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Abstract

How does FDA regulation impact innovation, market structure, and product safety in es-
tablished product categories? I examine this question by exploiting FDA deregulation events
that affected certain medical device types but not others. A comprehensive analysis of data
on innovation, safety, firm entry, prices, and regulatory changes reveals three key findings.
First, deregulation significantly increased the quantity and quality of new technologies in
affected device types, with the most pronounced increases observed among smaller and less
regulation-experienced firms. Second, such events increased firm entry and reduced prices
for medical procedures that utilize affected medical devices. Finally, there is no significant
uptick in serious injuries and deaths due to defective devices post-deregulation. Interest-
ingly, the deregulation of certain device types was associated with reduced adverse event
rates, potentially due to firms increasing their emphasis on product safety in response to
heightened litigation risk.
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While new technologies can improve well-being, they also pose risks. Regulatory agencies,

like the U.S. Food and Drug Administration (FDA), aim to mitigate these risks through pre-

market testing—a particularly compelling approach for potentially high-risk, groundbreaking

innovations (Grennan and Town, 2020).1 Yet, the benefits of this approach are less certain for

lower-risk or well-established technologies, where innovation is typically incremental. Critics

argue that such stringent regulation stifles innovation and competition by raising entry costs

(Peltzman, 1973), while proponents contend that it actually fosters market entry and inno-

vation by boosting public confidence in emerging products (Carpenter et al., 2010). Given

that FDA-regulated products account for a $2.8 trillion market (FDA, 2020b), empirical

evidence on these opposing views is important.

I advance this debate by measuring the impact of FDA regulation on innovation, market

structure, and safety in established medical device categories. My approach is two-fold: I first

consider instances of “down-regulation,” where moderate-risk devices, such as soft contact

lenses, were moved from stringent Class III to more moderate Class II requirements. Next, I

analyze instances of “deregulation,” where lower-risk items like ventilator tubing transitioned

from Class II to minimal Class I requirements. This dual focus serves two purposes: It lets

me compare the effects of rigorous FDA protocols, including clinical trials, against existing

alternative, more relaxed policies. Furthermore, it allows me to estimate the local average

treatment effects of easing regulations across a spectrum of safety risks and technological

complexities—–from generic, low-risk products to differentiated, moderate-risk innovations.

To infer the causal effect of these events, I compare affected device types to multiple

control groups. These groups include device types matched on pre-event characteristics,

intuitively similar devices, those deregulated later, and a broad set of unaffected devices. I

find that my results are stable across these control groups. Further, comparing deregulated

device types to control groups reveals no divergent pre-existing trends in the outcomes of

1Groundbreaking technologies often create new product markets, initially characterized by limited com-
petition. In these oligopolistic markets, regulation helps align divergent public and private incentives for
product quality (Spence, 1975).
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interest, consistent with the “unpredictable” nature of these events as described by device

manufacturers (Makower et al., 2010; Powell, 2018). This unpredictability is primarily due

to the difficult-to-predict timing of when these regulatory shifts occur.2

In the medical device sector, regulations can profoundly affect even established, low-risk

products. For example, down-regulation paved the way for a breakthrough in soft contact

lenses, culminating in a patent worth $930 million (US-6478423-B1; Kogan et al. (2017))

and giving rise to the market-leading ACUVUE R© brand.3 Additionally, the industry’s reg-

ulatory landscape highlights the tension between pre-emptive safety measures (ex-ante) and

the deterring influence of potential legal consequences (ex-post). FDA approval shields man-

ufacturers from certain legal liabilities, yet liability risk alone could be a compelling reason

for firms to focus on safety, claiming up to 3.8% of annual revenues and directing innovation

strategies (Fuhr et al., 2018; Galasso and Luo, 2017, 2018).4

An important contribution of this paper is the assembly of novel data on the implications

of FDA regulation. Regulation affects many factors, and data on these factors are siloed,

unorganized, and unconnected to medical device types, limiting research on this topic. I

use a combination of programmatic online text extraction, text analysis algorithms, and

hand linkages to create, merge, and harmonize the required data. When unified, these

data comprehensively detail the effects of medical device regulation by device type. These

data include all FDA device type regulation changes over the last 40 years and multiple

corroborative measures of device innovation, innovator characteristics, innovation quality,

2The 1994 “down-regulation” of contact lenses offers a case in point. According to the minutes from the
FDA’s ophthalmic panel meeting where this regulatory change was announced, the decision was guided by
safety information obtained from submitted Premarket Approvals (PMAs). Interestingly, the FDA revealed
it had been “dealing with [the down-regulation event] for about ten years,” unable to take immediate action
because “the data that were needed to support reclassification were contained in PMAs and were not publicly
available.” This highlights the unpredictability of time lags often involved in these regulatory decisions.
Additionally, all “deregulation” events were precipitated by the FDA Modernization Act, which, among its
various provisions, mandated the FDA to promptly identify medical devices suitable for deregulation. This
list was crafted using a previously unknown, elementary measure of product safety, which I observe.

3Incremental innovations like these act as crucial links between groundbreaking advances and wider
consumer adoption, elevating technological impact.

4The financial toll of liability can be monumental, illustrated by the $1 billion Stryker hip implant
settlement in 2014 or Dow Corning’s $3.2 billion breast implant settlement in 1998 (2023 USD).
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market structure, prices, and device safety.

My analysis of these data shows that down-regulation events increase the quantity and

quality of new technologies in established categories. After down-regulating from Class

III (high regulation) to II (moderate), device types exhibited a 200% increase in patent

filings and FDA submissions compared to control groups, with no spillover effects on similar

device types.5 Patents filed after these events were also of significantly higher quality, as

measured by a 200% increase in received citations and market valuations. After Class II to

I deregulation, patent filing increased by a relatively modest 40%, likely due to the generic

nature of these devices, but the quality of patent filings improved tenfold. Notably, smaller

and less regulatory-experienced firms, which are most likely to produce groundbreaking

innovation, showed the greatest increase in innovative activity (Wu et al., 2019).

Second, these regulatory shifts led to significant changes in market structure. Down-

regulation generated a tenfold increase in new entry (i.e., firms with no approved devices)

and a fourfold increase in incumbent entry (i.e., firms with approved devices of another

type) into treated device types. The heightened competition impacted health care prices,

as evidenced by a significant 40% reduction in the prices of medical procedures utilizing

deregulated device types, based on claims data from a university hospital system.6 Similarly,

deregulation led to a significant 200% increase in new entry for the treated device types, with

no effect on incumbent entry.

These regulatory shifts yield considerable benefits, as the proponents of deregulation

would predict, but what of product safety? Surprisingly, I find that deregulation can im-

prove product safety. Despite some adverse event rates increasing after down-regulation (al-

beit insignificantly), deregulation is associated with significantly lower adverse event rates.7

My analysis of patent texts also reveals that inventors focus more on product safety after

5These localized effects could be explained by extreme specialization: many device inventions originate
from practicing physicians or researchers acting within their medical specialty (NIM, 2010).

6This price drop could even be mechanically driven by the 68% reduction in testing costs from these
events (Makower et al., 2010), which may reduce markups intended to recover regulatory costs.

7“Rates” are counts per device type-year. I do not normalize by utilization in my main analysis. However,
I show, using a subset of devices for which I have claims data, that this finding is robust to normalization.
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deregulation.

These product safety improvements following deregulation may be attributable to an

increased risk of litigation. Specifically, instead of meeting Class II requirements, which

the National Institute of Medicine deems as insufficient for product safety (IOM, 2011),

inventors are incentivized to mitigate consumer injury risks to ward off legal repercussions

after deregulation, as they no longer are protected from those risks. I substantiate this legal

mechanism by using variation in firms’ exposure to litigation after deregulation: Smaller firms

expect less liability as they can resort to bankruptcy to avoid liability exceeding their assets

(Shavell, 1986). I find that safety improvements are strongest among larger firms for which

a larger share of liability is unavoidable. Moreover, a study of a subsequent deregulation

event–—where Class II devices already lacked pre-deregulation liability protections—–shows

no notable shifts in safety measures. This finding illustrates that legal liability could serve

as a potential alternative safeguard for product safety, particularly for generic or low-risk

product categories.

A simple calculation suggests that the benefits of these events outweigh the costs. Ac-

counting for the cost of adverse events, the value of increased innovation, and reduced health

care prices, the unmeasured costs of Class III to II events would need to be five times larger

than the measured costs to outweigh the benefits of these events. For Class II to I events,

there are virtually no measurable costs of down-classifications as adverse events decline. By

contrast, the benefit of these events amounts to $53 million a year per device type. While

these benefits may be specific to the deregulated device types, I find evidence that they may

extend to current Class II device types as well: the deregulated device types identified as

posing the highest risks by the FDA experience the most substantial reductions in adverse

events. If this relationship holds, the yearly forgone benefits could amount to $132 billion

across all Class II device types or 77% of the annual value of purchased medical devices.

I build a model that illustrates the range of possible consequences of deregulation. The

model incorporates the central concerns of medical device innovators. First, regulation im-
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poses approval delays, but firms shorten delays as they gain more experience navigating

approval requirements through “learning by doing” (Arrow, 1971). Firms also face financing

costs if approval costs exceed their assets (Buera and Shin, 2013; Moll, 2014). Lastly, when

regulations are lifted (Class I), firms are exposed to more litigation from product design

flaws, but small firms are exposed to less liability due to bankruptcy. This characterization

of the firm’s decision shapes the effects of deregulation: Deregulation can improve product

safety and disproportionately benefit small firms and those with less regulatory experience.

Various product categories, each maintaining a well-established safety record, are subject

to regulations like those governing medical devices. The regulation of generic drugs and ge-

netically modified foods and crops, for instance, mirrors that of Class II devices. Meanwhile,

a diverse array of products—including aircraft, automobiles, pesticides, and over 15,000 con-

sumer items under the purview of the Consumer Product Safety Commission—adhere to

analogous, yet distinct regulations (Schwartz and Appel, 2020; Schauzu, 2000; Pisani, 2011).

Achieving compliance affords these products a measure of litigation protection, highlighting

the broad relevance and potential applicability of this study’s findings across diverse sectors.

My findings contribute to several literatures. First, I add to the growing literature on the

effects of public policy on medical innovation.8 Despite the significant size of the medical

device market—valued at $500 billion, with projections nearing $1 trillion by 2030 (Stewart,

2022)—there is a lack of evidence on the impact of regulation on innovation in this sector.

Previous studies by Stern (2017) and Grennan and Town (2020) use cross-group comparisons

to suggest that regulations affect investments in Class III cardiovascular technologies; how-

ever, these studies do not address the broader impact of FDA regulation on innovation and

focus only on high-risk technologies. My research fills this gap by examining the relation-

ship between regulation and innovation using quasi-exogenous regulatory shocks across low

to moderate-risk device types with varying regulatory stringency. Additionally, my study

addresses the underexplored topic of the safety benefits of FDA regulation.

8See Mulligan (2021); Grennan and Town (2020); Clemens and Rogers (2020); Stern (2017); Budish et
al. (2015); Acemoglu and Linn (2004); Finkelstein (2004).
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I further contribute to a longstanding literature examining the tradeoffs between regula-

tion and litigation.9 A study by Philipson et al. (2010) finds that the combined approach of

regulation and litigation is less efficient than employing regulation alone; however, it does

not examine the comparative efficiency of each approach independently. I find that litigation

can more effectively reduce adverse events while promoting innovation.

Lastly, my findings relate to the literature on endogenous growth (Romer, 1990). Recent

work shows that labor regulations can influence innovation, the key determinant of economic

growth (Acharya et al., 2014, 2013; Aghion et al., 2019). Other work shows that regulation

can reduce market competition, creating long-run inefficiencies (Buettner, 2006; Aghion et

al., 2009, 2005; Djankov et al., 2006; Hahn and Hird, 1991). I add to this literature by

showing that product regulation reduces innovation and market competition. My findings,

however, depart from the common presupposition that regulatory knowledge flows smoothly

across firms: Deregulation disproportionately benefits firms with less regulatory experience,

suggesting that regulatory proficiency stays with the firms that acquire it (akin to Azoulay

et al. (2011)). These frictions amplify the costs of regulation and may advantage experienced

multiproduct firms across a wide range of regulated products.

This paper is organized as follows. Section 1 provides background on the FDA regulatory

process, Section 2 provides the conceptual framework, Section 3 discusses my data, Section

4 describes my empirical strategy, Section 5 presents my empirical results, Section 6 presents

a back-of-the-envelope welfare calculation, and Section 7 concludes.

1 Background

This section describes the structure and legal consequences of FDA medical device regula-

tions. Medical devices include products like COVID-19 tests, pacemakers, X-ray machines,

and spinal implants.

9See Coase (1960); Ehrlich and Posner (1974); Kolstad et al. (1990); Glaeser et al. (2001); Shavell (1986);
Kessler (2010); Shavell (2018). For impacts of liability and tort reforms on innovation see Galasso and Luo
(2017, 2018).
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1.1 Enactment of Medical Device Regulations

In 1976, the Medical Device Amendments (MDA) expanded the FDA’s oversight to include

medical devices. According to these new laws, medical devices were grouped into generic

types to allow targeted regulation. “Daily-wear soft contact lenses,” for example, is a device

type regulated differently than “extended-wear soft contact lenses.” The policy variation I

study occurs at the level of these generic device types, and I refer to them as “device types.”

Device types are organized into a three-tier risk classification system. Manufacturers of

Class I low-risk devices must register their facility with the FDA, which carries a small fee

and takes less than one month to process. The FDA requires Class II, moderate risk device

manufacturers to file a “510(k)” to prove their device is similar to an already marketed

device.10 This process of proving “substantial equivalence” has been criticized by many,

including the National Institute of Medicine, as being insufficient for establishing safety

(IOM, 2011) while imposing substantial costs. The 510(k) process, on average, costs firms

$24 million (Makower et al., 2010) and delays commercialization by ten months. Class III,

high-risk device manufacturers must conduct clinical trials via the “premarket approval”

(PMA) process to ensure their new device is safe and effective before commercialization.

The PMA process is much longer than the 510(k) process and costs, on average, $75 million

(Makower et al., 2010). The average costs of these different levels of regulation are shown in

Figure 1. Appendix A.3 provides more details.

1.2 Deregulation of Medical Device Types

The FDA can reclassify medical device types to a lower class based on their observed safety

outcomes in the market. The FDA regulates new, markedly novel devices in Class III to

ensure safety under unknown risks.11 Surveillance data from marketed devices clarify these

10Manufacturers must also follow best-practice protocols (called “special controls”).
11In 1997, the FDA began allowing manufacturers of markedly novel devices to petition for a direct Class

II or I classification under the “De Novo” process by showing that best practices assure the safety and
efficacy of their device. However, all the device types I consider existed before 1997 and thus were either
automatically or intentionally classified into Class III.
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risks and inform the FDA’s choice to move a device type into Class II, or “down-classify” (see

Figure 1).12 These events are described by manufacturers as “unpredictable,” suggesting the

difficulty of anticipating such policy changes (Makower et al., 2010; Powell, 2018). While

it is probable that the FDA will deregulate some lower-risk device types within a class,

the specific types affected and the timing of such events are “as-good-as-random.”13 My

empirical analysis supports this assessment as I do not find evidence of divergent pre-existing

trends when comparing down-classified device types to control groups.

By contrast, the FDA follows a more systematic approach when deciding which devices to

reclassify from Class II to I. However, the timing of these events is also “as-good-as-random,”

often resulting from sporadic congressional actions. After a 1995 congressional mandate, the

FDA scored all Class II devices based on average yearly adverse event counts and down-

classified those that fell below a previously unknown threshold (FDA, 1995). Although

this policy seems to justify using a regression discontinuity design, the limited number of

device types at the threshold precludes this approach. Instead, I utilize a set of unaffected

Class I device types, including previously deregulated and consistently Class I devices that

would have received similar scores as control groups. Importantly, scores were not contingent

on potential changes in adverse events or trends.14 My event-study results reaffirm these

assessments.

It is worth noting that deregulation only occurs in established medical device types. Thus,

rather than measuring the effect of regulation on radical innovation, this paper measures

how regulation affects the development and improvement of existing medical device types.

Improving medical devices may require fundamental scientific advances and bring substantial

health benefits through increased efficacy or reduced side effects and adverse events.

12Additionally, manufacturers can file a petition for down-classification, bringing the FDA’s attention to
particular device types for further investigation. My analysis, however, focuses on down-classification events
explicitly enacted by the FDA’s initiative (rather than a petition).

13For example, the deregulation of contact lenses took the FDA a decade to announce after an internal
decision was made.

14See Appendix A.1 for more details and an example of Class II to I events.
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1.3 Regulation versus Litigation: Federal Preemption

In the US, medical device firms incur damages from tort claims amounting to as much

as 3.8% of annual revenues (Fuhr et al., 2018). Galasso and Luo (2018) show that this

liability risk chills innovation and can bankrupt smaller firms. Compared to Europe, the US

is particularly litigious, with class-action lawsuits, high punitive damage payouts, and few

damage caps (Guendling, 2016). These conditions make liability risk a powerful incentive

for ensuring the safety of products marketed in the US. Corroborating this, Judge Sweet, in

the noteworthy case of Bravman v. Baxter Healthcare Corp. (1994), emphasized “state tort

actions...remain a powerful incentive for improving product safety.”15

However, FDA approval shields medical device manufacturers from product liability,

creating a stark tradeoff between regulation and litigation. This safeguard, called “federal

preemption,” is upheld by Riegel v. Medtronic Inc. (2008), a Supreme Court case ruling

that Class III device approvals bar legal tort claims against device manufacturers. Moreover,

during the 1990s, when the Class II to I events I analyze occurred, Class II devices were

also generally protected from liability (Flaherty Jr, 2008).16 Class I devices are not FDA-

approved, exposing manufacturers to litigation.

2 Conceptual Framework

In this section, I model R&D as a two-stage process: development and commercialization.

First, firms invent and patent a new product, improve its safety profile, and raise capital to

cover commercialization. Second, firms bring their products to market by attaining regula-

tory approval, forming distribution networks, etc. The model builds on that of Budish et

al. (2015), who formalize the impacts of commercialization lags on innovation. For compa-

rability, I follow their notation closely wherever possible. I introduce into their framework

15Bravman v. Baxter Healthcare Corp., 842 F. Supp. 747, 761 (S.D.N.Y. 1994).
16Some Class II devices are still protected today. See Appendix B.2 for more information on the evolving

litigation environment over time.
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two alternative policy regimes (i.e., regulation and litigation), which include differences in

commercialization lags, liability risk, and financing costs.

The model’s purpose is to illustrate the range of possible consequences of deregulation,

to connect these to underlying fundamentals, and, in particular, to relate these effects to

firm traits. In turn, the insights from this model will be helpful for interpreting my empirical

results. My model considers the medical device industry, though its implications may apply

to other regulated products.

2.1 Model Preliminaries

Undirected R&D yields stochastic inventions to a representative, profit-maximizing firm.

Upon realizing the new technology, the firm decides if it will allocate capital for directed

R&D to (i) improve the product’s safety profile during the development phase and (ii)

commercialize the invention. The firm makes this decision in one of two environments:

regulation “R” or litigation “L.” The model is characterized by the following parameters:

Timing Parameters.—The year a firm realizes and develops an invention is given by

tinvent, which I normalize to zero. The years it takes to commercialize the product is tcomm,f .

In the medical device industry, FDA approval plays a key role in delaying commercialization

(Makower et al., 2010; Pietzsch et al., 2012).17 Thus, for concreteness, think of tcomm,f as the

approval delay. Under litigation L, there are no approval delays (i.e., tcomm,f,L = 0). In the

regulated environment, approval delays are positive but decrease with regulatory experience

(Olson, 1997; Carpenter, 2004b; Makower et al., 2010).18 Following Arrow (1971), I model

this relationship by equating the present delay tcomm,f to the learning curve β T−γf , where

Tf is prior experience, β is the delay with no prior experience (i.e., T = 1) and γ > 0. Delay

17Approval delays in other areas of health care, like delays in securing medical procedure reimbursement
codes, have also been shown to play a key role in innovation (Dranove et al., 2022).

