## 2022 Federal Trade Commission Microeconomics Conference: Diversion and the Use of Second-Choice Data

Julie Holland Mortimer (University of Virginia \& NBER)
November 3rd, 2022

Review of Diversion Ratios

## Diversion Ratios

The diversion ratio is one of the best ways we have to measure competition between products.

- Raise the price of product $j$ and count the number of consumers who leave
- The diversion ratio $D_{j \rightarrow k}$ is the fraction of leavers who switch to the substitute $k$.
- A higher value of $D_{j \rightarrow k}$ indicates closer substitutes.
- Useful because it arises in the multi-product Bertrand FOC:

$$
\underbrace{p_{j}\left(1+1 / \epsilon_{j j}(\mathbf{p})\right)}_{\text {Marginal Revenue }}=c_{j}+\sum_{k \in \mathcal{J}_{f} \backslash j}\left(p_{k}-c_{k}\right) \cdot D_{j \rightarrow k}(\mathbf{p}) .
$$

- $\quad D_{j \rightarrow k} \equiv \frac{\partial q_{k}}{\partial p_{j}}\left|\frac{\partial q_{j}}{\partial p_{j}}\right|$.
- Can also write as $D_{j \rightarrow k} \equiv \frac{\epsilon_{k j}}{\left|\epsilon_{j j}\right|} \cdot \frac{q_{j}}{q_{k}}$


## General Advantages of Diversion

- Diversion allows for unit-free comparisons (shares sum to one).
- While own-elasticities are unit-free, this is not true of cross-elasticities.
- Is $\epsilon_{j k}=.01$ or $\epsilon_{j k}=.03$ a better substitute? We can't tell.
- Need $\epsilon_{j k} \cdot s_{k}$ to know.
- But $\epsilon_{j k} \cdot \frac{S_{k}}{p_{j}}=D_{j \rightarrow k}$.
- The fraction of switchers choosing $k$ allows comparisons.
- If tempted to report cross elasticities, consider reporting diversion ratios instead.
- Data on diversion can provide helpful variation for demand estimation.
- Petrin (2002), MicroBLP (2004), Grieco, Murry, Yurukoglu (2022)
- Diversion can be a helpful complement to merger simulation.


## Advantages of Diversion over Concentration (Farrell and Shapiro, 2010)

Diversion vs. concentration:

- Most goods and services are differentiated.
- Merger policy should aim to measure the substitutability of the differentiated offerings of competing firms.
- Concentration measures typically struggle to do this:
- not all firms "in the market" produce products that are equally good substitutes
- some firms "outside the market" may produce products that compete.
- If merging parties know they compete more closely than market-share analysis would predict, we'll have under-enforcement.


## Diversion as a Treatment Effect (Conlon Mortimer RJE 2021)

Diversion Ratio $=$ fraction of consumers who switch from purchasing a product $j$ to purchasing a substitute $k$ (following an increase in the price of $j$ )

Treatment not purchasing product $j$
Outcome fraction of consumers who switch from $j \rightarrow k$.
Compliers consumers who would have purchased at $z_{j}$ but do not purchase at $z_{j}^{\prime}$.
This admits a Wald estimator:

$$
D_{j \rightarrow k}(x)=\frac{\mathbb{E}\left[q_{k} \mid Z=z_{j}^{\prime}\right]-\mathbb{E}\left[q_{k} \mid Z=z_{j}\right]}{\mathbb{E}\left[q_{j} \mid Z=z_{j}\right]-\mathbb{E}\left[q_{j} \mid Z=z_{j}^{\prime}\right]}
$$

## A LATE Theorem (Conlon Mortimer RJE 2021)

We also showed that most discrete-choice models yield the following representation:

$$
D_{j \rightarrow k}^{z_{j} \rightarrow z_{j}^{\prime}}(x)=\int_{z_{j}}^{z_{j}^{\prime}} D_{j \rightarrow k, i}(x) w_{i}\left(z_{j}, z_{j}^{\prime}, x\right) d F_{i} \text { with } w_{i}\left(z_{j}, z_{j}^{\prime}, x\right)=\frac{s_{i j}\left(z_{j}, x\right)-s_{i j}\left(z_{j}^{\prime}, x\right)}{s_{j}\left(z_{j}, x\right)-s_{j}\left(z_{j}^{\prime}, x\right)}
$$

- Different interventions $z_{j} \rightarrow z_{j}^{\prime}$ (prices, quality, characteristics, assortment) give different weights $w_{i}\left(z_{j}, z_{j}^{\prime}, x\right)$ and thus different local average diversion ratios.
- Individual Diversion Ratios $D_{j \rightarrow k, i}(x)$ don't vary with the intervention (determined only by how $i$ ranks 2 nd and 3 rd choices).
- That paper establishes the decomposition above and derives some properties.


