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Wannamaker’s challenge

“Half the money | spend on advertising is wasted; the trouble is |
don’t know which half.” John Wannamaker (1838-1922)

* But targeted digital advertising was supposed to change all that.
* Display Ads: The “new” newspaper/billboard ads, better targeted to interests
* Video Ads: The “new” TV ads, better targeted to interests
* Paid Search: Signal of intent + some demographic data + possible interests
* Social Networks: More demographic information + possible interests

 Was Wannamaker’s challenge solved by targeted digital ads?
* Do businesses, especially SMBs, benefit form targeting?
* How should we consider privacy and its impact on welfare?



Paid Search Advertising
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Targeted Video Ads: An Attempt to Increase Vaccines
Using Politics to Solve a Problem Caused By Politics
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Ad Campaign Details

 Selected about 2,000 low-vaccine (<50%), small (<1M resident) counties

 Randomly assigned half to treatment (i.e., eligible to get this ad on
YouTube) and half to control (not eligible to see ads)

* Spent close to $100,000 on YouTube from Oct 14 to Oct 31, 2021
e Got 11.6 million ads, costing $8.55 per 1,000 ad impressions on avg

* Hit over 6 million unique viewers (some saw it more than once)
* 52% on phones, 30% on TV, 13% tablets, 4% computers

* Ad played on 150,284 distinct YouTube channels

* Primary targeting was by location (later excluded age 18-24)
* possible by age, gender, income, parental status, location



Cost Effectiveness was very high!

* The average treatment county had an increase of 102.6 vaccines

e 1,014 counties were treated
* Implies a total increase of 104,036 vaccines

* We spent $96,408.56 (less than S100 per county on average)
 Implies a cost of $0.93 in ad spending per vaccine!!
* Much cheaper than other attempts to increase vaccination rates!! ($24-582)



Analyzing the effect of treatment intensity

* Can’t just replace Treat; dummy with the number of ads!

* Possible endogeneity: Google may be sending more ads to counties that are
more receptive (more likely to get the vaccine)

* We follow Angrist and Imbens (1995), using instrumental variables to
estimate the effect of increased treatment intensity

Vie = a + Ay +y; + 6(Ads; X Posty) + n(Population; X Post;) + €;;

where we instrument for Ads; X Post; using Treat; X Post;

« § is the coefficient of interest, the average causal response (ACR) to
an increase of 1,000 ads per county



Measures of treatment intensity (Persuasion?)

Treatment Intensity
Measure

Engagement Ads per 100

Residents

A.

Average Causal Response

Pop. X Post

%)
4.877*
(3.742)
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12.34%
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2775 4%
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(37.10)
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8.255%
(6.333)

2775.5%%*

275.0%%*

B.

Controlling for Population X Date Dummies

Average Causal Response

County Fixed Effects
Date Fixed Effects

Observations

Engagement rate = fraction of

users watching at least 10 sec.

* aloincrease in engagement
rate results in 8.255 vacs

View rate = fraction of

users watching the full ad

* aloincrease in view rate
results in 12.34 vacs

Click rate = fraction of

users clicking on the link to the

original Fox News story

* aloincrease in click rate
results in 94.12 vacs

* aloincrease in ads per 100
residents results in 48.37 vacs

e aloincreasein CPM results in
4.887 vacs



Social Media Ads: Do they help businesses?

* How easy is it for businesses to understand how well their ads are doing?

“some producers seem to have figured out their business
(or at least are on their way), while others are woefully lacking.” 2?2 Max T ??
(Syverson, 2011 p. 327)

* Questions:

1. Canvariation in marketing effectiveness
explain some of the huge variation in revenue
generation and profitability per unit of input?

2. Can this shed light on “levels of sophistication”
and “learning”?

 Answers: Yes and yes!

Learning, Sophistication, and the Returns to Advertising:

Implications for Differences in Firm Performance®
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Ad Campaigns on Meta: Creative, Objective, Targets, and Budget

Budget & schedule
Audience
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Delivering Ads and Recording Sales

* Auctions, Bidding, and Budgets

* Advertisers determine campaign budget and bidding strategies to target users likely to engage

* Meta's ad algorithm uses ML to estimate user “action rate” and ad “quality score” and optimizes
ad delivery by scaling up bids for users predicted to convert.

* Winner: Total Value = Advertiser Bid x Action Rate + Quality Score

e Pixels and Outcomes

* “Pixels” are used by advertisers to track website visitors' actions (purchase, add-to-cart, etc.)
* Pixels send information about what happens on the advertiser’s site to Meta (Google, Twitter...)