18Two factors may explain this pattern, both of which are driven by the complexity of the regulatory
process. First, inexperienced firms report difficulty benefiting from hired regulatory experts and must instead
learn the process independently (Y Combinator, 2016). From the regulator’s perspective, having prior
experience with a firm reduces the uncertainty about the quality of its products, which may merit shorter
review times (Olson, 1997; Carpenter, 2004b).
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costs are given by χtcomm,f , where χ is the yearly cost of approval delays.19

Financing Costs.—Smaller firms must raise external capital to cover the costs of devel-

opment and commercialization at time tinvent.
20 Fundraising can be difficult: 56% of small

medical device firms claim funding as a central challenge (Emergo, 2019). Following Stein

(2003), I capture these financing frictions by assuming deadweight costs given by C(ef ),

where C( ) is an increasing convex function of external funds ef (similar to the R&D model

of Stern (2017)). External funds ef are equal to the difference between the non-financing

costs and internal capital Kf . I omit other costs of commercialization for simplicity.

Regulated and Deregulated Effective Lives.—A successfully commercialized product be-

comes less relevant over time. For expositional ease, I describe the neoclassical risk-adjusted

discount factor of the R&D project as δ, which includes obsolescence and commercialization

risk.21,22 Firms enjoy longer or shorter effective product lives depending on the regulatory

environment. Under regulation, I define an invention’s Regulated Effective Life (REL) as

the expected years it will be commercialized and non-obsolete in present value terms as

discounted by the regulated firm. The effective life of the regulated product begins at time

tcomm,f , yielding an effective life of RELf =
∑∞

tcomm,f
δt = δtcomm,f/(1 − δ). By contrast,

in a deregulated environment N , I define an invention’s Effective Life (EL) similar to REL,

except the lifespan of the product starts at tinvent, given by EL =
∑∞

t=0 δ
t = 1/(1 − δ).

Notice that RELf < EL by definition, as regulated profit flows are delayed.

Expected Damages and Safety Effort Costs.—Borrowing from Shavell (1986) and Boomhower

19Makower et al. (2010) find an average monthly cost of $1.3 million for Class III approval delays (e.g.,
clinical trial costs, etc.). I assume tcomm,f and several other parameters below are deterministic for simplicity.

20For simplicity, I assume firms finance their project instantaneously. Although fundraising could prolong
commercialization delays, removing this assumption does not change my theoretical results.

21A product may also face a probability of successful commercialization p, which may be appropriately
modeled as a function of safety effort; however, the FDA approves 80%–90% of all medical device submissions
(GAO, 2009). Thus, for simplicity, I assume that approval is certain given a firm achieves the mandated
safety effort, and I abstract away from other non-approval-related commercialization uncertainty. Including
product denial and commercialization risks does not meaningfully change my theoretical insights.

22Although obsolescence risk is more appropriately modeled as endogenous to R&D investments, I follow
the patent literature and take it as exogenous (Budish et al., 2015).

11



(2019), if a firm chooses to commercialize its product, it exerts xf effort to improve product

safety, costing ψ per unit, at tinvent.
23 Under litigation L, a commercialized product gener-

ates stochastic adverse events that yield φ(xf ; ~Z) legal damages per year, a random variable

with expected value D(xf ; ~Z) and vector ~Z containing other factors that influence damages

in expectation (e.g., firm seizable assets Kf , the litigation environment, damage caps). The

expected damages function D( ) is a positive decreasing convex function of safety effort xf .

The firm exerts effort to maximize the returns to commercialization by equating the marginal

cost of effort ψ+Cx(ψx
∗
f −Kf ) to the present value of its marginal benefits −EL·D′(x∗f ; ~Z)

(i.e., marginal abatement of expected damages). By contrast, under regulation R, the firm

is exposed to no legal damages due to federal preemption. Thus, firms exert the mandated

level of safety effort x, as any further effort yields no return.

Profits.—If the product is successfully commercialized and non-obsolete, it generates

profits π per year for the innovating firm. Although regulation can affect profits by altering

market structure, I do not model this relationship, focusing instead on motivating my firm

composition and product safety results. Thus, for simplicity, I assume that deregulation in-

creases the aggregate level of R&D, consistent with my empirical findings, which implies that

deregulation does not cut profits enough to outweigh declines in commercialization costs.24

I assume only expert regulators can perceive safety effort (i.e., asymmetric information);

hence, safety effort does not affect profits once a product is approved.

2.2 Characterization of the Investment Decision

In the regulated environment R, firm f expects to receive profits from commercializing a

device for RELf years. The firm will develop and commercialize its invention if and only if

23For simplicity, I assume firms exert safety effort instantaneously. Alternatively, safety efforts could
prolong commercialization delays. Modeling such delays, however, would not change the model implications.

24Note that this assumption also places an upper bound on the value of legal damages and safety effort
costs after deregulation.
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these expected profits exceed the combined delay, safety effort, and financing costs:25

Regulated Firm Invests ⇐⇒ RELf︸ ︷︷ ︸
Regulated

effective life

· πR︸︷︷︸
Profits

≥ χtcomm,f︸ ︷︷ ︸
Delay costs

+ ψx︸︷︷︸
Mandated safety

effort costs

+C(ef,R)︸ ︷︷ ︸
Financing

costs

. (1)

The amount of external capital ef,R needed to finance the project is given by the difference

between the non-financing commercialization costs and the firm’s internal capital Kf (i.e.,

ef,R = χtcomm,f + ψx−Kf if ef,R ≥ 0, and 0 otherwise).

In the litigation environment L, firm f will choose to commercialize if and only if the

net expected profits (less expected damages) are greater than the combined safety effort and

financing costs:26

Deregulated Firm Invests ⇐⇒ EL︸︷︷︸
Effective

life

· [ πL︸︷︷︸
Profits

−D(x∗f ; ~Z)︸ ︷︷ ︸
Expected
damages

] ≥ ψx∗f︸︷︷︸
Optimal safety

effort costs

+C(ef,L)︸ ︷︷ ︸
Financing

costs

. (2)

The amount of external capital ef,L needed to finance the project is given by the difference

between safety effort costs ψx∗fand the firm’s internal capital Kf .

Notice the key differences between the investment incentives in environments R and L:

firms that commercialize in L (i) expect legal damages, (ii) choose and pay for an optimal

level of safety effort, (iii) enjoy a longer effective life of their products, and (iv) do not incur

delay costs.27

2.3 Distortions from Regulation

I focus on model implications related to distortions in firm participation and safety efforts

resulting from regulation. Throughout, I assume that deregulation increases the level of

25Notice the implicit assumption that firms do not consider the future benefits of regulatory experience
(i.e., learning by doing) in their investment decisions. This assumption is consistent with a large literature
documenting that managers maximize short-term rather than long-term firm value (Budish et al., 2015).

26Note that financing frictions do not affect the payment of damages since they can be financed with
profits (i.e., in expectation, damages will always be less than profits if a firm chooses to commercialize).

27Profits and financing costs also differ across these environments; however, the direction of the difference
is ambiguous (e.g., if expected damages are large, safety effort costs could increase financing costs).
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R&D activity. This assumption is supported by my empirical results and allows me to more

clearly motivate the less intuitive results I find in my analysis.

First, I explore how deregulation can improve product safety. If mandated levels of safety

effort are low enough, deregulation can improve safety by increasing the net incentives for

safety improvements. I state this formally as follows:

Proposition 1. (Deregulation can increase firm safety efforts) If the marginal cost of

regulated effort is less than the ex-post marginal benefit of that effort (i.e., ψ + Cx(x) <

−EL ·D′(x)), then deregulation will increase firm safety effort.

Figure 2 helps clarify the necessary conditions for proposition 1. The figure shows that

the ex-ante-mandated safety effort is sufficiently low, leading the deregulated firm to exert

more effort. This proposition implies that ineffective regulations could make products less

safe. I show in Section 5 that Class II regulations may lead to such an outcome. These

insights, however, may be specific to the litigious US environment. For example, if a country

aggressively caps damages (represented in ~Z), firms would face lower expected damages, and

safety effort could drop relative to regulated levels.

Another factor influencing a firm’s expected damages is the value of its seizable assets.

Following insights on the “judgment proof problem” (Shavell, 1986), when damages exceed

the value of a firm’s seizable assets, the difference can be discharged through bankruptcy.

This option protects small firms from worst-case damages, lowering expected damages and

the marginal benefit of exerting safety effort. Thus, if deregulation increases safety efforts,

it will do so most for large firms. I state this as follows (and more formally in Appendix C):

Proposition 2. (Deregulation introduces bankruptcy distortion) Assume firm A has fewer

assets than firm B (i.e., KA < KB) and has too few assets to cover its worst-case damages.

Firms A and B are otherwise identical. If deregulation increases firms’ safety effort (see

Proposition 1), then firm B will increase its safety efforts the most.

The next distortion I detail arises from regulatory complexity (i.e., the delays from com-
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plex regulatory requirements). Complexity distorts the composition of firms that commer-

cialize as inexperienced firms reap lower returns from commercialization. Deregulation re-

moves these distortions and disproportionately increases the returns to commercialization

for inexperienced firms. To formalize this claim, I present the following proposition:28

Proposition 3. (Deregulation disproportionately benefits inexperienced firms) If firm A

has less regulatory experience than firm B (i.e., TA < TB; all else equal), then deregulation

increases the returns to commercialization most for firm A.

An example helps illustrate the potentially dramatic implications of proposition 3. Con-

sider firm A has no prior experience, and firm B has one previously commercialized project

that was delayed for two years. Consistent with the values of the learning curve parameters

γ and β estimated in Section F.1, firm A must wait out a two-year delay. By contrast, firm

B waits out a one-year delay, incurring 50% lower delay costs than firm A and enjoying a

longer effective life of its product. Although deregulation removes delay-related costs for

both firms, the increase in returns to commercialization is at least twice as large for firm A.

Lastly, I discuss distortions that arise from financing frictions and regulation. Small

firms incur deadweight costs when raising capital to commercialize their products (Gaglani,

2014; Emergo, 2019). Deregulation can decrease commercialization costs and financing costs,

especially for small firms. I state this claim formally as follows:

Proposition 4. (Deregulation can disproportionately benefit smaller firms) Assume firm

A is smaller than firm B and has non-zero financing costs when regulated (i.e., KA < KB

and KA < χtcomm,A + ψx). Firms A and B are otherwise identical. If deregulation does not

increase financing costs for firm A (i.e., ψx∗A < χtcomm,A + ψx), then deregulation increases

commercialization returns most for firm A.

However, deregulation could lead to lower returns to commercialization for small firms

if financing costs increase after deregulation. For example, if deregulation induces enough

28Proofs are presented in Appendix D.

15



additional safety effort costs to outweigh the decrease in approval delay costs, financing

costs could increase for smaller firms. By contrast, if the assumptions hold, Proposition 2

will amplify Proposition 4 as small firms face lower expected damages and lower safety effort

costs after deregulation and, thus, even lower financing costs.

3 Data

To conduct my empirical analysis, I compile data from eight sources to provide an expansive

view of the costs and benefits of medical device regulations. Summary statistics for these

data are provided in Table 1 and a data catalog is presented in Figure G.1.

FDA Device Submissions (PMA and 510(k) Databases). The primary dataset used in this

study is derived from FDA administrative data on the universe of medical devices submitted

for FDA approval. These data combine the FDA’s PMA and 510(k) databases to cover both

Class III and II devices. Submissions include the submitting company name, device brand

name, medical device type, and submission and approval dates. I use fuzzy matching to

form three measures of market dynamics and innovation. First, I measure “new entry” by

identifying firms submitting approval documents for the first time. Second, I also form a

measure of “incumbent entry,” by locating firms that have filed prior approval documents but

are starting to submit for approval in a given device type. Third, I isolate the first occurrence

of unique device brand names within a device type to form the “unique devices submitted”

measure. These variables are aggregated to the device type-year level. To measure each

firm’s regulatory proficiency, I calculate the total approval delays (in days) the submitting

firm has experienced up to the given point in time.

FDA Deregulation Events. To provide a comprehensive analysis of FDA deregulation

events, I collect all down-classifications from 1980 to 2015. For Class III to II events, I also

indicate whether the event was motivated by the FDA’s “own initiative” or by an industry

petition. This distinction is empirically important. Figure G.2 shows that device types that
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experience a petitioned down-classification exhibit divergent pre-trends in patenting rates in

the five years before the event. The Class III to II events I consider are those enacted by

the FDA’s own initiative and for which down-classified device types experienced at least one

PMA document submission beforehand.29 For Class II to I events, I consider affected device

types that experienced at least one 510(k) document submission beforehand.

FDA Adverse Event Reports (MAUDE). The FDA’s Manufacturer and User Facility

Device Experience (MAUDE) database contains adverse event reports related to medical

devices. Using this data, I create measures of device safety using reported deaths, hospital-

izations, and life-threatening events for each device type from 1992–2019. I follow Ensign and

Cohen (2017) to account for data and coding idiosyncrasies in the MAUDE data. Adverse

events are aggregated to the device-type-year level. Adverse event rates (e.g., deaths per

year) of down-classified device types are similar to those of device types in the prospective

class (see Figure G.3). For the top 300 manufacturers by adverse event volume, I hand-linked

firm names listed on adverse event reports to data on firm assets. Asset totals are derived for

public firms using data from CRSP/Compustat. This linkage allows heterogeneity analyses

of device safety by firm size.

USPTO Patent Grants Extract. Patents offer an additional measure of innovation to

support my “unique devices approved” measure. However, there is no standard dataset

linking medical devices with their associated patents (similar to the “Orange Book” data for

drugs). To address this, I follow a three-step procedure to create a patent-based measure of

innovation for each device type. First, I compile a list of keywords from each FDA device

type description. Second, I use a computer program to collect all patents granted by the

USPTO that contain those keywords in their text. Third, I calculate the annual number

of patents filed within each device type based on the date the patent was first filed. The

resulting dataset is a panel of yearly patent counts across 5,000 FDA-defined medical device

types from 1976 to 2019. Patents are a useful complement to FDA device data for several

29Many Class III “preamendment” devices were never officially required to submit PMA documentation.
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reasons. First, patents allow me to analyze how Class II to I events affect innovation, as I

only observe my “unique devices approved” measure for Class III and II devices. For this

same reason, patents also enable comparisons of effect sizes across down-classification types.

Lastly, an analysis of two different measures of innovation provides corroborative evidence.

In Section 5, I show that the estimates of changes in patent filing rates and device submission

rates are quite similar for Class III to II events. Appendix E provides more details on the

patent collection process.

Patent and Patent Applicant Characteristics. I enrich the patent data with measures of

innovation quality and applicant characteristics. A patent’s quality is measured using the

number of citations it received from other patents and its market value.30 Patent market

values are derived from Kogan et al. (2017) and are deflated to 2019 (million) dollars using

the CPI. These values are based on the increase in the patent assignee’s stock price resulting

from a USPTO announcement of patent issuance and are only available for publicly traded

firms. I also generate a quality-related measure of device safety using patent texts. Following

a procedure used in Clemens and Rogers (2020), I calculate the annual share of patents

within a device type that mention keywords related to safety.31 This variable allows me to

directly analyze how deregulation affects inventors’ emphases on improving device safety,

corroborating adverse event analyses. Lastly, to analyze how deregulation affects innovation

from firms of different sizes, I link total firm asset holdings from the CRSP/Compustat

database to patent applicants.

UCSD Health Insurance Claims Extract. Insurance claims data from UCSD Health pro-

vide information on how healthcare prices respond to deregulation. To my knowledge, no

available data, including ECRI PriceGuide, reliably measures the direct prices that providers

30I omit examiner citations and set patent citations and market values to zero when no patents were filed
in a given device-type-year.

31To construct a comprehensive list of keywords related to medical device safety, I use Word2Vec, an
algorithm that maps text to a vector space, with proximity indicating semantic similarity. After gathering
semantically similar keywords, I search patent claims to identify whether a patent contained any of the
keywords of interest and calculate the fraction of patents that mention these keywords in a given device-
type-year. If no patents were filed in a given year, I set the fraction of patents mentioning safety to zero
(i.e., no scientific advancements in product safety). See Table G.1 for a list of keywords used.

18



pay for medical devices before 2011. As another option, device prices could also be reflected

in insurance claims data, provided that device costs comprise a substantial share of proce-

dure costs. Thus, I acquire claims data from UC San Diego Health that detail prices at the

Current Procedural Terminology (CPT) level. I then identify claims with procedures that

use medical device types that were down-classified since 2006.32 To form control groups, I

collect a set of procedures that use matched control device types and randomly select 100

procedures. Together, these data contain nearly 500,000 unique patient claims from 2005–

2020. I then take the average amount paid for a given procedure in a given year, forming a

panel of procedure-year prices.33

4 Empirical Strategy

My strategy for estimating the effects of deregulation includes “stacked” difference-in-differences

and event-study designs. After describing each design, I underscore how I address potential

issues when generating causal estimates in my context.

The first regression specification uses a staggered difference-in-differences design. I use

a “stacked” regression, similar to Cengiz et al. (2019), which avoids potential biases from

using staggered treatment designs in the presence of heterogeneous treatment effects within-

unit over time (Goodman-Bacon, 2018; de Chaisemartin and d’Haultfoeuille, 2019).34 This

approach assembles event-specific panel data using each treated group r ∈ {1, . . . , N1} and

all admissible controls. Then, all event-specific panels are stacked while allowing unique time

and group fixed effects for each panel. Thus, the estimating equation is given by

Yt,c,r = γc,r + γt,r + β11{reclass}t,c,r + εt,c,r. (3)

32In total, five Class III to II down-classified medical device types fit this criterion. All Class II to I
down-classifications that I analyze are outside the time coverage of the claims database.

33Although the average UCSDH procedure amount paid is close to the average procedure amount paid by
Medicare, using only UCSDH claims data is a limitation of my study.

34I find that my results do not change meaningfully when I consider another estimator in the heterogeneous
treatment effects literature from Borusyak et al. (2021) (see Tables G.2, G.3, and G.4).
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In equation 3, c denotes the medical device type, t denotes time, r denotes the event, and

1{reclass}t,c,r is an indicator equal to one when down-classification has occurred in device

type c. The outcomes of interest are denoted by Yt,c,r. Event-by-time fixed effects (γt,r) and

event-by-device type fixed effects (γc,r) are included. The coefficient of interest, β1, estimates

the differential change in the outcome variable for treated device types relative to control

device types after down-classification. I estimate equation 3 separately for Class III to II

events and Class II to I events.

The number of FDA-initiated Class III to II events is relatively low (N1 = 13). Thus, I

follow Conley and Taber (2011), who provide a method of constructing reliable confidence

intervals for differences-in-differences estimates in the presence of a small number of policy

changes. This approach uses information from control group residuals to form confidence

intervals.

Like all difference-in-differences designs, my specification relies on the assumption that

differential trends in the outcomes of interest do not pre-date the down-classification events.

To test this assumption, I estimate a stacked event-study design using OLS, given by

Yt,c,r = γc,r + γt,r +
∑
t6=0

βt1{Treated}c,r × 1{Years from Reclass}t,r + εt,c,r. (4)

In equation 4, the omitted interaction between the treated group indicators (i.e., 1{Treated}c,r)

and the time dummy variables (i.e., 1{Years from Reclass}t,r) aligns with the year the event

occurred. Thus, each parameter βt represents the difference-in-differences estimate of the

change in the outcome in a given period relative to that reference period. Standard errors

for each βt are calculated using Conley and Taber (2011).

Down-classification rulings are typically announced a year before enactment. Since inno-

vators could respond to a down-classification announcement, 1{reclass}t,c is equal to one for

all device-type-years after an announcement occurs in device type c. However, FDA admin-

istrative data will not reflect changes until the year of enactment since firms cannot market

devices under new regulations before enactment. Thus, for FDA-derived outcome data, the
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indicator 1{reclass}t,c is equal to one for all device-type-years after a down-classification is

enacted in device type c. For the event-study, the event-time t = 0 follows accordingly.

Identifying control device types that track the counterfactual development of the outcome

variables is a central challenge in my empirical context. Controls could be unsuitable for

several reasons. Control device types, for example, could be affected by unique scientific

developments, have lower scientific potential, or face different market forces. Alternatively,

some device types could be affected by spillovers from treated device types. Lastly, the FDA

selects device types for down-classification based on inherent risk. Thus, down-classified

devices may be less dangerous than those not chosen.