## Properties of Diversion Ratios (Conlon Mortimer RJE 2021)

$$
\int_{z_{j}}^{z_{j}^{\prime}} D_{j \rightarrow k, i}(x) w_{i j}\left(z_{j}, z_{j}^{\prime}, x\right) \partial F_{i}=\int_{z_{j}}^{z_{j}^{\prime}} \frac{s_{i k}(x)}{1-s_{i j}(x)} w_{i j}\left(z_{j}, z_{j}^{\prime}, x\right) \partial F_{i}=\int s_{i k}(x) \widetilde{w}_{i j}\left(z_{j}, z_{j}^{\prime}, x\right) \partial F_{i}
$$

where $s_{i j}$ is probability that $i$ chooses $j$ or $\operatorname{Pr}\left(u_{i j}>u_{i k}\right)$ for all $k \in \mathcal{J}$ and $k \neq j$

- For any (mixed) logit $D_{j \rightarrow k, i}(x)=\frac{s_{i k}}{1-s_{i j}}$
- For plain logit $D_{j \rightarrow k, i}=\frac{s_{k}}{1-s_{j}}$ for all $i$
- imposes constant diversion
- weights don't matter


## Weights (Conlon Mortimer RJE 2021)

Weights on Treatment Effects parameters for RC logit:

|  | $\widetilde{w}_{i j}\left(z_{j}, z_{j}^{\prime}, x\right) \propto$ |
| ---: | :---: |
| second-choice data | $\frac{s_{i j}(x)}{1-s_{i j}(x)}$ |
| price change $\frac{\partial}{\partial p_{j}}$ | $s_{i j}(x) \cdot\left\|\alpha_{i}\right\|$ |
| characteristic change $\frac{\partial}{\partial x_{j}}$ | $s_{i j}(x) \cdot\left\|\beta_{i}\right\|$ |
| small quality change $\frac{\partial}{\partial \xi_{j}}$ | $s_{i j}(x)$ |
| finite price change $w_{i}\left(p_{j}, p_{j}^{\prime}, x\right)$ | $\frac{\left\|s_{i j}\left(p_{j}^{\prime}, x\right)-s_{i j}\left(p_{j}, x\right)\right\|}{1-s_{i j}(x)}$ |
| finite quality change $w_{i}\left(\xi_{j}, \xi_{j}^{\prime}, x\right)$ | $\frac{\left\|s_{i j}\left(\xi_{j}^{\prime}, x\right)-s_{i j}\left(\xi_{j}, x\right)\right\|}{1-s_{i j}(x)}$ |

Price interventions put more weight on the most price-sensitive types, Quality interventions put more weight on the most quality-sensitive types, etc.

Motivating the Use of
Second-Choice Data

## Estimating Preferences and Substitution Patterns from Second-Choice Data

Joint work with Christopher T. Conlon (NYU) and Paul Sarkis (Boston College)

There are many cases where we observe second-choice data: (the probability that $i$ chooses $k$ as their second choice conditional on choosing $j$ as their first choice):

- Rank-ordered lists (market design, school choice)
- Customer Surveys: (If you didn't buy a Camry what would you buy?)
- Conjoint analyses in Marketing
- A/B tests showing different search results to different customers.


## Research Question (Conlon, Mortimer, Sarkis)

We consider a problem where we observe some aggregate shares $\mathcal{S}=\left[\mathcal{S}_{1}, \ldots, \mathcal{S}_{J}\right]$ or sales $\mathcal{Q}_{j}$, and some elements $(j, k) \in \mathrm{OBS}$ of $\mathcal{D}^{T}$ a matrix of (second-choice) diversion ratios.

$$
\mathcal{D}^{T}=\left(\begin{array}{ccccc}
\text { VZ } & \text { ATT } & \text { TMo } & \text { S } & \text { Other } \\
0 & ? & 0.30 & 0.30 & ? \\
? & 0 & 0.45 & 0.15 & 0 \\
? & ? & 0 & 0.45 & ? \\
? & ? & 0.20 & 0 & ? \\
? & ? & 0.05 & 0.10 & 0
\end{array}\right) \text { OZ } \begin{gathered}
\text { Other } \\
\text { TMo }
\end{gathered},\left[\begin{array}{c}
0.35 \\
0.30 \\
0.20 \\
0.15 \\
0.05
\end{array}\right]=\mathcal{S}
$$

Can we fill in the missing elements?

