity costs
of selling

−
�

Dp f s f (p)
�−1

s f (p)
︸ ︷︷ ︸

inverse quasi
own-price elasticities

(9)
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Then, we can generalize Assumption 3 and Lemma 2 as follows.

General Assumption 3. The following two conditions hold,

i) Dp f
g f (p)−1 ̸= 0 for all p and f ;

ii) det

�

Dp

�

g(p)
�

− I

�

̸= 0 for all p, where g(p) := (g f (p)) f ∈F .

General Lemma 2. Let Assumptions 1, 2, and General Assumption 3 hold. Then, the stage

game admits a unique equilibrium.

A.2.2 Continuity of Equilibrium Prices in Scarcity Effect Matrix Ω

General Lemma 3. If the equilibrium of the stage game is unique for a compact set O of

costs Ω, then there exists an equilibrium price vector p∗(Ω,θ ) that is continuous in Ω on O

and θ on Θ.

A.2.3 Characterization of Continuous-time Limit

General Proposition 2 (Continuous-time limit Limit). Let Assumptions 1, 2, and General

Assumption 3 hold for Ω= 0. For every K, there exists a T0(K)> 0, non-increasing in K, so

that for any T ≤ T0(K) there exists a unique equilibrium of the dynamic pricing game for

sufficiently small ∆. Then, there exists a unique subgame-perfect equilibrium. The value

function Π f ,t (K;∆) converges to a limit Π f ,t (K) that solves the differential equation

Π̇ f ,t (K) =−λt

�

∑

j∈J f

s j (p∗(Ωt (K);θ t ))
�

p ∗j (Ωt (K);θ t )− (Π
f
t (K)−Π

f
t (K−e j ))

�

−
∑

j ′ ̸=J f

s j ′ (p∗(Ωt (K);θ ))
�

Π
f
t (K)−Π

f
t (K−e j ′ )

�

�

with boundary conditions Π f
t (K) = 0 if K j = 0 for all j ∈J f and Π f

T (K) = 0. (i) Π f ,T (K) = 0,

(ii) Π f ,t (K) = 0 if K j = 0 for all j ∈J f , (iii) Π f ,t (K; ) =−∞ if K j < 0 for a j ∈J f , and (iv)

Π f ,t (K−e j ) =Π f ,t (K) if K j = 0 for a j ̸∈ J f , K j ′ ≥ 0 for all j ′ ∈J f .
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Lemma 4. For a logit demand system as defined in Equation 3, holding everything else

fixed, there exists a σ̄ and a ∆̄ > 0 so that for all σ > σ̄ and ∆ < ∆̄, the cost matrix Ωt (K)

satisfies Assumption 4 for all t ∈ [0, T ] and K≤K0.

A.2.4 Additional Theoretical Results on Dynamic Price Competition

Capacity Distribution and Prices Assume that λt and s f ,t is independent of time, i.e.,

λt =λ, θ t = θ .

General Proposition 3. For K with K :=min
j

K j , the following holds:

pj ,t (K) = p ∗j ,T +O (|T − t |K ), t → T .

If (Π f
t )(K )(K−e j ′) ̸= 0 for all f and j ′ with K j ′ = K , then

pj ,t (K) = p ∗j ,T +Θ(|T − t |K ), t → T .

The proposition shows that prices are more different from 0 close to the deadline the

smaller the minimum inventory of products K j = K is. If firms have the same capacity,

then any sale leads to price jump. This leads to strong incentives to get out of this state by

offering low prices — possibly even prices smaller than the competitive price.

Independence of Irrelevant Alternatives and Markup Formula Assumption 4 gener-

alizes to more than two products as follows.

General Assumption 4 (Independence of Irrelevant Alternatives (IIA)). ∂
∂ pj

s j1 (p)
s j2 (p)

= 0 for

j ̸= j1, j2.

Given Assumptions 1, 2 and General Assumption 4, we can show that the game with

multi-product firms can be transformed into a game of single-product firms.

General Proposition 4 (Mark-up formula under IIA). Let Assumptions 1, 2 and 4 hold.

Then, there exists and equilibrium p∗(Ω,θ ) of the above stage game for any scarcity matrix
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Ω. Further, there exist functions d j (p− f ;Ω,θ ) so that the equilibrium prices of the stage

game coincide with the equilibrium prices of a game with a set J of players who each

simultaneously choose a price pj maximizing

s j (p)(pj − c j (p− j ;Ω,θ ))+d j (p− j ;Ω,θ )

with a cost function

c j (p− j ;Ω,θ ) :=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ (10)

and s̃ j , j ′(p− j ) :=
∂ s j ′
∂ pj
(p)

∑

j ′′∈J 0\{ j }

∂ s j ′′
∂ pj
(p)

.

A consequence of Proposition 4 is that the first-order conditions (FOCs) that implicitly

define the best response functions of the firms, can be written in a markup formulation as

pj − c j (p− j ;Ω,θ )

pj
=−

1

ε j (p)
(11)

where ε j (p) =
∂ s j (p)
∂ pj

pj

s j (p)
is the elasticity of demand. The formulation (11) emphasizes the

impact of the competitive forces in the presence of opportunity costs: Other firm’s prices

do not only impact own demand, but also the effective cost of selling the product.