I provide four control groups, each addressing aspects of these concerns, and find that my

results are robust across these groups. The first control group broadly comprises all Class III

and II devices (for III to II events) and all Class II and I devices (for II to I events) that have

not been down-classified. This group provides baseline DID estimates. The second group

includes “later-treated” control device types that were down-classified after treated device

types and after the latest sample year.35 This “later-treated” group allows me to compare

only device types that the FDA deemed appropriate for the same kind of down-classification.

If later-treated device types are different from those treated earlier, the later-treated group

may produce biased estimates. To ensure comparability, I form the third control group, a

data-driven matched control group computed using nearest neighbor matching on baseline

adverse events and innovation rates. Although I do not find evidence for spillovers in my

context, I ensure that matched control device types do not treat the same medical ailments

as treated device types.36

Finally, I provide a set of “intuitive” controls. This fourth set of controls includes medical

device types that target similar diseases. I also ensure that device risk is intuitively and

35Specifically, for Class III to II events, I gather controls from all Class III to II events that occurred after
2015, censoring the outcome data after 2015. For Class II to I events, all device types moved from Class II
to I in late 2019 constitute the control group. The 21st Century Cures Act drove this Class II to I event and
was the first time FDA-initiated down-classifications of Class II devices occurred since 1998 (the year of the
event I analyze). Importantly, the FDA used the same explicit down-classification criteria in both events.

36See Table G.5 for spillover estimates.
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empirically comparable. For example, I avoid inappropriate comparisons between external-

use devices and implantable or life-sustaining devices (e.g., contact lenses versus pacemakers),

as these devices would have drastically different safety profiles. Instead, I compare like with

like (e.g., daily- vs. extended-wear soft contact lenses). Profiles of the treatment and intuitive

control groups are given in Table G.6 for Class III to II down-classifications, and in Tables

G.7 and G.8 for Class II to I down-classifications. Although the estimates are similar across

control groups, the matched control groups constitute my preferred specification.

Additionally, some medical device types may never exhibit adverse events or innovative

activity and thus would be incomparable to those that do. Thus, I also provide results from

analyses that consider only treated and control device types with positive counts of a given

outcome in Tables G.9, G.10, and G.11. My findings are robust to these restrictions.

As with every non-experimental research design, selection into treatment is a primary

concern. Since the FDA’s down-classification of medical device types is based on baseline

adverse event rates, I cannot ascertain how deregulation would impact adverse event rates

for a randomly chosen device type.37 Consequently, my estimates represent local average

treatment effects (LATEs) among lower-risk device types within a given class. However, for

Class II to I events, I can observe the FDAs decision rule, allowing me to select comparison

groups that closely resemble treated groups based on this rule. This decision rule also enables

me to assess how adverse event effects change for the marginal device (i.e., the most dangerous

down-classified devices). Notably, I find stronger effects for marginal devices, suggesting that

my findings can generalize to other Class II devices not chosen for deregulation.

5 Results

This section presents estimates of equations 3 and 4, which capture the effect of deregulation

on various outcomes of interest. Subsection 5.1 presents the effects on the flow and quality

37Importantly, the FDA does not choose device types based on innovative potential or the potential for
market structure effects. See Appendix A.1 for more details.
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of innovation. Subsection 5.2 provides the effects on market structure. Subsection 5.3

details how the effects of deregulation on innovation and market structure differ by firm

characteristics. Subsection 5.4 presents the effects on device safety.

5.1 Changes in Innovation

Table 2 reports estimates of equation 3 for my innovation outcomes.38 Panel A provides esti-

mates for Class III to II events, and Panel B provides estimates for Class II to I events. Col-

umn (1) reports a 5-year pre-treatment mean of the outcomes for treated groups. Columns

(2)–(5) report the estimates of equation 3 when comparing treated groups to a matched con-

trol group, intuitive controls, “later-treated” device types, and all untreated device types,

respectively. Conley-Taber standard errors are reported below the estimates.

Table 2, Panel A indicates that Class III to II events led to statistically significant in-

creases in patenting rates, unique device submissions, mean citations-per-patent, and mean

patent values across control group comparisons (Columns 2–5). Depending on the control

group, the results reveal that these events generated 189%–470% more patents and new de-

vice submissions per year per affected device type (pre-means: 8 patents/yr; 0.5 devices/yr).

Patents filed after these events received 180% more citations and exhibited similar increases

in market values. Panel B of Table 2 shows that patents filed after Class II to I events (i.e.,

complete deregulation) received 330%–1,070% more citations and yielded 10%–50% higher

market values, suggesting a divergence between scientific and private value. These results

are robust across comparison groups (Columns 2–5). Although economically significant, the

increase in patenting rates from Class II to I events was not statistically significant under

my preferred specification.

I examine the dynamics of the innovation responses by estimating the event-study equa-

tion 4. The top subpanels of Figures 3 and 4 plot the innovation responses (i.e., βt coeffi-

cients) for Class III to II and II to I events, respectively, when using the “matched” control

38Table G.9 presents the results from only including device types with some positive outcome counts.
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groups.39 The results of this analysis provide several insights for interpreting my findings.

First, trends in all outcomes were similar in treatment and control groups for ten years be-

fore deregulation; trends were also similar for other control groups (not shown). This insight

strengthens the identifying assumptions that (i) treatment and control groups would have

exhibited similar trends in outcomes absent the policy change, (ii) policies were not antic-

ipated, and (iii) policies were not endogenous to increases in innovative activity. Second,

Figures 3 and 4 indicate a persistent increase in the flow of innovation, suggesting that these

events led to investments in new technologies that would not otherwise have occurred, rather

than a forward shift in the timing of those investments.

Lastly, the event-study estimates for Class III to II events suggest that the increase in

new technologies (i.e., patents) was slow, whereas the upsurge in access to new and existing

technologies (i.e., unique devices submitted) was fast. This distinction, thus, is driven by

rapid changes in the availability of existing technologies. First, firms may have “on-the-

shelf” ideas and products that they have not commercialized due to the expensive approval

process. Second, firms may promptly repurpose existing technologies for new indications.

Third, deregulation accelerates the approval pipeline, leading to a sudden influx of products

at different ex-ante stages of approval. Lastly, since, until recently, E.U. regulations were

more lenient, firms may have introduced their E.U.-approved devices to U.S. markets after

deregulation (Grennan and Town, 2020). By contrast, patenting rates increase gradually

after deregulation, consistent with the time-intensive R&D process. U.S. patenting rates,

unlike device submissions, are not affected by sudden influxes of existing technologies as

these technologies are either already patented or are not patentable. In particular, if a firm

files a patent in one country, it must file patents in other countries where it desires protection

within one year to receive protection in those countries (Popp, 2005). Applying for patents in

multiple countries is inexpensive as firms can concurrently file patents in up to 153 countries

through the Patent Cooperation Treaty (WIPO, 2020).

39Figures G.4 and G.5 show event-study estimates for the innovation quality variables.
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5.2 Changes in Market Structure

To investigate the effect of deregulation on market structure, I reestimate equation 3 for five

different outcomes: new and incumbent firm entry measured separately by each data source

and prices for procedures that use device types of interest. Table 3 presents the estimates.40

The structure of Table 3 is similar to that of Table 2, with the exception of an additional

comparison group matched on pre-event prices (Column 2). Panel A reveals that Class III

to II events led to statistically significant increases in incumbent and new firm entry across

control groups (Columns 3–6) and data sources (patents and FDA devices). Strikingly,

these events increased the rate of new firm entry by 840%–1,000% (pre-mean: 0.1 firms/yr)

when measured by FDA data and by 150%–420% when measured by patent data.41 The

discrepancy between the magnitudes of these two estimates suggests a strong increase in the

availability of existing technologies. Regarding the effects on incumbent firms, these events

increased incumbent entry by 400% when measured by FDA data and by 130%–240% when

measured by patent data.

The procedure price estimates are reported in the first row of Table 3. The results show

that Class III to II events are associated with a statistically significant decrease in the prices

of procedures that use treated device types when using two out of three control groups

(Columns 2 and 3). The estimates translate to a 33–40% drop in prices, plausibly driven by

the increase in firm entry and competition (Busso and Galiani, 2019).42 There are several

reasons why these price results should be interpreted with some caution. First, my price data

40Table G.10 presents results from including only device types with some positive outcome counts.
41Supply-side factors may not be the sole driver of these dramatic changes in market structure. As shown in

Figure G.6, there were considerable equilibrium forces at play: After the number of suppliers of treated device
types increased, demand increased for procedures that use treated devices three years after deregulation,
plausibly driven by lower prices. No significant pre-trends are measured.

42The example of spinal implant deregulation highlights the plausibility of these price estimates. There
are several margins along which a drop in the price of spinal implants could affect the overall costs of spinal
fusion procedures. First, spinal implants account for roughly 40% of the costs of spinal fusion procedures
(Beckerman et al., 2020). Thus, the direct effect of a drop in the prices paid for spinal implants could
measurably change the procedure price. Moreover, new technology could be labor-saving, reducing the costs
of labor required to perform the procedure. Lastly, a lower price for spinal implants could attract more
providers to offer the procedure, potentially driving down prices further.
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is only available after 2004, restricting the number of treated device types I study to five.

Second, the estimate generated using the entire sample of procedures as controls (Column

6) is quite noisy, indicating that the results are less robust. Lastly, UCSD healthcare claims

data only cover one regional hospital system.

Table 3, Panel B shows the effect of Class II to I events on new and incumbent firm entry

as measured by patent data (device data is unavailable for Class I). The results indicate

that these events increased new firm patenting by 50%–145%, though the estimate under my

preferred specification is only marginally significant. By contrast, incumbent firm entry is

statistically and economically insignificant under my preferred specification. The distinction

between the new and incumbent results suggests that litigation may obstruct new entry less

than regulation, but both environments similarly impact incumbent firms.

To help interpret these findings, I present event-study estimates of equation 4 for my

market structure outcomes. The βt coefficients are shown in the bottom subfigures of Figures

3 and 4 for Class III to II and Class II to I events, respectively.43 The figures suggest that

identifying assumptions (i)–(iii) (listed above) are satisfied and that, when present, the

estimated effects are persistent. For similar reasons given above, Figures G.8 and 4 illustrate

a gradual increase in the rate of new firms patenting (slow R&D), while FDA device data

reveals a sharp increase in device submissions from new firms (includes existing technologies).

Figure G.7 reveals that procedure prices dropped two years after the events, despite sharp

increases in firm entry. This lagged response is consistent with the contractual nature of

healthcare markets; prices are “sticky” as hospitals periodically renegotiate contracts with

suppliers and insurers (Reinhardt, 2006; Grennan and Swanson, 2020).

5.3 Heterogeneity in Firm Proficiency and Size

The average treatment effects estimated in the last two sections overlook heterogeneity in firm

size and regulatory proficiency. In this subsection, I separately estimate equation 3 across

43Figure G.7 plots these coefficients for the Class III to II price outcome, and Figure G.8 plots these
coefficients for the Class III to II market structure outcomes measured using patent data.
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firm size and proficiency quantiles for the outcomes of interest. I link this heterogeneity

analysis to the propositions in Section 2 to gain further insight into the mechanisms that

drive the overall results. The identified mechanisms highlight design elements that may make

regulation more amenable to small and inexperienced firms.

Firm Proficiency. To examine how regulation affects firms with different regulatory

proficiencies, I estimate equation 3 for the device submission outcome across proficiency

quartiles. I center this analysis on FDA data, allowing a cleaner linkage between firms,

proficiency, and innovation. Panel A of Figure 5 presents the results expressed as percent

changes relative to pre-event averages. Class III to II events generated statistically signifi-

cant increases in new device submissions across proficiency quartiles. However, the events

were associated with much higher increases among inexperienced firms. Firms in the first

proficiency quartile exhibited a 1,000% increase in new device submissions compared to a

50% increase from firms in the top quartile.44 These results indicate a quickly diminishing

response while moving up the proficiency distribution. This pattern is consistent with the

estimated learning curves presented in Figure 5, Panel B as firms in the lowest proficiency

quartile benefit from the highest reduction in approval delays. This reduction translates

into outsized decreases in commercialization costs for inexperienced firms and, thus, higher

increases in commercialization activity (as claimed in proposition 3).

Designing regulation that is simpler and standardized could help less regulation-proficient

firms.45 For example, Stern (2017) shows that when the FDA sets approval expectations by

publishing guidance documents, approvals times of new firms drop by roughly 40 percent.

To simulate the impact of these types of efforts on innovation, I iteratively shrink the gap

in delays between inexperienced and proficient firms by lowering the learning rate γ while

measuring R&D response from a hypothetical distribution of firms (see Figure G.9 and

44Strategic judgment proofing is not driving these results. In other words, these effects are not driven by
larger firms forming small subsidiaries to shield themselves from liability. For example, only 1 out of 20 new
spinal implant manufacturers entering the market after deregulation were subsidiaries.

45In multiple interviews, inventors described to me the FDA approval process as “byzantine” and “too
much for us to navigate alone.”
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Appendix F.2 for more details). Table G.12 presents the results of this simulation. The

results suggest that flattening the learning curve could increase the number of unique devices

approved up to 63%, with the least proficient firms exhibiting the largest gains.

Firm Size. To assess how regulation impacts firms with different levels of internal capital,

I estimate equation 3 across capital terciles for the patenting rate outcome. I perform this

analysis for both down-classification types. Figure 6, Panels A and B present the results.46

Both event types are associated with larger increases in patenting rates among firms in the

bottom tercile of asset holdings.

Interpreting the heterogeneous effects of regulation through the lens of my conceptual

framework indicates that profits increase after deregulation and that small firms face lower

financing costs after deregulation, despite incurring potentially higher safety effort costs.

These results confirm aspects of the propositions in Section 2 and suggest that small and

inexperienced firms face relatively high regulatory costs to innovate.

The results of this subsection should be interpreted with some caution. Other factors may

be correlated with firm size and proficiency that also contribute to these R&D responses.

However, in addition to the striking similarity between the empirical results and the pre-

dictions made in Section 2, device manufacturers express that regulatory proficiency and

financing costs are key factors that influence R&D decisions.47

5.4 Changes in Device Safety

I examine the impact of deregulation on device safety by re-estimating equation 3 for two

different outcomes: the rate of adverse events and the rate at which inventors emphasize

safety. Table 4 details the results and is structured like Table 2.48 Table 4, Panel A re-

veals that Class III to II events are not associated with statistically significant changes in

46I focus on patents for two reasons. First, they can be linked easily to patent applicants and capital
holdings. Second, patents allow comparisons across down-classification types.

47Firm size, the most obvious potential confounder, is uncorrelated with firm FDA experience (see Table
G.13). This lack of correlation may result from publicly traded companies having high baseline assets relative
to the average MedTech firm.

48Table G.11 presents the results from including only device types with some positive outcome counts.
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adverse event rates and inventor emphasis across control groups. However, these events are

associated with economically significant increases in hospitalization rates under my preferred

specification.

By contrast, Table 4, Panel B shows that Class II to I events are associated with improve-

ments in device safety. The table shows statistically significant reductions in the rates of

hospitalizations, life-threatening events, and deaths across three out of four control groups.

Moreover, there is a statistically significant increase in the emphasis on safety by inventors.

The results indicate an associated 93–97% reduction in hospitalizations and a 49–69% re-

duction in deaths per year per treated device type (pre-mean: 0.3 deaths/yr). Additionally,

there is a 100% increase in the share of patents that emphasize advancements in product

safety, corroborating the results generated by the FDA adverse event report outcomes.49

How can deregulation enhance device safety? One compelling answer is that deregulation

exposes firms to more litigation risks, thereby incentivizing them to prioritize device safety.

To shed further light on the role of liability in driving this change, I conduct two key analyses.

First, I use variation in ex-post exposure to legal liability by firm size to isolate liability

as the contributing factor. While smaller firms can mitigate worst-case damages through

bankruptcy, larger firms cannot. If liability risk plays a central role, deregulation should lead

to disproportionate increases in device safety among larger firms (as predicted in Section 2).

Indeed, the top subfigure of Figure 7 shows that firms in the top tercile of asset holdings

exhibit a significant 100% increase in the likelihood of demonstrating at least one safety

innovation per year per treated device type. Conversely, smaller firms respond much less

dramatically. Supporting this finding, the bottom subfigure of Figure 7 illustrates a more

significant drop in the likelihood of serious adverse events among larger firms.

Second, I compare my findings with those observed after a 2015 event, where devices

were reclassified from Class II to I without any changes to the liability environment. The

additional analysis, described in Appendix B, reveals no improvements in product safety

49I also find inventors emphasize quality more after deregulation, suggesting that removing regulatory
efficacy/quality controls does not reduce quality.

29



after the 2015 event, despite increased innovation and firm entry. This highlights liabil-

ity as the driver of product safety improvements rather than other potential mechanisms

like heightened competition, innovation, or freedom from regulatory parameters that may

mechanically restrict firms’ innovative potential (e.g., equivalence determinations).

Figures G.10, G.11, and G.12 illustrate the dynamics of my device safety findings. These

figures plot the βt coefficients estimated from event-study equation 4. Figure G.10 shows

that Class III to II events are associated with a gradual increase in hospitalization rates and

serious event rates as new devices are invented and marketed within treated device types.

Figure G.11 shows that Class II to I events are associated with a persistent and gradual

decrease in adverse events as inventors increase their emphasis on safer technologies (see

also Figure G.12).

A few caveats accompany my device safety analysis. First, the FDA down-classifies

Class III device types for which prospective regulation adequately mitigates harm. Thus,

insignificant adverse event results from Class III to II down-classifications are local average

treatment effects. For Class II to I events, however, I assess the FDA’s decisions using the

described decision rule in Appendix A.1 and estimate equation 3 for each treated device type

matched with a control based on the rule’s assigned score. Figure G.13 shows stronger safety

improvements among marginal device types relative to less dangerous treated device types.

Thus, my results likely extend to most current Class II device types, with 95% exhibiting

fewer adverse events than the most marginal deregulated device type.

Second, adverse event rates (counts per year) are not normalized by device utilization

due to data limitations. However, in a subset of devices for which I have data, deregulation

increased utilization (see Figure G.6), suggesting that actual product safety improvements

may be larger than indicated by my results. Third, regulatory decisions may influence

adverse event reporting. However, after the 2015 Class II to I event, where the liability

environment remained unchanged, I found no significant changes in adverse event rates.

Furthermore, in Appendix B, I analyze changes in device recalls, which are difficult to
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conceal, and find a decrease after Class II to I events, supporting the adverse event and

inventor emphasis results. Lastly, the reporting of adverse events I analyze is enforced

through criminal and financial penalties (Bragg et al., 2018; Emergo, 2022), ensuring data

integrity. For more comprehensive information on these concerns and additional institutional

details that reinforce my conclusions, please see Appendix B.3.

6 Back-of-the-Envelope Calculation: Costs & Benefits

This section assesses the costs and benefits associated with deregulation, as measured by

the key findings outlined in Section 5. First, deregulation increases patenting rates. The

value of this increase is determined by the combined market value of each additional patent,

accounting for creative destruction and business stealing conservatively assumed to be worth

80% of patent value. Second, deregulation decreases market concentration and healthcare

prices. To value lower healthcare prices, I convert price changes to expenditure changes by

assuming constant utilization. Lastly, complete deregulation reduced adverse event rates.

The resulting drop in deaths is appraised at the statistical value of all lives saved, while

prevented hospitalizations are valued according to Moses et al. (2019). The assumptions

and math underlying these calculations are detailed in Table 5.

Table 5 summarizes the costs and benefits of down-classification events. For Class III to

II down-classifications, the unmeasured costs (e.g., political risks) would need to exceed the

measured costs by a factor of three to justify the FDA’s decision rule. In contrast, Class II to I

down-classifications exhibit no measurable costs, demonstrating decreased adverse events and

increased innovation. The benefits of these down-classifications equate to approximately $53

million per year per treated device type, even for the most high-risk devices. Extrapolating

these findings, if all 2,500 current Class II devices were deregulated, the potential annual net

benefits could reach $132 billion, equivalent to 77% of the value of the US medical device

market.
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I do not include all costs and benefits of deregulation in these calculations. For costs, I do

not measure the value of efficacy assurances provided by the FDA, which are lost after down-

classification (see Grennan and Town (2020)). However, one criterion for down-classification

is whether device efficacy is easily verifiable and maintained after deregulation, so these costs

are likely small. Second, waiting to deregulate to learn more about a device type’s inherent

risk is valuable if deregulation could lead to increased adverse events (i.e., the option value

of waiting). However, Class II regulations are associated with increased adverse event rates

relative to Class I, so waiting to deregulate may not provide value. Lastly, there are potential

political costs of misguided deregulation that I do not measure.

