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Review of Diversion Ratios



Diversion Ratios

The diversion ratio is one of the best ways we have to measure competition between
products.

• Raise the price of product j and count the number of consumers who leave
• The diversion ratio Dj→k is the fraction of leavers who switch to the substitute k.
• A higher value of Dj→k indicates closer substitutes.
• Useful because it arises in the multi-product Bertrand FOC:

pj (1 + 1/ϵjj(p))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Marginal Revenue

= cj + ∑
k∈Jf ∖j

(pk − ck) ⋅Dj→k(p).

• Dj→k ≡ ∂qk
∂pj
/ ∣∂qj

∂pj
∣.

• Can also write as Dj→k ≡
ϵkj
∣ϵjj ∣ ⋅

qj
qk
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General Advantages of Diversion

• Diversion allows for unit-free comparisons (shares sum to one).
• While own-elasticities are unit-free, this is not true of cross-elasticities.
• Is ϵjk = .01 or ϵjk = .03 a better substitute? We can’t tell.

• Need ϵjk ⋅ sk to know.
• But ϵjk ⋅

sk
pj
= Dj→k .

• The fraction of switchers choosing k allows comparisons.

• If tempted to report cross elasticities, consider reporting diversion ratios instead.
• Data on diversion can provide helpful variation for demand estimation.

• Petrin (2002), MicroBLP (2004), Grieco, Murry, Yurukoglu (2022)

• Diversion can be a helpful complement to merger simulation.

2



Advantages of Diversion over Concentration (Farrell and Shapiro, 2010)

Diversion vs. concentration:

• Most goods and services are differentiated.
• Merger policy should aim to measure the substitutability of the differentiated

offerings of competing firms.
• Concentration measures typically struggle to do this:

• not all firms “in the market” produce products that are equally good substitutes
• some firms “outside the market” may produce products that compete.

• If merging parties know they compete more closely than market-share analysis would
predict, we’ll have under-enforcement.
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Diversion as a Treatment Effect (Conlon Mortimer RJE 2021)

Diversion Ratio = fraction of consumers who switch from purchasing a product j to
purchasing a substitute k (following an increase in the price of j)

Treatment not purchasing product j
Outcome fraction of consumers who switch from j → k.

Compliers consumers who would have purchased at zj but do not purchase at z ′j .

This admits a Wald estimator:

Dj→k(x) =
E[qk ∣Z = z ′j ] −E[qk ∣Z = zj]
E[qj ∣Z = zj] −E[qj ∣Z = z ′j ]
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A LATE Theorem (Conlon Mortimer RJE 2021)

We also showed that most discrete-choice models yield the following representation:

Dzj→z ′j
j→k (x) = ∫

z ′j

zj
Dj→k,i(x)wi(zj , z ′j , x)dFi with wi(zj , z ′j , x) =

sij(zj , x) − sij(z ′j , x)
sj(zj , x) − sj(z ′j , x)

• Different interventions zj → z ′j (prices, quality, characteristics, assortment) give
different weights wi(zj , z ′j , x) and thus different local average diversion ratios.

• Individual Diversion Ratios Dj→k,i(x) don’t vary with the intervention
(determined only by how i ranks 2nd and 3rd choices).

• That paper establishes the decomposition above and derives some properties.
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Properties of Diversion Ratios (Conlon Mortimer RJE 2021)

∫
z ′j

zj
Dj→k,i(x)wij(zj , z ′j , x)∂Fi = ∫

z ′j

zj

sik(x)
1 − sij(x)

wij(zj , z ′j , x)∂Fi = ∫ sik(x) w̃ij(zj , z ′j , x)∂Fi

where sij is probability that i chooses j or Pr(uij > uik) for all k ∈ J and k ≠ j

• For any (mixed) logit Dj→k,i(x) = sik
1−sij

• For plain logit Dj→k,i = sk
1−sj

for all i
• imposes constant diversion
• weights don’t matter
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Weights (Conlon Mortimer RJE 2021)

Weights on Treatment Effects parameters for RC logit:

w̃ij(zj , z ′j , x)∝
second-choice data sij(x)