B Proofs

B.1 Technical results

B.1.1 Continuous time limit

We use the following convergence result as ∆→ 0 for the proofs of Lemma 1 and General

Proposition 2.
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Lemma 5. Consider a continuous price function (Ω,θ ) 7→ p∗(Ω,θ ) = (p ∗f (Ω,θ )) f on a com-

pact set O , and a bounded and continuous function A :RF ×RJ×F . Let Π f ,t (K;∆), f ∈F ,

be a solution to the difference equations

�

Π f ,t+∆(K;∆)−Π f ,t (K;∆)

∆

�

f

=−λt A
�

p∗
�

Ω(K;∆)),θ t

�

, Ω(K;∆)
�

where Ω(K;∆) = (ω f
j ,t (K;∆)) f , j , ω

f
j ,t (K;∆) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−e j ;∆), with bound-

ary conditions (i) Π f ,T+∆(K;∆) = 0, (ii) Π f ,t (K;∆) = 0 if K j = 0 for all j ∈ J f , (iii)

Π f ,t (K;∆) = −∞ if K j < 0 for a j ∈ J f , and (iv) Π f ,t (K− e j ;∆) = Π f ,t (K;∆) if K j = 0

for a j ̸∈ J f , K j ′ ≥ 0 for all j ′ ∈J f . Then, (Π f
t (K;∆)) f converges to a limit (Π f ,t (K)) f that

satisfies

�

Π̇ f ,t (K)
�

f
=−λt A

�

p∗
�

Ω(K),θ t

�

, Ω(K)
�

,

where Ω(K) = (ω f
j ,t (K)) f , j , ω

f
j ,t (K) :=Π f ,t (K;∆)−Π f ,t+∆(K−e j ), with boundary conditions

(i) Π f ,T (K) = 0, (ii) Π f ,t (K) = 0 if K j = 0 for all j ∈J f , (iii) Π f ,t (K; ) =−∞ if K j < 0 for a

j ∈J f , and (iv) Π f ,t (K−e j ) =Π f ,t (K) if K j = 0 for a j ̸∈ J f , K j ′ ≥ 0 for all j ′ ∈J f .

Proof. Since A is bounded, the difference equations show that (Π f (K;∆)) f ∈F ,K≤K0
is

equicontinuous and equibounded in t as ∆→ 0. Hence, by the Arzela-Ascoli Theorem,

there exist limit points (Π f (K)) f ∈F ,K≤K0
. We claim that

�

Π f ,t (K)
�

f
=

T
∫

t

λu A
�

p∗(
�

Ωu (K),θ u

�

, Ωu (K)
�

d u . (12)

To this end, we note that if we let ⌈u ⌉∆ to be the largest number that is divisible by ∆ and

smaller or equal than u

�

Π f ,t (K;∆)
�

f
=

T
∫

t

λ⌈u ⌉∆ A
�

p∗
�

Ω⌈u ⌉∆(K;∆),α⌈u ⌉∆
�

, Ω⌈u ⌉∆(K;∆)
�

d u . (13)

47



We take the limit∆→ 0 on both sides. The left-hand side of (13) converges to the left-hand

side of (12). On the right-hand side, Ω⌈u ⌉∆(K;∆) converges to Ωu (K). Hence, by continu-

ity of p∗ and A the integrand in (13) converges to the integrand in (12). The dominated

convergence theorem finishes the proof. ■

B.1.2 Continuity of stage game prices

Lemma 6. Let P ⊂ RJ be compact and convex and O a path-connected set of (Ω,θ ).

Further, let g : (q;Ω,θ ) 7→ p be defined as a function P ×O →P , where g is continuously

differentiable in q and continuous in Ω and θ . If det(Dqg (q;Ω,θ )− I ) ̸= 0 for all (q;Ω,θ ) ∈

P ×Θ, then there is a unique p∗(Ω,θ ) satisfying g (p∗(θ );Ω,θ ) = p∗(Ω,θ ) and it depends

continuously on Ω and θ .

Proof. The existence and uniqueness of p∗(Ω,θ ) follows directly from Lemma 2 (Kellogg

(1976)) in Konovalov and Sándor (2010). To show continuity, we consider a sequence

(Ωn ,θ n )n≥1 converging to some (Ω∞,θ∞). Thanks to path-connectedness of O there exists

a continuous path r : [0, 1] → O and a sequence an ↑ 1 such that r(an ) = (Ωn ,θ n ) and

r(1) = (Ω∞,θ∞). By Browder’s Theorem (Theorem 1.1 in Solan and Solan (2021)), the set

{(p∗(r(a )); a ) : a ∈ [0, 1]} ⊂P × [0, 1] is connected. By the main theorem of connectedness,

each set {(p ∗j (r(a )); a ) : a ∈ [0, 1]} ⊂R×[0, 1] is connected, for all j . By Burgess (1990), the

function a 7→ p ∗j (r(a )) is continuous, so p ∗j (Ωn ,θ n ) = p ∗j (r(an ))→ p ∗j (r(1)) = p ∗j (Ω∞,θ∞).