The unmeasured benefits of deregulation include reductions in FDA administrative costs,

price reductions from Class II to I events, the value of new jobs created with firm entry, the

benefits of innovation from private firms, and the scientific value of innovation.

7 Discussion and Conclusion

This paper analyzes the effect of regulation on medical device innovation, market structure,

and adverse events. My theoretical model clarifies how “learning by doing” and financing

costs make regulation especially burdensome for small and inexperienced firms investing in

the development of new technologies. In turn, the model shows that deregulation increases

the profitability of innovation most for these types of firms and may raise the net incentives

to improve product safety by exposing firms to greater liability risk. I then investigate

these insights, and my broader questions, empirically in the context of the medical device

industry, where complex regulations prevent litigation. For my empirical analysis, I develop

a data set that combines eight underlying sources on innovation, market dynamics, firm

characteristics, and product safety. I find that deregulation disproportionately benefits small

and inexperienced firms and broadly accelerates technological progress and firm entry. This

change in market structure reduces related healthcare prices. Lastly, Class II to I down-
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classifications are associated with a significant decrease in adverse events, providing evidence

that legal liability risk creates strong incentives to improve product safety relative to the

requirements of medical device regulation. Increases in product safety are highest among

devices originating from large firms that have the most assets at risk in liability proceedings,

providing additional evidence supporting liability as the driver of this result.

A back-of-the-envelope calculation suggests that deregulation exhibited higher measured

benefits than costs. Class II to I events are associated with net benefits amounting to $24

million per year per treated device type. These benefits are higher for marginal, higher-risk

device types, suggesting my results may generalize to other Class II devices.50 These results

align with sentiments from the National Institute of Medicine and physician commentators,

which have criticized the effectiveness of Class II regulations and have advocated for alter-

natives that ensure quality and encourage innovation. My results suggest that deregulating

Class II devices, relying instead on the deterrent effects of litigation, is one such alternative:

litigation can improve product safety, hasten innovation, and lower administrative costs.

Class III to II events, however, are difficult to evaluate. On the one hand, I find that the

benefits of deregulation, namely a 470% increase in the availability of new technologies, are

quite large. In the short run, the magnitude of this increase is consistent with deregulation

removing the wedge between the available technologies in the E.U. and the U.S. For exam-

ple, over 80% of cardiac stents marketed in the E.U. are unavailable in the U.S., a potential

byproduct of regulation (Grennan and Town, 2020). In the long run, the increase in access

to new technologies is persistent. In practice, however, these events present the FDA with

asymmetric costs and benefits; an increase in salient device-related deaths could degrade

the regulator’s reputation and undermine its more cost-effective efforts elsewhere (Carpen-

ter, 2004a,b). In contrast, the technological benefits that come from deregulation are more

abstract. Thus, the FDA’s optimal strategy may be “too conservative” (Isakov et al., 2019)

relative to the social optimum to uphold its reputation at the expense of innovation. This

50Moreover, 95% of current Class II devices have lower adverse event rates than the most dangerous
deregulated device type before deregulation.
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asymmetry is evident in FDA documents outlining the criteria for down-classification as the

value of forgone innovation is not considered. This study seeks to clarify these forgone ben-

efits. However, more empirical research is needed to assess the costs of regulatory mistakes

and the value of regulator reputation.

My study focuses on the large and growing medical device market, but the results may

also be relevant to other settings with similar regulations. For instance, FDA regulations

for Class III devices are similar to those in the EU, and requirements for these devices

resemble those for brand-name drugs in the US and other countries (Van Norman, 2016).51

Additionally, Class II device regulations are similar to those used abroad and resemble those

for generic drugs—which are also protected from product design tort claims after FDA

approval—and genetically modified (GM) foods (Schwartz and Appel, 2020; Schauzu, 2000).

These similarities suggest that medical technology and food regulations may slow innovation

and increase market concentration worldwide. Lastly, my analysis highlights the potential

issues that arise when regulators use imperfect proxies or heuristics to evaluate product

quality, such as the “substantial equivalence” heuristic used for Class II devices, generic

drugs, tobacco products, and GM foods. These heuristics may be particularly pervasive

when product quality is hard to verify or when regulators are under-resourced. In such

situations, a robust legal system with impartial judges and high damage caps may better

incentivize product safety through litigation.

51Tabarrok (2000) offers some evidence that FDA pharmaceutical regulations are too stringent.
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Figure 1: Background on Medical Device Regulations

Note: This figure presents background on FDA Medical device regulations and the deregulation policy
changes I leverage in my analysis. The FDA assigned device types to one of three classes, each corresponding
to a level of perceived risk, which requires a certain amount of time spent approving the device and associated
costs. The time and cost values are averages within the given class derived from Makower et al. (2010). The
first column includes examples of Class III to II and Class II to I down-classifications. For Class III to
II, examples include spinal fusion devices and full-field digital mammography machines. For Class II to
I, examples include hospital beds and ventilator tubing. *While Class II devices were protected from legal
liability during the historical era analyzed, only contemporary Class II medical devices with “special controls”
requirements are typically protected from product liability (Costello and Pham, 2016).
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Figure 2: Theoretical Change in Safety Effort after Deregulation

Note: This figure presents a possible change in the level of safety effort after deregulation. This scenario is
one in which deregulation could lead to an increase in safety effort, given a sufficient increase in damages, as
described in Section 1. The x-axis indicates the level of safety effort exerted. The y-axis denotes the monetary
value. The marginal cost of effort curve indicates a marginal cost of ψ at initial values of safety effort before
financing costs are incurred, at which point marginal costs increase with effort. The marginal abatement of
damages curve under regulation is always equal to zero due to federal preemption. The counterfactual dotted
section of the marginal abatement curve under regulation represents the marginal abatement of damages from
exerting effort below mandated levels while still achieving FDA approval. Deregulation shifts the marginal
abatement curve as legal damages are no longer prevented by federal preemption. The value x∗ represents
the optimal level of safety effort after deregulation (i.e., where the marginal cost of safety effort is equal to
the marginal abatement of expected damages). The value x represents the mandated level of safety effort.

The vector ~Z contains other factors that affect a firm’s legal damages in expectation, which might be specific
to the given legal system, like damage caps.
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Figure 3: Effects of Class III to II Events (High to Moderate Regulation)

Note: This figure presents the estimates of the βt coefficients from the event-study equation 4 for some innovation and market structure outcomes.
Only Class III to II down-classification events are considered. Controls are device types matched on baseline averages of the outcome. The coefficient
β−1 is omitted and serves as the reference period. Data are analyzed at an annual frequency. The top-left subfigure illustrates the evolution of patents
filed per year in treated device types relative to matched control groups. The top-right subfigure describes the evolution of unique devices approved
per year by the FDA for treated device types relative to control groups. The bottom-left subfigure illustrates the evolution of the rate of new firm
entry (counts per year), calculated using device submission data relative to matched control groups. New firm entry represents firms that have never
before submitted FDA documentation. The bottom-right subfigure illustrates the evolution of the rate of incumbent firm entry (counts per year of
firms that have previously submitted FDA documents) in treated device type relative to controls. Standard errors are calculated following Conley
and Taber (2011).
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Figure 4: Effects of Class II to I Events (Moderate to Low Regulation)

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for some innovation and market structure outcomes. Only
Class II to I down-classification events are considered. Controls are device types matched on baseline averages of the outcome. The coefficient β−1 is
omitted and serves as the reference period. Data are analyzed at an annual frequency. The top-left subfigure illustrates the evolution of the patenting
rate of treated device types relative to matched control groups. The top-right subfigure is blank, as there is no comparable data for Class I approved
devices. The bottom-left subfigure illustrates the evolution of the rate of new firm entry (measured by new firms patenting) relative to matched
control groups. The bottom-right subfigure illustrates the evolution of the rate of incumbent firm entry (firms that have received a granted patent),
entering treated device types relative to matched controls. I do not include FDA-approved device measures of new and incumbent entry as I do not
have reliable data on new Class I devices from FDA sources. 95% confidence intervals are provided.
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Figure 5: Effects on Innovation by Experience and Estimated Learning Curves

Panel A: Change in New Devices by Proficiency Panel B: Estimated Learning Curves

Note: This figure presents the experience-specific changes in the rates of newly marketed devices stemming from class III to II down-classification
events and the learning curves estimated in equation F.1. Panel A provides the DID estimates of the rate of newly marketed devices in treated device
types, relative to controls, by experience quartiles (TSum). DID estimates and standard errors are converted to percent changes. Firm experience is
calculated by aggregating each firm’s total time spent satisfying FDA regulations up to the time of submitting an approval for the current device.
Panel B presents the estimated learning curves for satisfying Class III and Class II regulations. The difference between Class III and Class II approval
delays at a given level of FDA experience is also provided. The x-axis indicates the number of days spent on previous approvals. The y-axis describes
the number of days taken for a current Class III or Class II device to be approved. I provide divisions of cumulative experience quartiles seen in the
data. I exclude observations with no prior experience to avoid undefined outcomes and biases from the extensive margin in the estimation. The 95%
confidence intervals overlay the estimates. The simulated confidence intervals are calculated using a Monte Carlo procedure. This procedure produces
estimates across repeated random draws from the empirical distribution of firm characteristics.
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Figure 6: Effect of Down-Classification on Patenting Rates by Asset Terciles

Panel A: Class III to II Panel B: Class II to I

Note: This figure presents the DID estimates from equation 3 for the patenting rate across down-classification types and firm asset terciles. For
the empirical estimates, I exclude patent data for private firms since I only observe firm asset data for publicly traded firms. Panel A presents the
change in patenting rates in my Class III to II treated medical device types, relative to matched control groups, across asset terciles. The first tercile
represents the bottom 33rd percentile of assets, the second represents the 33rd–66th percentile, and the third represents the 66-100th percentile. Panel
B presents the change in patenting rates in my Class II to I treated medical device types, relative to matched control groups, across asset terciles. 95%
confidence intervals overlay the estimates. Simulated confidence intervals are calculated using a Monte Carlo procedure. This procedure produces
estimates across repeated random draws from the empirical distribution of firm characteristics.
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Figure 7: Change in Emphasis on Safety by Firm Asset Terciles (II to I)

Note: This figure presents separate DID estimates of equation 3 for the change in the likelihood of device
types exhibiting at least one annual occurrence of the given outcome variable by firm asset terciles. I set
all outcomes greater than zero to one (LPM) as safety mentions and serious events are rare. The baseline
outcome values across asset terciles are roughly equal and do not drive these disparate effects. The top
figure presents the change in the likelihood of safety-related innovations, and the bottom figure illustrates
this change for serious adverse events (death, hospitalization, or life-threatening event). Terciles are formed
using the asset totals from firms that are publicly traded. The x-axis describes the tercile: first, second, or
third, and the y-axis conveys the percent change in the likelihood. 95% confidence interval bars are provided.
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Table 1: Summary Statistics

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 168,880 - - -
per Device Type 4,710 (Types) 35.5 110.8 [1, 2,457]
Total Submitting Firms 20,343 - - -
Firms per Device Type 4,710 (Types) 15.7 39.5 [1, 1,048]
Firm Regulatory Proficiency 4,660 (Types) 19.5yrs 65.4yrs [0, 686.2yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 9,238,733 - - -
per Device Type 4,111 (Types) 2,353.3 18,939.9 [1, 0.6M]
Serious Events per Dev. type 2,400 (Types) 571.7 5186.8 [1, 0.15M]
Assets of Offending Firm 7,139,727 $3.76B $5.77B [$0, $0.79T]

USPTO Device Patents
Total 1,248,292 - - -
per Device Type 2,113 (Types) 590.8 2077.4 [1, 23,056]
Citations 1,248,292 14.6 88.8 [1, 5,817]
Market Valuation 377,465 $13.1M $30.7M [$45, $1.9B]
Applicant Assets 377,465 $26.7B $54.8B [$0.07M, $1.1T]

UCSD Healthcare Claims Extract
Total 495,519 - - -
per Procedure Code 528 (Codes) 880.4 2397.5 [1, 18,915]
Unique Patients 55,621 - - -
Price 453,079 $135.7 $389.0 [$0, $0.01M]
Price per Proc. Code 528 (Codes) $354.8 $576.1 [$0, $5,401]

Note: Tables G.14, G.15, and G.16 provide summary statistics for each class independently. See Kogan

et al. (2017) for more information on the patent market valuation data, which was merged into my patent

dataset. The CRSP/Compustat database was used to derive the total assets of the firms applying for patent

protection and is a proxy for firm size. Market values and applicant assets are only available for patents

filed by publicly traded firms, representing roughly 25% of the total sample of patents. Missing observations

account for the discrepancies between (i) the number of total FDA device types (5,542) and the number of

device types represented in device submissions, adverse event reports, and patents (many device types have

no associated patents), (ii) the total number of patents and the number of patents with market valuations

and applicant assets, and (iii) the total number of claims and claims containing amounts paid. *“Regulatory

proficiency” indicates the total number of days a firm has experienced approval delays across all its submitted

devices.
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Table 2: Effect of Down-Classifications on Innovation

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 7.95 14.99** 25.61** 26.65** 18.14
(9.27) (5.43) (8.80) (10.23) (20.64)

Device Approval Rate 0.47 2.69*** 2.36** 2.26** 2.22***
(1.03) (0.59) (0.76) (0.72) (0.34)

Citations-Per-Patent Rate 9.06 16.59* 21.86* 19.43** 26.24***
(20.65) (7.60) (9.71) (6.56) (5.46)

Average Patent Value 11.19 21.16*** 29.01*** 29.76*** 26.99***
(15.73) (4.74) (7.78) (7.77) (4.36)

Sample Size 1540 1056 920 60456

B. Class II to I:

Patenting Rate 19.12 7.34 7.06 13.32** 29.17***
(39.50) (4.78) (6.53) (5.17) (7.44)

Citations-Per-Patent Rate 0.75 6.85** 2.12* 3.98*** 6.00***
(0.43) (2.34) (1.06) (0.86) (1.39)

Average Patent Value 19.04 8.65*** 2.31+ 5.23*** 13.03***
(38.75) (1.75) (1.22) (1.17) (1.71)

Sample Size 15180 20592 27764 32472

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS regres-

sion model. Outcomes are derived from USPTO patent databases, FDA administrative data, and Kogan et

al. (2017). Column (1) presents the 5-year baseline average of treated device types for the outcomes listed

on the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using different control

groups: namely, a matched control group, intuitively similar device types (treat similar diseases), “later-

treated” device types (treated after sample window), and the full sample, respectively. Device submissions

are derived from FDA data and are not available for Class I devices. For Column (4), Class III to II, control

device types are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are

calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance at

the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Table 3: Effect of Down-Classifications on Market Structure

DID Estimates

Pre-mean Price Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5) (6)

A. Class III to II:

Procedure Price 95.31 -58.25** -43.54** - - -27.50
(123.95) (21.16) (15.66) - - (144.11)

Sample Size 160 176 - - 36240

Incumb. Entry (dev.) 0.40 - 1.58*** 1.48** 1.46** 1.44***
(0.91) - (0.36) (0.54) (0.52) (0.22)

New Entry (dev.) 0.07 - 0.67*** 0.70** 0.59** 0.63***
(0.31) - (0.19) (0.22) (0.19) (0.13)

Incumb. Entry (pat.) 1.47 - 1.91** 2.78** 3.56** 2.98*
(1.78) - (0.59) (1.01) (1.34) (1.48)

New Entry (pat.) 3.78 - 5.63*** 11.19** 11.94** 8.88
(4.76) - (1.61) (3.75) (4.31) (6.32)

Sample Size - 1364 1056 920 60456

B. Class II to I:

Incumb. Entry (pat.) 2.26 - 0.04 0.32 0.61* 1.36**
(4.33) - (0.45) (0.36) (0.29) (0.42)

New Entry (pat.) 7.27 - 3.85+ 2.60 4.87** 10.55***
(16.87) - (1.99) (2.10) (1.57) (2.07)

Sample Size - 13552 20592 27764 32472

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(6) present DID estimates for a given outcome using different

control groups. These groups are (2) matched on baseline prices, (3) matched on baseline innovation and

adverse event levels, (4) an intuitively comparable group, (5) a later-treated group, and (6) the full sample of

controls, respectively. Column (5) of Panel A uses control device types treated after 2015, so all observations

after 2015 are dropped. Procedure prices were only available after 2004, restricting sample size. There are

no price estimates in Columns (4) and (5) due to data limitations. Confidence intervals are calculated using

Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance at the 0.10, 0.05,

0.01, and 0.001 levels, respectively.
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Table 4: Effect of Down-Classifications on Adverse Events

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Emphasis on Safety 0.16 0.073+ - - -
(0.21) (0.039) - - -

Life-Threatening Event Rate 0.07 0.65 0.89 -0.92 -2.40
(0.31) (0.55) (0.83) (0.64) (1.83)

Hospitalization Rate 0.25 2.38+ 3.07 1.39 -3.48
(0.84) (1.27) (1.94) (1.16) (3.72)

Mortality Rate 0.08 -1.21 1.08 -0.07 0.26
(0.46) (2.21) (0.68) (0.59) (2.53)

Sample Size 616 672 552 38472

B. Class II to I:

Emphasis on Safety 0.065 0.05*** - - -
(0.218) (0.012) - - -

Life-Threatening Event Rate 0.07 -2.18 -0.36+ -3.24* -3.18*
(0.43) (2.02) (0.19) (1.63) (1.56)

Hospitalization Rate 0.17 -2.05*** -3.04+ -4.87* -5.44*
(0.94) (0.60) (1.56) (2.35) (2.54)

Mortality Rate 0.26 -0.43** -0.27 -0.46+ -0.57*
(2.13) (0.14) (0.20) (0.26) (0.27)

Sample Size 10332 13104 17668 20664

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Adverse event outcomes are derived from the FDA MAUDE database. Columns

(2)–(5) present DID estimates for the listed outcomes using different control groups: namely, a matched

control group, intuitively similar device types (treat similar diseases), “later-treated” device types (treated

after sample window), and the full sample, respectively. For Column (4), Class III to II, control device types

are treated after 2015; thus, all observations after 2015 are dropped. Confidence intervals are calculated

using Conley–Taber test statistics. +, *, **, and *** correspond with statistical significance at the 0.10,

0.05, 0.01, and 0.001 levels, respectively.
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Table 5: Costs and Benefits of Down-Classification
A

ss
u
m

p
ti

o
n
s

-Cost of mortality is EPA’s VSL of $10 million ($2019).
-Average inpatient hospital stay costs $22,000 (Moses et al., 2019). No other costs.
-Attribute 80% of patent value to business stealing/creative destruction (Kogan et al., 2017).
-Do not consider private firm patent values.
-Do not consider scientific value of innovation.
-No value of efficacy information from regulations.
-No value from firm entry (e.g., not considering value of new jobs).
-UCSDH performs .08% of total U.S. procedures (calculated from data).

Outcome Estimate 95% C.I. Value Total 95% C.I.

