2022 Federal Trade Commission Microeconomics Conference: Diversion and the Use of Second-Choice Data

Julie Holland Mortimer (University of Virginia & NBER) November 3rd, 2022

Review of Diversion Ratios

The diversion ratio is one of the best ways we have to measure competition between products.

- Raise the price of product *j* and count the number of consumers who leave
- The diversion ratio $D_{i \rightarrow k}$ is the fraction of leavers who switch to the substitute k.
- A higher value of $D_{i \rightarrow k}$ indicates closer substitutes.
- Useful because it arises in the multi-product Bertrand FOC:

$$\underbrace{p_j(1+1/\epsilon_{jj}(\mathbf{p}))}_{\text{Marginal Revenue}} = c_j + \sum_{k \in \mathcal{J}_f \smallsetminus j} (p_k - c_k) \cdot D_{j \to k}(\mathbf{p}).$$

- $D_{j \to k} \equiv \frac{\partial q_k}{\partial p_j} / \left| \frac{\partial q_j}{\partial p_j} \right|.$
- Can also write as $D_{j \to k} \equiv \frac{\epsilon_{kj}}{|\epsilon_{ij}|} \cdot \frac{q_j}{q_k}$

General Advantages of Diversion

- Diversion allows for unit-free comparisons (shares sum to one).
 - While own-elasticities are unit-free, this is not true of cross-elasticities.
 - Is $\epsilon_{jk} = .01$ or $\epsilon_{jk} = .03$ a better substitute? We can't tell.
 - Need $\epsilon_{jk} \cdot s_k$ to know.
 - But $\epsilon_{jk} \cdot \frac{s_k}{p_j} = D_{j \to k}$.
 - The fraction of switchers choosing k allows comparisons.
 - If tempted to report cross elasticities, consider reporting diversion ratios instead.
- Data on diversion can provide helpful variation for demand estimation.
 - Petrin (2002), MicroBLP (2004), Grieco, Murry, Yurukoglu (2022)
- Diversion can be a helpful complement to merger simulation.

Diversion vs. concentration:

- Most goods and services are differentiated.
- Merger policy should aim to measure the substitutability of the differentiated offerings of competing firms.
- Concentration measures typically struggle to do this:
 - not all firms "in the market" produce products that are equally good substitutes
 - some firms "outside the market" may produce products that compete.
- If merging parties know they compete more closely than market-share analysis would predict, we'll have under-enforcement.

Diversion Ratio = fraction of consumers who switch from purchasing a product j to purchasing a substitute k (following an increase in the price of j)

Treatment not purchasing product *j*

Outcome fraction of consumers who switch from $j \rightarrow k$.

Compliers consumers who would have purchased at z_j but do not purchase at z'_j .

This admits a Wald estimator:

$$D_{j \to k}(x) = \frac{\mathbb{E}[q_k | Z = z'_j] - \mathbb{E}[q_k | Z = z_j]}{\mathbb{E}[q_j | Z = z_j] - \mathbb{E}[q_j | Z = z'_j]}$$

We also showed that most discrete-choice models yield the following representation:

$$D_{j \to k}^{z_j \to z'_j}(x) = \int_{z_j}^{z'_j} D_{j \to k,i}(x) w_i(z_j, z'_j, x) dF_i \text{ with } w_i(z_j, z'_j, x) = \frac{s_{ij}(z_j, x) - s_{ij}(z'_j, x)}{s_j(z_j, x) - s_j(z'_j, x)}$$

- Different interventions z_j → z'_j (prices, quality, characteristics, assortment) give different weights w_i(z_j, z'_j, x) and thus different local average diversion ratios.
- Individual Diversion Ratios D_{j→k,i}(x) don't vary with the intervention (determined only by how *i* ranks 2nd and 3rd choices).
- That paper establishes the decomposition above and derives some properties.

$$\int_{z_j}^{z_j'} D_{j \to k,i}(x) w_{ij}(z_j, z_j', x) \partial F_i = \int_{z_j}^{z_j'} \frac{s_{ik}(x)}{1 - s_{ij}(x)} w_{ij}(z_j, z_j', x) \partial F_i = \int s_{ik}(x) \widetilde{w}_{ij}(z_j, z_j', x) \partial F_i$$

where s_{ij} is probability that *i* chooses *j* or $Pr(u_{ij} > u_{ik})$ for all $k \in \mathcal{J}$ and $k \neq j$