■

B.2 Proofs of Single Firm Model

B.2.1 Proof of Lemma 1

The profit-maximizing prices of the stage game pM (ω) are implicitly given by (4).

g (q;ω,θ ) :=ω− (Dpst (q))
−1st (q)

︸ ︷︷ ︸

≤0
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is continuously differentiable in q, Ω and θ by Assumption 1, and any fixed point must

satisfy q ≥ω and q ≤ω+1ε̄ by Assumption ?? iii). Hence, the convergence to 4 follows

by Lemma 5.

B.2.2 Proof of Proposition 1

Proof. i) To see that ΠM ,t is decreasing in t , note that in (4), pj can always be chosen so

that objective function in the maximum is positive. Hence, Π̇M
t (K)< 0.

Next, we show that ΠM
t (K )>Π

M
t (K − e j ) for all j by induction in

∑

j
K j .

Induction start: It is immediate that ΠM
t (e j )≥ΠM

t (0) = 0 for all j and t ≤ T .

Induction hypothesis: Assume that ΠM
t (K )>Π

M
t (K −e j ) for all K such that

∑

j
K j = K̄ .

Induction step: Now, consider a capacity vector K with
∑

j
K j = K̄ +1. By sub-optimality

of the prices pM (ωM
t (K−e j̃ )) given capacity vector K, we have

ΠM
t

�

K
�

≥

T
∫

t

λz

�

∑

j

s j ,z

�

pM (ωM
z (K−e j̃ ))

��

p M
j ,z (ω

M
z (K−e j̃ ))+Π

M
z (K−e j )

�

· e
−

z
∫

t
λu

∑

j ′′
s j ′′ ,u (pM

u (ω
M
t (K)))d u

d z >ΠM
t

�

K−e j̃

�

where the last inequality follows form ΠM
z (K − e j ) > ΠM

z (K − e j − e j̃ ) by the induction

hypothesis.

ii) Next, we show that ΠM
t (K)−Π

M
t (K−e j )≤ΠM

t (K−e j )−ΠM
t (K−2e j ) for all j . To this

end, let

H (x;θ ) =−max
p

∑

j

s j (p;θ )(pj − x j ).

Note that H is concave as a minimum of affine functions, strictly increasing in x, and
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H (0;θ ) = 0 by Assumption ?? iii). Since H is concave, it admits the representation

H (x;θ ) = inf
s
(s ·x−H ∗(s;θ ))

where the concave H ∗(s;θ ) = inf
x
(x · s −H (x;θ )) is the concave conjugate of H , with

H ∗(0;θ ) = 0. Moreover,

Π̇M
t (K) =λt H (∇Πt (K);θ t )

where∇ΠM
t (K) =

�

ΠM
t (K)−Π

M
t (K−e j )

�

j
. Thus, ΠM

t (K) is the value function for the optimal

control problem

ΠM
t (K) = sup

s∈A
E
�

T
∫

t

λu H ∗(su ;θ u )d u

�

�

�

�

Xs
t =K

�

=: sup
s

Jt (K, s)

where Xa
t is the process which jumps by −e j at rate λt s j ,t and s ∈A are processes adapted

with respect to Xs, with the property s j ,t = 0 if X s
j ,t = 0 (Theorem 8.1 in Fleming and

Soner (2006)). Let s∗K be the optimal control in the previous equation and s∗K −2 be the

optimal control when K is replaced by K − 2e j . Then, note that since s∗K, s∗K−2e j
∈ A ,

s∗K+s∗K−2e j

2 ∈ A because the process
�

X
s∗K+s∗K−2e f

2
s

�

s
can be chosen as

�

X
s∗K
s +X

s∗K−2e f
s

2

�

s
(“coupling

argument”). Hence,

ΠM
t (K) +Π

M
t (K−2e j )−2ΠM

t

�

K−e j

�

≤

Jt (K, s ∗K) + Jt (K−2e j , s ∗K−2e j
)−2 Jt

�

K−e j ,
s∗K+ s∗K−2e j

2

�

≤

E
�

T
∫

t

λu

�

H ∗(s∗K,u ) +H ∗(s∗K−2e j ,u )−2H ∗
�s∗K,u + s∗K−2e f ,u

2

�

�

d u

�

�

�

�

X
s∗K
t =K, X

s∗K−2e j

t =K−2e j ,

�

≤0.
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iii) To show that ωM
j ,t (Kt ) is a submartingale, we show that for any capacity vector K,

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )
�

�Kt = K̄
�

∆
≥ 0.

To this end, first, note that Kt is right-continuous in t . Further, for K with K j = 0, we

set ωM
j ,t (K) =∞ for all t . Thus, we are setting the opportunity cost of selling a unit if no

capacity is left to infinity, which is equivalent to the constraint of not being able to sell units

that are not available.