C
la

ss
II

I
to

II

C
o
st

s

Mortality 1.08 [-0.3,2.4] $10m $10.8m [-$3m, $24m]
Hospital. 2.38 [-0.1,4.9] $.02m $.05m [$0m, $0.1m]

$10.9m [-$3m, $24m]

B
e
n
e
fi
ts Patented Inn. 5 [3.2,8.1] $32m/5 $32m [$20.5m, $51.8m]

Prices -$14.7m [-$2.6,-$26.8] -1 $14.7m [$2.6m, $26.8m]

$46.7m [$23.1m, $78.6m]

C
la

ss
II

to
I

C
o
st

s

Mortality -0.43 [-0.7, -0.16] $10m -$4.3m [-$7m, -$1.6m]
Hospital. -2.1 [-3.3, -0.9] $0.02m -$0.04m [-$0.06m, $0]

-$4.3m [-$7m, -$1.6m]

B
e
n
e
fi
ts Patented Inn. 9 [3.1, 14.9] $27m/5 $48.6m [$16.7m, $80.5m]

$48.6m [$16.7m, $80.5m]

Note: This table provides the back-of-the-envelope calculations of the costs and benefits of Class III to II and
Class II to I down-classification events. Assumptions are detailed at the header of the table. Patent estimates
are calculated using only publicly traded companies for which I can obtain patent values as calculated in
Kogan et al. (2017). Patent values are deflated to 2019 (million) dollars using the CPI. I provide 95%
confidence intervals for the costs and benefits. Costs and benefits are annualized and averaged at the device
type level (as defined by the FDA). The column “Value” is the value per unit of the estimate. In my data,
procedures using treated medical device types generate, on average, $26,849 a year of health expenditures.
Scaling this total to a national level ($26,849/ 0.0008, where .0008 is the share that UCSDH executes) gives
roughly $33 million a year spent per treated procedure, on average. This total is similar to the average yearly
cost of medical procedures seen when Medicare data is scaled to national expenditures, at $34.7 million a year
per procedure. Since I find that costs, as measured by paid amounts, decrease by 44–62% a year, I use these
percentage decreases in prices to calculate annual national expenditure changes per treated medical device
type. These calculations are presented in the “Prices” row for Class III to II down-classifications. “Patented
Inn.” represents innovation that is patented by public firms, and “Hospital.” represents hospitalizations.
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Appendix Material

A Additional Details on FDA Regulations

In this appendix, I provide more detail on FDA regulations. First, I describe how the FDA

determined the Class II to I down-classifications. Second, I detail the decision-making criteria

surrounding the down-classification of Class III devices to Class II. Lastly, I describe Class

III, II, and I regulations in more detail.

A.1 FDA Decision Rule for Class II to I Events

All Class II to I down-classifications were determined using a “device priority score.” These

scores were calculated using the following linear combination of evaluation factors,

DPM = 0.38D + 0.3S + 0.12LS + .08U + .08B + 0.04E. (A.1)

In the model, D is the frequency of death, S is the frequency of serious injury, LS is the

frequency of less serious injury, U is the frequency of use, B is the health benefit, and E is

effectiveness. The FDA calculated the adverse event evaluation factor scores D, S, and LS

with the following rule,

Y =


100 if in “high” range,

50 if in “medium” range,

0 if in “low” range.

(A.2)

The FDA pre-determined the three different ranges and their respective cutoffs, given

annual counts of the outcome Y. The evaluation factor scores for U, B, and E are given by
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Y =


0 if in “high” range,

50 if in “medium” range,

100 if in “low” range.

(A.3)

Intuitively, this means that given two devices with the same annual incidence of deaths

and injuries, the device with the highest DPM score is the device that has the highest

intrinsic risk per use, the lowest health benefit, and the least effectiveness. The FDA uses

the resulting DPM score to flag marginal devices on the edge of their decision rule (see FDA

(1995)). Other conditions for down-classification are uniformly satisfied across all down-

classified types and would not affect the marginal decision.

I do not observe the pre-determined thresholds for D, S, and LS, and I do not observe

B, U, and E. I proxy for the decision rule by taking a linear combination of the average

yearly counts of deaths (D), serious events (S), and less-serious events (LS). This calculation

is given by

DPM = 0.38D + 0.3S + 0.12LS. (A.4)

I then compare the DID estimates from the treated device types in the top decile of

calculated DPM scores against treated device types from the 0–90th percentile. In practice,

U, B, and E would not influence the ordering of calculated DPM scores as the average DPM

score of the top decile of medical device types is four times higher than the average DPM value

of the device type at the 89th percentile. Additionally, device types with a high D evaluation

factor also tend to have high S and LS evaluation factors; Thus, the stepwise construction

of D, S, and LS in the FDA’s decision rule would not substantially affect ordering.
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A.2 FDA Decision Rule for Class III to II Events

Class III to II events are much less mechanical. When considering down-classifying a Class

III device, the FDA analyzes the health risks of the device and whether Class II regulations

will reasonably mitigate those risks. It makes these assessments by consulting the medical

literature, internal data (i.e., premarket approval applications, equipment problems in the

past resulting in recalls and adverse events), and clinical experiences with the device.

An illustrative example of a Class III to II event is the down-classification of daily-

wear soft contact lenses in 1994. In the minutes of the 1994 ophthalmic panel meeting

in which the FDA announced this event, the FDA cites safety information contained in

submitted PMAs as the reason for deregulation. However, the timing of this event is “as

good as random.” In this same document, the FDA cites that it had been “dealing with [the

down-classification event] for about ten years” and that because “the data that were needed

to support reclassification were contained in PMAs and were not publicly available,” they

could not act. Thus, bureaucratic hurdles make these policies difficult to predict, making the

timing of the events unlikely to be correlated with changes in outcomes beyond the effects

of deregulation. Upon reclassification, the number of unique daily-wear soft contact lenses

submitted for approval rose sharply, as the number of new extended-wear contact lenses,

which remained in Class III, remained steady (see Figure G.14).52

A.3 Class I, II, and III Medical Device Regulations

Manufacturers of Class I devices (those perceived as low-risk) must simply abide by a stan-

dard set of safe marketing practices called “general controls.”53 A newly marketed medical

52Note that because I cannot observe the safety variables that drive Class III to II events, it is difficult for
me to extrapolate the product safety results I find in these events to other Class III devices that were not
down-classified. Because I do not observe these variables, I do not know what the “marginal” device type
would be; thus, I cannot determine whether the average effects differ from the marginal effects.

53These devices are “low-risk” as they do not support or sustain human life and do not pose a potential
unreasonable risk of illness or injury (e.g., a tongue depressor). 41% of all medical device types, or “product
codes,” fall under Class I. Of these, 90% are exempt from filing any documentation (aside from facility
registration with the FDA).
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device can be categorized as Class I if it is reasonably similar (i.e., same intended use and

broad characteristics) to another device categorized as Class I. However, if a new medical

device has distinct characteristics or intended use, the new device is given a new class III

product code.54

Manufacturers of Class II devices are required to follow specific guidelines, called special

controls, designed to mitigate device-specific risk and submit a 510(k) document, or “pre-

market notification.”55 Through the 510(k) process, a manufacturer must demonstrate that

their device is “substantially equivalent” to a previously marketed device for which a “pre-

market approval” (PMA) is not required. A device is substantially equivalent if it has the

same intended use and technological characteristics as the predicate device. The 510(k) path

is shorter and less costly than the more intensive PMA process described below. However,

the 510(k) process can be expensive, with an average cost of $24 million (Makower et al.,

2010). If the FDA finds that a device is not sufficiently similar to a predicate device, the

manufacturer must file a PMA, which carries the most stringent requirements.

Manufacturers of Class III devices must perform clinical trials through the PMA process

to ensure their new device is safe and effective before commercialization.56 Class III device

types are perceived as high-risk since not enough information exists to establish special

controls that ensure safety and effectiveness (i.e., new device types) or if special controls do

not adequately mitigate device risk.57 The PMA process takes much longer than the 510(k)

process, and costs, on average, $75 million (Makower et al., 2010). After a manufacturer

54The FDA can then evaluate the safety and efficacy of new product codes and reclassify them, or a device
manufacturer can submit a “De Novo” petition for the formal classification of a new device type. A new
device can be classified as Class I or II if “the device has existing or reasonably foreseeable characteristics of
commercially distributed devices within that generic type or...[The device requires a 510(k) (even if its generic
type is Class I) if] the device is intended for a use different from the intended use of a legally marketed device
in that generic type of device...[or if] the modified device operates using a different fundamental scientific
technology” (FDA, 2020a).

5556% of medical device product codes fall under this category.
56Pre-amendment class III devices (those existing before 1976) only have to submit a 510(k) if the FDA

has not issued a final order requiring PMA submission (Center for Devices and Radiological Health, 2018).
A small percentage of 510(k)s also require a small amount of clinical data to support marketing clearance
by the FDA.

57Roughly 2% of product codes currently fall under this classification, although these product codes
represent an outsized portion of U.S. medical device spending (Meier, 2009).
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has submitted a PMA document for their device, any small changes to their device that

affect the device’s safety or effectiveness require a PMA supplement submission. PMA

supplements often do not require premarket clinical data and experience shorter review

timelines (Johnson, 2012).58

B Validation of Class II to I Product Safety Results

This appendix aims to validate the findings on product safety for Class II to I events. To

strengthen the evidence of increased product safety after such events, this section includes

an additional measure of product safety: device recalls. Furthermore, it examines a 2015

Class II to I event, where legal liability remained largely unchanged after deregulation.

B.1 Validation Using Device Recall Data

Device recalls are a valuable indicator of product safety. Recalls reflect manufacturers’ efforts

to address significant device defects and associated health risks by voluntarily removing

affected devices from the market. The FDA can enforce recalls when necessary.

There are several advantages of using device recalls to measure safety. First, changes

in recall counts are less likely to be influenced by variations in device utilization compared

to adverse events, as manufacturers consider utilization when deciding on recalls. Second,

recalls are supervised or mandated by the FDA, ensuring compliance with specific criteria.

Lastly, recall events address substantial product safety issues that require significant action

and are challenging to conceal, making them easily measurable and reliable indicators of

product safety. However, a limitation is that recall data is available only from 2000 onward,

while the deregulation events analyzed occurred in 1996 and 1998. Thus, the main text of

this paper primarily focuses on other product safety outcomes. Nevertheless, considering the

58However, the requirements associated with PMA supplements are dependent on the degree to which
the new device has changed, with small changes (like labeling changes) requiring no fee and design changes
requiring preclinical testing. Most submitted class III documentation is from PMA supplements.
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time it takes for new technologies and reduced adverse event rates to materialize, there is

potential to capture some of the safety effects of these events using recall data.

This section presents device recall results that align with the findings from the adverse

event and patent text analysis. To accomplish this, I analyze FDA administrative data on

medical device recalls by device type from 2000 to 2022. Although recall data immediately

surrounding the events is unavailable, I leverage the dynamic nature of safety improvements

following the events to capture the long-run improvements using recall data. The top-right

subfigure of Figure 3 illustrates that down-classification triggers an immediate surge in avail-

able technologies. Although Class I device submission data is not available, it is plausible

that an initial influx of technologies contributes to the slight immediate reduction in life-

threatening events, hospitalizations, deaths, and the aggregate measure of serious events

depicted in Figure G.11 (with only the decrease in hospitalizations being statistically signif-

icant). Subsequently, Figure 4 demonstrates a gradual increase in patenting rates over time,

consistent with the time-intensive R&D process, reaching its peak approximately four years

after down-classification. The adoption and commercialization of these new technologies

likely require additional time, resulting in a second decline in life-threatening events, hospi-

talizations, and mortality rates approximately five to seven years after the down-classification

events (as shown in Figure G.11). Therefore, by comparing recalls between the treated and

control groups from 2000 onward, I can capture the long-run improvement in product safety

resulting from down-classification.

Figure G.15 presents the average number of recalls per year for affected device types

compared to the same matched control group used in the adverse event analysis. It is

important to note that the matching procedure is based on pre-event adverse event counts,

which utilizes available data. The figure shows similar recall counts for up to seven years after

the events (i.e., 2003) and before the full realization of innovation and adverse event effects.

After this point, the trends diverge, leading to a persistent decline in recalls among the

down-classified products relative to the matched control group over the subsequent 20-year
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period.

Figure G.15 also provides results of a formalized comparison using an event-study analy-

sis. Due to missing recall data for the years surrounding the events, I impute a constant rate

of zero device recalls for both the treated and control groups in the immediate pre- and post-

event periods. Consequently, no divergent pre-trends or effects are expected in the treated

groups relative to controls within the three years pre- and post-event. However, the figure

also demonstrates no divergent trends during event times 4 to 6, where data is available, and

trends only diverge after the second drop in adverse events, after the new products have had

sufficient time to penetrate the market and influence outcomes. This divergence is charac-

terized by a significant decline in device recalls starting seven years after deregulation, with

further amplification in subsequent years. This long-run decrease, equivalent to 0.5 device

recalls per year per device type, represents a 50% decline compared to the control mean,

providing further support for the observed increases in product safety measured through

adverse events and patent text analysis.

B.2 2015 Class II to I Event With No Change in Liability

I further validate my product safety results from the 1996/8 events by comparing them to

those of a 2015 event. During this event, more than 200 device types were down-classified

from Class II to I, with no substantial changes in the legal liability environment, as discussed

in the following paragraph. However, similar to the 1996/8 events, this down-classification

reduced the costs of introducing new devices in affected markets by removing 510(k) require-

ments.59 The analysis of the 2015 event revealed no significant changes in product safety,

further supporting the assessment that legal liability is the primary driving force behind

product safety improvements.

Prior to the Supreme Court case Medtronic Inc. v. Lohr (1996), virtually every court

held that Class II approvals preempted state tort claims (Flaherty Jr, 2008). However,

59The 2015 event marked the first major down-classification of Class II devices since the 1996/8 events
that I analyzed in my main specification.
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a series of court cases since 1996, including Medtronic Inc. v. Lohr (1996), introduced

ambiguity regarding the preemptive effect of 510(k) approvals. Consequently, the prevailing

understanding shifted to recognize that Class II devices generally lacked protection from

legal liability. The Supreme Court case Riegel v. Medtronic Inc. (2008) reinstated some

legal safeguards for Class II devices, but these protections only applied to device types that

met specific “special controls” requirements aimed at ensuring safety and efficacy (Costello

and Pham, 2016).60 However, most Class II devices affected by the 2015 event did not receive

a list of special controls, leaving them without liability protection.61

The crucial difference between these events is that the 1996/8 event transitioned device

types from a regulation-only to a liability-only environment, while the 2015 event shifted

them from a regulatory-and-liability to a liability-only environment. This distinction allows

me to isolate the specific influence of legal liability on product safety, separate from other

factors such as changes in market structure, competition, innovation, and adverse event

reporting behavior after deregulation, as these factors would be similarly affected by both

types of events.

In analyzing the effects of the 2015 Class II to I event on product safety, I applied the same

matching procedure used for the 1996/8 events to identify suitable control groups. Using

the same empirical strategy, I compare hospitalizations, life-threatening events, mortality,

and an aggregated “serious events” outcome in treated groups with matched control groups

(i.e., my preferred specification).

The analysis of the 2015 event reveals no significant changes in product safety. Figure

60The recent court case Kelsey v. Alcon Laboratories Inc. (2019) offers an example of a Class II ap-
proval barring legal claims through preemption. In this case, the plaintiff claimed that Alcon’s contact lens
disinfectant did not prevent a severe eye infection due to a product flaw. However, the disinfectant was
approved as a Class II regulated device and was subject to special controls. The district court handling the
case deemed that the FDA’s approval adequately tested the product’s safety, preventing legal liability. This
is just one of many recent instances where Class II medical devices have been protected from design defect
claims through preemption. Other examples include cases involving latex gloves, contact lenses, tampons,
condoms, angioplasty catheters, wound dressing, tissue adhesive with wound closure device, a hemorrhoid
prevention pressure wedge, and electrical stimulation devices (Munford, 2018).

61These special controls are mostly only issued to device types that are down-classified from Class III to
II.
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G.16 replicates Figure G.11 for the 2015 event, illustrating the event-study estimates of the

changes in life-threatening events, hospitalizations, deaths, and serious events associated with

affected device types. The figure demonstrates that there were no significant or economically

meaningful changes in any of these outcomes for the 2015 event.

Furthermore, Figure G.17 replicates Figure G.15 for the 2015 event and shows no signif-

icant changes in recalls for up to eight years after the deregulation. The absence of effects

on recalls, combined with the lack of impact on other adverse event outcomes, provides

compelling evidence on two fronts. First, it indicates that moving devices to a lower class

with less regulation does not inherently reduce adverse event reporting due to changes in

monitoring, for example. Second, it suggests that legal liability, rather than other factors

affected by deregulation, such as market structure and innovation, is the primary driver of

product safety improvements.

When considering the potential welfare effects of the 2015 event compared to the 1996/8

events, I find that the absence of changes in product safety from the 2015 event is possibly

offset by a more substantial increase in innovation. Figure G.18 demonstrates the relatively

sharp increase in new firms patenting following the 2015 event. Within two years, new entry

rates increased by 50%, compared to a statistically insignificant 13.7% increase two years

after the 1996/8 events.62 These results suggest an effect on innovation and entry that is

3.6 times stronger after the 2015 event, reflecting a decrease in regulatory costs without the

corresponding increase in litigation costs seen in the 1996/8 events. Therefore, it is plausible

that the contemporary benefits of deregulation could be even larger than those in the 1990s

due to more pronounced increases in innovation and entry. The value of increased innovation

and entry, which accounted for approximately 80% of the total value of deregulation in the

1996/8 events, is over three times larger for contemporary Class II to I deregulation events.

These findings align with the theoretical framework discussed in Section 2. The frame-

62The analysis is restricted to two years post-policy due to data limitations. The 2015 event led to an
additional five new firms per year relative to pre-event means, and the 1996/8 events led to one new firm
per year.
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work implies that if legal damages incentivize safety efforts beyond the requirements of the

FDA, as suggested in Section 5, product safety may not change after the 2015 event. Thus,

the lack of substantial change in product safety after the 2015 event is expected, given that

the liability environment remained unchanged while the regulatory environment, with its

lower effective safety standard, was lifted.

Regarding innovation, before the 2015 event, firms operated within a dual-regulation

environment, facing both legal damages and FDA regulation. Consequently, the deregulation

in 2015 likely increased net returns to commercialization and innovation more substantially

than the 1996/8 event, as it imposed no additional costs. By contrast, the 1996/8 event

introduced firms to legal damages.

B.3 Limitations of Adverse Event Data

The FDA cautions against using adverse event reports as a safety measure due to the absence

of utilization data, potential under-reporting, inaccuracies, and lack of verification (CDRH,

2023). I address each of these issues in turn.

First, the FDA does not provide device utilization numbers alongside the adverse event

report data, making it difficult to compare adverse event counts across different devices to

analyze product safety. For example, a higher number of adverse event reports for a par-

ticular device may simply reflect a larger user base rather than a higher level of danger

associated with the device. In my analysis, I use a difference-in-differences strategy, which

means that if utilization changes differ between the treatment and control groups, it could

bias my estimates of the effect of deregulation on product safety. In my case, I find deregu-

lation actually increases utilization among treated device types, for which I have utilization

data, compared to control groups (see Figure G.6). This increase is likely due to increased

firm entry and supply.63 Thus, accounting for utilization would strengthen my estimates of

improved product safety after Class II to I events.

63That is, all else equal, if the demand curve is not perfectly inelastic, an outward shift in the supply curve
would increase utilization.
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Second, under-reporting of adverse events is possible, as reporting is mandatory only for

serious adverse events and for manufacturers. Furthermore, deregulation may lead to higher

under-reporting by firms in the treated groups due to reduced oversight. However, there are

two reassuring insights. First, my analysis focuses solely on serious adverse events reported

by manufacturers, which are mandatory (FDA, 2020c) and subject to enforcement through

financial penalties and criminal resolution (Bragg et al., 2018; Emergo, 2022).64 Second,

when examining the 2015 Class II to I event, where the litigation environment remained

unchanged, I did not find significant changes in adverse event reporting, suggesting that

deregulation does not mechanically reduce reporting. Additionally, the FDA’s announcement

of the Class II to I events mentioned new authorities that enabled closer monitoring of the

affected devices to “take appropriate remedial action if necessary” (FDA, 1995), indicating

that adverse event reports would be harder to conceal.

Third, adverse event reports may be inaccurate as they are not verified by the FDA. If

manufacturers selectively submit inaccurate reports due to deregulation, it could bias my

estimates. However, there is no evidence to support this notion, given the lack of significant

changes in adverse event reports following the 2015 event. Moreover, my focus on serious

adverse events, which are closely monitored, enhances the reliability of the data compared

to other types of adverse events like product breaks. Lastly, while adverse event reports may

sometimes inaccurately attribute adverse event outcomes to a specific device, the absence

of effects from the 2015 event, along with my emphasis on more closely monitored adverse

event outcomes and the consistent results between my analysis of inventors’ emphases on

safety and device recalls, provide reassurance.

64Both user facilities (i.e., hospitals) and manufacturers are required to report serious adverse events to
the FDA. Thus, if one entity fails to report an event, but the FDA is notified by the other entity, it implicates
noncompliance.

