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Abstract

Economists routinely make functional form assumptions about consumer demand to obtain
welfare estimates. How sensitive are welfare estimates to these assumptions? We answer this
question by providing bounds on welfare that hold for families of demand curves commonly
considered in different literatures. We show that commonly chosen functional forms, such as
linear, exponential, and CES demand, are extremal in different families: they yield either the
highest or lowest welfare estimate among all demand curves in those families. To illustrate
our approach, we apply our results to the welfare analysis of energy subsidies, trade tariffs,
pensions, and income taxation.
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1 Introduction

Welfare analysis is central to economic policy evaluation. Raising the tax on a good, for example,

leads to a gain in tax revenue but a loss in consumer surplus. But while revenue changes are often

easy to measure, consumer surplus cannot be directly observed. Economic theory dating back to

Marshall (1890) has established methods for extrapolating consumer surplus from observations of

consumer demand: the loss in consumer surplus due to a price increase is equal to the area below

the demand curve between the two prices.

However, this approach requires the entire demand curve to be observed, or at least inferred

from granular data—conditions that are rarely satisfied in practice. This is especially salient in

empirical studies that evaluate the welfare impact of policies on the basis of observed responses

to (quasi-)experimental price shocks. The number of such studies has increased exponentially in

recent years, following advances in econometric techniques (the so-called “credibility revolution”)

that facilitate credible and precise estimates of responses to discrete policy changes (see, for

example, the surveys of Finkelstein and Hendren, 2020 and Kleven, 2021). However, practical

limitations (e.g., political barriers and administrative costs) often restrict the number of points

along the demand curve that can be examined.

Many empirical studies therefore interpolate between points along the demand curve using

standard functional forms. For instance, linear interpolations (Harberger, 1964; Feldstein, 1999;

Einav, Finkelstein, and Cullen, 2010; Hackmann, Kolstad, and Kowalski, 2015; Cohen, Hahn,

Hall, Levitt, and Metcalfe, 2016; Amiti, Redding, and Weinstein, 2019; Hahn and Metcalfe,

2021) and constant elasticity of substitution (CES) interpolations (Hausman, 1981; Hausman,

Pakes, and Rosston, 1997; Brynjolfsson, Hu, and Smith, 2003; Fajgelbaum, Goldberg, Kennedy,

and Khandelwal, 2020) are widely used across different fields of economics, including applied

microeconomics, international trade, and public finance. However, as Finkelstein and Hendren

acknowledge, these interpolations are often used for convenience and “ease of implementation,”

rather than realism or economic reasoning.

Other studies take a more conservative approach: by assuming that marginal individuals have

either zero or full willingness to pay, they estimate lower and upper bounds, respectively, for the

welfare impact of policies. This approach is equivalent to interpolating with either the pointwise

highest or lowest demand curve that passes through the observed points, and is common in applied

microeconomics and public finance (Varian, 1985; Hendren and Sprung-Keyser, 2020; Jácome,

2020; Giesecke and Jäger, 2021; Gray, Leive, Prager, Pukelis, and Zaki, 2021; Deshpande and

Mueller-Smith, 2022). Yet these assumptions are often unrealistic: they imply that demand
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is either perfectly elastic or perfectly inelastic over a potentially wide range of prices. These

assumptions are also routinely rejected when tested: extensive empirical literatures have estimated

price elasticities in various settings, such as the short-run demand for gasoline (ranging between

−0.2 and −0.4; see Morris, 2014 and Kilian and Zhou, 2020) and demand for medical care (widely

cited as −0.2 due to the RAND Health Insurance Experiment; see Manning, Newhouse, Duan,

Keeler, and Leibowitz, 1987 and Cutler and Zeckhauser, 2000).

In this paper, we propose a complementary approach for evaluating welfare changes in settings

with limited data. Rather than estimate an entire demand curve to infer the change in welfare, our

approach bounds the change in welfare within different families of demand curves. Our bounds are

simple: they can be computed in closed form using only data from before and after a policy change.

Our bounds are also robust: they apply to any demand curve in each family that we consider.

Thus, rather than estimate a demand curve that “reasonably” captures preferences exhibited in

data in order to evaluate the change in welfare, we compute the smallest and largest changes in

welfare that are consistent with any “reasonable” demand curve. Finally, our bounds are sharp:

any value between the upper and lower bounds can be attained as the change in welfare for some

demand curve in that family.

To fix ideas, consider the canonical example of a tax levied on a good (Harberger, 1964). There

are two periods: t = 0 before the tax is levied, and t = 1 after. The market is perfectly competitive

and the demand curve does not shift between the two periods. At t = 0, q0 units of the good are

sold at a unit price of p0. At t = 1, the posted price remains unchanged, but an ad valorem tax

τ is introduced, yielding an effective price of p1 = (1 + τ) p0 and a new equilibrium quantity q1.

To evaluate the net impact of the tax, the researcher faces the problem depicted in Figure 1(a).
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Figure 1: Illustration of how the change in consumer surplus from a price increase can be estimated.
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She observes the points (p0, q0) and (p1, q1), but not the demand curve D(p) that connects them.

While computing the revenue gain from the tax (area A) is easy, computing the loss in consumer

surplus (the sum of areas A and B) requires integrating over D(p), which is unknown.

To resolve this, Harberger interpolated between (p0, q0) and (p1, q1) with a line, as depicted in

Figure 1(b)—an approach that remains popular to date, as we argued above. When the tax τ is

small, such an interpolation is justified via Taylor’s theorem; but no such guarantee holds when τ

is large—which is often the case in practice.

By contrast, the approach that we take in this paper bounds the change in welfare under two

types of assumptions, which we formally discuss in Section 2. A special case of our approach is

the conservative one that many empirical studies already take, depicted in Figure 1(c). These

conservative bounds are attained by the extremal demand curves that decrease from (p1, q1) to

(p0, q0): between p0 and p1, the lower extremal demand curve (in green) is constant at q1, while the

upper extremal demand curve (in red) is constant at q0. These bounds are intuitive and robust:

they hold for any downward-sloping demand curve and do not depend on supply-side assumptions.

We generalize the conservative approach with additional restrictions on the demand curve that

can capture more realistic distributions of willingness to pay while preserving the intuitiveness

and robustness of the conservative bounds.

The first type of assumption is a restriction on the price elasticity of demand. For instance,

the researcher might reason that elasticities are unlikely to vary unboundedly as the conservative

extremal demand curves shown in Figure 1(c) do. In this case, it might make sense to restrict

attention to demand curves for which elasticities are contained in a finite interval [ε, ε] between

p0 and p1. The researcher might have measured the elasticities at p0 and p1, and reason that the

elasticity at any intermediate price lies in between; or the researcher might have obtained a range

of elasticities measured in comparable settings, and posit that elasticities cannot deviate too far

from that range. Our first main result shows that under this restriction, bounds on the change

in consumer surplus are attained by demand curves with a surprisingly simple structure: each

extremal demand curve consists of two pieces, such that the elasticity throughout each piece is

equal to either ε or ε. In the limiting case when ε = −∞ and ε = 0, our bounds are identical to

the conservative bounds.

The second type of assumption consists of restrictions on the curvature of demand. Such

restrictions are commonly imposed to connect empirical observations to theoretical models across

different economic fields. An example is Marshall’s second law—demand is more elastic at higher

prices—which is often assumed in models of international trade in order to guarantee that tougher
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competition between firms leads to higher markups.1 Other examples include the assumptions

of decreasing marginal revenue and log-concavity, which guarantee the existence (and sometimes

uniqueness) of equilibrium in models of industrial organization (Caplin and Nalebuff, 1991a),

as well as concavity, ρ-concavity, convexity, log-convexity, and ρ-convexity. Our second main

result derives the largest and smallest possible changes in consumer surplus under each of these

assumptions, as well as the extremal demand curves that attain them.