- For any (mixed) logit $D_{j \rightarrow k,i}(x) = \frac{s_{ik}}{1-s_{ij}}$
- For plain logit $D_{j \to k,i} = \frac{s_k}{1-s_i}$ for all i
 - imposes constant diversion
 - weights don't matter

Weights on Treatment Effects parameters for RC logit:

	$\widetilde{w}_{ij}(z_j,z_j',x) \propto$
second-choice data	$\frac{s_{ij}(x)}{1-s_{ii}(x)}$
price change $rac{\partial}{\partial p_i}$	$s_{ij}(x) \cdot \alpha_i $
characteristic change $rac{\partial^{'}}{\partial x_{i}}$	$s_{ij}(x)\cdot eta_i $
small quality change $rac{\partial^2}{\partial \xi_i}$	$s_{ij}(x)$
finite price change $w_i(p_j, p'_j, x)$	$\frac{ s_{ij}(p'_j, x) - s_{ij}(p_j, x) }{1 - s_{ij}(x)}$
finite quality change $w_i(\xi_j,\xi_j',x)$	$\frac{ s_{ij}(\xi'_j, x) - s_{ij}(\xi_j, x) }{1 - s_{ij}(x)}$

Price interventions put more weight on the most price-sensitive types, Quality interventions put more weight on the most quality-sensitive types, etc.

Motivating the Use of Second-Choice Data

Joint work with Christopher T. Conlon (NYU) and Paul Sarkis (Boston College)

There are many cases where we observe second-choice data: (the probability that i chooses k as their second choice conditional on choosing j as their first choice):

- Rank-ordered lists (market design, school choice)
- Customer Surveys: (If you didn't buy a Camry what would you buy?)
- Conjoint analyses in Marketing
- A/B tests showing different search results to different customers.

We consider a problem where we observe some aggregate shares $S = [S_1, ..., S_J]$ or sales Q_j , and some elements $(j, k) \in OBS$ of \mathcal{D}^T a matrix of (second-choice) diversion ratios.

	VZ	ATT	ТМо	S	Other		
$\mathcal{D}^{\mathcal{T}}$ =	0	?	0.30	0.30	?	VZ	[0.35]
	?	0	0.45	0.15	0	ATT	0.30
	?	?	0	0.45	?	TMo ,	0.20 = S
	?	?	0.20	0	?	S	0.15
	?	?	0.05	0.10	0	Other	0.05

Can we fill in the missing elements?

Typical Approach: estimate a parametric model.

- Multi-product demand with unrestricted matrices of $(J + 1)^2$ cross-elasticities (such as AIDS) is often hopeless with large J. Unrestricted diversion likely equally hopeless.
- Plain logit places strong restrictions: $D_{j \rightarrow k} = \frac{s_k}{1-s_i}$.
- Nested logit $D_{j \to k} = \frac{s_{k|g}}{Z(\sigma, s_g) s_{j|g}}$ (same nest) where σ is nesting parameter.

Mixed Logit: Explain substitution patterns using observed characteristics

- Typically assume independent normal RC
- Two products with similar x_1 and high substitution \rightarrow larger σ_1 .
- Two products with similar x_2 and low substitution \rightarrow smaller σ_2 .

McFadden and Train (2000) show a mixed logit $u_{ij} = \beta_i x_j + \varepsilon_{ij}$ is fully flexible

- 1. This depends on $f(\beta_i)$ heterogeneity being nonparametric
- 2. And a sufficient set of characteristics X to explain $\ensuremath{\mathcal{D}}$

Much work on (1), less attention on (2).

Our paper: Consider a low-rank approximation to $\ensuremath{\mathcal{D}}$

- Limit the rank of \mathcal{D} directly in product space instead of controlling complexity with product characteristics and parametric restrictions on random coefficients.
- Allow for sparsity in individual shares and substitution patterns, with possibility of generating extreme patterns for top substitutes if necessary.

Works well in other domains (CS for image recovery/compression), and we show it has a sensible economic interpretation.