64



C Bankruptcy Protection Model Extension

Following insights from the literature on the “judgment proof problem” (see Shavell (1986);

Boomhower (2019)), when damages exceed the value of a firm’s seizable assets, the difference

can be discharged through bankruptcy. To reflect the bankruptcy option, I augment the

model above to include expected damages that differ by firm assets Kf . I define the unspent

capital available to cover damages as uf . Unspent capital includes the capital not spent

on commercialization costs (Kf − cf ) and profits from the current period, given by uf =

π + Kf − cf . This term incorporates the simplifying assumption that net profits from the

last period are distributed as devidends.65 The upper bound of legal damages is given by φ̄.

Let ν represent the total realized damages from product defects, with probability distri-

bution function f(ν;x∗f ,
~Z). In the presence of bankruptcy, the expected damages are given

by

Expected Damages =


D(x∗f ;

~Z) if u ≥ φ̄,[∫ u

0

νf(ν;x∗f , ~Z)dν +

∫ φ̄

u

Kf(ν;x∗f , ~Z)dν

]
︸ ︷︷ ︸

DT (x∗f ;~Z)

else. (C.1)

In words, if the firm’s capital stock is at least as high as worst-case damages, the expected

damages are the same as above, and the investment decision is unchanged. Smaller firms,

however, confront a truncated damages distribution, where all possible damages outcomes

higher than the firm’s unspent capital stock uf are fixed at uf . Thus, instead of paying these

outsized damages, the firm declares bankruptcy and contributes the value of its total assets

to partially cover its damages. Hence, expected damages DT (x∗f ;
~Z) are determined by the

probability-weighted sum of damages from 0 to uf , plus the probability-weighted sum of uf

65I could relax this assumption by letting u be equal to the unspent capital and the sum of all prior net
profits up to a given point in time. This would mean that firms would tend to grow larger and eventually
be unable to file for bankruptcy. However, the theoretical insights remain the same as initially smaller firms
will face fewer expected damages for some time.
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for all damages higher than uf . Assume that the marginal benefit of safety effort for small

firms is less than large firms at the same levels of safety effort, as there are fewer damages

to abate (e.g., −D′T (xf ; ~Z) < −D′(xf ; ~Z) for all xf )

Bankruptcy protection changes the incentives to improve product safety for small firms.

Deregulation introduces firms to legal damages; however, bankruptcy protects small firms

from worst-case damages, lowering the marginal benefit of exerting safety effort. Thus, small

firms exert less safety effort than large firms. I state this formally as follows:

Proposition 5. (Deregulation introduces bankruptcy distortion) Assume firm A has less

internal capital than (i) firm B (i.e., KA < KB) and (ii) its worst-case damages outcomes

(i.e., KA < φ̄). Firms A and B are otherwise identical. If deregulation leads to an increase

in safety effort (see proposition 1 part ii), firm B will increase its safety efforts most (i.e.,

x∗B − x > x∗A − x). This occurs if and only if x∗B > x∗A (which can stack with proposition 4

part ii, if capital is also below safety effort costs).

D Proofs

D.1 Proof of Proposition 1

Assume that ψ + Cx(ψx − K) < − EL · D′(x). Assume, by way of contradiction, that

x∗f < x. Since x∗f is the optimal safety effort, this implies that

ψ + Cx(ψx
∗
f −K) = − EL · D′(x∗f ). (D.1)

However, since x∗f < x, we know that Cx(ψx
∗
f − K) ≤ Cx(x − K) as costs are strictly

increasing in x (given that K ≤ x). We also know that D′(x∗f ) < D′(x) as D′( ) is strictly

increasing in x. Thus, − EL · D′(x∗f ) > − EL · D′(x) . Together, these inequalities imply

that
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ψ + Cx(x−K) > − EL · D′(x). (D.2)

A contradiction. Thus, x∗f > x. See figure 2 for a graphical illustration of this proof.

D.2 Proof of Proposition 2

Assume that deregulation leads to an increase in safety effort x∗A > x and x∗B > x. I want

to show that x∗A − x < x∗B − x. It suffices to show that x∗A < x∗B. Note that safety effort for

deregulated firm B is chosen such that

ψ + Cx(ψx
∗
B −KB) = − EL · D′(x∗B). (D.3)

And for firm A:

ψ + Cx(ψx
∗
A −KA) = − EL · D′T (x∗A). (D.4)

Since D′T (x) < D′(x) for all x, this means that

ψ + Cx(ψx
∗
A −KA) < − EL · D′(x∗B). (D.5)

Assume, by way of contradiction, that x∗A > x∗B. This implies that ψ + Cx(ψx
∗
A −KA) >

− EL · D′(x∗B), since ψ+Cx(ψx
∗
A−KA) > ψ+Cx(ψx

∗
B−KB) as Cx( ) is strictly increasing

in x and decreasing in K (KA < KB, which further strengthens the inequality if KA < ψx∗A,

or capital is less than safety effort costs). A contradiction. Thus x∗A < x∗B.

D.3 Proof of Proposition 3

Note that, under regulation R, TA < TB, thus tcomm,a > tcomm,b; thus, for firm A, commer-

cialization costs are strictly larger, financing costs are larger (if non-zero), and the effective

life of the invention is shorter. Thus, the returns to commercialization are strictly lower for
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firm A.

Under the litigation environment L, there are no complexity distortions, thus the returns

to commercialization are equal between firms A and B. We can formalize these insights as

ReturnsA,R −ReturnsB,R < 0 and ReturnsA,L −ReturnsB,L = 0.

The difference in the change in the returns to commercialization from deregulation be-

tween firm A and B is given by:

DiD = (ReturnsA,L −ReturnsA,R)− (ReturnsB,L −ReturnsB,R). (D.6)

We WTS that this difference is positive or that the increase in returns is higher for firm A.

Rewriting equation D.6, gives:

DiD = (ReturnsA,L −ReturnsB,L)− (ReturnsA,R −ReturnsB,R). (D.7)

From part equation D.3 we get

DiD = −(ReturnsA,R −ReturnsB,R) > 0. (D.8)

Thus, the increases in returns to commercialization are greatest at firm A.

D.4 Proof of Proposition 4

Note that under the given conditions, small firms face lower expected damages and safety

effort costs under deregulation than large firms (see proposition 1). Thus, deregulation

would lead to larger returns from commercialization for smaller firms than larger firms, all

else equal. Therefore, showing that the returns from commercialization increase most for

small firms through the financing channel is sufficient, given that bankruptcy distortions

would broaden the conditions under which deregulation disproportionately benefits small
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firms. Hence, for simplicity, I consider only the financing channel and the conditions that

guarantee outsized small-firm benefits.

Consider firm A’s profit function with external funds eR,A, given by:

REL · πR − χtcomm − ψx− C(eR,A).

Note that firm A’s external capital is positive (i.e., eR,A > 0) since its internal capital is less

than its non-financing commercialization costs (i.e., KA < c); thus, due to nonzero capital

frictions, its financing costs are positive (i.e., C(eR,A) > 0).

Firm B’s internal capital is greater than firm A’s; thus, its external capital is less than

firm A’s, and its financing costs are less than firm A’s. Firm A and firm B have identical

profit functions aside from financing costs; thus, firm B’s expected net profit is greater than

that of firm A. Thus, either firm A’s commercialization activity is the same as that of firm

B (“non-marginal”) or firm A’s commercialization activity is less than firm B’s.

Now for the litigation environment L, the returns to commercialization are given by:

Returns = EL · [πN −D(x∗f ; ~Z)]− ψx∗f − C(ψ = x∗ −Kf ). (D.9)

For a moment, think of x as not fixed. Since KA < KB, profits π, and EL are the

same between the two firm types, at every value of x, the returns for firm A are strictly

less than the returns for firm B, due to increased financing costs. If we assume bankruptcy,

firm A also has lower expected damages than firm B and x∗A < x∗B, which would further

increase the Assume, by way of contradiction, that exists an optimal safety effort for firm

A x∗A such that returns to firm A are larger than the returns to firm B at its maximum

safety effort x∗B. Since the returns to firm B are strictly larger than the returns to firm A

at each value of x, there exists some x′ such that ReturnsB(x′) > ReturnsA(x∗). However,

this implies that ReturnsB(x′) > ReturnsB(x∗B), even though x∗B is maximizes returns. A

contradiction. Thus, firm A’s returns are lower than firm B’s. Further, commercialization
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activity is lower than firm B’s. However, it could be the case that returns are negative in

the litigation environment for both firms. If so, then commercialization is the same across

both firms (“non-marginal”).

Thus, we have

ReturnsA,L −ReturnsB,L < 0 and ReturnsA,R −ReturnsB,R < 0. (D.10)

I want to also show that the sign of the following difference-in-differences is ambiguous:

(ReturnsA,L − ReturnsA,R) − (ReturnsB,L − ReturnsB,R). We have that (ReturnsA,L −

ReturnsA,R)− (ReturnsB,L − ReturnsB,R) = (ReturnsA,L − ReturnsB,L)− (ReturnsA,R −

ReturnsB,R). We know this difference could be positive or negative. The first and second

differences are both negative, thus the sign of the difference-in-differences depends on the

relative changes in profits, damages, and delay costs. However, note that if capital is greater

than optimal deregulated safety effort costs (i.e., KA ≥ ψx∗A), despite being lower than non-

financing costs before deregulation, then (ReturnsA,L −ReturnsB,L) = 0 as there would be

no financing costs to differentiate the returns of the two firms; thus, the change in returns

would be larger for firm A. Note that if we also consider that damages for smaller firms are

lower, due to bankruptcy, then (ReturnsA,L − ReturnsB,L) > 0. Thus, in both cases, the

larger change in returns for firm A would translate into a larger increase in net profits if

both firms A and B experience increases in net profits from deregulation.

E Patent Data Collection

In this appendix section, I describe the process for collecting patents by device type in more

detail. I also evaluate the accuracy of the procedure and demonstrate that my results are

robust to intuitive restrictions to the generated patent sample.
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E.1 Procedure for Gathering Patents by Device Type

The patent collection process begins by gathering a set of FDA device type descriptions for

over 5,000 medical device types. These descriptions consist of both a broad FDA regulation

number description and a narrower FDA device name description. To prepare these descrip-

tions for keyword searches, I remove stop words, punctuation marks, and duplicate words.

For example, the regulation number description “Implantable pacemaker pulse generator”

and device type description “Leadless Pacemaker” would be transformed into the search

string “implantable pacemaker pulse generator leadless.” Next, I search the full text of the

universe of US patent documents and gather all patents that contain all of the keywords in

the search string. This process is repeated for all device types.

In some instances, patents are included in more than one device type. In such cases, I

drop the patent from all but one randomly chosen device type.

E.2 Examining the Accuracy of the Procedure

Naturally, keyword searches that link patents to device types can sometimes lead to false

positive and false negative errors. For example, one of the most common inclusion errors I

encountered was when keyword searches mistakenly linked drug-related patents to medical

device types, according to the Cooperative Patent Classification (CPC) system. However,

these discrepancies between the CPC classifications and my linkages may not always be erro-

neous, as some drug technologies may be complementary to certain device types. Therefore,

using keyword searches instead of the CPC system can be useful for capturing complemen-

tary technologies, but using both can provide a way to validate my data. Below, I present a

few examples of patents I identified through random sampling of drug-related patents, which

may or may not be inclusion errors.

First, the patent “US-10428030-B2” describes a compound that can be used as a diag-

nostic tool in combination with Nuclear Magnetic Resonance Imaging (NMRI). According to

the Cooperative Patent Classification (CPC) system, this compound is classified as a drug
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rather than a medical device. However, when I searched patent texts using the medical

device type keywords “nuclear magnetic resonance imaging diagnostic systems,” the patent

was included in my results. Even though the compound itself is not a device, it may be pos-

sible that innovation in these types of compounds increases when NMRI diagnostic systems

(complementary technologies) are deregulated. The patent “US-10314846-B2” is another

example of this technological complementarity. My keyword search technique includes these

complementary technologies while relying on patent classifications alone would not, as the

compound is labeled as a drug (i.e., A61P25/14–Drugs for disorders of the nervous system

for treating abnormal movements, e.g., chorea, dyskinesia).

Another example of the benefits of using keyword searches is demonstrated when search-

ing for patent documents containing the keywords “cyclosporine test system.” In this case,

the patent “US-10011612-B2” is included in the results. According to the Cooperative Patent

Classification (CPC) system, this patent is classified as a drug (i.e., A61P1/16–Drugs for dis-

orders of the alimentary tract or the digestive system for liver or gallbladder disorders, such as

hepatoprotective agents, cholagogues, and lithophytic). As described in the patent, the drug

is administered in combination with other agents, such as an anti-inflammatory drug, an-

timicrobial agent, anti-angiogenesis agent, immunosuppressant, antibody, steroid, an ocular

antihypertensive drug, or a combination of these agents. Examples of these agents include

cyclosporine. The administration of such drugs is typically monitored using cyclosporine

tests to ensure that appropriate levels of the drug are in a patient’s system. Therefore, it is

plausible that increased innovation in and cheaper acquisition of cyclosporine test systems

could lead to increases in innovation in cyclosporine immunosuppressants.

However, this type of sensitivity in keyword searches can also result in inclusion errors.

For example, when I searched patent texts for the device type “soft contact lens daily wear,” I

included a patent for a drug that treats corneal ulcers (eye ulcers). This patent was included

in my results because it mentions that the drug can be administered as a contact lens or

reservoir, among other methods. While there may be some technological complementarities
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between contact lenses and this type of drug, the connection is weaker. Nonetheless, this

example demonstrates how keyword searches can sometimes include patents that may seem

only tangentially related.

Although there may be valid reasons to include drug-related technologies and other non-

medical-device technologies in my patent data, I also demonstrate that my results are not

sensitive to restricting my patent data only to medical devices in the following section.

E.3 Robustness of Procedure

To validate the results of my main specification that analyzes patent data collected using

keyword searches, I use the CPC system to restrict my patent sample to only include medical

devices and find that my results are robust. To restrict the sample, I only keep collected

patents that fall under the “Medical or Veterinary Science Hygiene” CPC categories (i.e., in-

clude “A61”), but that exclude patents classified as drugs (i.e., not “A61P”). This restriction

reduces the number of included patents from 1,248,289 to 239,315 patents. In the CSV file

linked here, I provide the top three CPC labels for patents collected in each device type for

all affected Class III devices used in my analysis. In another CSV file linked here, I provide

the top three CPC labels for patents collected in each device type for all affected Class II

devices used in my analysis. Notice that the descriptions of most top CPC codes correspond

with the descriptions of medical device types.

Table G.17 presents the estimates of equation 3 using the restricted patent sample for my

patenting rate outcomes. The table reveals that the estimates remain large in magnitude and

statistically significant. In fact, the percentage change in patenting rates relative to pre-event

means is larger for both Class III to II and Class II to I events. However, the magnitude of

the effects is reduced by approximately one third, signifying that approximately one-third

of the effect on patenting in my main specification may be due to positive spillovers into

complementary technologies. Figure G.19 shows the estimates from an event-study analysis

and suggests that the results from my main specification are robust when using this restricted
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sample of patents.

Lastly, my estimates for the outcome defined as the number of new FDA device sub-

missions (i.e., the “Device Submission Rate”) also support my patenting results by showing

similar increases in innovation.

F Learning Curve Estimation and Simulations

F.1 Estimation Framework for the Learning Curve Parameters

Medical device manufacturers that are inexperienced with regulation may face additional

costs when bringing a new medical device to market (Y Combinator, 2016; Makower et al.,

2010). As presented in Section 2, I model the additional costs from approval delays using a

learning curve. I model the relationship between the approval delay of project N for firm f ,

tcomm,N,f (measured in days), and cumulative experience,
∑N−1

s=1 tcomm,s,f , by the following

equation:

tcomm,N,f = β(Rc)

(
N−1∑
s=1

tcomm,s,f

)−γ
, where γ > 0.

Recall that β(Rc) represents the baseline approval delay in medical device type c under

regulation R (R can be Class III or II in practice), while
∑N

s=1 tcomm,s,f represents the sum

of approval delays (in days) faced after having submitted N − 1 past projects.

More novel devices within a given medical device type may face longer approval delays

if the FDA is more careful with these devices to ensure that new scientific characteristics

do not lead to unexpected harm. However, the structure of Class III regulations helps

distinguish between more or less novel innovation. As mentioned in Section A.3, firms that

have already submitted an original PMA in a Class III medical device type may use PMA

supplements for follow-on innovation within that device type. PMA supplements experience

shorter approval delays and face fewer data requirements. On the other hand, the FDA
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requires original PMAs when firms have not yet submitted a PMA in a given Class III

medical device type or when an incumbent firm invents a new device that is sufficiently

novel. Thus, I include only approval delays that firms encountered when submitting original

PMA documents in my analysis to condition on device novelty. This ensures that novelty is

not driving approval delays.66 For Class II devices, I ensure consistent novelty across devices

by only considering documentation submissions for devices with unique brand names.

I log-linearize equation F.1, to allow for OLS estimation of the parameter γ, and include

medical device type and firm-level fixed effects, resulting in the following specification,

ln(tcomm,N,f ) = ln(β(Rc))− γln

(
N−1∑
s=1

tcomm,s,f

)
+ αc + αf + εc,f . (F.1)

For Class III devices, I include device type and firm fixed effects. For Class II devices,

I include firm- and device type-by-year fixed effects, as I have enough observations within

those more granular fixed effects to estimate the coefficients. Standard errors are clustered

at the device-type-firm level. I exclude observations with no experience to avoid undefined

outcomes in the estimation

The estimates of the learning curve parameters are significant for both Class III and II

documentation submissions (see Table G.18).

F.2 Simulation: Flattening the Learning Curve

As described in Section 2, firm f ’s decision to innovate under regulation is determined by

its return to commercialization

RELf · πR,f − χtcomm,f − ψx− C(eR,f ), (F.2)

66I focus only on firms that have spent at least one day navigating FDA regulation to avoid potential con-
founders related to first-time innovators, including their tendency to “swing-for-the-fence” when confronted
with barriers to entry (see Aghion et al. (2019)). This exclusion does not substantially change my results,
with results remaining significant. I also perform the same empirical exercise for Class II device manufac-
turers as the sample size is much larger. For this exercise, I consider only 510(k) documents submitted for
unique devices, finding significant, though smaller, results even after including product-code-by-year and
firm fixed effects.
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where tcomm,f = β
(∑N−1

s=1 tcomm,s,f

)−γ
. For tractability, I assume that financing costs

take the form C(e) = max(0, χjtcomm,f + ψx − Kf ). In addition, since I do not observe

firm expenditures on safety R&D, the distribution of damages, safety efforts, or worst-case

damages, I assume that damages and safety efforts are vanishingly small relative to profits

and delay costs. This assumption is likely not innocuous as these costs are substantial, but

it allows me to draw broader insights under my limitations by focusing on changes in delay

costs that come from reducing regulatory complexity.

The learning curve parameters γ and β(Rc) are presented in Table G.18 for Class III

and Class II devices. I simulate the effect of flattening the learning curve on the rate of

unique device inventions from Class III device manufacturers to assess the counterfactual of

less complex FDA regulations. I calibrate χ to match the cost of approval delays found in

Makower et al. (2010) at the daily level for both Class III and II devices.

To execute these simulations, I first generate distributions of expected profits, firm

sizes, and firm FDA regulatory experience. I proxy for expected discounted profits (i.e.,

RELf · πR,f ) using patent market valuations. This proxy requires the assumption that

the market can adequately identify the expected discounted lifetime payout that a given

patented innovation will yield to a firm and that this value is reflected in the change of the

assignee’s stock market price upon patent grant announcement. The device payout distri-

bution is generated by fitting a gamma distribution to the medical device patent market

valuations for Class III devices. I then fit a lognormal distribution to my firm size data to

generate a distribution of asset values across firms. Lastly, I fit a gamma distribution to my

firm FDA experience data.

After sampling from these fitted distributions to form a set of representative firms, I

model how flattening the learning curve affects the rate of new device inventions across

these firms. To this end, I anchor the right tail of the learning curve to the approval delay of

the firm with the highest regulatory experience in my data and iteratively reduce the learning

parameter (γ) while solving for a β(Rc) value that allows the new curve to pass through the
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anchored value. I then calculate the firms’ decisions to innovate, given the approval times

corresponding to the new learning curve, and calculate the difference between the ex-post

investment decisions (i.e., after the learning curve is flattened) and the ex-ante investment

decisions (i.e., at the baseline values of γ and β). I then sum these differences across each firm

and calculate the percentage change in new device inventions relative to the baseline values.