Our results uncover a key insight: commonly used functional forms are often extremal. For

example, our analysis implies that the smallest possible loss in consumer surplus is attained by a

CES demand curve under Marshall’s second law. Consequently, a CES functional form assumption

never produces a “representative” welfare estimate in this family of demand curves—rather, it

produces the most conservative welfare estimate. Similarly, a linear functional form assumption

produces the largest possible welfare estimate under the assumption that demand is convex.

As we show in Section 3, our framework can be extended in various dimensions motivated by

empirical applications. For example, we derive bounds for the case that the researcher observes

fewer points (e.g., when evaluating the welfare impact of a counterfactual policy, the researcher

does not observe the quantity of the good sold at the counterfactual price) or more points (e.g.,

when there are multiple policy changes) along the demand curve. Motivated by the fact that

points on the demand curve are almost never observed perfectly in empirical applications, we also

demonstrate how sampling error can be incorporated into our framework. Finally, we show how

our results extend to other measures of welfare, including deadweight loss, compensating variation,

equivalent variation, supply-side welfare measures, and welfare measures that incorporates equity

through social welfare weights (Harberger, 1978; Saez and Stantcheva, 2016).

A natural concern is that the bounds that we derive may be too wide to be informative in

practice. To assuage this concern, we apply our approach to four empirical settings in Section 4.

In each setting, we demonstrate how our bounds compare to and complement existing approaches

to welfare evaluation:

(i) Energy subsidies. We apply our results to Hahn and Metcalfe (2021), who employ a large

field experiment to evaluate the welfare impact of energy subsidies under the California

Alternative Rates for Energy (CARE) program. While they show that the net welfare

impact of CARE is negative under the functional form assumption that demand is linear,

1 A notable example is Krugman (1979), who invoked Marshall’s second law “without apology” given that the
assumption “seems to be necessary if [his] model is to yield reasonable results.” This assumption seemed so
intuitive that Marshall (1890) required it as part of his definition of a demand curve. Melitz (2018) discusses the
role of Marshall’s second law in the international trade literature as well as supporting empirical evidence.
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our results imply that this result is robust: it holds not only for linear demand curves, but

also for a large set of demand curves that are consistent with their elasticity estimates.

(ii) Trade tariffs. We apply our results to Amiti et al.’s (2019) analysis of the deadweight loss

due to trade tariffs imposed by the United States on foreign imports between 2018 and 2019.

Our results quantify the sensitivity of Amiti et al.’s estimates under a linear demand model

to alternative specifications from the same literature, such as a CES demand model, and

demonstrate different conditions under which their estimate might be too high or too low.

(iii) Pensions. We show how our results apply to the marginal value of public funds (MVPF)

literature by building on Giesecke and Jäger’s (2021) analysis of old-age pensions in the UK.

While Giesecke and Jäger estimate the gain in worker surplus using a conservative bound,

our results show how heterogeneity in income and disutility from working leads to higher

estimates of surplus gain, which in turn imply higher MVPF estimates.

(iv) Income taxes. We apply our results to Feldstein’s (1995) analysis of the excess burden

of income taxation. While Feldstein employs a linear interpolation to estimate the excess

burden, our results show how narrow bounds can be obtained using estimated elasticities of

taxable income, even when no functional form is assumed.

Finally, Section 5 concludes. We provide closed-form expressions for our bounds in Appendix

A, and demonstrate how our main results can be viewed through the lens of information design

in Appendix B. In Appendix C, we discuss the relationship between different assumptions on the

curvature of demand, while Appendix D collects omitted proofs and some additional discussion.

1.1 Related literature

Conceptually, our paper is closely related to the literature on “sufficient statistics” for welfare

analysis—a phrase coined by Chetty (2009). Since Chetty’s article, a growing body of work

has embraced this approach for policy evaluation, as recently surveyed by Kleven (2021). The

sufficient statistics approach stipulates that the welfare impacts of small policy changes can be well

approximated without specifying a comprehensive model for the determinants of market equilibria.

Instead, carefully deployed envelope conditions facilitate simple formulas that can be computed

with local measurements and reduced form elasticity estimates. As we discuss in Section 4.4,

this approach has many conceptual features in common with ours. Like ours, papers adopting the

sufficient statistics approach shy away from specifying a particular demand curve, instead focusing
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on inferences around an exogenous policy change. In this sense, sufficient statistic estimates are

also robust to parametric assumptions. However whereas sufficient statistic estimators require the

changes being analyzed to be sufficiently small that a local approximation suffices, our approach

does not. Instead, one can think of our approach as an intermediate between the sufficient statistics

approach and a fully structural one: by allowing researchers to specify conditions on the shape of

demand, our bounds expand the set of policies that can be studied without requiring a commitment

to a particular parametric model of the demand curve itself.

There is an extensive literature on welfare analysis in economics,2 and the insight that a linear

demand curve provides the upper bound for the change in consumer surplus when demand is convex

is considered lore by many economists (Hausman, 2003). However, beyond this particular one-

sided bound, linear interpolations are often described as “ad hoc at best” and other assumptions

are generally not considered (Hausman, 1996).

Complementary to our approach, there is a large literature on demand estimation (see, for

example, Berry and Haile, 2021 and Gandhi and Nevo, 2021). Demand estimation allows welfare

to be computed in a straightforward manner, but requires granular data for credible identification.

Our approach is motivated by empirical applications (such as those in Section 4) where the data

are not granular enough for structural modeling. In these cases, we show that meaningful bounds

on welfare can nonetheless often be obtained.

Our paper also relates to the literature on set identification: like other papers in this literature,

our exercise of deriving bounds under relatively weak restrictions aims to provide transparency for

the mapping between modeling assumptions and subsequent conclusions about welfare (Tamer,

2010). Closest to our paper, Manski (1997) derives sharp bounds on the distribution of demand

curves in a cross-section of markets under a monotonicity assumption similar to Varian (1985)

as well as a concavity assumption similar to our Assumption (CA4). However, while Manski

set-identifies demand curves themselves, our approach set-identifies the welfare measures that

are consistent with feasible demand curves. Closer to this idea, a burgeoning literature studies

identification for counterfactual equilibria that may arise from perturbations of model primitives

estimated in data.3 We view these papers, which study different types of games and often require

more data and structure in order to consider counterfactual outcomes, as complementary to ours.

Theoretically, our work relates to Bulow and Pfleiderer’s (1983) critique of an empirical study

by Sumner (1981) that used observed changes in marginal costs to estimate demand elasticities.

Bulow and Pfleiderer point out that even though two demand curves might be close to each other,

2 See, for instance, Willig (1976), Varian (1982, 1985), and Hausman (1981).
3 See, for instance, Aguirregabiria (2010), Reguant (2016), and Kalouptsidi, Scott, and Souza-Rodrigues (2021).
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their elasticities might be very different—just as the derivatives of two “similar-looking” functions

can be far apart. The main result of our paper leverages the converse of this observation: even

though two functions might be different, their integrals might be close. Our bounds on welfare—

which are obtained by integrating different demand curves—may thus be quite narrow even if the

family of demand curves that they account for is very broad.

Our work is also connected with Anderson and Renault (2003), Tsitsiklis and Xu (2014), and

Condorelli and Szentes (2020), who bound welfare measures in Cournot competition; while our

paper shares a similar theoretical objective, our bounds do not rely on supply-side assumptions, but

rather elasticity and curvature restrictions arising from different empirical applications. Our work

is also related in spirit to the theoretical literature on optimal pricing with limited knowledge

of demand, such as Bergemann and Schlag (2011), Cohen, Perakis, and Pindyck (2021), and

Bergemann, Castro, and Weintraub (2022); rather than optimal pricing, however, we focus on

deriving sharp bounds on welfare measures.

From a methodological point of view, our analysis exploits a novel connection between welfare

analysis and problems in mechanism and information design. This connection allows us to leverage

tools from recent work on mechanism and information design: the proof of our main results builds

on an insight of Kang and Vondrák (2019), who solve a constrained optimization problem in

mechanism design by showing that the underlying change in welfare is monotone with respect to

the convex partial order. This approach has also been used in information design by Gentzkow

and Kamenica (2016), and was recently generalized by Kleiner, Moldovanu, and Strack (2021),

who present a general framework for solving infinite-dimensional optimization problems with a

majorization constraint.