* Meta Pixels can monitor/record 17 standard events, and advertisers can customize further.



Experimental Design

Experiment eligibility (advertiser): Advertiser’s Daily Budget

* Meta Pixel for tracking sales
* Ad campaign: Sales
* Advertiser had spent > S0 in the l

preceding 90 days;

Target users

T C
Measure total revenue on advertiser’s website! L://

—other
Compliance is perfect for Holdout users, but only one-sided for Ad Eligible users 11




Data

* Sample Size:
e 700,000 ad campaigns from 210,000 advertisers across 25 industries
e 3.94 billion unique user-ad opportunity pairs
e > 8.9 million purchases and many other “conversion events” (e.g., “add to cart”;
“signup”...)
* Data collected

» 17 standard events that Pixels report (purchases, key page views, completed registration
forms...)

Data is gathered on the total number of user conversion events recorded by the Pixels
Purchase data: Revenue generated; Number of purchases (in each experimental group)
Total number of conversions (aggregation of all recorded Pixel events)

Ad budget spent by the advertising campaign serves as the key independent variable



Benchmark Results: Average ITT effects

(1) 2) 3) 4)

Dependent Var: Revenues Purchases Purchasers Conversions
Budget Spend 3.3098%** 0.1029%** 0.0179%** 0.398(%**

(0.1233) (0.0132) (0.0021) (0.1096)
Group Size -0.0063%** 0.0002 0.0000 0.0066%**

(0.0010) (0.0001) (0.0000) (0.0021)
Constant 62.388(%** 0.3350 0.0350 -1.1422

(1.7389) (0.1993) (0.0333) (3.0721)
N 1,323.760 1,323,760 1,323,760 1,323,760
R’ 0.696 0.613 0.618 0.604

Table 4 reports the results of estimating equation (1) for revenues, our primary outcome variable, as well as purchases, purchasers,
and conversions, which are our secondary outcome variables of interest. In each regression, the dependent variable is the outcome
variable corresponding to each column header. Each regression includes ad campaign fixed effects. Standard errors are in parenthesis.

We cluster standard errors at the advertiser level. Statistical significance: * p<0.05, ** p<0.01, and *** p<0.001. 13



Experience matters — Historical Ad Spend
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Advertiser Historical Ad Spend Quintile

Figure 4 presents the results of splitting the sample by quintiles of historical ad spending and
estimating equation (1) for the observations that fall within each quintile (95% conf. intervals).



Establishing Advertiser Learning

“Learning can only take place through the attempt to solve a
problem and therefore only takes place during activity.”
(Arrow, 1962)

The Economic Implications of
Learning by Doing

1t is by now incontrovertible that increases in per cay
A Thot

ita income cannot be explained
doubiless no economist would
onomic growth, its overwhelming
e relative to capital formation has perhaps only been fully realized with the
important empirical studies of Abramovitz [1] and Solow [11]. These results do not
directly contradict the neo-classical view of the production function as an expression of
technological knowledge. ~All that has to be added is the obvious fact that knowledge is
ing 1 time. rowth that depends so heavily on an
cxogenous variabl It to measure as the quantity of knowledgs.
n a quantitative, empirical point of view, we arc
natory variable. Now trend projections, however necessary
y 2 confession of ignorance, and, what is worse from
variables.

z

heless a view of econom

Iet alone one so d

analysis. Knowledge has 10 be acquired. 'We arc not surprised, as edu-
cators, that even students subject to the same educational experiences have different
bodies of knowledge, and we may therefore be prepared to grant, as has been shown
empirically (see (2], Part I11), that different countries, at the same moment of time, have
different production functions ¢ven apart from differences in natural resourse endowment

1 would like to suggest here an endogenous theory of the changes in knowledge which
underlic intertemporal and international shifts in production functions. The acquisition
of knowledge is what is usually termed ** learning.” and we might perhaps pick up some
clues from the many psychologists who have studied this phenomenon (for a convenient
Hilgard [5]). 1 do not think that the picture of technical change as a vast
and prolonged process of learning about the environment in which we operate is in any
way a far-fetched analogy; exactly the same phenomenon of improvement in performance
over time is involved.

psychologists arc no more in agreement than economists, and there are
5 of opinion about the processes of learning. rical gen

clear that all sehools of thought must
different fashions: Learning is the product of experience
through the attempt (o solve
Even the Gestalt and other feld theorists, who stress the role of insight in the solution of
problems (K@hler’s famous apes), have to assign a significant role to previous experiences
in modifying the individual's perception