Image of Camille Jordan (1838-1922)

 $A \approx U_{266 \times 25} \cdot \Sigma_{25 \times 25} \cdot V_{25 \times 266}$

Completing the Matrix: $\ensuremath{\mathcal{D}}$ for Autos

- We have access to aggregate market shares and some (but not all) second-choice data (microBLP (2004); Grieco, Murry, Yurukoglou (2022)).
- We are interested in estimating substitution patterns across all sets of products but have data on only a subset
 - shares of largest cellular phone providers, and number porting or switching data for merging parties only.
 - survey data on "If this Tesco were to close where would you shop" (as UK CMA asks).
 - win-loss data from merging parties only (Qiu, Sawada, Sheu (2022))
- We lack sufficient variation in prices, other covariates, to estimate demand system.
- Product characteristics do not accurately capture substitution across products.

Setup and Model

- Consumers make discrete choices from set ${\mathcal J}$
- Utility is given by semi-parametric logit

$$u_{ij} = V_{ij} + \varepsilon_{ij}$$

$$s_{ij} = Pr(u_{ij} > u_{ik}) \text{ for all } k \in \mathcal{J}, k \neq j.$$

- ε_{ij} is Type I extreme value.
- Goal: estimate $f(V_{ij})$.
- Strategy: Approximate with finite mixture with weights π_i .

Linear Algebra Notation

- Individual *i*'s share for each choice given by $\mathbf{s_i} = [s_{i0}, s_{i1}, \dots, s_{iJ}]$.
- Aggregate shares by $\sum_{i=1}^{I} \pi_i \cdot \mathbf{s_i} = \mathbf{s}$.
- The matrix of individual diversion ratios is given by $\mathbf{D}_i = \mathbf{s}_i \cdot \left[\frac{1}{(1-\mathbf{s}_i)}\right]^T$.

We write the $(J + 1) \times (J + 1)$ matrix of second-choice diversion as:

$$D_{j \to k} = \sum_{i=1}^{l} \pi_i \cdot D_{j \to k, i} \cdot w_i = \sum_{i=1}^{l} \pi_i \cdot \frac{s_{ik}}{1 - s_{ij}} \cdot \frac{s_{ij}}{s_j}$$
$$\mathbf{D} = \left(\sum_{i=1}^{l} \pi_i \cdot \mathbf{s_i} \cdot \left[\frac{1}{(1 - \mathbf{s_i})}\right]^T \cdot \operatorname{diag}(\mathbf{s_i})\right) \cdot \operatorname{diag}(\mathbf{s})^{-1}$$
$$= \left(\sum_{i=1}^{l} \pi_i \cdot \mathbf{s_i} \cdot \left[\frac{\mathbf{s_i}}{(1 - \mathbf{s_i})}\right]^T\right) \cdot \operatorname{diag}(\mathbf{s})^{-1}$$

Under relatively general conditions, second-choice diversion can be written as:

diag(s) · D =
$$\sum_{i=1}^{l} \pi_i \cdot \begin{bmatrix} | \\ \mathbf{s}_i \\ | \end{bmatrix} \cdot \begin{bmatrix} - & \frac{\mathbf{s}_i}{1-\mathbf{s}_i} \end{bmatrix}$$

- Each individual diversion ratio is of rank one since it is the outer product of s_i with itself (and some diagonal "weights").
- The (unrestricted) matrix of diversion ratios **D** is $(J+1) \times (J+1)$.
- Logit restricts D to be of rank one. Nested logit of rank ≤ G (the number of non-singleton nests). Mixed logit to rank(D) ≤ I (but bound is likely uninformative).

Setting

- Assume that we observe aggregate market shares S_j and some subset of the diversion matrix D_{j→k} for (j, k) ∈ OBS.
- Goal: Can we obtain an estimate for the remainder of the matrix \mathcal{D} ?
 - Related to CS literature on matrix completion methods.
 - Useful tip from linear algebra: nuclear norm: $||A||_* = \sum_i \sigma_i(A)$ where $\sigma_i(A)$ are singular values. This works like a continuous approximation to rank.
 - We don't need to do nuclear norm penalization since discrete choice provides enough structure.
- Low-rank approximation is consistent with utility maximization under discrete choice.
 - Theoretical interpretation as indirect utilities, not just mech. rank reduction (ie: PCA).

