Holding Platforms Liable

Hua and Spier

Discussion by Marc Rysman, Boston University

October 30, 2023

Introduction

- Public policy establishes who is liable when bad things happen.
 - Example: Internet platforms are not liable for content from participants.
- But lots of bad stuff comes across platforms.
 - Example: Misinformation, faulty or counterfeit products.

Introduction

- Public policy establishes who is liable when bad things happen.
 - Example: Internet platforms are not liable for content from participants.
- But lots of bad stuff comes across platforms.
 - Example: Misinformation, faulty or counterfeit products.

Question:

Can damages owed by sellers and platforms be set in a way to optimize social outcomes?

Passive Buyer Model Payoffs

- A platform connects unit of buyers (B) to unit of sellers (S).
- Two types of sellers, $i = \{H, L\}$, *H* with prob λ .
- Seller causes damage: $\theta_i d$.

Passive Buyer Model Payoffs

- A platform connects unit of buyers (B) to unit of sellers (S).
- Two types of sellers, $i = \{H, L\}$, *H* with prob λ .
- Seller causes damage: $\theta_i d$.

Model

- High type causes negative payoff.
 - $v \theta_H d < 0$
- But v high enough that consumers still want to buy.
 - $\mathbf{v} \lambda \theta_H \mathbf{d} (\mathbf{1} \lambda) \theta_L \mathbf{d} > \mathbf{0}.$

Model

- High type causes negative payoff.
 - $v \theta_H d < 0$
- But *v* high enough that consumers still want to buy.
 - $\mathbf{v} \lambda \theta_H \mathbf{d} (\mathbf{1} \lambda) \theta_L \mathbf{d} > \mathbf{0}.$

Result

Platform does nothing to prevent bad sellers.

Policy instrument: damages

- Government sets damages paid to consumers from sellers and platform.
 - $\theta_i W_s$, $\theta_i W_p$.

Policy instrument: damages

- Government sets damages paid to consumers from sellers and platform.
 - $\theta_i W_s$, $\theta_i W_p$.

Platform decisions under damages

If *H* types are less profitable than *L*:

• Set *p* to get rid of *H*

If H types are more profitable than L:

- Platform can engage in *screening*
- Get rid of share $e \in [0, 1]$ of H
- Pay cost *c*(*e*) (convex)

Platform decisions under damages

If *H* types are less profitable than *L*:

• Set *p* to get rid of *H*

If H types are more profitable than L:

- Platform can engage in *screening*
- Get rid of share $e \in [0, 1]$ of H
- Pay cost *c*(*e*) (convex)

Result:

• Platform may engage in too little or too much screening.

• Depends on size of w_p and w_s .

Some comments

- What if excluding H types meant those consumers matched with L sellers?
 - Screening becomes more efficient and more profitable.
- What if there was not full coverage, so screening expanded demand?
 - Platform screens even when there are no damages.
 - Homogenous consumers implies efficient screening?
- What if seller causes damages but not to consumers?

What if seller causes damages, but not to consumers?

Examples:

- Political misinformation may cause widespread damage, not just to consumers.
- Counterfeit products hurt brand owners (and may even benefit consumers). Implications:
 - Baseline model is written as if consumers suffer damages but damages could be suffered by anyone and model does not change.
 - Model with fees between buyers and sellers is less clear to me.
 - In that model, optimal level of screening interacts with pricing, and pricing reflects damages, so if damages are not present in buyer-seller interaction, that changes things.

Conclusion

- Clever and thorough paper on an important topic.
- Allocation of different effects is elegant and informative.
- Many extensions provide evidence of robustness.
- Suggests damages to platforms can be an important policy tool for incentivizing productive screening.