Then, we have for K̄ with K̄ j = 1 that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
> 0.

Next consider K̄ with K̄ j ≥ 0. Then, we have that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt+∆)|Kt = K̄]

∆
+ lim
∆→0

E0

�

ωM
j ,t (Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

ω̇M
j ,t (K̄) +λt

∑

j ′

s j ′,t (p
M
t (K̄))

�

ωM
j ,t (K̄−e j ′)−ωM

j ,t (K̄)
�

by right-continuity of the process Kt . By (4), we can write

ω̇M
j ,t (K̄) = −λt

�

∑

j ′

s j ′,t (p
M
t (K̄))

�

p M
j ′,t (K̄)−ω

M
j ′,t (K̄)

�

− s j ′,t (p
M
t (K̄−e j ))

�

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
�

�

.

and we know that

−ωM
j ′,t (K̄) +ω

M
j ,t (K̄)−ω

M
j ,t (K̄−e j ′) = ΠM (K̄−e j ′)−ΠM (K̄−e j )−ΠM (K̄−e j ′) +Π

M (K̄−e j ′ −e j )

= ωM
j ′,t (K̄−e j )
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Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|t=K̄]

∆ is equal to

−λt

�

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

− s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j )−ωM

j ′,t (K̄−e j )
��

Then, note that by definition of pM
t (K̄−e j ),

∑

j ′

s j ′,t

�

pM
t (K̄)

��

p M
j ′,t (K̄)−ω

M
j ′,t (K̄−e j )

�

≤
∑

j ′

s j ′,t

�

pM
t (K̄−e j )

��

p M
j ′,t (K̄−e j ))−ωM

j ′,t (K̄−e j ′)
�

.

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|t=K̄]

∆ ≥ 0. ■

B.3 Proofs of General Oligopoly Model

B.3.1 Proof of General Lemma 2

First, we show that there exists a p̄ <∞ so that for any any vector of prices q, the best

response price pj for any product j is bounded by p̄ . We proceed with a proof by contra-

diction.

Assume that there is an increasing sequence of b̄ n →n→∞ such that there is a vector of

prices qn such that there is a best response price p n
j > b̄ n .
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0≤
∂ s j

∂ pj
︸︷︷︸

<0

(pj −ω
f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
︸︷︷︸

>0

(pk −ω
f
k )

−
∑

k ̸∈J f

∂ sk

∂ pj
(q− f , p f )ω f

k + s j (q
− f , p f )

≤
�

�

�

�

∂ s j

∂ pj
(q− f , p f )

�

�

�

�

�

1

J −1

∑

k∈J f \{ j }

(pk −ω
f
k )+−

�

2(pj −ω
f
j ) +

s j (q− f , p f )
∂ s j

∂ pj
(q− f , p f )

︸ ︷︷ ︸

≥−ε̄ by Assumption ??-??

�

+

 

∑

k ̸∈J f

|ω f
k |

J −1

!

�

.

This is equivalent to

∀ j ∈J f : 2(pj −ω
f
j ) +

s j (q− f , p f )
∂ s j

∂ pj
(q− f , p f )

≤
1

J −1

∑

k∈J f \{ j }

(pk −ω
f
k )++

∑

k ̸∈J f

|ω f
k |

J −1

⇒ ∀ j ∈J f : 2(pj −ω
f
j )− ε̄≤

1

J −1

∑

k∈J f \{ j }

(pk −ω
f
k )++

∑

k ̸∈J f

|ω f
k |

J −1
.

0≤
∂ s j

∂ pj
(q− f , p f ,∗

− f , pj )
︸ ︷︷ ︸

<0

(pj −ω
f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(q− f , p f )

︸ ︷︷ ︸

>0

(pk −ω
f
k )

−
∑

k ̸∈J f

∂ sk

∂ pj
(q− f , p f )ω f

k + s j (q
− f , p f )

≤
�

�

�

�

∂ s j

∂ pj
(q− f , p f )

�

�

�

�

�

1

J −1

∑

k∈J f \{ j }

(pk −ω
f
k )+−

�

2(pj −ω
f
j ) +

s j (q− f , p f )
∂ s j

∂ pj
(q− f , p f )

︸ ︷︷ ︸

≥−ε̄ by Assumption ??-??

�

+

 

∑

k ̸∈J f

|ω f
k |

J −1

!

�

.
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This is equivalent to

∀ j ∈J f : 2(pj −ω
f
j ) +

s j (q− f , p f )
∂ s j

∂ pj
(q− f , p f )

≤
1

J −1

∑

k∈J f \{ j }

(pk −ω
f
k )++

∑

k ̸∈J f

|ω f
k |

J −1

⇒ ∀ j ∈J f : 2(pj −ω
f
j )− ε̄≤

1

J −1

∑

k∈J f \{ j }

(pk −ω
f
k )++

∑

k ̸∈J f

|ω f
k |

J −1
.