## How do we fill in missing elements?

Typical Approach: estimate a parametric model.

- Multi-product demand with unrestricted matrices of $(J+1)^{2}$ cross-elasticities (such as AIDS) is often hopeless with large $J$. Unrestricted diversion likely equally hopeless.
- Plain logit places strong restrictions: $D_{j \rightarrow k}=\frac{s_{k}}{1-s_{j}}$.
- Nested logit $D_{j \rightarrow k}=\frac{s_{k \mid g}}{Z\left(\sigma, s_{g}\right)-s_{j \mid g}}$ (same nest) where $\sigma$ is nesting parameter.


## How do we fill in missing elements?

Mixed Logit: Explain substitution patterns using observed characteristics

- Typically assume independent normal RC
- Two products with similar $x_{1}$ and high substitution $\rightarrow$ larger $\sigma_{1}$.
- Two products with similar $x_{2}$ and low substitution $\rightarrow$ smaller $\sigma_{2}$.

McFadden and Train (2000) show a mixed logit $u_{i j}=\beta_{i} x_{j}+\varepsilon_{i j}$ is fully flexible

1. This depends on $f\left(\beta_{i}\right)$ heterogeneity being nonparametric
2. And a sufficient set of characteristics $X$ to explain $\mathcal{D}$

Much work on (1), less attention on (2).

## How do we fill in missing elements?

Our paper: Consider a low-rank approximation to $\mathcal{D}$

- Limit the rank of $\mathcal{D}$ directly in product space instead of controlling complexity with product characteristics and parametric restrictions on random coefficients.
- Allow for sparsity in individual shares and substitution patterns, with possibility of generating extreme patterns for top substitutes if necessary.

Works well in other domains (CS for image recovery/compression), and we show it has a sensible economic interpretation.

## Low Rank Approximations: Image Compression

Image of Camille Jordan (1838-1922)


$$
A \approx U_{266 \times 25} \cdot \Sigma_{25 \times 25} \cdot V_{25 \times 266}
$$

## Completing the Matrix: $\mathcal{D}$ for Autos



## When might we want to do this?

- We have access to aggregate market shares and some (but not all) second-choice data (microBLP (2004); Grieco, Murry, Yurukoglou (2022)).
- We are interested in estimating substitution patterns across all sets of products but have data on only a subset
- shares of largest cellular phone providers, and number porting or switching data for merging parties only.
- survey data on "If this Tesco were to close where would you shop" (as UK CMA asks).
- win-loss data from merging parties only (Qiu, Sawada, Sheu (2022))
- We lack sufficient variation in prices, other covariates, to estimate demand system.
- Product characteristics do not accurately capture substitution across products.

Setup and Model

## Assumptions

- Consumers make discrete choices from set $\mathcal{J}$
- Utility is given by semi-parametric logit

$$
\begin{aligned}
u_{i j} & =V_{i j}+\varepsilon_{i j} \\
s_{i j} & =\operatorname{Pr}\left(u_{i j}>u_{i k}\right) \text { for all } k \in \mathcal{J}, k \neq j .
\end{aligned}
$$

- $\varepsilon_{i j}$ is Type I extreme value.
- Goal: estimate $f\left(V_{i j}\right)$.
- Strategy: Approximate with finite mixture with weights $\pi_{i}$.


## Linear Algebra Notation

- Individual $i$ 's share for each choice given by $\mathbf{s}_{\mathbf{i}}=\left[s_{i 0}, s_{i 1}, \ldots, s_{i J}\right]$.
- Aggregate shares by $\sum_{i=1}^{l} \pi_{i} \cdot \mathbf{s}_{\mathbf{i}}=\mathbf{s}$.
- The matrix of individual diversion ratios is given by $\mathbf{D}_{i}=\mathbf{s}_{\mathbf{i}} \cdot\left[\frac{1}{\left(1-s_{\mathbf{i}}\right)}\right]^{T}$.