2 Robust bounds for welfare analysis

In this section, we derive our main theoretical results: tight welfare bounds under distinct sets

of assumptions that are widely maintained in empirical applications. We consider two types of

assumptions: restrictions on price elasticities of demand (e.g., using treatment effect estimates

from field experiments) and restrictions on the curvature of demand (e.g., implied by observed

comparative statics).

We present our results in the context of a basic model, so as to emphasize the key ideas and

intuition behind our approach. Limitations of this basic model are discussed at the end of this

section, and Section 3 shows how our results extend to more general environments.
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2.1 Basic model

We study a market with a consumption good and a numéraire (“money”). The market consists

of a continuum of consumers. We make the following standard assumption:

(A1) Consumers have quasilinear utility in money.

This assumption can be viewed as an approximation that the market in question is a sufficiently

small part of the economy, so that income effects can be ignored (Vives, 1987). Moreover, it is

widely maintained in many empirical studies, and implies that the market has a downward-sloping

Marshallian demand curve, which we denote by D(·). In Section 3, we show how this assumption

can be relaxed to accommodate income effects.

The good is exposed to an exogenous price shock (e.g., a policy change, such as a new ad

valorem tax). For simplicity, we assume that there are two time periods: before the policy change

(t = 0) and after (t = 1). The price increases from p0 to p1; correspondingly, the quantities of the

good sold in each period are denoted by q0 = D(p0) and q1 = D(p1).

We evaluate the change in consumer surplus arising from the price increase. As we show later,

a similar analysis applies to other welfare measures. By (A1), the change in consumer surplus is

equal to the area below the demand curve between p0 and p1:

∆CS =

∫ p1

p0

D(p) dp. (1)

Typically, in empirical applications, not all of D(·) is observed: data about the quantities sold

are available at the realized prices p0 and p1, but not at any other price. In this basic model, we

impose a standard regularity condition on D(·) and assume that D(p0) and D(p1) can be perfectly

observed by the researcher:

(A2) D(·) is absolutely continuous and passes through the points (p0, q0) and (p1, q1).

The first part of (A2)—that D(·) is absolutely continuous—is relatively innocuous: absolutely

continuous functions are dense (in the L1 norm) in the space of integrable functions defined on

the interval [p0, p1]; thus ∆CS under any demand curve is well-approximated by ∆CS under an

absolutely continuous demand curve. Furthermore, absolute continuity guarantees that D(·) is

differentiable almost everywhere, so that its price elasticity is well-defined almost everywhere.

The second part of (A2)—that D(·) passes through both (p0, q0) and (p1, q1)—is, in our view,

the simplest assumption that captures the data limitations faced by empirical researchers and
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policymakers. Its sole purpose is to serve as a benchmark for our analysis. Later, we relax this

assumption in various directions by studying settings with fewer or more observed points, as well

as settings with error so that D(·) does not pass through the observed points exactly.

2.2 Welfare bounds with elasticity restrictions

As we argued in the introduction, imposing (A1) and (A2) as the only assumptions on D(·)
allows the price elasticity of demand to be −∞ or 0 almost everywhere, which seems unrealistic

and overly conservative. In many cases, such extreme values may even be ruled out a priori via

elasticity estimates from field experiments or quasi-experimental designs.

In particular, elasticity estimates from field experiments or quasi-experimental designs allow

the researcher to restrict the price elasticity of demand to a range of values of interest. We consider

the simplest such setting by imposing the following elasticity assumption (abbreviated by “EA”):

(EA) The price elasticity of demand ε(·) between p0 and p1 lies between ε and ε, so that

ε ≤ ε(p) :=
pD′(p)

D(p)
≤ ε for any p ∈ [p0, p1].

To avoid trivialities, we further assume that the average elasticity between p0 and p1 is bounded

by ε and ε, which is a necessary and sufficient condition for the existence of a demand curve that

satisfies (A1), (A2), and (EA):

ε ≤ log(q1/q0)

log(p1/p0)
≤ ε.

The extreme elasticities ε and ε in (EA) flexibly parameterize how much a priori knowledge

about D(·) is assumed. As a special case, the researcher might not have any a priori knowledge:

ε = −∞ and ε = 0. As we show in Section 4, comparative statics with respect to ε and ε allow

for a precise quantification of how robust welfare estimates are to different elasticity assumptions.

To determine appropriate values of ε and ε, the researcher might appeal to elasticity estimates

from field experiments and quasi-experimental designs. In these environments, the price elasticity

of demand can typically be estimated at either p0 or p1—or both. The variability of elasticity

between p0 and p1 can then be parameterized via ε and ε: for example, the researcher might

require that ε and ε are within 10% of the elasticities ε(p0) and ε(p1). We illustrate this approach

in Section 4 with a variety of empirical applications.

Alternatively, the researcher might also obtain priors on ε and ε from institutional knowledge

and surveys of related studies. For example, Andreyeva, Long, and Brownell (2010) summarize
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elasticities for food and beverage in the U.S. from 160 empirical studies and determine that all lie

between −3.18 and −0.01; they also provide narrower ranges for each distinct food category. A

researcher studying the welfare impact of a sugar tax might thus compute conservative bounds by

considering all demand functions that satisfy −3.18 ≤ ε(p) ≤ −0.01.

Unlike functional form assumptions, (A1), (A2), and (EA) do not jointly determine a unique

demand curve in general. By contrast, (A1), (A2), and (EA) are typically satisfied by a family

of demand curves, which we denote by D:

D := {D : [p0, p1]→ R is decreasing and satisfies (A2) and (EA)} .

For every demand curve in D, the formula (1) can be applied to give the corresponding change

in consumer surplus for that demand curve. Our goal is to find the range of all possible changes

in consumer surplus. We denote the largest and smallest possible changes in consumer surplus as

follows: 
∆CS := max

D∈D

∫ p1

p0

D(p) dp,

∆CS := min
D∈D

∫ p1

p0

D(p) dp.

(2)

Proposition 1. Under (A1), (A2), and (EA), the identified set [∆CS,∆CS] is sharp: for any

possible change in consumer surplus that lies within this set, there exists a demand curve D(·) ∈ D
that generates it.

Proof. Because D is convex and ∆CS is a linear map of D(·) according to the formula (1), the set

of possible changes in consumer surplus is a convex subset of R. Therefore, it is an interval and

can be equivalently characterized by its endpoints.

In general, the family of demand curves D is very large. To be concrete, we begin by considering

a demand curve that we know with certainty to be in D: the constant elasticity of substitution

(CES) demand curve that connects the points (p0, q0) and (p1, q1),

DCES(p) := q0 ·
(
p

p0

) log(q1/q0)
log(p1/p0)

.

The elasticity of DCES(·) at any price is equal to the average elasticity between p0 and p1:

log(q1/q0)/ log(p1/p0). We call DCES(·) a 1-piece CES interpolation between (p0, q0) and (p1, q1).

Under a 1-piece CES interpolation, the change in consumer surplus can be computed exactly by
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using the formula (1):

∆CSCES =
p0q0

1 + log(q1/q0)
log(p1/p0)

·

(p1
p0

)1+
log(q1/q0)
log(p1/p0)

− 1

 .
Is there a demand curve in D that yields a higher change in consumer surplus than a 1-piece

CES interpolation? The answer is yes: rather than interpolate between (p0, q0) and (p1, q1) with

a CES demand curve, one can construct an auxiliary point, say (p∗, q∗), that lies slightly above

DCES(·), as shown in Figure 2. One can then interpolate between the three points with CES

demand curves (each of which has a different elasticity). We call any such demand curve a 2-piece

CES interpolation between (p0, q0) and (p1, q1).

DCES

0
q

p

p1

q1

p0

q0

p∗

q∗

Figure 2: Example of a demand curve (in red) that yields a larger ∆CS than DCES(·).