1−sij(x)
price change ∂

∂pj
sij(x) ⋅ ∣αi ∣

characteristic change ∂
∂xj

sij(x) ⋅ ∣βi ∣
small quality change ∂

∂ξj
sij(x)

finite price change wi(pj , p′j , x) ∣sij(p′j ,x)−sij(pj ,x)∣
1−sij(x)

finite quality change wi(ξj , ξ′j , x) ∣sij(ξ′j ,x)−sij(ξj ,x)∣
1−sij(x)

Price interventions put more weight on the most price-sensitive types,
Quality interventions put more weight on the most quality-sensitive types, etc.
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Motivating the Use of
Second-Choice Data



Estimating Preferences and Substitution Patterns from Second-Choice Data

Joint work with Christopher T. Conlon (NYU) and Paul Sarkis (Boston College)

There are many cases where we observe second-choice data: (the probability that i
chooses k as their second choice conditional on choosing j as their first choice):

• Rank-ordered lists (market design, school choice)
• Customer Surveys: (If you didn’t buy a Camry what would you buy?)
• Conjoint analyses in Marketing
• A/B tests showing different search results to different customers.
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Research Question (Conlon, Mortimer, Sarkis)

We consider a problem where we observe some aggregate shares S = [S1, . . . ,SJ] or sales
Qj , and some elements (j , k) ∈ OBS of DT a matrix of (second-choice) diversion ratios.

DT =

VZ ATT TMo S Other
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

0 ? 0.30 0.30 ? VZ
? 0 0.45 0.15 0 ATT
? ? 0 0.45 ? TMo
? ? 0.20 0 ? S
? ? 0.05 0.10 0 Other

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.35
0.30
0.20
0.15
0.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S

Can we fill in the missing elements?
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How do we fill in missing elements?

Typical Approach: estimate a parametric model.

• Multi-product demand with unrestricted matrices of (J + 1)2 cross-elasticities (such
as AIDS) is often hopeless with large J . Unrestricted diversion likely equally hopeless.

• Plain logit places strong restrictions: Dj→k = sk
1−sj

.

• Nested logit Dj→k =
sk ∣g

Z(σ,sg)−sj ∣g
(same nest) where σ is nesting parameter.
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How do we fill in missing elements?

Mixed Logit: Explain substitution patterns using observed characteristics

• Typically assume independent normal RC
• Two products with similar x1 and high substitution → larger σ1.
• Two products with similar x2 and low substitution → smaller σ2.

McFadden and Train (2000) show a mixed logit uij = βixj + εij is fully flexible

1. This depends on f (βi) heterogeneity being nonparametric
2. And a sufficient set of characteristics X to explain D

Much work on (1), less attention on (2).
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How do we fill in missing elements?

Our paper: Consider a low-rank approximation to D

• Limit the rank of D directly in product space instead of controlling complexity with
product characteristics and parametric restrictions on random coefficients.

• Allow for sparsity in individual shares and substitution patterns, with possibility of
generating extreme patterns for top substitutes if necessary.

Works well in other domains (CS for image recovery/compression), and we show it has a
sensible economic interpretation.
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Low Rank Approximations: Image Compression

Image of Camille Jordan (1838-1922)

A ≈ U266×25 ⋅Σ25×25 ⋅V25×266
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Completing the Matrix: D for Autos

Raw Diversion from 2nd Choices Diversion Matrix CMS (I=13, pen. weights) Error Matrix, Raw vs CMS (I=13, pen. weights)



When might we want to do this?

• We have access to aggregate market shares and some (but not all) second-choice
data (microBLP (2004); Grieco, Murry, Yurukoglou (2022)).

• We are interested in estimating substitution patterns across all sets of products but
have data on only a subset

• shares of largest cellular phone providers, and number porting or switching data for
merging parties only.

• survey data on “If this Tesco were to close where would you shop” (as UK CMA asks).
• win-loss data from merging parties only (Qiu, Sawada, Sheu (2022))

• We lack sufficient variation in prices, other covariates, to estimate demand system.
• Product characteristics do not accurately capture substitution across products.
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Setup and Model



Assumptions

• Consumers make discrete choices from set J
• Utility is given by semi-parametric logit

uij = Vij + εij

sij = Pr(uij > uik) for all k ∈ J , k ≠ j .