Our Semiparametric Problem

$$\begin{split} \min_{s_{ij},\pi_i} \sum_{(j,k)\in OBS} \widetilde{c}_j \left(\mathcal{D}_{j \to k} - D_{j \to k} \right)^2 + \sum_j c_j \left(\mathcal{S}_j - \sum_i \pi_i \cdot s_{ij} \right)^2 + \lambda \left\| \pi_i \right\|^2 \\ \text{subject to} \quad D_{j \to k} = \sum_{i=1}^l \pi_i \cdot \frac{s_{ik}}{1 - s_{ij}} \cdot \frac{s_{ij}}{s_j} \\ 0 \le s_{ij}, \pi_i, s_j, D_{j \to k} \le 1, \quad \sum_{i=1}^l \pi_i = 1, \quad \sum_j s_{ij} = 1 \end{split}$$

- Use cross validation to select # of types *I*.
- With $\lambda > 0$ we penalize *HHI* of w_i and becomes elastic net
- Weights \widetilde{c}_j and c_j are proportional to $\ln q_j$

Discussion

- Goal: a good predictive model for unobserved elements of \mathcal{D} .
- We are worried about overfitting so we use cross validation (withholding columns of D) to select number of types *I*.
 - Otherwise we would always prefer the more complicated model
 - Compare models based on out-of-sample fit (RMSE, MAD).
- Model may or may not be sparse s_{ij} = 0 for some (i, j)
 - Could be that consumer *i* doesn't consider *j*.
 - Or consequence that $s_{ij} \ge 0$ and $\sum_j s_{ij} = 1$ amounts to an L_1 penalty $\sum_j |s_{ij}| \le 1$
- Model is a semiparametric logit for $V_{ij} \in \mathbb{R}$ (don't rule out $V_{ij} \to \pm \infty$):

$$u_{ij} = V_{ij} + \varepsilon_{ij}, \quad s_{ij} = \frac{e^{V_{ij}}}{1 + \sum_k e^{V_{ik}}}$$

Comparison: Fox, Kim, Ryan, Bajari (QE 2011)

$$\begin{split} \min_{\pi_i \ge 0} \sum_j \left(\mathcal{S}_j - \sum_i \pi_i \cdot \hat{s}_{ij}(\widehat{\beta}_i) \right)^2 \quad \text{subject to} \quad \sum_i \pi_i = 1\\ \hat{s}_{ij}(\widehat{\beta}_i) &= \frac{e^{\widehat{\beta}_i \times j}}{1 + \sum_{j'} e^{\widehat{\beta}_i \times j'}} \end{split}$$

- Draw $\beta_i \sim G(\beta_i)$ from a prior distribution.
- Solved in characteristic space with a semi-parametric form for $F(\beta_i)$.
- Often produces very sparse models $\pi_i = 0$ (for all but 50 of 1000 simulated consumers).

- Cut data into bins (zip, income, age, gender)
- Observe shares (hospital demand) within each bin s_{g(i),i}
- A separate plain logit for each bin with only ξ_i as the common parameter.
- Use second choices from hospital closures (natural disasters) to compare models.

$$s_{g(i),j} = \frac{e^{\beta_g x_j + \xi_j}}{1 + \sum_{j'} e^{\beta_g x_{j'} + \xi_{j'}}}, \quad D_{j \to k,i} = \frac{s_{g(i),k}}{1 - s_{g(i),j}}$$

Most similar to what we're doing.