Unlike a 1-piece CES interpolation, 2-piece CES interpolations between (p0, q0) and (p1, q1) are

not unique. Thus a natural question is which 2-piece CES interpolation, call it D∗(·), maximizes

∆CS. A relatively simple solution is to interpolate between (p0, q0) and (p∗, q∗) with the most

inelastic demand curve possible (i.e., with elasticity ε), and then interpolate between (p∗, q∗) and

(p1, q1) with the most elastic demand curve possible (i.e., with elasticity ε). These conditions on

elasticity uniquely determine the auxiliary point (p∗, q∗) for D∗(·):

ε =
log(q∗/q0)

log(p∗/p0)
and ε =

log(q1/q
∗)

log(p1/p∗)
.
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A symmetric argument implies that a 2-piece CES interpolation can also yield a smaller ∆CS

than DCES(·). The 2-piece CES interpolation that minimizes ∆CS, call it D∗(·), interpolates

between (p0, q0) and an auxiliary point (p∗, q∗) with the most elastic demand curve possible, and

then interpolates between (p∗, q∗) and (p1, q1) with the most inelastic demand curve possible:

ε =
log(q∗/q0)

log(p∗/p0)
and ε =

log(q1/q∗)

log(p1/p∗)
.

It might be tempting to extend this argument in a variety of ways. Perhaps 3-piece CES

interpolations yield an even wider range of possible changes in consumer surplus? How about

linear interpolations rather than CES interpolations? Our first main result indicates that these

attempts will ultimately fail.

Theorem 1. Under (A1), (A2), and (EA), the largest and smallest possible changes in consumer

surplus between p0 and p1, ∆CS and ∆CS, are attained by 2-piece CES interpolations:∫ p1

p0

D∗(p) dp = ∆CS ≤
∫ p1

p0

D(p) dp ≤ ∆CS =

∫ p1

p0

D∗(p) dp for any D ∈ D.

Here, D∗(·) and D∗(·) are defined by

D∗(p) :=


q1

(
p1
p

)ε
if p >

(
q0p

ε
1

q1p
ε
0

) 1
ε−ε

,

q0

(
p

p0

)ε
if p ≤

(
q0p

ε
1

q1p
ε
0

) 1
ε−ε

,

and D∗(p) :=


q1

(
p1
p

)ε
if p >

(
q1p

ε
0

q0p
ε
1

) 1
ε−ε

,

q0

(
p

p0

)ε
if p ≤

(
q1p

ε
0

q0p
ε
1

) 1
ε−ε

.

Closed-form expressions for ∆CS and ∆CS are provided in Appendix A.

We offer two proofs of Theorem 1. The first, which we present below, is simple and intuitive

due to its geometric nature. Its generalizability, however, is rather limited: in more complicated

environments that we consider later, this simple geometric approach no longer applies. The second,

which we present in Appendix B, is more technical and relies on a fortuitous connection between

our problem (2) and Bayesian persuasion problems that have been considered by the theoretical

literature stemming from Kamenica and Gentzkow (2011). While our second approach is less

straightforward, it generalizes more easily to later environments.

We now explain the geometric proof of Theorem 1 with the help of Figure 3. We begin with a

change of variables: rather than plot prices against quantities, we depict a demand curve by
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Figure 3: Sketch of the proof of Theorem 1.

plotting log-prices against log-quantities. The key insight is that, because the logarithm is a

monotone transformation, this change of variables does not qualitatively alter our problem: as

before, our goal is to find decreasing curves that pass through two points, (log p0, log q0) and

(log p1, log q1), that respectively maximize and minimize the areas under the curves that are

bounded between log p0 and log p1.

Although it does not qualitatively alter the problem, this change of variables enables a more

natural interpretation of (EA). Notice that demand curves with constant elasticity correspond

to linear curves when we plot log-prices against log-quantities. To rule out demand curves with

elasticities higher than ε, we draw two (blue) straight lines such that one passes through

(log p0, log q0) and the other, (log p1, log q1); each of these lines has a gradient of ε. Any demand

curve in D must therefore correspond to a curve that lies between these two lines—and not in

the (blue) shaded regions. Similarly, to rule out demand curves with elasticities lower than ε, we

draw two (orange) straight lines with gradients equal to ε. Any demand curve in D must also

correspond to a curve that lies between these two lines—and not in the (orange) shaded regions.

The next step is to find the curve within the unshaded parallelogram-shaped region that

maximizes the area under it between log p0 and log p1 (as ∆CS must vary monotonically with

this area). This curve can be read directly off the diagram: it must be the top boundary of the

parallelogram (depicted by the red curve). Likewise, the bottom boundary of the parallelogram

(depicted by the green curve) minimizes the area under it between log p0 and log p1.

It follows that the demand curves corresponding to each of these curves must respectively

maximize and minimize the change in consumer surplus. Reversing the change of variables, the
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top (red) curve corresponds to a 2-piece CES interpolation that has elasticity ε between (p0, q0)

and an auxiliary point, and elasticity ε between the auxiliary point and (p1, q1), which is the

demand curve D∗(·). Likewise, the bottom (green) curve corresponds to the demand curve D∗(·).
One minor technicality is that, while any demand curve in D must correspond to a curve

within the unshaded parallelogram-shaped region, the converse is not true: not any curve within

this region can be mapped back into a demand curve in D. Nevertheless, it is readily verified that

the resulting demand curves, D∗(·) and D∗(·), are both in D.

Although minor, this technicality highlights the somewhat “coincidental” simplicity of this

proof. The heart of the geometric argument relies on finding the constraints implied by (EA)

that are not only necessary, but also sufficient a posteriori. In more complicated environments,

the binding constraints are not as easily determined, nor do they necessary take on such a simple

form. In turn, this explains why the geometric argument fails to generalize to later environments,

necessitating the information design approach that we undertake in Appendix B.

2.3 Welfare bounds with curvature restrictions

We now turn to a different type of assumption than (EA), namely restrictions on the curvature

of the demand curve, and show that analogs of Proposition 1 and Theorem 1 hold in this setting.

Restrictions on the curvature of demand have a long history of precedence in economics. For

instance, Marshall (1890) went so far as to define a demand curve as a decreasing function whose

elasticity also decreases with price, while Robinson (1933) suggested that demand curves, ought

to be convex lest the monopoly output rises when price discrimination causes prices to rise. These

intuitions underlie the standard textbook depiction of a demand curve as a convex function.

Such restrictions are imposed for a variety of reasons, arguably the most important of which

is to ensure that comparative statics predicted by models are consistent with observed data.

For example, Marshall’s assumption (now more commonly known as Marshall second law) was

maintained “without apology” by Krugman (1979) so that his model would produce “reasonable

results.” Melitz (2018) argues that Marshall second law—which he also imposes in his model—is

“equivalent to the property that more productive firms (or alternatively lower cost) set higher

markups,” and that violations would “directly contradict the [empirical] evidence on markups and

pass-through.”

Different literatures in economics employ a variety of assumptions on the curvature of demand

that capture other intuitions pertaining to their fields of interest. To be comprehensive, we consider

a range of assumptions that are considered standard in different fields. Each curvature assumption
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(abbreviated by “CA”) restricts ∆CS in a different way. We detail these assumptions below and

provide some examples of how they are invoked in different fields.

(CA1) Marshall’s second law. Demand is said to satisfy Marshall’s second law if its price

elasticity ε(p) = pD′(p)/D(p) is decreasing in p. This was introduced by Marshall (1890)

and is widely used in international trade, macroeconomics, and microeconomics, including

by Krugman (1979), Bishop (1968), Johnson (2017), and Melitz (2018), who also provides

some empirical justification for this assumption in the context of trade models.

(CA2) Decreasing marginal revenue. Let P (q) := D−1(q) denote the inverse demand curve.

Demand exhibits decreasing marginal revenue if marginal revenue MR(q) := P (q) + qP ′(q)

is decreasing in q. This assumption is standard in microeconomics (see Robinson, 1933, for

example) and ensures that a profit-maximizing price exists for a monopolist who faces a

convex cost function.

