Discussion of "Dynamic Price Competition: Theory and Evidence from Airline Markets" by Hortaçsu, Öry and Williams

Juan Ortner

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Objective

 Study dynamic pricing under oligopoly, in settings with restricted capacity and sale deadlines

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

Objective

 Study dynamic pricing under oligopoly, in settings with restricted capacity and sale deadlines

Main results

- Theory: duopoly quite different from monopoly!
- Pricing depends on own scarcity and competitor's scarcity

 prices may be strategic complements or substitutes

Summary

Objective

 Study dynamic pricing under oligopoly, in settings with restricted capacity and sale deadlines

Main results

- Theory: duopoly quite different from monopoly!
- Pricing depends on own scarcity and competitor's scarcity

 prices may be strategic complements or substitutes
- Empirics: estimate model using comprehensive data
- Uniform pricing leads to higher CS and welfare than dynamic pricing; pricing heuristics also lead to higher CS and welfare

Model

- *n* firms sell products J = {1,...,J} products are imperfect substitutes, must be sold by date T
- ► At each $t = 0, \Delta, ..., T \Delta, T$, each firm f chooses prices $(p_{f,j})_{j \in \mathcal{J}_f}$, where $\mathcal{J}_f \subset \mathcal{J}$ are the products that f sells
- At each *t*, a single consumer arrives with prob Δλ_t > 0; given **p** = (p_j)_{j∈J}, purchases good *j* with prob s_j(**p**; θ_t, A_t)

► Initial capacities K₀ = (K_{0,j})_{j∈J}; capacities publicly observed, reduced with each sale

Monopoly

- Suppose there is a single firm
- Monopolist sets prices

$$\mathbf{p}^M = \arg\max_{\mathbf{p}} \sum_j s_j(\mathbf{p})(p_j - \omega_{j,t}(\mathbf{K})),$$

where

$$\omega_{j,t}(\mathbf{K}) = \Pi_{M,t+\Delta}(\mathbf{K}) - \Pi_{M,t+\Delta}(\mathbf{K} - \mathbf{e}_j)$$

is change in continuation profits if K_i falls by one unit

 \blacktriangleright As $\Delta \rightarrow$ 0, firm profits converge; limiting profits solve a well-behaved ODE

Duopoly

1

- Suppose now there are two firms, two products, each firm controls one
- Firm f now sets price p_f:

$$\mathcal{p}_f = \arg \max_{\mathcal{p}_f} s_f(\mathcal{p}_f, \mathcal{p}_{-f})(\mathcal{p}_f - \omega^f_{f,t}(\mathbf{K})) - s_{-f}(\mathcal{p}_f, \mathcal{p}_{-f})\omega^f_{-f,t}(\mathbf{K}),$$

where $\omega_{\tilde{f},t}^{f}(\mathbf{K})$ is change in *f*'s continuation profits if $K_{\tilde{f}}$ falls by one unit

- Firm f now evaluates the effect it's price has on the chances -f makes a sale; prices may be substitutes or complements; there can be multiple equilibria
- Under certain conditions, profits also converge as $\Delta \rightarrow 0$; limiting profits also solve an ODE

Empirical Analysis

- Comprehensive booking data: prices, routes, bookings,....
- Focus on routes in which only two firms compete (58 routes)
- Estimate consumers' arrival process, and their demand

 → recover equilibrium prices

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Counterfactuals

- Compare equilibrium outcomes with outcomes under:
 (i) uniform pricing; (ii) pricing heuristics
- Uniform pricing leads to higher CS and welfare than dynamic pricing, and to lower revenue consumers who arrive later, and who have high valuation, get the good at a lower price
- Pricing heuristics also lead to higher CS and welfare than dynamic pricing

Comment I: Other Pricing Heuristics?

- Pricing dynamics under duopoly are complicated;

 → firms consider own and competitor's scarcity effects
- In practice, airlines likely use simpler pricing rules; this motivates the "pricing heuristics" counterfactuals

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Comment I: Other Pricing Heuristics?

- Pricing dynamics under duopoly are complicated;

 → firms consider own and competitor's scarcity effects
- In practice, airlines likely use simpler pricing rules; this motivates the "pricing heuristics" counterfactuals
- An alternative pricing rule: firms set prices optimally, assuming competitors' capacities evolve exogenously:

$$p_f = \arg \max_{p_f} s_f(p_f, p_{-f})(p_f - \omega_{f,t}^f(\mathbf{K}))$$

Comment I: Other Pricing Heuristics?

- ► Pricing dynamics under duopoly are complicated; → firms consider own and competitor's scarcity effects
- In practice, airlines likely use simpler pricing rules; this motivates the "pricing heuristics" counterfactuals
- An alternative pricing rule: firms set prices optimally, assuming competitors' capacities evolve exogenously:

$$p_f = \arg \max_{p_f} s_f(p_f, p_{-f})(p_f - \omega_{f,t}^f(\mathbf{K}))$$

- Equilibrium dynamics under such pricing rule?
- Which pricing rule explains data better? benchmark? heuristics? this other rule?

Comment II: Heterogeneity Across Markets?

 Estimation assumes some parameters are constant across routes (e.g., demand sensitivity α_t, preference correlation σ)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Comment II: Heterogeneity Across Markets?

- Estimation assumes some parameters are constant across routes (e.g., demand sensitivity α_t, preference correlation σ)
- ► How similar/different are the routes in the data? all between small cities? are there large city ↔ small city routes? how many are on weekdays, weekends?

Comment II: Heterogeneity Across Markets?

- Estimation assumes some parameters are constant across routes (e.g., demand sensitivity α_t, preference correlation σ)
- ► How similar/different are the routes in the data? all between small cities? are there large city ↔ small city routes? how many are on weekdays, weekends?
- Estimate model separately for different types of routes (e.g., weekday flights vs. weekend flights; small cities vs. large cities)?

Comment III: Dynamic vs. Uniform Pricing

In contrast to previous studies, uniform pricing leads to higher CS and welfare than dynamic pricing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Comment III: Dynamic vs. Uniform Pricing

- In contrast to previous studies, uniform pricing leads to higher CS and welfare than dynamic pricing
- But uniform pricing also leads to lower firm revenue
- A switch to uniform pricing may have other welfare-reducing effects: less frequency of flights, worse service, worse times...

Comment IV: Frequent Flyers?

- Pricing dynamics likely different when buyers face switching costs
- Does dataset contain information on buyers' membership to loyalty programs? share of frequent flyers? share that switches between airlines?
- Can model and estimation be modified to account for frequent flyers? (e.g., different types of buyers, depending on their loyalty status)