- Estimate separate β_i for each class.
- Estimate proportion of each class π_i.
- Estimating finite mixtures is tricky and usually requires EM.

$$s_k(\pi,\beta) = \sum_{i=1}^{l} \pi_i \cdot \left(\frac{e^{\beta_i \times_{ij} + \xi_j}}{1 + \sum_k e^{\beta_i \times_{ik} + \xi_k}}\right)$$

Monte Carlo

Generating Data

- Fit (i) nested logit, (ii) RC logit to data on vending machines from Conlon and Mortimer (JPE, 2021).
- Generate fake sales and diversion from those parameter estimates.
 - J = 45 products; T = 250 markets; with 30 randomly selected products in each. Market size M = 1000 per market. Nesting parameter is $\rho = 0.25$.
 - Categories: Salty Snacks, Chocolate, Non-Chocolate Candy, Cookies, Pastry, Other.
- Estimate a variety of misspecified parametric models: RC on nest dummies, RC on characteristics (Salt, Sugar, Nut Content), and our semiparametric estimator.
 - Include $m \ll J$ columns of $\mathcal{D}_{j \rightarrow k}$ as extra moments.
- Compare out-of-sample predicted Diversion Ratios.
 - MAD: Median $(|\mathcal{D}_{j \to k} \hat{D}_{j \to k}|)$ for $(j, k) \in \{\text{Validation}\}.$
 - RMSE: $\sqrt{\frac{1}{n}\sum_{(j,k)\in\{\text{Validation}\}} |\mathcal{D}_{j\rightarrow k} \hat{D}_{j\rightarrow k}|^2}$

Monte Carlo: DGP is Nested Logit

- RCC is mis-specified
- Diversion Moments improve efficiency of RCN
- $l \ge 4$ does a pretty good job.

Monte Carlo: DGP is RC on chars

- RCN is mis-specified
- $l \ge 4$ does a pretty good job.

Application to Autos Data

- Subset of data from Grieco, Murry and Yurukoglu (2022).
- Focus on one year of sales from 2015
 - Aggregate sales observed at the model-year level from Ward's Automotive.
 - Second choices from MaritzCX survey (53,328 purchases)
 - Construct J = 181 products by consolidating all models below 15,000 annual sales.
 - Consolidated products are: Car/Truck by Low/Mid/High prices (6 products)
- Same Goal: Predict unobserved second-choice data without characteristics.

MaritzCX Survey data (173 Cars and Trucks)

MaritzCX Survey data (66 Cars)

Cross Validation: Model Selection

Dots are cross-validated means. Seems to select I = 13 (bias-variance tradeoff).

Cross Validation: Model Selection

MaritzCX Survey data (66 Cars)

Diversion Matrix CMS (I=2, pen. weights)

Diversion Matrix CMS (I=1, pen. weights)

Diversion Matrix CMS (I=13, pen. weights)

Application to Vending Data

- Same data as Conlon and Mortimer (JPE, 2021).
- 66 Vending Machines in white-collar office buildings in downtown Chicago
- About 35-40 snack products in each building
- 6 exogenous product removals (2.5-3.5 weeks long each)
 - Snickers, M&M Peanut, Doritos Nacho, Cheetos, Animal Crackers, Famous Amos

Diversion Observed for 6 Products:

Cross Validation: Model Selection

Out-of-sample fit (mostly) beats in-sample fit of parametric models. Error bars are across all holdout experiments/ Dots are cross-validated means. Seems to select I = 2 or I = 3 (bias-variance tradeoff).

Diversion Matrix: Estimates Comparison $\lambda = 0$

Diversion Matrix: Estimates Comparison $\lambda = 0$

Network Structure of Vending Products: Semiparametric *I* = 3

Extensions and Conclusion

Extensions

- What about (exogenous) price or quality changes?
 Expression for D_{j→k} changes slightly.
- Want to add covariates or endogenous prices?
 Straightforward to run an IV regression:

 $\log s_{ij} - \log s_{i0} = x_j \beta_i + \xi_j$

Test how much we lose using only a basis in $f(x_1, x_2)$.

- Optimal Experimentation: Which product is most informative about D?
 - $\mathcal D$ looks like a transition matrix with a network structure
 - Relates to measures of centrality / eigenvalues.
 - Cross elasticities are not a well-behaved network.

- Allowing for flexible unobserved types can give more accurate substitution patterns
 - Particularly true in capturing closeness of best substitutes not captured by product characteristics (e.g. Snickers and Peanut M&M's vs Snickers and Milky Way)
- Using observable substitution patterns (experiments or surveys) and "completing" the (J + 1) × (J + 1) matrix with a low-rank approximation looks promising.
- How much information on second choices is "enough"?
- Which products are important for completing substitution patterns?