(CA3) Log-concave demand. Demand is log-concave if D′(p)/D(p) is decreasing in p. The

comprehensive surveys of Bagnoli and Bergstrom (2005) and An (1998) demonstrate that

many common demand curves are log-concave. Log-concave demand also has a simple

economic interpretation, as Amir, Maret, and Troege (2004) show: the pass-through rate of

a change in a monopolist’s marginal cost is less than one if and only if demand is log-concave

(see also Weyl and Fabinger, 2013). It is also well-known that log-concavity is a sufficient

condition for a unique equilibrium to exist in common models of Cournot competition (Dixit,

1986) and differentiated products Bertrand competition (Caplin and Nalebuff, 1991a).

(CA4) Concave demand. Demand is concave if D′(p) is decreasing in p. Robinson (1933) shows

that concave demand has a simple economic interpretation: total output increases when

monopolistic price discrimination causes prices to rise in markets with concave demands

(see also Malueg, 1994 and Aguirre, Cowan, and Vickers, 2010).

(CA5) ρ-concave demand. For a given real number ρ, demand is ρ-concave if D′(p) [D(p)]ρ−1 is

decreasing in p. Based on the work of Prékopa (1973), this assumption was introduced to the

economics literature by Caplin and Nalebuff (1991a,b) as a generalization of log-concavity

(ρ = 0) and concavity (ρ = 1). Different values of ρ parametrize the restrictiveness of this

assumption: a ρ′-concave demand curve is ρ′′-concave for any ρ′′ < ρ′.
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(CA6) Convex demand. Demand is convex if D′(p) is increasing in p. Similar to concave

demand (CA4), Robinson (1933) shows that total output increases when monopolistic

price discrimination causes prices to fall in markets with convex demands.

(CA7) Log-convex demand. Demand is log-convex if D′(p)/D(p) is increasing in p. Similar to

log-concave demand (CA3), Amir et al. (2004) show that the pass-through rate of a change

in a monopolist’s marginal cost is more than one if and only if demand is log-convex.

(CA8) ρ-convex demand. For a given real number ρ, demand is ρ-convex if D′(p) [D(p)]ρ−1 is

increasing in p. Similar to ρ-concave demand (CA5), ρ-convexity generalizes convexity

(ρ = 1) and log-convexity (ρ = 0); a ρ′-convex demand curve is ρ′′-convex for any ρ′′ > ρ′.

These assumptions can be divided into two categories: concave-like assumptions (CA1)–(CA5)

and convex-like assumptions (CA6)–(CA8). Concave-like and convex-like assumptions bound the

curvature of the demand curve from above and from below, respectively.

These assumptions are not mutually disjoint. For example, it is well-known that concave

demand curves are log-concave, and that log-convex demand curves are convex. In fact:

(CA1)

(CA4) (CA3) and (CA7) (CA6).

(CA2)

For reference, these relationships are proven in Appendix C, where we also provide examples of

common demand curves that satisfy each assumption.

Analogous to the demand family D, we define the following families of demand curves Di that

correspond to the different curvature assumptions for each i = 1, . . . , 8:

Di := {D : [p0, p1]→ R is decreasing and satisfies (A2) and (CAi)} .

As before, we find the largest and smallest possible changes in consumer surplus:
∆CSi := max

D∈Di

∫ p1

p0

D(p) dp,

∆CSi := min
D∈Di

∫ p1

p0

D(p) dp.
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We can now state our second main result:

Theorem 2. Under (A1) and (A2), the following hold:

(a) For concave-like assumptions (CA1)–(CA5), ∆CSi is attained by a 2-piece interpolation

and ∆CSi is attained by a 1-piece interpolation.

(b) For convex-like assumptions (CA6)–(CA8), ∆CSi is attained by a 1-piece interpolation and

∆CSi is attained by a 2-piece interpolation.

Specifically, the following bounds on changes in consumer surplus hold:

(i) Under (A1), (A2), and (CA1), ∆CS1 is attained by a 2-piece CES interpolation and ∆CS1

is attained by a 1-piece CES interpolation.

(ii) Under (A1), (A2), and (CA2), ∆CS2 is attained by a 2-piece constant marginal revenue

interpolation and ∆CS2 is attained by a 1-piece constant marginal revenue interpolation.

(iii) Under (A1), (A2), and (CA3), ∆CS3 is attained by a 2-piece exponential interpolation and

∆CS3 is attained by a 1-piece exponential interpolation.

(iv) Under (A1), (A2), and (CA4), ∆CS4 is attained by a 2-piece linear interpolation and ∆CS4

is attained by a 1-piece linear interpolation.

(v) Under (A1), (A2), and (CA5), ∆CS5 is attained by a 2-piece ρ-linear interpolation and

∆CS5 is attained by a 1-piece ρ-linear interpolation.

(vi) Under (A1), (A2), and (CA6), ∆CS6 is attained by a 1-piece linear interpolation and ∆CS6

is attained by a 2-piece linear interpolation.

(vii) Under (A1), (A2), and (CA7), ∆CS7 is attained by a 1-piece exponential interpolation and

∆CS7 is attained by a 2-piece exponential interpolation.

(viii) Under (A1), (A2), and (CA8), ∆CS8 is attained by a 1-piece ρ-linear interpolation and

∆CS8 is attained by a 2-piece ρ-linear interpolation.

Closed-form expressions for ∆CS and ∆CS are provided in Appendix A.
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As the proof is an extension of the geometric proof of Theorem 1, we defer it to Appendix D.

Instead, we emphasize a key implication of Theorem 2 for empirical applications here: common

demand curves often attain extremal values of ∆CS. For instance, Theorem 2 implies that a CES

demand curve achieves the smallest possible value of ∆CS among all demand curves in D1 that

satisfy Marshall’s second law. Similarly, a linear demand curve achieves the largest possible value

of ∆CS among all convex demand curves in D6. Thus, Theorem 2 provides a formal sense in which

interpolations commonly used by practitioners in different fields—such as the CES interpolation

in international trade and the linear interpolation in applied microeconomics—are extremal.

Moreover, although Theorem 2 states bounds separately for each Di, curvature assumptions

can also be combined: for instance, a convex demand curve may also satisfy Marshall’s second

law. Such a demand curve belongs to both D1 and D6. In that case, ∆CS will be attained by a

1-piece linear demand curve, whereas ∆CS will be attained by a 1-piece CES demand curve.

A natural question is whether an analogue of Proposition 1 holds: is it true that the identified

sets remain sharp under (CA1)–(CA8) rather than (EA)? We show that the answer is yes:

Proposition 2. Under (A1), (A2), and (CAi), the identified set [∆CSi,∆CSi] is sharp for each

i = 1, . . . , 8: for any possible change in consumer surplus that lies within this set, there must be

a demand curve D(·) ∈ Di that generates it.

The proof of Proposition 2 is more complicated than the proof of Proposition 1. The key

challenge is that, unlike D, many of the families Di are no longer convex. In Appendix D, we show

how our information design approach yields a simple proof of Proposition 2. The key step in our

proof expresses the set of all possible changes in consumer surplus as the image of a convex set

under a continuous real-valued function. We then establish a one-to-one map between this convex

set and the demand family Di. This guarantees that the set of all possible changes in consumer

surplus is convex, and hence exactly equal to the interval [∆CSi,∆CSi].

2.4 Discussion

Before moving on to extensions, we comment on the modeling choices and assumptions imposed

in the basic version of the model, and how they affect the interpretation of our results.

First, as Theorem 1 demonstrates, the extremality of 2-piece CES interpolations arises from

our restriction (EA) on the range of admissible elasticities. As we argued earlier, this restriction

seems natural because empirical researchers and policymakers already use ranges of elasticities

and treatment effect estimates to reason about policy and welfare evaluation. However, in some
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applications, it might be more suitable to instead assume that the range of revenues is known. For

example, a monopolist who wishes to evaluate the effect of a price increase on consumers might

have more experience with likely revenues, rather than elasticities, over the interval of prices in

question. The analog of Theorem 1 (which can be shown by appropriately modifying the geometric

proof) then states that the largest and smallest possible changes in consumer surplus are attained

by 2-piece constant marginal revenue interpolations.