Using this for j = l maximizing the left-hand side we obtain a contradiction once we

choose p̄ sufficiently large. Thus, the best response of each firm for each product is strictly

smaller than a constant p̄ .

Hence, by Assumption ??, there is a unique fixed point of g (p) by Lemma 2 (Kellogg

(1976)) in Konovalov and Sándor (2010).

B.3.2 Proof of General Lemma 3

B.3.3 Proof of General Proposition 2

B.3.4 Proof of Lemma 4

B.3.5 Proof of General Proposition 3

Assume that λt and s f ,t is independent of time, i.e., λt = λ, αt = α. For t close to T , we

know from Lemma 2 that the equilibirum of the stage game is unique and the price vectors

p ∗t (K) are implicitly defined by a system of equations given by

Dp f s f (p∗t (K))p
f ,∗
t (K)− s(p∗t (K))ω

f
t (K) = 0

for all f . The only time-dependent variables are then Ωt (K) = (ω
f
t ) f ∈F . The n-th time

derivative (p ∗t )
(n )(K) depends on the time derivatives Ωt (K), . . . ,Ω(n )t (K).
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We are interested in the limit as t → T . First, lim
t→T
Ωt = 0. Furthermore, we can write

ω̇
f
j ,t (K) =Π̇

f
t (K)− Π̇

f
t (K−e j )

=−λ
�

s f (p∗t (K))p
f ,∗
t (K)− s(p∗t (K))ω

f
t (K)− (s

f (p∗t (K−e j ))p
f ,∗
t (K−e j )− s(p∗t (K−e j ))ω

f
t (K−e j ))

�

Thus, as t → T , ω̇ f
j ,t (K) = 0 if K j > 1. If j ∈ J f and K j = 1, then ω̇ f

j ,t (K) < 0. If j ̸∈ J f

and K j = 1, then by the competition effect ω̇ f
j ,t (K)> 0.

This implies that ṗ ∗j ,T (K)< 0 if K j = 1 and ṗ ∗j ,T (K) = 0 otherwise.

Induction assumption: If K j > n − 1 for all j , then as t → T , (ω f
j ,t )
(n−1)(K) = 0 for all

f , j .

We can also calculate all other time derivatives recursively

(ω f
j ,t )
(n )(K) =−λ

�

G n ((Ω(m )t (K))
n−1
m=0)−G n (Ω(m )t (K−e j ))

n−1
m=0))

�

.

Then, note if min
i

Ki > n , then (ω f
j ,t )
(n )(K) = 0. If min

i
Ki = n , then

(ω f
j ,t )
(n )(K) =−λ

�

−G (n )(Ω(m )t (K−e j ))
n−1
m=0))

�

=−(Π f
t )
(n )(K−e j ).

B.3.6 Proof of General Proposition 4

Equivalence Note that the profit-maximizing prices of the stage game pM (ω;θ ) are im-

plicitly given by (4) and

g (q;θ ) :=ω− (Dpst (q))
−1st (q)

︸ ︷︷ ︸

≤0

is continuously differentiable in q and θ by Assumption 1 i), and any fixed point must

satisfy q ≥ω and q ≤ω+1ε̄ by Assumption ?? iii). Hence, the convergence to 4 follows

by Lemma 5.

Recall that the first-order conditions of firm f ’s payoff with respect to product j ∈ J f
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are given by

pj −
�

ω
f
j −

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′

�

=−
s j (p)
∂ s j (p)
∂ pj

.

Further, the observation that ∂ s j (p)
∂ pj
=−

∑

j ′′∈J 0\{ j }

∂ s j ′′ (p)
∂ pj

, and by Assumption ?? (Independence

of Irrelevant alternatives) it follows that

c (p− j ;ω) :=ω f
j −

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′

=ω f
j −

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∑

j ′∈J 0\{ j }

∂ s j ′ (p)
∂ pj

(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∑

j ′′∈J 0\{ j }

∂ s j ′′ (p)
∂ pj

ω
f
j ′

=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ .

Thus, the first-order conditions of the stage game are equivalent to the first order conditions

of a game with J players where each player j ’s payoff is given by

s j (p)(pj − c (p− j ;ω))+d (p− j ;ω).

Existence Assume s j (p;θ ) > 0 satisfies Assumptions ?? and ??. Then, we define the

best-response function of “player” j in the game defined in Lemma 4 by

R : q 7→
�

arg max
pj

s j (q)(pj − c j (q− j ;ω,θ )) +d j (q− j ;ω,θ )
�

j∈J
.

where for s̃ j , j ′(q− j ) :=
∂ s j ′
∂ pj
(q)

∑

j ′′∈J 0\{ j }

∂ s j ′′
∂ pj
(q)

and j ∈J f

c j (q− j ;ω,θ ) :=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(q− j )(q j ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(q− j )ω
f
j ′ . (14)
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First, we show thatR is well-defined as a function RJ 7→ [−∞,∞]J (rather than a corre-

spondence). To this end, note that player j ’s profit is increasing in pj if and only if

pj − c j (q− j ;ω,θ ) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

<0 by Assumption ??