• εij is Type I extreme value.
• Goal: estimate f (Vij).
• Strategy: Approximate with finite mixture with weights πi .
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Linear Algebra Notation

• Individual i ’s share for each choice given by si = [si0, si1, . . . , siJ].
• Aggregate shares by ∑I

i=1 πi ⋅ si = s.
• The matrix of individual diversion ratios is given by Di = si ⋅ [ 1

(1−si)]
T

.

We write the (J + 1) × (J + 1) matrix of second-choice diversion as:

Dj→k =
I
∑
i=1

πi ⋅Dj→k,i ⋅wi =
I
∑
i=1

πi ⋅
sik

1 − sij
⋅
sij

sj

D =
⎛
⎝

I
∑
i=1

πi ⋅ si ⋅ [
1

(1 − si)
]

T
⋅ diag(si)

⎞
⎠
⋅ diag(s)−1

=
⎛
⎝

I
∑
i=1

πi ⋅ si ⋅ [
si

(1 − si)
]

T⎞
⎠
⋅ diag(s)−1
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Notation continued

Under relatively general conditions, second-choice diversion can be written as:

diag(s) ⋅D =
I
∑
i=1

πi ⋅

⎡⎢⎢⎢⎢⎢⎢⎣

∣
si
∣

⎤⎥⎥⎥⎥⎥⎥⎦

⋅ [ si
1−si

]

• Each individual diversion ratio is of rank one since it is the outer product of si with
itself (and some diagonal “weights”).

• The (unrestricted) matrix of diversion ratios D is (J + 1) × (J + 1).
• Logit restricts D to be of rank one. Nested logit of rank ≤ G (the number of

non-singleton nests). Mixed logit to rank(D) ≤ I (but bound is likely uninformative).
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Setting

• Assume that we observe aggregate market shares Sj and some subset of the diversion
matrix Dj→k for (j , k) ∈ OBS.

• Goal: Can we obtain an estimate for the remainder of the matrix D?
• Related to CS literature on matrix completion methods.
• Useful tip from linear algebra: nuclear norm: ∣∣A∣∣∗ = ∑i σi(A) where σi(A) are singular

values. This works like a continuous approximation to rank.
• We don’t need to do nuclear norm penalization since discrete choice provides enough

structure.
• Low-rank approximation is consistent with utility maximization under discrete choice.

• Theoretical interpretation as indirect utilities, not just mech. rank reduction (ie: PCA).
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Our Semiparametric Problem

min
sij ,πi

∑
(j,k)∈OBS

c̃j (Dj→k −Dj→k)2 +∑
j

cj (Sj −∑
i

πi ⋅ sij)
2

+ λ ∥πi∥2

subject to Dj→k =
I
∑
i=1

πi ⋅
sik

1 − sij
⋅
sij

sj

0 ≤ sij , πi , sj , Dj→k ≤ 1,
I
∑
i=1

πi = 1, ∑
j

sij = 1

• Use cross validation to select # of types I.

• With λ > 0 we penalize HHI of wi and becomes elastic net

• Weights c̃j and cj are proportional to ln qj
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Discussion

• Goal: a good predictive model for unobserved elements of D.
• We are worried about overfitting so we use cross validation (withholding columns of
D) to select number of types I.

• Otherwise we would always prefer the more complicated model
• Compare models based on out-of-sample fit (RMSE, MAD).

• Model may or may not be sparse sij = 0 for some (i , j)
• Could be that consumer i doesn’t consider j .
• Or consequence that sij ≥ 0 and ∑j sij = 1 amounts to an L1 penalty ∑j ∣sij ∣ ≤ 1

• Model is a semiparametric logit for Vij ∈ R (don’t rule out Vij → ±∞):

uij = Vij + εij , sij =
eVij

1 +∑k eVik
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Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

min
πi≥0
∑
j
(Sj −∑

i
πi ⋅ ŝij(β̂i))

2
subject to ∑

i
πi = 1

ŝij(β̂i) =
eβ̂i xj

1 +∑j ′ eβ̂i x ′j

• Draw βi ∼ G(βi) from a prior distribution.
• Solved in characteristic space with a semi-parametric form for F(βi).
• Often produces very sparse models πi = 0 (for all but 50 of 1000 simulated

consumers).
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Comparison: Raval et al. (2017, 2020)

• Cut data into bins (zip, income, age, gender)
• Observe shares (hospital demand) within each bin sg(i),j
• A separate plain logit for each bin with only ξj as the common parameter.
• Use second choices from hospital closures (natural disasters) to compare models.

sg(i),j =
eβg xj+ξj

1 +∑j ′ eβg xj′+ξj′
, Dj→k,i =

sg(i),k
1 − sg(i),j
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Comparison: Latent Class Logit (Greene and Hensher 2003)

Most similar to what we’re doing.