Figure G.9 shows the iterative flattening of the learning curve, and Table G.12 provides the

calculations of the percentage change in new device inventions.
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G Supplemental Figures and Tables
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Appendix Figure G.1: Data Catalog

Note: This figure presents a catalog of the various data sources used in this study. The three broad outcomes are represented by the three colored
boxes: blue innovation, orange market structure, and red product safety. Each broad outcome contains various specific outcomes measured, in most
cases, by two different data sources. Buttons on the exterior represent data sources. The blue arrows connect the data sources to outcome measures.
The cogs indicate when algorithms were used to process the data into an outcome measure. The green “Text Analysis” cog represents the word2vec
algorithm used to extract safety-related keywords from patent claims data.
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Appendix Figure G.2: Petitioned Down-Classification Events (Not FDA-Initated)

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for the patent
filing rate measure and illustrates the potential biases that stem from industry petition of down-classification.
Outcome data are derived from USPTO patent data. Only Class III to II down-classification events petitioned
by industry (not by the FDA’s own initiative) are considered. Controls are device types matched on baseline
averages of the outcome. The coefficient β−1 is omitted and serves as the reference period. Data are analyzed
at an annual frequency. 95% confidence intervals are calculated following Conley and Taber (2011).
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Appendix Figure G.3: Mean Yearly Adverse Event Counts by Device Type Class

Note: This figure presents the annualized average counts of the specified adverse events for medical device
types within the respective classification. The x-axis indicates the device type Class. The x-axis includes
down-classified devices from Class III to II and Class II to I events separately. The y-axis details the average
annualized count for a given class and adverse event type. The red bar represents the average number of
yearly deaths across device types and years. The orange bar calculates a similar average for life-threatening
events, and the blue bar calculates the average number of hospitalizations. These three variables are derived
from the FDA MAUDE adverse event data. Standard error bands also overlay the average estimates.
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Appendix Figure G.4: Innovation Quality Event Study Class III to II

Note: This figure presents the estimates of the βt coefficients from the event-study equation 4 for the innovation quality outcomes. Only Class III to II
down-classification events are considered. Controls are device types matched on baseline averages of the outcome. The coefficient β−1 is omitted and
serves as the reference period. Data are analyzed at an annual frequency. The left subfigure describes the evolution of the average citations-per-patent
rate. When no patents are filed in a given year, the citations-per-patent rate is set to zero. The right subfigure presents the evolution of the average
patent value in treated device types relative to controls. Patent values are derived from Kogan et al. (2017), who calculate the change in a firm’s
stock market valuation upon patent grant announcements to measure patent value. Patent values are deflated to 2019 (million) dollars using the CPI.
Standard errors are calculated following Conley and Taber (2011).
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Appendix Figure G.5: Innovation Quality Event Study Class II to I

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for my innovation quality measures. Only Class II to I
down-classification events are considered. Controls are device types matched on baseline averages of the outcome. The coefficient β−1 is omitted and
serves as the reference period. Data are analyzed at an annual frequency. The left subfigure describes the evolution of the average citations-per-patent
rate. When no patents are filed in a given year, the citations-per-patent rate is set to zero. The right subfigure presents the evolution of the average
patent value in treated device types relative to controls. Patent values are derived from Kogan et al. (2017), who calculate the change in a firm’s stock
market valuation upon patent grant announcements to measure patent value. Patent values are deflated to 2019 (million) dollars using the CPI.
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Appendix Figure G.6: Utilization Rates Event Study

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for the utilization
rates of procedures that use treated or control medical device types. I do not have claims data before 2005;
Thus, I only consider post-2005 Class III to II down-classification events. Controls are device types matched
on baseline average innovation rates. The coefficient β−1 is omitted and serves as the reference period. Data
are analyzed at an annual frequency. Utilization is measured by the yearly number of paid claims for a given
procedure. Claims data come from the UCSD healthcare system. Conley–Taber 95% confidence intervals
are provided.
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Appendix Figure G.7: Procedure Price Event Study Class III to II

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for the price
component of my market structure measures. Controls are device types matched on baseline outcome
averages. The coefficient β−1 is omitted and serves as the reference period. I do not have UCSDH claims
data before 2005; Thus, I only consider post-2005 Class III to II down-classification events. Data are analyzed
at an annual frequency. The price is determined by the amount insurers paid for a given procedure. The
figure describes the evolution of the prices of procedures that use treated device types relative to control
groups matched using pre-event price averages. Conley–Taber 95% confidence intervals are provided.
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Appendix Figure G.8: Market Structure Event Study Class III to II (Patent Measures)

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for my market structure measures. Only Class III to II
down-classification events are considered. Data are analyzed at an annual frequency. Controls are device types matched on baseline average innovation
rates. The coefficient β−1 is omitted and serves as the reference period. The left subfigure describes the evolution of new entry of firms that have
never before received a granted patent (counts per year), measured by patent data. The right subfigure presents the evolution of incumbent entry
into treated device types relative to controls, measured by patent data. Conley–Taber 95% confidence intervals are provided.
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Appendix Figure G.9: Flattening the Learning Curve Simulation

Note: This figure presents the simulation exercise of flattening the Class III learning curve estimated in
equation F.1. I flatten the learning curve relative to the most experienced firm. The results of this simulation
are provided in Table G.12. Above, γ begins at its initial starting point estimated in equation F.1. Subsequent
lines show the change in the learning curve as γ is reduced while maintaining the approval time of the top
quartile of experienced firms. TSum,25 represents the bottom 25th percentile of cumulative FDA experience
(in days), TSum,50 represents the 25-50th percentile, and TSum,75 represents the 50-75th percentile.
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Appendix Figure G.10: Adverse Event Event Study Class III to II

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for my adverse event measures. Only Class III to II
down-classification events are considered. Data are analyzed at an annual frequency. Controls are device types matched on baseline outcome averages.
The coefficient β−1 is omitted and serves as the reference period. The top-left subfigure describes the evolution of the rate of life-threatening events
stemming from the use of treated device types relative to control groups matched using baseline averages. The top-right subfigure describes the
evolution of the rate of hospitalizations of treated device types relative to control groups. The bottom-left subfigure describes the evolution of the
death rate. The bottom-right subfigure presents the evolution of the sum of all serious adverse events (life-threatening, death, hospitalizations, and
disability) in treated device types relative to controls. Adverse events are derived from the FDA MAUDE database. Conley–Taber 95% confidence
intervals are provided.
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Appendix Figure G.11: Adverse Event Event Study Class II to I

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for my adverse event measures. Only Class II to I down-
classification events are considered. Only four pre-periods are included because there are no prior adverse event data. Data are analyzed at an annual
frequency. Controls are device types matched on baseline outcome averages. The coefficient β−1 is omitted and serves as the reference period. The
top-left subfigure describes the evolution of the rate of life-threatening events stemming from the use of treated device types relative to control groups
matched using baseline averages. The top-right subfigure illustrates the evolution of the rate of hospitalizations of treated device types relative to
matched control groups. The bottom-left subfigure describes the relative evolution of the death rate. The bottom-right subfigure presents the relative
evolution of the sum of all serious adverse events (life-threatening, death, hospitalizations, and disability) in treated device types. Adverse events are
derived from the FDA MAUDE database. 95% confidence intervals are provided.
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Appendix Figure G.12: Safety Emphasis Event Study Class II to I

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for inventors’
emphases on safety. Only Class II to I down-classification events are estimated. Data are analyzed at an
annual frequency. Controls are device types matched on baseline outcome averages. The coefficient β−2 is
omitted and serves as the reference period (due to noise before the event). The figure describes the evolution
of the proportion of patents that emphasize safety within patent texts. The volatility in the four years prior
to the down-classification represents the congressional whiplash that occurred regarding whether to abolish
the FDA. 95% confidence intervals are provided.
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Appendix Figure G.13: Class II to I Changes in Adverse Event Rates at Margin of Decision Rule

Note: This figure presents separate DID estimates of equation 3 for each adverse event measure and each treated device type with a given proxy
DPM score relative to matched controls. The DPM score is primarily an increasing function of the baseline average annual incidence of adverse events
before deregulation (see Appendix A.1). When the rightmost outlier is removed, the slopes of the fitted lines are still negative or zero. Controls for
each treated device type are selected by matching based on DPM scores across both Class I and II devices that were not down-classified in the given
period. The x-axes describe the same proxy DPM score across the three adverse event outcomes. The y-axes describe the change in the rate of the
given adverse event type in the treated device type relative to matched control device type. The top-left figure shows the differences-in-differences
estimates for the change in death rates across device types, the top-right figure shows the same for life-threatening events, and the bottom figure
shows the same for hospitalizations. Adverse event data are from the FDA’s MAUDE database. 95% confidence intervals are provided.

91



Appendix Figure G.14: Contact Lens Use Case—III to II Down-Classification

Note: This figure presents an example of a Class III to II down-classification event. In 1994, the FDA down-
classified daily-wear soft contact lenses to Class II but kept extended-wear soft contact lenses in Class III.
The x-axis measures the year, and the y-axis measures the number of unique contact lens devices submitted
to the FDA for approval in a given year. The green line represents daily-wear contact lenses submitted for
approval (deregulated), and the blue line represents extended-wear soft contact lenses submitted for approval
(remained in Class III). The vertical black line represents the year of reclassification. The left-imposed picture
shows an example of a soft contact lens invented before reclassification. The right-imposed picture shows an
example of a soft contact lens invented after reclassification.
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Appendix Figure G.15: Device Recall Analysis—Class II to I

Note: This figure illustrates the device recall analysis for the Class II to I events. The top subfigure displays
the average device recall counts by treatment status from 2000 to 2023. The bottom subfigure shows the
event-study estimates of the change in device recalls over time. Recall counts for event times −2 ≤ t ≤ 3
are constant at zero due to the missing recall data for those specific years.
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Appendix Figure G.16: Adverse Event Event Study—Class II to I, 2015

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for my adverse event measures before and after the 2015 event.
The 2015 event significantly reduced the costs of commercializing new technologies but had no impact on legal liability risk, which is the mechanism I
propose for driving product safety improvements after deregulation. Data are analyzed annually, and controls consist of device types matched based
on baseline outcome averages. The coefficient β−1 serves as a reference period and is omitted. The subfigures provide information on changes in
the rate of life-threatening events, hospitalizations, mortality, and the sum of all serious adverse events (life-threatening, death, hospitalizations, and
disability) for treated device types compared to matched control groups. Adverse events are derived from the FDA MAUDE database, and 95%
confidence intervals are provided.
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Appendix Figure G.17: Device Recall Analysis—Class II to I, 2015

Note: This figure illustrates the device recall analysis for the 2015 Class II to I event. The top subfigure
displays the average device recall counts by treatment status from 2000 to 2023. The bottom subfigure shows
the event-study estimates of the change in device recalls over time. 95% confidence intervals are provided.
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Appendix Figure G.18: Effects of 2015 Class II to I Event on New Entry

Note: This figure presents the estimates of the βt coefficients from event-study. Controls are device types
matched on baseline average innovation rates. The coefficient β−1 is omitted and serves as the reference
period. Data are analyzed at an annual frequency. The entry rate is measured by the yearly number of
new firms patenting in a given device type. Patent data comes from the USPTO patent database. 95%
confidence intervals are provided.

96



Appendix Figure G.19: Effects of Class III to II Events on Patenting Rates:
Restricted Patent Sample

Note: This figure presents the estimates of the βt coefficients from event-study equation 4 for patenting rates
using the restricted patent sample described in Appendix E. Compare to the top-left subfigure of Figure 3.
Controls are device types matched on baseline average innovation rates. The coefficient β−1 is omitted and
serves as the reference period. Data are analyzed at an annual frequency. The patenting rate is measured
by the yearly number of patents filed in a given device type. Patent data comes from the USPTO patent
database. Conley–Taber 95% confidence intervals are provided.
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Appendix Table G.1: Keywords Used in Text Analysis of Patent Claims

Safety Advancement Keywords

safety hazard

safe danger

safer dangerous

endangering harming

precautions injuring

unsafe injury

hazardous jeopardizing

failsafe risk

safely complication

dangerous jeopardizing

Note: The table presents the keywords related to product safety that were extracted using the Word2Vec

algorithm. I label a patent as advancing safety if any of the above words are included in its claims section.

Importantly, patent examiners heavily scrutinize the patent claims text for accuracy as the text codifies

the right to singular ownership of the claimed advancement. Interestingly, some keywords indicate safety

advancements in what the product is not: some inventors claim advancements in product safety by moving

away from constructions that are “hazardous,” “unsafe,” or “dangerous.” It is important to note that

inventors would not reasonably claim a product advancement that would lead to more injuries. Thus, one

can assume that these negative mentions can still be attributable to safety improvements.
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Appendix Table G.2: Effect of Down-Classifications on Innovation
(Using Borusyak et al. (2021) estimator)

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 7.95 19.73* 29.12*** 29.95** 22.12*
(9.27) (9.96) (8.79) (10.34) (8.85)

Device Approval Rate 0.47 2.11*** 1.91*** 1.75*** 1.77***
(1.03) (0.33) (0.29) (0.33) (0.28)

Citations-Per-Patent Rate 9.06 17.60* 23.13* 19.18*** 27.48***
(20.65) (7.62) (9.00) (4.79) (7.16)

Average Patent Value 11.19 24.07*** 32.35*** 32.25*** 30.38***
(15.73) (4.24) (3.78) (4.27) (3.69)

Sample Size 1540 1056 920 60456

B. Class II to I:

Patenting Rate 19.12 8.15 7.71 14.15** 31.04**
(39.50) (13.01) (6.67) (5.17) (10.47)

Citations-Per-Patent Rate 0.75 6.84** 2.07+ 4.01*** 6.03***
(0.43) (2.09) (1.17) (0.94) (1.42)

Average Patent Value 19.04 8.90*** 2.24+ 5.16*** 12.87***
(38.75) (2.43) (1.31) (1.14) (1.82)

Sample Size 15180 20592 27764 32472

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. In this analysis, I drop all device types that do not exhibit any positive quantity of the

given outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using different

control groups: namely, a matched control group, intuitively similar device types (treat similar diseases),

“later-treated” device types (treated after sample window), and the full sample, respectively. Confidence

intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical

significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.3: Effect of Down-Classifications on Market Structure
(Using Borusyak et al. (2021) estimator)

DID Estimates

Pre-mean Price Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5) (6)

A. Class III to II:

Amount Paid 95.68 -89.73*** -75.84* - - -51.99***
(123.78) (25.35) (34.42) - - (10.85)

Sample Size 480 176 - - 36240

Incumb. Entry (dev.) 0.40 - 1.17*** 1.09*** 1.02*** 1.08***
(0.91) - (0.11) (0.11) (0.12) (0.09)

New Entry (dev.) 0.07 - 0.60*** 0.61*** 0.52** 0.55**
(0.31) - (0.17) (0.17) (0.19) (0.17)

Incumb. Entry (pat.) 1.47 - 2.36*** 3.01*** 3.69*** 2.82***
(1.78) - (0.59) (0.56) (0.69) (0.53)

New Entry (pat.) 3.78 - 7.29+ 11.54** 12.02** 10.04**
(4.76) - (4.33) (3.85) (4.60) (3.86)

Sample Size - 1364 1056 920 60456

B. Class II to I:

Incumb. Entry (pat.) 2.26 - 0.08 0.35 0.65* 1.43**
(4.33) - (0.68) (0.36) (0.29) (0.49)

New Entry (pat.) 7.27 - 4.24 2.82 5.11** 11.10***
(16.87) - (3.87) (2.05) (1.61) (3.07)

Sample Size - 13552 20592 27764 32472

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. In this analysis, I drop all device types that do not exhibit any positive quantity of the

given outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(6) present DID estimates for a given outcome using different

control groups: namely, a group matched on baseline prices, a group matched on baseline innovation and

adverse event levels, an intuitively comparable group, a later-treated group, and the full sample of controls,

respectively. Confidence intervals are calculated using Conley–Taber test statistics. +, *, **, and ***

correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.4: Effect of Down-Classifications on Adverse Events
(Using Borusyak et al. (2021) estimator)

DID Estimates

Pre-mean Matched Intuitive Later Full Sample
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Emphasis on Safety 0.16 0.074+ - - -
(0.21) (0.038) - - -

Life-Threatening Event Rate 0.07 0.59 0.81+ -0.58 -1.93
(0.31) (0.44) (0.43) (0.78) (1.35)

Hospitalization Rate 0.25 3.36** 3.44** 2.27* -2.21
(0.84) (1.14) (1.14) (0.93) (1.97)

Mortality Rate 0.08 -0.50 1.08* 0.29 0.33
(0.46) (1.34) (0.47) (0.53) (0.49)

Sample Size 588 644 528 38444

B. Class II to I:

Emphasis on Safety 0.065 0.056*** - - -
(0.218) (0.012) - - -

Life-Threatening Event Rate 0.07 -2.57 -0.36 -3.21 -3.16+
(0.41) (1.96) (0.26) (2.73) (1.71)

Hospitalization Rate 0.15 -1.93** -3.04 -4.84+ -5.44*
(0.88) (0.63) (2.71) (2.64) (2.51)

Mortality Rate 0.23 -0.44* -0.29 -0.47 -0.60***
(1.98) (0.17) (0.29) (0.29) (0.17)

Sample Size 10332 13104 17668 20664

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. In this analysis, I drop all device types that do not exhibit any positive quantity of the

given outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using different

control groups: namely, a matched control group, intuitively similar device types (treat similar diseases),

“later-treated” device types (treated after sample window), and the full sample, respectively. For Column

(4), Class III to II, control device types are treated after 2015; thus, all observations after 2015 are dropped.