We write the $(J+1) \times(J+1)$ matrix of second-choice diversion as:

$$
\begin{aligned}
D_{j \rightarrow k} & =\sum_{i=1}^{l} \pi_{i} \cdot D_{j \rightarrow k, i} \cdot w_{i}=\sum_{i=1}^{l} \pi_{i} \cdot \frac{s_{i k}}{1-s_{i j}} \cdot \frac{s_{i j}}{s_{j}} \\
\mathbf{D} & =\left(\sum_{i=1}^{l} \pi_{i} \cdot \mathbf{s}_{\mathbf{i}} \cdot\left[\frac{1}{\left(1-\mathbf{s}_{\mathbf{i}}\right)}\right]^{T} \cdot \operatorname{diag}\left(\mathbf{s}_{\mathbf{i}}\right)\right) \cdot \operatorname{diag}(\mathbf{s})^{-1} \\
& =\left(\sum_{i=1}^{l} \pi_{i} \cdot \mathbf{s}_{\mathbf{i}} \cdot\left[\frac{\mathbf{s}_{\mathbf{i}}}{\left(1-\mathbf{s}_{\mathbf{i}}\right)}\right]^{T}\right) \cdot \operatorname{diag}(\mathbf{s})^{-1}
\end{aligned}
$$

## Notation continued

Under relatively general conditions, second-choice diversion can be written as:

$$
\operatorname{diag}(\mathbf{s}) \cdot \mathbf{D}=\sum_{i=1}^{1} \pi_{i} \cdot\left[\begin{array}{l}
\mid \\
\mathbf{s}_{\mathbf{i}} \\
\mid
\end{array}\right] \cdot\left[\begin{array}{lll}
- & \frac{\mathbf{s}_{\mathbf{i}}}{1-\mathbf{s}_{\mathbf{i}}} & -
\end{array}\right]
$$

- Each individual diversion ratio is of rank one since it is the outer product of $\mathbf{s}_{\boldsymbol{i}}$ with itself (and some diagonal "weights").
- The (unrestricted) matrix of diversion ratios $\mathbf{D}$ is $(J+1) \times(J+1)$.
- Logit restricts $\mathbf{D}$ to be of rank one. Nested logit of rank $\leq G$ (the number of non-singleton nests). Mixed logit to $\operatorname{rank}(\mathbf{D}) \leq I$ (but bound is likely uninformative).


## Setting

- Assume that we observe aggregate market shares $\mathcal{S}_{j}$ and some subset of the diversion matrix $\mathcal{D}_{j \rightarrow k}$ for $(j, k) \in$ OBS.
- Goal: Can we obtain an estimate for the remainder of the matrix $\mathcal{D}$ ?
- Related to CS literature on matrix completion methods.
- Useful tip from linear algebra: nuclear norm: $\|A\|_{*}=\sum_{i} \sigma_{i}(A)$ where $\sigma_{i}(A)$ are singular values. This works like a continuous approximation to rank.
- We don't need to do nuclear norm penalization since discrete choice provides enough structure.
- Low-rank approximation is consistent with utility maximization under discrete choice.
- Theoretical interpretation as indirect utilities, not just mech. rank reduction (ie: PCA).


## Our Semiparametric Problem

$$
\begin{gathered}
\min _{s_{i j}, \pi_{i}} \sum_{(j, k) \in \mathrm{OBS}} \widetilde{c}_{j}\left(\mathcal{D}_{j \rightarrow k}-D_{j \rightarrow k}\right)^{2}+\sum_{j} c_{j}\left(\mathcal{S}_{j}-\sum_{i} \pi_{i} \cdot s_{i j}\right)^{2}+\lambda\left\|\pi_{i}\right\|^{2} \\
\quad \text { subject to } \quad D_{j \rightarrow k}=\sum_{i=1}^{l} \pi_{i} \cdot \frac{s_{i k}}{1-s_{i j}} \cdot \frac{s_{i j}}{s_{j}} \\
0 \leq s_{i j}, \pi_{i}, s_{j}, D_{j \rightarrow k} \leq 1, \quad \sum_{i=1}^{l} \pi_{i}=1, \quad \sum_{j} s_{i j}=1
\end{gathered}
$$