Second, instead of replacing (EA) with a curvature assumption (CAi) as in Theorem 2, we

can combine (CAi) with information about elasticities at p0 and p1 that the researcher might

have obtained from estimated treatment effects. In Appendix A, we show how an extension of

Theorem 2 yields simple bounds for the case when the researcher observes ε(p0) and ε(p1), and

when the demand curve satisfies (A1), (A2), and (CAi).

Third, in many empirical applications, the researcher is interested in counterfactual policies,

rather than retrospective ones—in which case only one price-quantity pair is observed, leaving

the quantity at the counterfactual price unknown. Extending Theorem 1 to this case requires

“extrapolating” from fewer observations to the case of two observations. Before applying

Theorem 1, we first establish bounds on what the unobserved point on the demand curve could

possibly be. We then apply Theorem 1 to every possible pair of points and find the extreme

points of the resulting set of possible ranges for ∆CS. We show how this can be done in

Section 3.1 using the same analytical tools introduced above, and apply this to an empirical

setting based on the work of Hahn and Metcalfe (2021) in Section 4.1.

Fourth, in other empirical applications, more than two points on the same demand curve are

observed. For instance, a tax might impact different markets or a series of price shocks may

be introduced sequentially over time. While our basic approach can be applied directly to each

market or price shock separately, a researcher may wish to refine the set of feasible demand curves

by imposing consistency with all of the observed data points. With infinite variation along the

demand curve, the true demand curve D(·) is non-parametrically identified and may be directly

recovered. In that limit, our bounds converge to the actual change in consumer surplus. Section 3.2

analyzes the intermediate case of arbitrarily (but finitely) many observations.

Fifth, an important assumption that we have made throughout this section is that the points

on the demand curve are perfectly observed without sampling error or structural noise. While

this simplifies the exposition, we show in Section 3.3 that our analysis extends to these cases by

deriving confidence intervals for each of our bounds.

Sixth, while our basic model focuses on bounding the change in consumer surplus, our approach

can be extended to other welfare measures. In Section 3.4, we discuss how deadweight loss can be
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bounded. By relaxing (A1), we allow income effects and show how our approach extends to the

compensating and equivalent variations. We further incorporate equity into our welfare measures

through the use of social welfare weights (Harberger, 1978; Saez and Stantcheva, 2016), and discuss

how our results extend symmetrically to supply-side measures of welfare such as producer surplus.

Seventh, and finally, we focus on the case where there is a single good in the market. Our

results extend immediately to markets where the good in consideration is independent of all other

goods. By continuity, this argument also applies when the elasticity of substitution between this

good and other goods in the market is small.4

3 Extensions

Motivated by the discussion at the end of the last section, we now consider different variations

of the basic model. As we show below, the analytical tools introduced in the basic model extend

naturally when more complexity is allowed for. We illustrate this by imposing the elasticity

assumption (EA) throughout this section; similar results can be obtained under the curvature

assumptions (CA1)–(CA8).

3.1 Counterfactual extrapolation from fewer points

The basic model assumes that two points on the demand curve are observed: (p0, q0) and (p1, q1).

However, in counterfactual exercises such as our application in Section 4.1, the quantity that would

be demanded at p1 is not known. Instead of (A2), these applications call for a weaker assumption:

(A3) D(·) is absolutely continuous and passes through the point (p0, q0).

Let D′ denote the family of demand curves that satisfy (A1), (A3), and (EA):

D′ := {D : [p0, p1]→ R is decreasing and satisfies (A3) and (EA)} .

As before, we find the largest and smallest possible changes in consumer surplus within D′:
∆CS

′
:= max

D∈D′

∫ p1

p0

D(p) dp,

∆CS′ := min
D∈D′

∫ p1

p0

D(p) dp.

4 In ongoing work, we study how our results extend to more general markets with multiple goods.
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Figure 4: Illustration of bounds when only (p0, q0) and p1 are observed.

A general procedure for finding ∆CS
′
and ∆CS′ is to decompose the problem into three steps.

First, we characterize the set of possible values of q1 that are consistent with (A3) and (EA). For

each possible value of q1, we then apply Theorem 1 to compute ∆CS and ∆CS for that q1. Finally,

∆CS
′

is equal to the maximal ∆CS over all possible q1, whereas ∆CS′ is equal to the minimal

∆CS over the same set. Because ∆CS
′
and ∆CS′ obtain at some (generally different) values of q1,

Theorem 1 implies that these bounds are attained by 2-piece CES interpolations.

Actually, more can be said about ∆CS
′

and ∆CS′ than this procedure might suggest by using

our earlier geometric argument, illustrated in Figure 4. The largest possible value of log q1 that is

consistent with (A3) and (EA) can be found by drawing the (blue) straight line with gradient ε

that passes through the point (log p0, log q0), and then finding the (red) point on the line at log p1.

It is clear that this value of q1 must also yield the maximal ∆CS; hence ∆CS
′
must be attained by

a 1-piece CES interpolation (corresponding to the red curve). A symmetric argument shows that

∆CS′ must also be attained by a 1-piece CES interpolation (corresponding to the green curve).

Theorem 3. Under (A1), (A3), and (EA), the largest and smallest changes in consumer surplus,

∆CS
′
and ∆CS′, are attained by 1-piece CES interpolations (with elasticities ε and ε, respectively).

From this decomposition procedure, we can deduce that Proposition 1 must hold in this setting:

the identified set [∆CS′,∆CS
′
] is sharp. Moreover, this decomposition procedure allows us to find

bounds for more complex models to which the geometric argument does not fully extend. In

particular, the geometric argument works for Theorem 3 only because our welfare measure ∆CS is

monotone in q1. As we show in Section 4.1, when the researcher is interested in welfare measures
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that take into account costs (that depend on q1), the geometric argument is insufficient and this

decomposition procedure is required.

3.2 Interpolating with more observations

In many empirical applications, more than two points on the same demand curve are observed.

These cases require a direct generalization of the basic model to an arbitrary (finite) number of

observations. To model this, we replace (A2) with:

(A4) D(·) is absolutely continuous and passes through the points (p0, q0), . . . , (pn−1, qn−1).

Thus (A2) is simply a special case of (A4) by setting n = 2. As such, our first result for this

subsection directly generalizes Theorem 1:

Theorem 4. Under (A1), (A4), and (EA), the largest and smallest possible changes in consumer

surplus are attained by (2n− 2)-piece CES interpolations.

Theorem 4 follows by applying Theorem 1 between every two adjacent points; Proposition 1

implies that the resulting identified set is sharp. Figure 5 illustrates the argument for the case of

n = 3 observations, where both the largest (in red) and smallest (in green) possible changes in

consumer surplus are depicted.

A more challenging question is how our bounds change when we impose curvature assumptions

in a model with more than two observations. For concreteness, we consider the case of Marshall’s

second law: what are the largest and smallest possible changes in consumer surplus under (A1),

(A4), (EA), and (CA1)? Clearly, the answer must be different than Theorem 4: even in the case

of n = 3 observations, both of the extremal demand curves (corresponding to the red and green

curves) do not satisfy Marshall’s second law.

An intuitive solution to this problem is to “iron” the extremal demand curves of Theorem 4

whenever Marshall’s second law is violated—that is, whenever elasticity increases, rather than

decreases, with price for two adjacent pieces in the CES interpolation. Ironing combines these two

adjacent pieces and replaces them with a single, larger piece. A simple count of how many times

Marshall’s second law is violated yields the form of the extremal demand curves to this problem.

By Proposition 2, the resulting identified set must also be sharp.

Theorem 5. Under (A1), (A4), (EA), and (CA1), the largest possible change in consumer

surplus is attained by an n-piece CES interpolation, and the smallest possible change in consumer

surplus is attained by an (n− 1)-piece CES interpolation.
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Figure 5: Illustration of bounds with n = 3 observations.