Confidence intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond with

statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.5: Down-Classification Spillovers (Innovation)

DID Estimates

Pre-mean Matched Full Sample
Down-Classification (1) (2) (3)

A. Class III to II:

Patenting Rate 7.95 1.67 -3.91
(9.27) (2.56) (3.89)

Device Approval Rate 0.47 0.06 -0.01
(1.03) (0.14) (0.29)

Sample Size 792 179520

B. Class II to I:

Patenting Rate 19.12 -1.49 1.72
(39.50) (3.41) (4.63)

Sample Size 7656 179872

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model for device types that are closely related to treated medical device types. Column (1)

presents the 5-year baseline average of closely related device types for the outcomes listed on the left-hand

side. Columns (2) and (3) present my OLS estimates of down-classifications on device types closely related

to treated device types using different control criteria. Confidence intervals for my estimates in Columns (2)

and (3) are calculated using Conley–Taber test statistics. Column (2) presents the estimates when closely

related groups are compared to matched control groups, whereas Column (3) presents results from comparing

against full sample controls. Standard errors allow for clusters at the PC level. +, *, **, and *** correspond

with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.6: Class III to II Device Types by Broad Device Category:
Treated Group versus Intuitive Control Group

Treatment Category Description Count Implant

0 Anesthesiology devices—monitoring devices 1 0
Cardiovascular devices—cardiovascular prosthetic devices 2 2
Clinical chemistry—test systems 1 0
Dental devices—therapeutic devices 1 0
Gastroenterology-urology devices—therapeutic devices 1 0
Immunology and microbiology devices—serological reagents 1 0
Ophthalmic devices—therapeutic devices 2 0
Orthopedic devices—prosthetic devices 1 1
Radiology devices—diagnostic devices 2 0

1 Anesthesiology devices—monitoring devices 1 0
Cardiovascular devices—cardiovascular prosthetic devices 2 2
Clinical chemistry—test systems 1 0
Dental devices—therapeutic devices 1 0
Gastroenterology-urology devices—therapeutic devices 1 0
Immunology and microbiology devices—serological reagents 1 0
Ophthalmic devices—therapeutic devices 2 0
Orthopedic devices—prosthetic devices 1 1
Radiology devices—diagnostic devices 2 0

Note: The table presents the broad device types used in the treatment and intuitive control groups. No

life-sustaining devices are considered in the treatment and control groups. When “Treatment” is 0, the

description counts refer to the control group and refer to the treated group otherwise. The column“Implant”

indicates the counts of device types that are implantable in the given broad device category.
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Appendix Table G.7: Class II to I Treated Device Types by Broad Category

Treatment Category Description Count Implant

1 Anesthesiology devices—diagnostic devices 3 0
Anesthesiology devices—miscellaneous 3 0
Anesthesiology devices—monitoring devices 11 0
Anesthesiology devices—therapeutic devices 23 0
Cardiovascular devices—monitoring devices 5 0
Cardiovascular devices—prosthetic devices 4 1
Clinical chemistry—clinical chemistry test systems 6 0
Clinical chemistry—clinical laboratory instruments 3 0
Dental devices—diagnostic devices 2 0
Dental devices—miscellaneous devices 1 0
Dental devices—surgical devices 2 0
Ear, nose, and throat devices—diagnostic devices 2 0
Ear, nose, and throat devices—surgical devices 6 0
Gastroenterology-urology devices—diagnostic devices 20 0
Gastroenterology-urology devices—monitoring devices 1 0
Gastroenterology-urology devices—surgical devices 10 0
Gastroenterology-urology devices—therapeutic devices 19 1
General and plastic surgery devices—surgical devices 1 0
General hospital and personal use devices—miscellaneous devices 14 0
General hospital and personal use devices—monitoring devices 5 0
General hospital and personal use devices—therapeutic devices 7 0
Hematology and pathology devices—manual hematology devices 4 0
Hematology and pathology devices—used by blood manufacturer 4 0
Immunology and microbiology devices—immunological test systems 14 0
Immunology and microbiology devices—microbiology devices 1 0
Immunology and microbiology devices—serological reagents 47 0
Neurological devices—diagnostic devices 1 0
Neurological devices—therapeutic devices 1 0
Obstetrical and gynecological devices—diagnostic devices 1 0
Obstetrical and gynecological devices—surgical devices 6 0
Obstetrical and gynecological devices—therapeutic devices 2 0
Ophthalmic devices—diagnostic devices 4 0
Ophthalmic devices—prosthetic devices 7 4
Orthopedic devices—diagnostic devices 1 0
Orthopedic devices—surgical devices 1 0
Physical medicine devices—diagnostic devices 5 0
Physical medicine devices—prosthetic devices 6 0
Physical medicine devices— 19 0
Radiology devices—diagnostic devices 9 0
Radiology devices—miscellaneous devices 11 0
Radiology devices—therapeutic devices 1 0

Note: The table presents the counts of broad device types used in the treatment group. No life-sustaining

devices are considered. Implant counts are also provided.
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Appendix Table G.8: Class II to I Intuitive Control Device Types by Category

Treatment Category Description Count Implant

0 Anesthesiology devices—diagnostic devices 3 0
Anesthesiology devices—miscellaneous 3 0
Anesthesiology devices—monitoring devices 11 0
Anesthesiology devices—therapeutic devices 23 0
Cardiovascular devices—cardiovascular monitoring devices 5 0
Cardiovascular devices—cardiovascular prosthetic devices 2 1
Cardiovascular devices—cardiovascular surgical devices 2 0
Clinical chemistry—clinical chemistry test systems 6 0
Clinical chemistry—clinical laboratory instruments 3 0
Dental devices—diagnostic devices 2 0
Dental devices—miscellaneous devices 1 0
Dental devices—surgical devices 2 0
Ear, nose, and throat devices—diagnostic devices 2 0
Ear, nose, and throat devices—surgical devices 6 0
Gastroenterology-urology devices—diagnostic devices 20 0
Gastroenterology-urology devices—monitoring devices 1 0
Gastroenterology-urology devices—surgical devices 10 0
Gastroenterology-urology devices—therapeutic devices 19 1
General and plastic surgery devices—surgical devices 1 0
General hospital and personal use devices—miscellaneous devices 14 0
General hospital and personal use devices—monitoring devices 5 0
General hospital and personal use devices—therapeutic devices 7 0
Hematology and pathology devices—manual devices 4 0
Hematology and pathology devices—used by blood manufacturer 4 0
Immunology and microbiology devices—immunological test systems 14 0
Immunology and microbiology devices—microbiology devices 1 0
Immunology and microbiology devices—serological reagents 47 0
Neurological devices—diagnostic devices 1 0
Neurological devices—therapeutic devices 1 0
Obstetrical and gynecological devices—diagnostic devices 1 0
Obstetrical and gynecological devices—surgical devices 6 0
Obstetrical and gynecological devices—therapeutic devices 2 0
Ophthalmic devices—diagnostic devices 4 0
Ophthalmic devices—prosthetic devices 4 4
Ophthalmic devices—surgical devices 3 0
Orthopedic devices—diagnostic devices 1 0
Orthopedic devices—surgical devices 1 0
Physical medicine devices—diagnostic devices 5 0
Physical medicine devices—prosthetic devices 6 0
Physical medicine devices—therapeutic devices 19 0
Radiology devices—diagnostic devices 9 0
Radiology devices—therapeutic devices 12 0

Note: The table presents the counts of broad device types used in the control group. No life-sustaining

devices are considered. Implant counts are also provided.
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Appendix Table G.9: Effect of Down-Classifications on Innovation
(Drop No Counts)

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 7.95 15.31** 23.68* 24.64* 7.77
(9.27) (5.66) (10.01) (10.95) (24.03)

Device Approval Rate 0.47 2.69*** 2.36** 2.27** 2.22***
(1.03) (0.59) (0.77) (0.74) (0.35)

Citations-Per-Patent Rate 9.06 16.87* -5.61 15.91* 20.13**
(20.65) (7.77) (14.05) (6.32) (7.13)

Average Patent Value 11.19 22.00*** 25.38** 26.84** 20.91***
(15.73) (4.29) (8.95) (8.67) (6.00)

Sample Size 1452 660 680 21340

B. Class II to I:

Patenting Rate 19.12 7.34 13.72 25.22** 29.17***
(39.50) (4.66) (12.61) (9.60) (7.29)

Citations-Per-Patent Rate 0.75 6.85** 12.94* 7.52*** 6.00***
(0.43) (2.28) (6.39) (1.52) (1.39)

Average Patent Value 19.04 9.20*** 5.31* 11.18*** 11.48***
(38.75) (1.85) (2.45) (2.77) (1.93)

Sample Size 14740 9328 9768 25784

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. In this analysis, I drop all device types that do not exhibit any positive quantity of the

given outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using different

control groups: namely, a matched control group, intuitively similar device types (treat similar diseases),

“later-treated” device types (treated after sample window), and the full sample, respectively. Confidence

intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond with statistical

significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.10: Effect of Down-Classifications on Market Structure
(Drop No Counts)

DID Estimates

Pre-mean Price Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5) (6)

A. Class III to II:

Procedure Price 95.31 -58.25** -43.54** - - -27.50
(123.95) (21.16) (15.66) - - (144.11)

Sample Size 160 176 - - 36240

Incumb. Entry (dev.) 0.40 - 1.58*** 1.50** 1.49** 1.44***
(0.91) - (0.35) (0.54) (0.54) (0.21)

New Entry (dev.) 0.07 - 0.94*** 0.98** 0.79** 0.88***
(0.31) - (0.23) (0.31) (0.26) (0.20)

Incumb. Entry (pat.) 1.47 - 1.96*** 2.19+ 3.33* 1.28
(1.78) - (0.59) (1.12) (1.52) (1.40)

New Entry (pat.) 3.78 - 6.14*** 11.75* 12.65** 6.10
(4.76) - (1.65) (4.57) (4.79) (9.19)

Sample Size - 1276 616 680 23848

B. Class II to I:

Incumb. Entry (pat.) 2.26 - 0.02 0.59 1.09+ 1.33**
(4.33) - (0.47) (0.69) (0.59) (0.44)

New Entry (pat.) 7.27 - 4.00+ 5.18 9.26** 10.11***
(16.87) - (2.07) (4.17) (3.29) (2.26)

Sample Size - 13288 9988 12672 28952

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. In this analysis, I drop all device types that do not exhibit any positive quantity of the

given outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(6) present DID estimates for a given outcome using different

control groups: namely, a group matched on baseline prices, a group matched on baseline innovation and

adverse event levels, an intuitively comparable group, a later-treated group, and the full sample of controls,

respectively. Confidence intervals are calculated using Conley–Taber test statistics. +, *, **, and ***

correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.11: Effect of Down-Classifications on Adverse Events
(Drop No Counts)

DID Estimates

Pre-mean Matched Intuitive Later Full Sample
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Emphasis on Safety 0.16 0.073+ - - -
(0.21) (0.039) - - -

Life-Threatening Event Rate 0.07 1.31 1.64 -1.96 -8.57
(0.31) (0.82) (1.11) (1.26) (5.72)

Hospitalization Rate 0.25 4.30** 5.32* 2.38 -9.43
(0.84) (1.62) (2.38) (1.96) (8.09)

Mortality Rate 0.08 -3.28 2.78* -0.09 0.16
(0.46) (4.72) (1.40) (1.23) (7.50)

Sample Size 336 196 216 11452

B. Class II to I:

Emphasis on Safety 0.065 0.05*** - - -
(0.218) (0.012) - - -

Life-Threatening Event Rate 0.07 -8.07 -1.51+ -15.92* -9.17*
(0.43) (5.07) (0.78) (7.85) (4.38)

Hospitalization Rate 0.17 -6.25*** -7.80+ -16.76* -11.63*
(0.94) (1.24) (3.98) (7.62) (5.32)

Mortality Rate 0.26 -1.72*** -1.03 -2.60+ -1.70*
(2.13) (0.39) (0.77) (1.37) (0.75)

Sample Size 3612 3276 3752 7168

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. In this analysis, I drop all device types that do not exhibit any positive quantity of the

given outcome. Column (1) presents the 5-year baseline average of treated device types for the outcomes

listed on the left-hand side. Columns (2)–(5) present DID estimates for the listed outcomes using different

control groups: namely, a matched control group, intuitively similar device types (treat similar diseases),

“later-treated” device types (treated after sample window), and the full sample, respectively. For Column

(4), Class III to II, control device types are treated after 2015; thus, all observations after 2015 are dropped.

Confidence intervals are calculated using Conley–Taber test statistics. +, *, **, and *** correspond with

statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.12: Flattening the Learning Curve Simulation—Unique Devices
Approved

Percent Changes

γ TSum,25 TSum,50 TSum,75 TSum,100 Total %∆

0.075 0.0 0.0 0.0 0.0 0.0
(0.0) (0.0) (0.0) (0.0) (0.0)

0.067 13.3 10.2 4.8 2.49 6.19
(10.17) (8.12) (3.84) (2.95) (5.29)

0.058 29.67 16.49 8.94 3.75 11.57
(16.78) (9.57) (5.78) (2.98) (7.92)

0.05 59.0 25.64 14.07 6.47 19.32
(26.66) (12.88) (6.0) (4.82) (11.38)

0.042 68.55 35.46 21.07 8.86 25.98
(24.77) (16.03) (9.65) (4.17) (13.94)

0.033 85.34 46.38 23.74 9.35 31.75
(31.51) (20.97) (10.22) (4.66) (17.95)

0.025 110.02 54.42 25.24 12.35 38.46
(41.96) (25.91) (8.47) (6.22) (21.76)

0.017 150.65 64.74 36.93 14.69 48.77
(61.78) (22.15) (12.04) (7.11) (25.41)

0.008 151.55 75.92 34.03 15.58 51.9
(48.99) (25.45) (11.69) (7.45) (27.68)

0.0 186.41 88.62 43.45 19.13 63.32
(74.03) (29.59) (11.61) (7.67) (33.3)

Note: This table presents the results of the simulation exercise described in Appendix F.2, which simulates
the effect of flattening the learning curve on the rate of unique devices approved at an annual frequency
by asset quartiles. Figure G.9 illustrates this flattening exercise. Standard errors generated from a Monte
Carlo procedure are presented in parenthesis below the estimates. This procedure produces estimates across
repeated random draws from the empirical distribution of firm characteristics to calculate confidence inter-
vals. I express changes as percent changes relative to the γ = 0.075 baseline. I flatten the learning curve
relative to the firm with the highest experience in the data. In the Table, γ begins at its initial starting
point estimated in equation F.1. Subsequent rows in the table show the percent change in the rate of unique
device submissions as γ, the learning rate, is reduced. These changes are presented for each experience quar-
tile for Class III device manufacturers. TSum,25 represents the bottom 25th percentile of cumulative FDA
experience (in days), TSum,50 represents the 25–50th percentile, TSum,75 represents the 50–75th percentile,
and TSum,100 represents the 75th–100th percentile. The far-right column presents the total percent change
in unique devices approved from a flattening of the learning curve relative to the baseline frequency of unique
device submissions.
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Appendix Table G.13: Cross-Correlation Between Firm Size and FDA Experience

Variables Cumulative FDA Experience Firm Assets
Cumulative FDA Experience 1.00

Firm Assets -0.00 1.00
(1.00)

Note: The table presents the correlation coefficients between firm assets (size) and firm cumulative FDA

experience. Data includes firms in the FDA database that were fuzzy matched to publicly traded firms in

the CRSP database.
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Appendix Table G.14: Summary Statistics – Class I

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 30,797 - - -
per Device Type 1,560 (Types) 19.7 78.1 [1, 1,927]
Total Submitting Firms 5,253 - - -
Firms per Device Type 1,560 (Types) 11.3 36.7 [1, 1,048]
Firm Regulatory Proficiency 1,554 (Types) 6.1yrs 18.2yrs [0, 603.7yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 475,782 - - -
per Device Type 1,264 (Types) 376.4 2550.8 [1, 52,526]
Serious Events per Dev. type 612 (Types) 25.6 107.3 [1.0, 1,547]
Assets of Offending Firm 271,715 $3.2B $12.7B [0, $0.7T]

USPTO Device Patents
Total 671,665 - - -
per Device Type 961 (Types) 698.9 2453.4 [1, 23,056]
Citations 671,665 10.6 56.4 [1, 5,067]
Market Valuation 201,638 $12.5M $30M [$40, $1.7B]
Applicant Assets 192,619 $26.1B $53.5B [$0.07M, $0.79T]

Note: This table presents summary statistics only for Class I devices. See Kogan et al. (2017) for more

information on the patent market valuation data, which was merged into my patent dataset. The CRSP/-

Compustat database was used to derive the total assets of the firms applying for patent protection and is a

proxy for firm size. Market values and applicant assets are only available for patents filed by publicly traded

firms, representing roughly 25% of the total sample of patents. *“Regulatory proficiency” indicates the total

number of days a firm has experienced approval delays across all its submitted devices.
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Appendix Table G.15: Summary Statistics – Class II

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 118,820 - - -
per Device Type 2,496 (Types) 47.6 131.2 [1, 2,457]
Total Submitting Firms 13,657 - - -
Firms per Device Type 2496 (Types) 20.7 44.2 [1, 747]
Firm Regulatory Proficiency 2,466 (Types) 11.9yrs 38.3yrs [0, 669.3 yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 4,510,435 - - -
per Device Type 1,975 (Types) 2,283.8 162,560 [1, 0.41M]
Serious Events per Dev. type 1,238 (Types) 344.3 2,402 [1, 46,502]
Assets of Offending Firm 2,818,635 $3.3B $6.3B [$0, $0.7T]

USPTO Device Patents
Total 567,204 - - -
per Device Type 1,100 (Types) 515.6 1,732.6 [1, 17,559]
Citations 567,213 19.2 115.8 [1, 5817]
Market Valuation 173,194 $13.8M $31.5M [0, $1.9B]
Applicant Assets 164,686 $27.5B $56.6B [$0.2M, $0.7T]

This table presents summary statistics only for Class II devices. See Kogan et al. (2017) for more information

on the patent market valuation data, which was merged into my patent dataset. The CRSP/Compustat

database was used to derive the total assets of the firms applying for patent protection and is a proxy

for firm size. Market values and applicant assets are only available for patents filed by publicly traded

firms, representing roughly 25% of the total sample of patents. *“Regulatory proficiency” indicates the total

number of days a firm has experienced approval delays across all its submitted devices.
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Appendix Table G.16: Summary Statistics – Class III

N Mean SD Range

FDA Admin. Data—Device Submissions (PMA and 510(k) Databases)
Total 3,395 - - -
per Device Type 59 (Types) 57.5 148.1 [1, 795]
Total Submitting Firms 109 - - -
Firms per Device Type 59 (Types) 7.3 12.3 [1, 57]
Firm Regulatory Proficiency 3,184 (Types) 49.8yrs 74.7yrs [0, 667.4yrs]*

FDA Admin. Data—Adverse Event Reports (MAUDE)
Total 976,693 - - -
per Device Type 101 (Types) 9,670.2 32,432.6 [1, 0.2M]
Serious Events per Dev. type 78 (Types) 2,871 13,442.2 [1, 0.1M]
Assets of Offending Firm 786,010 $4.6B $6.2B [$0.6M, $0.7T]

USPTO Device Patents
Total 9,423 - - -
per Device Type 52 (Types) 181.2 453.7 [1, 2536]
Citations 9,424 21.6 97.7 [1, 4265]
Market Valuation 2,633 $16.7M $30.5M [$0, $440M]
Applicant Assets 2,500 $15.5B $33.6B [$1.1M , $0.9T]

This table presents summary statistics only for Class III devices. See Kogan et al. (2017) for more information

on the patent market valuation data, which was merged into my patent dataset. The CRSP/Compustat

database was used to derive the total assets of the firms applying for patent protection and is a proxy

for firm size. Market values and applicant assets are only available for patents filed by publicly traded

firms, representing roughly 25% of the total sample of patents. *“Regulatory proficiency” indicates the total

number of days a firm has experienced approval delays across all its submitted devices.
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Appendix Table G.17: Effect of Down-Classifications on Innovation:
Restricted Patent Sample

DID Estimates

Pre-mean Matched Intuitive Later Full
Down-Classification (1) (2) (3) (4) (5)

A. Class III to II:

Patenting Rate 4.6 10.8** 15.81** 15.79* 14.07*
(6.18) (3.3) (5.9) (6.88) (6.68)

Sample Size 1628 1056 920 60456

B. Class II to I:

Patenting Rate 3.99 4.8* 1.91 3.01* 6.97**
(13.74) (2.26) (1.61) (1.48) (2.5)

Sample Size 12540 20592 27764 32472

Note: The table presents estimates of equation 3, which is a difference-in-differences (DID) style OLS

regression model. This table differs from Table 2 in that it presents estimates from an estimation that uses

a restricted patent sample described in Appendix E, and only presents the patenting rate outcome. Simply

put, patents in this analysis include only those labeled as health-related and non-drug by patent examiners.

Patents are derived from the USPTO patent database. Column (1) presents the 5-year baseline average of

treated device types for the outcomes listed on the left-hand side. Columns (2)–(5) present DID estimates

for the listed outcomes using different control groups: namely, a matched control group, intuitively similar

device types (treat similar diseases), “later-treated” device types (treated after sample window), and the full

sample, respectively. For Column (4), Class III to II, control device types are treated after 2015; thus, all

observations after 2015 are dropped. Confidence intervals are calculated using Conley–Taber test statistics.

+, *, **, and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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Appendix Table G.18: Estimation of Learning Curve Parameters (in Days)

Class III Class II
Coeff./SE Coeff./SE

γ 0.075* 0.032***
(0.033) (0.004)

log(β(Rc)) 6.678*** 4.481***
(0.326) (0.031)

N 631 84,909
Clusters 94 9,067
Device Type Effects Yes No
Firm Effects Yes Yes
Device Type by Year Effects No Yes
SEs in Parentheses Clustered Clustered

Note: The table presents the estimates of equation F.1, which estimates the learning coefficient γ and the

baseline time requirement β(Rc) for both Class III original PMA approvals (Column 1) and Class II 510(k)

approvals (Column 2) of unique devices via OLS. The estimates for Class III devices are calculated by only

considering the approval times of filed original PMAs by firms with at least one day of prior experience

navigating FDA regulations. The estimates for Class II devices are calculated by only considering the

approval times of 510(k) documents for unique devices that were submitted by firms with at least one day

of prior experience navigating FDA regulations. Prior experience is calculated using approval times when

filing any prior documentation type (510(k) or PMAs). Standard errors are clustered at the firm level. +,

*, **, and *** correspond with statistical significance at the 0.10, 0.05, 0.01, and 0.001 levels, respectively.
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