≤ 0 (15)

and the left-hand side is increasing in pj by Assumption ??.

Then, note that the best-response functionR takes values in [p , p ]J , with p >−∞ and

p <∞, for all q by the same argument as in the proof of Lemma 2.

Now, considerR : [p , p ]J → [p , p ]J . In order to show continuitiy ofR , we use the im-

plicit function theorem in the form of Theorem 1.A.4 in Dontchev and Rockafellar (2009).

To this end, for ε> 0, consider the mapping

Φ : (p, q) 7→
�

pj −ε
�

pj − c j (q− j ;Ω,θ ) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

�

�

j∈J

Then DpΦ is a diagonal matrix with diagonal entries

φ j := 1−ε
�

1+
∂

∂ pj

s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

≥0 by Assumption ??

�

Let ε > 0 be so that φ j > 0 for all j . Then all diagonal entries are in (0, 1− ε) and Φ is

Lipschitz continuous with Lipschitz constant max
j
φ j . Further DqΦ is bounded because it

is continuous and the function is defined on a compact set [p , p ]J . Thus,R is continuous.

Hence, by Brouwer’s fixed-point theoremR : [p , p ]J → [p , p ]J has a fixed point.
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C Simple Logit and Nested Logit Calculations

C.1 Simple Logit Demand

Consider a logit logit demand system as specified in Equation 3: s j (p) =
e
δ j −αpj
ρ

1+
∑

j∈J
e
δ j −αpj
ρ

.

Throughout this section we omit the arguments of the demand functions when there is

no ambiguity. First, note that

∂ s j

∂ pj
=−
α

ρ
s j (1− s j )

∂ s j

∂ pj ′
=
α

ρ
s j s j ′ .

First, we show that Assumption 1 is satisfied.

i) limpj ′→∞, j ′ ̸∈A

First, we show that Assumption 2 is satisfied. To this end, note that

(Dps(p;θ ))−1 =
ρ

α















−s1(1− s1) s1s2 . . . s1sJ

s2s1
... s2sJ

... ... ...

sJ s1 . . . sJ sJ−1 −sJ (1− sJ )















−1

=−
ρ

αs0









1+ s0
s1

1 . . . 1
... ... ...

1 . . . 1 1+ s0
sJ









.

Hence,

ε̂= (Dp s(p;θ ))−1s(p;θ ) =−
ρ

αs0









1+ s0
s1

1 . . . 1
... ... ...

1 . . . 1 1+ s0
sJ

















s1

...

sJ









=−
ρ

αs0









1
...

1









and since ∂
∂ pj

1
s0
=− αρ

s j

s0
,

det
�

−Dpε̂− I
�

= det









− s1
s0
−1 . . . − sJ

s0

... ... ...

− s1
s0

. . . − sJ

s0
−1









= (−1)J
1

s0
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Next, note that for a for a any f ∈F , if we define s f
0 (p) = 1−

∑

j∈J f

s j (p), then

(Dp f s f (p;θ ))−1 =
ρ

α















−s1(1− s1) s1s2 . . . s1sJ f

s2s1
... s2sJ f

... ... ...

sJ f
s1 . . . sJ f

sJ f −1 −sJ f
(1− sJ f

)















−1

=−
ρ

αs f
0









1+ s
f

0
s1

1 . . . 1
... ... ...

1 . . . 1 1+ s
f

0
s1









.

Further, s(p;θ )⊺ω f =
∑

j
s jω

f
j and

Dp f (s(p;θ )⊺ω f ) =
α

ρ













s1

� ∑

j∈J
s jω

f
j −ω

f
1

�

...

sJ f

� ∑

j∈J
s jω

f
j −ω

f
J f

�













Hence,

(Dp f s f (p;θ ))−1Dp f (s(p;θ )⊺ω) =−
1

s f
0













� ∑

j∈J f

s j + s f
0

� ∑

j∈J
s jω

f
j −

∑

j∈J f

s jω
f
j − s f

0 ω
f
1

...
� ∑

j∈J f

s j + s f
0

� ∑

j∈J
s jω

f
j −

∑

j∈J f

s jω
f
j − s f

0 ω
f
J f













=−
1

s f
0













∑

j∈J \J f

s jω
f
j − s f

0 ω
f
1

...
∑

j∈J \J f

s jω
f
j − s f

0 ω
f
J f













Further, since
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(Dp f s f (p;θ ))−1s f (p;θ ) =−
ρ

αs f
0









1
...

1









Finally,

g f (p) =−

















∑

j∈J \J f

s j

1−
∑

j∈J f

s j
ω

f
j −ω

f
1 −

1
1−

∑

j∈J f

s j

ρ
α

...
∑

j∈J \J f

s j

1−
∑

j∈J f

s j
ω

f
j −ω

f
J f
− 1

1−
∑

j∈J f

s j

ρ
α

















and

Dpg f (p) =

































− sk

1−
∑

j∈J f

s j

...