3.3 Sampling error and inference

In many empirical applications, observations of the quantities demanded involve sampling error:

rather than precise measurements of q0 and q1 for the entire market, the researcher observes only

a noisy sample thereof (e.g., within the treatment group). When this is the case, our bounds need

to account for an additional source of uncertainty: not only uncertainty about the shape of the

demand curve, but also uncertainty about the points that the demand curve passes through.

In this subsection, we show that our bounds can be extended to account for uncertainty due

to sampling error. We consider an extension of our basic model in which q0 and q1 are observed

as averages of noisy observations across individuals—as would be given by the treatment effect

estimate in a randomized control trial. Formally, there are N0 individuals who are offered the

good at a price of p0 (“control”) and N1 individuals who are offered the good at a price of p1

(“treatment”). Individuals are assumed to share the same underlying demand curve D(·), but the

quantity demanded by each individual i is also affected by an idiosyncratic shock eit:

qit = D(pt) + eit for t = 0, 1.

We make the standard assumption that e1t, . . . , eNtt have zero mean and σ2 variance, and are

independently and identically distributed across individuals.
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For ease of exposition, we assume that the control group is large but the treatment group is

small, so that there is meaningful sampling error only for q1, and not q0. Our approach extends

straightforwardly when both q0 and q1 have sampling error. We replace (A2) with the following:

(A5) D(·) is absolutely continuous, passes through the point (p0, q0), and satisfies

q1 = D(p1) + e,

where e has an asymptotic normal distribution, N (0, σ2/N1).

Clearly, (A2) is obtained as a special case of (A5) in the limit where the treatment group is also

large so that q1 is precisely measured.

We now show how our bounds can accommodate sampling error by determining standard

confidence intervals for ∆CS and ∆CS. With a slight abuse of notation, let ∆CS(q0, q1) and

∆CS(q0, q1) respectively denote the upper and lower bounds of ∆CS obtained in Theorem 1 as

explicit functions of q0 and q1, when the demand curve passes through both (p0, q0) and (p1, q1).

Theorem 6. Let zτ denote the τ th quantile of the standard normal distribution N (0, 1). Under

(A1), (A5), and (EA), the standard 100 · α% confidence intervals for ∆CS and ∆CS are
CIα for ∆CS =

[
∆CS

(
q0, q1 + z(α+1)/2 ·

σ√
N1

)
,∆CS

(
q0, q1 − z(α+1)/2 ·

σ√
N1

)]
,

CIα for ∆CS =

[
∆CS

(
q0, q1 + z(α+1)/2 ·

σ√
N1

)
,∆CS

(
q0, q1 − z(α+1)/2 ·

σ√
N1

)]
.

Theorem 6 follows immediately from the observation that ∆CS(q0, ·) and ∆CS(q0, ·) are

decreasing for any choice of q0; hence we omit its proof. This approach for deriving standard

confidence intervals holds generally beyond sampling error in q1: given that our bounds admit

closed-form expressions (see Appendix A), monotonicity of these bounds with respect to different

variables of interest can be easily verified—which allows us to derive standard confidence

intervals to account for uncertainty in these variables.

Although we focus on sampling error in this subsection, our approach can also be extended

to incorporate other sources of error. For example, additive market shocks and other types of

structural error can be accommodated when the researcher has a prior over their distribution. In

this case, the asymptotic normal distribution in our analysis above would be replaced with the

distribution in question, yielding analogous confidence intervals to those in Theorem 6.
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3.4 Other welfare measures

We conclude this section by discussing how our analysis extends to welfare measures other than

consumer surplus. We consider four different types of extensions: (i) deadweight loss; (ii) weighted

consumer surplus using social welfare weights; (iii) compensating and equivalent variations when

income effects are allowed; and (iv) supply-side welfare measures such as producer surplus.

Our results extend most straightforwardly when the welfare measure of interest is deadweight

loss—as is often the case in research on tariffs (Section 4.2) and the excess burden of taxation

(Section 4.4)—rather than consumer surplus. This is because the change in deadweight loss can

be written as

∆DWL =

∫ p1

p0

D(p) dp− (p1 − p0) q1 = ∆CS− (p1 − p0) q1.

Since (p0, q0) and (p1, q1) are observed, maximizing or minimizing ∆DWL over any demand family

is equivalent to maximizing or minimizing ∆CS over that demand family.5 As such, Theorems 1

and 2—as well as Propositions 1 and 2—continue to hold.

Our results also extend naturally to the case where consumer surplus is weighted by each

consumer’s social welfare weight (i.e., the marginal increase in social welfare from giving the

consumer an additional dollar), a common objective in public finance (Saez and Stantcheva, 2016;

Finkelstein and Hendren, 2020). To see how, consider a setting in which each consumer has unit

demand for the good. Demand D(p) at a price p can then be interpreted as the mass of consumers

whose willingness to pay for the good exceeds p. Let λ(p) ≥ 0 be the average social welfare weight

of consumers with a willingness to pay exactly equal to p. The change in weighted consumer

surplus is equal to ∫ p1

p0

λ(p)D(p) dp.

Crucially, this is a linear functional of D(·), which is sufficient for our information design approach

(see Appendix B) to hold. Consequently, Theorems 1 and 2 and Propositions 1 and 2 also continue

to hold in the case of weighted consumer surplus.

While many empirical papers focus on the case of quasilinear utility (A1), our analysis can

also be extended to settings with income effects where the researcher is interested in changes in

the compensating and equivalent variations. The key observation that enables our analysis to

hold is that the compensating and equivalent variations can be expressed as the area under the

Hicksian—rather than Marshallian—demand curve. Correspondingly, the elasticity assumption

5 If only (p0, q0) is observed (as in the case of counterfactual extrapolation), then a similar approach to the one
we take in Section 3.1 allows us to bound ∆DWL.
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(EA) would have to be re-interpreted as a restriction on compensated price elasticities, while

the curvature assumptions (CA1)–(CA8) would have to be re-interpreted as restrictions on the

curvature of the Hicksian demand curve.

Finally, although we have focused on welfare analysis based on the demand curve, a similar

analysis extends to welfare measures based on the supply curve instead. By combining both

demand-side and supply-side welfare measures, our approach also enables us to derive bounds on

the change in total surplus.

4 Empirical applications

Our approach to constructing robust welfare bounds can be applied to a number of settings. In this

section, we present four applications drawn from different fields, namely applied microeconomics,

international trade, and public finance.

Each application builds on an existing paper in the literature; we focus on these papers because

they exploit exogenous demand shocks in their respective settings and adopt relatively simple

models. This allows us to apply our framework directly and show how we can obtain meaningful

bounds on welfare even in the absence of a more complicated structural model.

4.1 Energy subsidies

Empirical researchers are often interested in assessing the counterfactual welfare impact from a

price that has not been observed. A standard approach is to impose a functional form assumption

on demand that can be used to extrapolate from observed price-quantity pairs to any given price.

But how robust are welfare estimates to such functional form assumptions? In this subsection,

we show how our results provide an alternative approach that accounts for both the uncertainty

about the true demand curve and about the counterfactual quantities that would be realized at

unobserved price points.

We apply our framework to an application evaluating the energy subsidies offered through the

California Alternate Rates for Energy (CARE) program, following the study by Hahn and Metcalfe

(2021). The CARE program offers wholesale discounts on unit prices for gas and electricity to

eligible low-income households. In Hahn and Metcalfe’s sample, CARE households receive a 20%

discount on marginal rates, from an average price of $0.95 to $0.75, per therm of gas.

Hahn and Metcalfe estimate the net welfare impact of CARE and find that the program results

in a net loss of $4.8 million. They show that, while CARE clearly benefits eligible households,
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it also imposes costs through three different channels. First, discounts for eligible households

are subsidized by higher-income households, who shoulder a higher cost to compensate for the

difference in revenues. Second, lower gas prices encourage higher gas consumption, which harms

the environment. Finally, the CARE program entails administrative costs of about $7 million.