A second generalization that can be gleancd from many of the classic lcarni
‘ments is that learning associated with repetition of essentially the same problem is subject
to sharply diminishing returns. There is an equilibrium response patiern for any given

155

* |dea: advertisers who are more engaged in updates are taking on
the necessary “activity” that Arrow refers to for LBD to occur

* Simple approach: We divide our campaigns into 2 groups:

a) no updates to campaign;

updates to campaign;



Learning activities and age: Advertisers

Figure 6: The Effect of Ad Spending on Revenues by Advertiser Age Quintiles and Advertiser Update Behavior
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These figures present the results of first splitting the sample into advertisers that have never updated any of their ad
campaigns, and those that have made at least one update across their campaigns. For each sample separately, we split
the data by quintiles of advertiser age and estimate equation (1) for observations that fall within each quintile. Each bar

shows the regression point estimate on Budget Spend and the corresponding 95% confidence interval.



Establishing Advertiser Sophistication

“The more that you read, the more things you will know. The
more that you learn, the more places you'll go.” (Dr. Seuss, 1978)

e ldea: advertisers who “read” more data should learn better

* Approach: We divide our campaigns into 2 groups in two ways:
a) Track only 1 pixel (the median — must have at least 1);

b) Track more than 1 pixel;
c) Adopts CAPI integration (“Conversion AP1” — guarantees better quality data to Meta);

* Note: Sophistication is correlated with learning:
* Advertisers who track > 1 Pixel make, on average, 23% more campaign updates

* Advertisers with CAPI integrations make, on average, 28% more campaign updates



Sophistication (Pixels) and campaign age

Figure 7: The Effect of Ad Spending on Revenues by Campaign Age Quintiles and Pixel Event Tracking Behavior
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These figures present the results of first splitting the sample into campaigns run by advertisers that track below and
above the median number of Pixel events through their Meta Pixels. For each sample separately, we split the data by
quintiles of campaign age and estimate equation (1) for observations that fall within each quintile. Each bar shows the
regression point estimate on Budget Spend and the corresponding 95% confidence interval.



Introducing Privacy Considerations

» Testing ad effectiveness requires identifying users who were

exposed to ads vs. those who were not.

* The identifier for advertisers (IDFA) is a random device identifier assigned by Apple to
a user’s iOS device. The IDFA is used for tracking and identifying a user (without
revealing personal information) and linking user actions and events to campaigns
and channels. (The Android equivalent to the IDFA is the Google Advertising ID or

GAID.)
* Many are concerned with privacy and tracking (caveat: privacy paradox...)

* In 2021 Apple implemented App Tracking Transparency (ATT)

* Pop-up with the “default” being “no 3rd party app tracking”
* Google has yet to implement this (pushed form late 2023 to 2024)

 What will ATT do for advertising effectiveness and business success?

Allow “Facebook” to
track your activity
across other companies’
apps and websites?

This allows Facebook to
provide you with a better ads
experience.

19



ATT Opt-Out Rates (%) on FB and IG as of Aug 2023

Natural Experiment: iOS vs. Android

» Different countries have different exposure to ATT

* Meta classifies business into 25 “industry verticals” (Retail,
Ecommerce, Technology, Automotive, Non-Profit...)

* Divide the users to whom Meta shows ads into 2 categories:
* Users who do not allow data linking (iOS users who “opted out”);

e Users who do allow data linking: (iOS who opt in + other devices)

e ATT impacted different industries in different ways!

Vertical “Opt-Out” %
Vertical “Opt-Out” %
Gaming 41.3
Retail 60.2
Energy, Natural Resources, 44.1
Consumer Packaged Goods 59.0 > and Utilities
Restaurants 55.2 Advertising and Marketing 44.3
Ecommerce 544 Agriculture 44.7
Entertainment and Media 50.9 Politics 45.8




Diff-in-Diff: Exit from Meta Ads

50
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All DiD estimates use Q4 2020 as base period

* But this is advertising on Meta. What about “real”
business outcomes like registration and survival?



Diff-in-Diff: External Data (in progress)
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e ATT created at least a 14.9 percent reduction
in new business registrations.
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Business Formation Statistics (BFS) data.

-0.1

* Preliminary analysis identifies similar results
for other key macroeconomic outcomes:
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Conclusion

* Ads work well when they are targeted well
* Targeting requires data savviness in measurement and analysis

* Privacy concerns may make consumers feel better (WTP?) but seem to
come at the expense of ad effectiveness and business success.

* We have SO MUCH more to learn about this industry and its welfare
|mp||cat|0ns =  SEARCH FORTUNE SIGN IN
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