• Estimate separate βi for each class.
• Estimate proportion of each class πi .
• Estimating finite mixtures is tricky and usually requires EM.

sk(π, β) =
I
∑
i=1

πi ⋅ (
eβi xij+ξj

1 +∑k eβi xik+ξk
)
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Monte Carlo



Generating Data

• Fit (i) nested logit, (ii) RC logit to data on vending machines from Conlon and
Mortimer (JPE, 2021).

• Generate fake sales and diversion from those parameter estimates.
• J = 45 products; T = 250 markets; with 30 randomly selected products in each.

Market size M = 1000 per market. Nesting parameter is ρ = 0.25.
• Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.

• Estimate a variety of misspecified parametric models: RC on nest dummies, RC on
characteristics (Salt, Sugar, Nut Content), and our semiparametric estimator.

• Include m≪ J columns of Dj→k as extra moments.
• Compare out-of-sample predicted Diversion Ratios.

• MAD: Median (∣Dj→k − D̂j→k ∣) for (j , k) ∈ {Validation}.
• RMSE:

√
1
n ∑(j,k)∈{Validation} ∣Dj→k − D̂j→k ∣2
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Monte Carlo: DGP is Nested Logit

1 2 3 4 5 6 7 8 9

N of simulated consumers

0.2

0.4

0.6

0.8

M
A

D

Out-of-sample MAD Comparison
6 cols given
8 cols given
10 cols given
RCC
RCC + 5 cols
RCN
RCN + 5 cols

1 2 3 4 5 6 7 8 9

N of simulated consumers

0.0

0.5

1.0

1.5

2.0

R
M

S
E

Out-of-sample RMSE Comparison
6 cols given
8 cols given
10 cols given
RCC
RCC + 5 cols
RCN
RCN + 5 cols

• RCC is mis-specified
• Diversion Moments improve efficiency of RCN
• I ≥ 4 does a pretty good job.
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Monte Carlo: DGP is RC on chars

1 2 3 4 5 6 7

N of simulated consumers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E

Out-of-sample MAD Comparison
6 cols given
8 cols given
10 cols given
Logit
RCN
RCN + 5 cols

1 2 3 4 5 6 7

N of simulated consumers

0.00

0.25

0.50

0.75

1.00

1.25

R
M

S
E

Out-of-sample RMSE Comparison
6 cols given
8 cols given
10 cols given
Logit
RCN
RCN + 5 cols

• RCN is mis-specified
• I ≥ 4 does a pretty good job.
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Application to Autos Data



Description of Autos Data

• Subset of data from Grieco, Murry and Yurukoglu (2022).
• Focus on one year of sales from 2015

• Aggregate sales observed at the model-year level from Ward’s Automotive.
• Second choices from MaritzCX survey (53,328 purchases)
• Construct J = 181 products by consolidating all models below 15,000 annual sales.

• Consolidated products are: Car/Truck by Low/Mid/High prices (6 products)

• Same Goal: Predict unobserved second-choice data without characteristics.
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MaritzCX Survey data (173 Cars and Trucks)