− sk

1−
∑

j∈J f

s j















k∈J f

,

















α
σ

−(1−
∑

j∈J f

s j )(1−
∑

j ̸∈J f

s j )+(
∑

j∈J f

s j )(
∑

j ̸∈J f

s j )

(1−
∑

j∈J f

s j )2
ω

f
j + sk

∑

j∈J f

s j

(1−
∑

j∈J f

s j )2

...

α
σ

−(1−
∑

j∈J f

s j )(1−
∑

j ̸∈J f

s j )+(
∑

j∈J f

s j )(
∑

j ̸∈J f

s j )

(1−
∑

j∈J f

s j )2
ω

f
j + sk

∑

j∈J f

s j

(1−
∑

j∈J f

s j )2

















k ̸∈J f



















For large σ the term in front of ω f
j vanishes relative to the probability.

C.2 Nested logit demand

In this section, we consider a nested logit demand model given by

s j (p) =
e
δ j −αpj

1−σ

∑

j∈J
e
δ j −αpj

1−σ

︸ ︷︷ ︸

=:s j |J (p)

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ s0(p) =
1

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ
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To simplify notation, let DJ :=
∑

i∈J
e
δi −αpi

1−σ . Then,

∂ s j

∂ pj
=−

α

1−σ
s j

�

1−
�

σs j |J + (1−σ)s j

�� ∂ s j

∂ pj ′
=
α

1−σ
s j ′
�

σs j |J + (1−σ)s j

�

.

(Dps(p;θ ))−1 =−
1

αs0

















σ
D 1−σ

J
+1+ (1−σ) s0

s1

σ
D 1−σ

J
+1 . . . σ

D 1−σ
J
+1

σ
D 1−σ

J
+1

... σ
D 1−σ

J
+1

... ... ...
σ

D 1−σ
J
+1 . . . σ

D 1−σ
J
+1 σ

D 1−σ
J
+1+ (1−σ) s0

s j

















Hence,

ε̂= (Dp s(p;θ ))−1s(p;θ ) =−
�

σ

αs0
+

1−σ
αs0

�









1
...

1









=−
1

αs0









1
...

1









and therefore

Dp ε̂− I =−









1
DJ

s1
s0
−1 . . . 1

DJ

sJ

s0

...
1

DJ

s1
s0

. . . 1
DJ

sJ

s0
−1









.

Thus, det
�

Dp ε̂− I
�

= (−1)J
�

1
DJ s0
− 1−DJ

DJ

�

.

Next, note that for a for a any f ∈F , if we define s f
0 (p) = 1−

∑

j∈J f

s j (p), then

(Dp f s f (p;θ ))−1 =
σ

α















−s1(1− s1) s1s2 . . . s1sJ f

s2s1
... s2sJ f

... ... ...

sJ f
s1 . . . sJ f

sJ f −1 −sJ f
(1− sJ f

)















−1

=−
σ

αs f
0









1+ s
f

0
s1

1 . . . 1
... ... ...

1 . . . 1 1+ s
f

0
s1









..

61



Further, s(p;θ )⊺ω=
∑

j
s jω

f
j and

Dp f (s(p;θ )⊺ω) =
α

σ













s1

� ∑

j∈J
s jω

f
j −ω

f
1

�

...

sJ f

� ∑

j∈J
s jω

f
j −ω

f
J f

�













Hence,

(Dp f s f (p;θ ))−1Dp f (s(p;θ )⊺ω) =−
1

s f
0













� ∑

j∈J f

s j + s f
0

� ∑

j∈J
s jω

f
j −

∑

j∈J f

s jω
f
j − s f

0 ω
f
1

...
� ∑

j∈J f

s j + s f
0

� ∑

j∈J
s jω

f
j −

∑

j∈J f

s jω
f
j − s f

0 ω
f
J f













=−
1

s f
0













∑

j∈J \J f

s jω
f
j − s f

0 ω
f
1

...
∑

j∈J \J f

s jω
f
j − s f

0 ω
f
J f













Further, since

(Dp f s f (p;θ ))−1s f (p;θ ) = =
σ

αs f
0









1
...

1









Finally,

g f (p) =−

















∑

j∈J \J f

s j

1−
∑

j∈J f

s j
ω

f
j −ω

f
1 +

1
1−

∑

j∈J f

s j

σ
α

...
∑

j∈J \J f

s j

1−
∑

j∈J f

s j
ω

f
j −ω

f
J f
+ 1

1−
∑

j∈J f

s j

σ
α
















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and

Dpg f (p) =

































sk

1−
∑

j∈J f

s j

...
sk

1−
∑

j∈J f

s j















k∈J f

,

















α
σ

−(1−
∑

j∈J f

s j )(1−
∑

j ̸∈J f

s j )+(
∑

j∈J f

s j )(
∑

j ̸∈J f

s j )

(1−
∑

j∈J f

s j )2
ω

f
j + sk

∑

j∈J f

s j

(1−
∑

j∈J f

s j )2

...