- Use cross validation to select \# of types $I$.
- With $\lambda>0$ we penalize $H H$ of $w_{i}$ and becomes elastic net
- Weights $\widetilde{c}_{j}$ and $c_{j}$ are proportional to $\ln q_{j}$


## Discussion

- Goal: a good predictive model for unobserved elements of $\mathcal{D}$.
- We are worried about overfitting so we use cross validation (withholding columns of $\mathcal{D})$ to select number of types $I$.
- Otherwise we would always prefer the more complicated model
- Compare models based on out-of-sample fit (RMSE, MAD).
- Model may or may not be sparse $s_{i j}=0$ for some $(i, j)$
- Could be that consumer $i$ doesn't consider $j$.
- Or consequence that $s_{i j} \geq 0$ and $\sum_{j} s_{i j}=1$ amounts to an $L_{1}$ penalty $\sum_{j}\left|s_{i j}\right| \leq 1$
- Model is a semiparametric logit for $V_{i j} \in \mathbb{R}$ (don't rule out $V_{i j} \rightarrow \pm \infty$ ):

$$
u_{i j}=V_{i j}+\varepsilon_{i j}, \quad s_{i j}=\frac{e^{V_{i j}}}{1+\sum_{k} e^{V_{i k}}}
$$

## Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

$$
\begin{array}{r}
\min _{\pi_{i} \geq 0} \sum_{j}\left(\mathcal{S}_{j}-\sum_{i} \pi_{i} \cdot \hat{s}_{i j}\left(\widehat{\beta}_{i}\right)\right)^{2} \text { subject to }
\end{array} \sum_{i} \pi_{i}=1 \quad \begin{aligned}
\widehat{s}_{i j}\left(\widehat{\beta}_{i}\right) & =\frac{e^{\widehat{\beta}_{i} x_{j}}}{1+\sum_{j^{\prime}} e^{\widehat{\beta}_{i} x_{j}^{\prime}}}
\end{aligned}
$$

- Draw $\beta_{i} \sim G\left(\beta_{i}\right)$ from a prior distribution.
- Solved in characteristic space with a semi-parametric form for $F\left(\beta_{i}\right)$.
- Often produces very sparse models $\pi_{i}=0$ (for all but 50 of 1000 simulated consumers).


## Comparison: Raval et al. $(2017,2020)$

- Cut data into bins (zip, income, age, gender)
- Observe shares (hospital demand) within each bin $s_{g(i), j}$
- A separate plain logit for each bin with only $\xi_{j}$ as the common parameter.
- Use second choices from hospital closures (natural disasters) to compare models.

$$
s_{g(i), j}=\frac{e^{\beta_{g} x_{j}+\xi_{j}}}{1+\sum_{j^{\prime}} e^{\beta_{g} x_{j^{\prime}}+\xi_{j^{\prime}}}}, \quad D_{j \rightarrow k, i}=\frac{s_{g(i), k}}{1-s_{g(i), j}}
$$

## Comparison: Latent Class Logit (Greene and Hensher 2003)

Most similar to what we're doing.

- Estimate separate $\beta_{i}$ for each class.
- Estimate proportion of each class $\pi_{i}$.
- Estimating finite mixtures is tricky and usually requires EM.

$$
s_{k}(\pi, \beta)=\sum_{i=1}^{l} \pi_{i} \cdot\left(\frac{e^{\beta_{i} x_{i j}+\xi_{j}}}{1+\sum_{k} e^{\beta_{i} x_{i k}+\xi_{k}}}\right)
$$

Monte Carlo

## Generating Data

- Fit (i) nested logit, (ii) RC logit to data on vending machines from Conlon and Mortimer (JPE, 2021).
- Generate fake sales and diversion from those parameter estimates.
- $J=45$ products; $T=250$ markets; with 30 randomly selected products in each. Market size $M=1000$ per market. Nesting parameter is $\rho=0.25$.
- Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.
- Estimate a variety of misspecified parametric models: RC on nest dummies, RC on characteristics (Salt, Sugar, Nut Content), and our semiparametric estimator.
- Include $m \ll J$ columns of $\mathcal{D}_{j \rightarrow k}$ as extra moments.
- Compare out-of-sample predicted Diversion Ratios.
- MAD: Median $\left(\left|\mathcal{D}_{j \rightarrow k}-\hat{D}_{j \rightarrow k}\right|\right)$ for $(j, k) \in\{$ Validation $\}$.
- RMSE: $\sqrt{\frac{1}{n} \sum_{(j, k) \in\{\text { Validation }\}}\left|\mathcal{D}_{j \rightarrow k}-\hat{D}_{j \rightarrow k}\right|^{2}}$


## Monte Carlo: DGP is Nested Logit

Out- of- sample MAD Comparison


Out- of- sample RMSE Comparison


- RCC is mis-specified
- Diversion Moments improve efficiency of RCN
- $I \geq 4$ does a pretty good job.