Raw Diversion from 2nd Choices



MaritzCX Survey data (66 Cars)

convertible low
convertible mid
convertible high

coupe mid
coupe high
coupe low

camry 
accord 
corolla 

civic 
altima 
fusion 

elantra 
sonata 
cruze 

sentra 
malibu 
optima 

200 series

sedan high
sedan mid
sedan low

focus 

hatchback mid
hatchback high
hatchback low

cuv low
cuv mid
cuv high

wagon high
wagon low

suv low
suv mid
suv high
pu high
pu mid
pu low

van high
van low

van mid

Raw Diversion from 2nd Choices



Cross Validation: Model Selection

2 3 4 5 6 7 8 9 10 11 13 15 17

N of individuals

1.0

1.2

1.4

1.6

1.8

M
A

D

Out-of-sample MAD Fit, Cars data, 66 products

Free weights
Pen. weights

2 3 4 5 6 7 8 9 10 11 13 15 17

N of individuals

2.1

2.4

2.7

3.0

3.3

R
M

S
E

Out-of-sample RMSE Fit, Cars data, 66 products

Free weights
Pen. weights

Dots are cross-validated means.
Seems to select I = 13 (bias-variance tradeoff).



Cross Validation: Model Selection
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Out-of-sample % Correct Pairwise Fit, Cars data, 66 products
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MaritzCX Survey data (66 Cars)

Raw Diversion from 2nd Choices Diversion Matrix CMS (I=1, pen. weights)

Diversion Matrix CMS (I=2, pen. weights) Diversion Matrix CMS (I=13, pen. weights)



Application to Vending Data



Description of Vending Data

• Same data as Conlon and Mortimer (JPE, 2021).
• 66 Vending Machines in white-collar office buildings in downtown Chicago
• About 35-40 snack products in each building
• 6 exogenous product removals (2.5-3.5 weeks long each)

• Snickers, M&M Peanut, Doritos Nacho, Cheetos, Animal Crackers, Famous Amos
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Diversion Observed for 6 Products:

Diversion Matrix, Data 
 (OG diversion at bottom)

0

5

10

15

20

25

30

35



Cross Validation: Model Selection

1 2 3 4 5 6

N of simulated consumers

0.4
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M
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Out-of-sample MAD Comparison

CMS (free)
CMS (pen)
Logit
RCC
RCN

1 2 3 4 5 6

N of simulated consumers

2.00
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2.75

3.00

3.25

3.50

3.75

R
M

S
E

Out-of-sample RMSE Comparison

CMS (free)
CMS (pen)
Logit
RCC
RCN

Out-of-sample fit (mostly) beats in-sample fit of parametric models.
Error bars are across all holdout experiments/ Dots are cross-validated means.
Seems to select I = 2 or I = 3 (bias-variance tradeoff).
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Diversion Matrix: Estimates Comparison λ = 0

Data (Rank= 6) CMS (Rank= 2)

CMS (Rank= 3) CMS (Rank= 4)
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Diversion Matrix: Estimates Comparison λ = 0

Data (Rank= 6) CMS (Rank= 3)

RCC (Rank= 10) RCN (Rank= 7)
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Network Structure of Vending Products: Semiparametric I = 3

Snyders **

Cheetos
Ruffles **

Dorito Nacho

Rold Gold **

Baked **

Salty Other **

Sun ChipM&M Peanut

Snickers
Twix Caramel

Raisinets

Reeses PB Cups

Nonchoc Other **

Twizzlers

ZAnimal Cracker

CC Fam Amos

Grandmas CC

Rasbry Knotts

Nabisco **

Pop-Tarts **

Nature Valley **

−6

−5.5

−5

−4.5

−4

−3.5

lo
g(

sh
ar

e)

Diversion Network b/w Vending products, CMS (I=3), edges = diversion > 4.5%



Extensions and Conclusion



Extensions

• What about (exogenous) price or quality changes?
Expression for Dj→k changes slightly.

• Want to add covariates or endogenous prices?
Straightforward to run an IV regression:

log sij − log si0 = xj βi + ξj

Test how much we lose using only a basis in f (x1, x2).
• Optimal Experimentation: Which product is most informative about D?

• D looks like a transition matrix with a network structure
• Relates to measures of centrality / eigenvalues.
• Cross elasticities are not a well-behaved network.
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Conclusion

• Allowing for flexible unobserved types can give more accurate substitution patterns
• Particularly true in capturing closeness of best substitutes not captured by product

characteristics (e.g. Snickers and Peanut M&M’s vs Snickers and Milky Way)

• Using observable substitution patterns (experiments or surveys) and “completing”
the (J + 1) × (J + 1) matrix with a low-rank approximation looks promising.

• How much information on second choices is “enough”?
• Which products are important for completing substitution patterns?
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