α
σ

−(1−
∑

j∈J f

s j )(1−
∑

j ̸∈J f

s j )+(
∑

j∈J f

s j )(
∑

j ̸∈J f

s j )

(1−
∑

j∈J f

s j )2
ω

f
j + sk

∑

j∈J f

s j

(1−
∑

j∈J f

s j )2

















k ̸∈J f



















For large σ the term in front of ω f
j vanishes relative to the probability.

D Additional Empirical Results

Figure 11: Simulated scarcity effects for K2 = 3, K1 varying
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(b) Firm 2 own-product ω2
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(c) Firm 1 competitor ω1
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(d) Firm 2 competitor ω2
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.
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Figure 12: Strategic complements and substitutes in the stage game

(a) Strategic complements
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(b) Strategic substitutes
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05, as well asω1
1 =ω

2
2 = 4. Panel (a) shows

both firms’ best response functions for ω1
2 =ω

2
1 = 4. Panel (b) shows both firms’ best response functions for ω1

2 =ω
2
1 =−4.
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Figure 13: Simulated prices and scarcity effects

K= (5, 4)
(a) Price paths over time
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(b) Own ω over time
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(c) Competitor ω over time
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K= (4, 4)
(d) Price paths over time
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(e) Own ω over time
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(f) Competitor ω over time
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K= (3, 4)
(g) Price paths over time
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(h) Own ω over time
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(i) Competitor ω over time
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Notes: The simulations assume δ= (1, 1), αt ≡ 1 and logit demand with scaling factor ρ = 0.05.
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Figure 14: Price paths for varying levels of capacity

(a) Sale of a product with minimum inventory
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(b) Sale of a product without minimum inventory
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Notes: These simulations correspond to logit demand with parameter values δ j = 1, α = 1, λ = 10 and scale factor ρ = 0.05. Panel (a)
shows both firm’s price paths for K= (3, 5) and K= (2, 5). Panel (b) shows both firm’s price paths for K= (3, 5) and K= (3, 4).
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Figure 15: Heuristic Models Pricing Example

(a) Deterministic Model
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(b) Lagged-Price Model
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(c) Deterministic Model
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Note: Panel (a) shows a firm’s fares and belief of the other firm’s price over time for an instance of the simulation in the lagged-price
model. Panel (b) shows a firm’s fares and belief of the other firm’s price over time for an instance of the simulation in the deterministic
model.
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Figure 16: Price Path Realizations comparing Benchmark model to Heuristics

(a) Price paths for the benchmark model
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(b) Price paths for the lagged algorithm
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(c) Price paths for the deterministic algorithm
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Notes: We assume demand follows a logit specification with an initial capacity vector of K0 = (2, 2). Time is continuous for t ∈ [0, 1].
There are three panels: panel (a) depicts the equilibrium price path for the benchmark model, panel (b) considers prices if firms use the
lagged model, and panel (c) considers prices if firms use the deterministic model. The vertical lines mark realized sales times; the color
denotes the firm that received the sale. These simulations correspond to the parameter values δ j = 1, α= 1, ρ = 1, λ= 10 and K0 = [2, 2].
In the heuristic model, firms assume that the competitor prices at the level given by the grey line.

Table 4: Recreation of Table 3 with restricted initial capacity

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Deterministic 94.1 95.5 95.9 108.4 103.0 105.1 102.0 178.3

Lagged 102.0 100.3 101.2 104.4 102.9 100.6 100.2 104.0

Uniform 97.5 78.1 77.3 113.7 98.5 101.1 99.9 242.0

Note:
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Figure 17: Recreation of Fig. 7 with restricted initial capacity

(a) Own Omega
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(b) Competitor Omega
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.
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Figure 18: Recreation of Fig. 8 with restricted initial capacity

(a) Prices over Time
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(b) Load Factors over Time
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(c) Sellouts over Time
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(d) Cumulative Welfare Comparison
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Note: Panel (a) shows the average price over time for the benchmark, deterministic and uniform models. Panel (b) shows the average
load factors over time for the same three models. Panel (c) shows the average sellouts over time for the same three models. Panel (d)
shows the ratio of average cumulative welfare for the benchmark model with respect to the deterministic one, and for the benchmark
model with respect to the uniform one.
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Figure 19: Recreation of Fig. 9 with restricted initial capacity

(a) Cumulative CS Difference
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(b) Cumulative Revenue Difference
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.

Figure 20: Recreation of Fig. 10 with restricted initial capacity

(a) Prices over Time
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(b) Load Factors over Time
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Note: Panel (a) shows the average prices over time for the two heuristic models. Panel (b) shows the average load factors over time for
the same two models.
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Figure 21: Example of a negative own Opportunity Costs

(a) Example own Omega over Time
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(b) Log. Abs. Own ω over Time
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Note: Panel (a) shows the own ω over time for a given state in one of our Benchmark solutions. Panel (b) shows the log of the absolute
value of the own ω over time for three states in one of our Benchmark solutions. The dotted lines represent the behavior these curves
would follow if the omegas were proportional to |T − t |min(K).
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