## Monte Carlo: DGP is RC on chars

Out- of- sample MAD Comparison


Out- of- sample RMSE Comparison


- RCN is mis-specified
- $I \geq 4$ does a pretty good job.


## Application to Autos Data

## Description of Autos Data

- Subset of data from Grieco, Murry and Yurukoglu (2022).
- Focus on one year of sales from 2015
- Aggregate sales observed at the model-year level from Ward's Automotive.
- Second choices from MaritzCX survey (53,328 purchases)
- Construct $J=181$ products by consolidating all models below 15,000 annual sales.
- Consolidated products are: Car/Truck by Low/Mid/High prices (6 products)
- Same Goal: Predict unobserved second-choice data without characteristics.


## MaritzCX Survey data (173 Cars and Trucks)



## MaritzCX Survey data (66 Cars)



## Cross Validation: Model Selection



Dots are cross-validated means.
Seems to select $I=13$ (bias-variance tradeoff).

## Cross Validation: Model Selection




## MaritzCX Survey data (66 Cars)

Raw Diversion from 2nd Choices
Diversion Matrix CMS (l=1, pen. weights)


Diversion Matrix CMS ( $1=2$, pen. weights)
Diversion Matrix CMS ( $1=13$, pen. weights)

| D-3- |
| :---: |
| - - - - - - |
| -2, |
| - - - - - - - |
| -2 |
| - $-2-20$ |
| - $-2-\mathrm{ma}$ |
|  |
|  |
|  |
|  |
|  |
| 프﹎ㅡ르르․ |
|  |
|  |
| $\underline{-2}+\square=\square$ |
|  |



## Application to Vending Data

## Description of Vending Data

- Same data as Conlon and Mortimer (JPE, 2021).
- 66 Vending Machines in white-collar office buildings in downtown Chicago
- About 35-40 snack products in each building
- 6 exogenous product removals (2.5-3.5 weeks long each)
- Snickers, M\&M Peanut, Doritos Nacho, Cheetos, Animal Crackers, Famous Amos


## Diversion Observed for 6 Products:

Diversion Matrix, Data


## Cross Validation: Model Selection

Out- of- sample MAD Comparison


Out- of- sample RMSE Comparison


Out-of-sample fit (mostly) beats in-sample fit of parametric models.
Error bars are across all holdout experiments/ Dots are cross-validated means.
Seems to select $I=2$ or $I=3$ (bias-variance tradeoff).

## Diversion Matrix: Estimates Comparison $\lambda=0$



## Diversion Matrix: Estimates Comparison $\lambda=0$



## Network Structure of Vending Products: Semiparametric $I=3$

Diversion Network b/w Vending products, CMS ( $\mathrm{I}=3$ ), edges $=$ diversion $>4.5 \%$


# Extensions and Conclusion 

## Extensions

- What about (exogenous) price or quality changes?

Expression for $D_{j \rightarrow k}$ changes slightly.

- Want to add covariates or endogenous prices?

Straightforward to run an IV regression:

$$
\log s_{i j}-\log s_{i 0}=x_{j} \beta_{i}+\xi_{j}
$$

Test how much we lose using only a basis in $f\left(x_{1}, x_{2}\right)$.

- Optimal Experimentation: Which product is most informative about $\mathcal{D}$ ?
- $\mathcal{D}$ looks like a transition matrix with a network structure
- Relates to measures of centrality / eigenvalues.
- Cross elasticities are not a well-behaved network.


## Conclusion

- Allowing for flexible unobserved types can give more accurate substitution patterns
- Particularly true in capturing closeness of best substitutes not captured by product characteristics (e.g. Snickers and Peanut M\&M's vs Snickers and Milky Way)
- Using observable substitution patterns (experiments or surveys) and "completing" the $(J+1) \times(J+1)$ matrix with a low-rank approximation looks promising.
- How much information on second choices is "enough"?
- Which products are important for completing substitution patterns?