To reach their $4.8 million estimate of welfare loss, Hahn and Metcalfe project the amount of

gas that would be consumed both by households that are enrolled in CARE and those that are

not under a linear model of demand. For CARE households, they estimate a local elasticity of

consumption at the subsidized price using a LATE research design with randomized nudges for

eligible households to sign up and receive the discounted rate. For non-CARE households, they use

the local elasticity of consumption estimated by Auffhammer and Rubin (2018). In each case, they

extrapolate from the local elasticity estimates by assuming that demand curves are linear. Under

this functional form assumption, the observed price-quantity pair and local elasticity estimate pin

down the entire demand curve for each type of household, allowing Hahn and Metcalfe to project

a counterfactual quantity and to integrate under each demand curve to compute the changes in

total surplus.

The mechanics of Hahn and Metcalfe’s welfare computation are depicted in Figure 6. For

CARE households, the counterfactual unit price p∗ is higher than the discounted CARE price pC ,

0
q

p

DC(p)

p∗

q∗C

pC

qC

MSC

qC

(a) CARE households

0
q

p

DN(p)

pN

q∗N

p∗

qN

MSC

qN

(b) Non-CARE households

Figure 6: The change in total surplus (excluding the fixed administrative cost) from the CARE program
based on Hahn and Metcalfe (2021).

Note: Prices and quantities are not drawn to scale; the demand curves for CARE and non-CARE
households are not directly related in any way. The demand curves DC(·) and DN (·), and counterfactual
quantities q∗C and q∗N , are unknown to the researcher and must be inferred.
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and so the counterfactual quantity q∗C is lower than the observed quantity qC .6 For non-CARE

households, the opposite is true: pN > p∗ and qN < q∗N . To compute the change in total surplus

(i.e., the sum of consumer and producer surplus), Hahn and Metcalfe integrate under the inverse

demand curve for each group. In addition, they account for environmental costs by subtracting

the change in quantities consumed multiplied by the marginal social cost (MSC), assessed at

$0.68 per therm. Net of environmental costs (in orange), the gain in total surplus (in green) for a

representative CARE household is shown in Figure 6(a), while the loss in total surplus (in red) for

a representative non-CARE household is shown in Figure 6(b). The net change in total surplus

from CARE is thus given by the difference between the green area, multiplied by the number of

CARE households, and the red area, multiplied by the number of non-CARE households, minus

the fixed administrative cost for the program.

Hahn and Metcalfe find that CARE households (average elasticity = −0.35) are substantially

more elastic than non-CARE households (average elasticity = −0.14). This suggests that the more

price-sensitive CARE households may benefit more from the subsidy than non-CARE households

are harmed by it. Indeed, under their linear extrapolation, Hahn and Metcalfe estimate a total

surplus gain of $5.1 million for CARE households, which outweighs a total surplus loss of $3.1

million for non-CARE households. However, the net change in total surplus for the CARE program

becomes negative once the $7 million fixed administrative costs are taken into account.

Hahn and Metcalfe show that their result is robust to a number of sensitivity analyses, including

different accounting formulas for the counterfactual price and varying the CARE or non-CARE

elasticity over a neighborhood around their estimated values. However, these sensitivity analyses

maintain the functional form assumption that the demand curve is linear.

How sensitive is Hahn and Metcalfe’s result to the assumption that the demand curve is linear?

By Theorem 2, the linear demand curve attains the upper bound on the surplus loss from non-

CARE households among all convex demand curves for gas. But by the same logic, the linear

demand curve also attains the lower bound on the surplus gain from CARE households. It is thus

challenging to intuit how the linearity assumption affects their estimate barring further numerical

analysis.

To overcome this challenge, we apply our results from Section 3.1 to provide an alternative

approach that avoids making functional form assumptions (summarized in Figure 7). To begin, we

extend Hahn and Metcalfe’s sensitivity analysis to account for uncertainty—not only with respect

6 Hahn and Metcalfe derive p∗ using an accounting identity that equalizes status quo transfers under CARE. See
their Section 4.1.2 for a detailed discussion on the derivation, its robustness to alternative specifications, and its
relationship with existing policy.
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Figure 7: Upper bound of the net change in total surplus without functional form assumptions.

to the elasticity at the observed price-quantity pair for each household group, but also with respect

to the counterfactual quantity at the price p∗ and the elasticities along the demand curve between

the observed and counterfactual price. We then plot the upper bound of the net change in total

surplus under increasing elasticity bands around the Hahn and Metcalfe’s estimates.7 In the lower

left corner, we assume that each group’s elasticity is nearly constant (within 1% of their estimate)

throughout its demand curve. In the upper right corner, we assume that each group’s elasticity

can vary as much as 100% of their estimate.

In each case, we apply the procedure outlined in Section 3.1 to compute our bounds. We first

characterize the minimum and maximum values that the counterfactual quantity for each group

could take, given the allowable range of elasticities. We then apply Theorem 1 to compute the

upper and lower bounds on net welfare (including the environmental impact of counterfactual

consumption) for each group and extremal quantity. Finally, we combine the group bounds to

obtain bounds on the net change in total surplus.

Our analysis makes clear that Hahn and Metcalfe’s result is not only robust in the various

dimensions discussed in their paper, but also with respect to their functional form assumption.

7 An α · 100% band around the elasticity estimate ε̂ means that any elasticity between p0 and p1 must fall in the
interval [ε, ε] as in (EA), where ε = (1− α)× ε̂ and ε = (1 + α)× ε̂. This encodes both uncertainty about the
elasticity estimates at the observed price and fluctuations in the elasticities along the demand curve.
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Even without the linearity assumption, fluctuations of over 50% of the estimated elasticities cannot

possibly rationalize a positive net welfare impact of CARE. But Figure 7 also demonstrates how

uncertainty about the shape of demand can change the interpretation of the result. Hahn and

Metcalfe’s estimate lies at the lower left corner of the figure. As larger elasticity fluctuations

are allowed, the upper bound on net welfare increases and ultimately becomes positive. If the

fixed administrative cost of CARE were lower, the range of elasticities that could rationalize a

net benefit from CARE (while the linear interpolation still implies a net loss) might be narrower

and more reasonable. In this sense, our approach demonstrates not only whether the particular

functional form assumption that is employed is robust to alternative specifications, but also what

minimal assumptions are needed to maintain the qualitative conclusions of the exercise.

4.2 Trade tariffs

Between 2018 and 2019, the United States imposed an unprecedented wave of escalating import

tariffs on a large set of product sectors and major trading partners. This “return to protectionism”

inspired a number of academic studies assessing the welfare impact of the new tariffs (Amiti et al.,

2019; Fajgelbaum et al., 2020; Cavallo, Gopinath, Neiman, and Tang, 2021). All of these studies

document the same fundamental patterns: (i) quantities consumed fell in sectors targeted by the

tariffs; (ii) foreign producer prices did not change significantly in the short run; and (iii) the net

domestic impact of the tariffs was ultimately negative.8 But the modeling choices and empirical

techniques employed in each study are slightly different—for instance, Amiti et al. assume linear

demand curves, while Fajgelbaum et al. and Cavallo et al. assume CES demand curves. As result,

while all of the estimates are similar, it is difficult to discern the extent to which their differences

stem from substantive modeling choices (e.g., accounting for substitution across product sectors)

rather than different parametrizations.

In this subsection, we demonstrate how our framework can be applied to generate robust

bounds for the welfare impact of import tariffs, using the 2018–2019 tariffs as a case study. For

expositional simplicity, we focus our analysis on bounding the deadweight loss due to the tariffs,

building on the data and approach taken by Amiti et al. For each product (defined as a 10-digit

Harmonized Tariff Schedule product code) hit by a tariff, we compare two periods: a period before

the trade war started (e.g., March 2017), which we denote by t = 0, and a comparable period

after tariffs were imposed (e.g., March 2018), which we denote by t = 1. As Amiti et al. find

8 By 2020, the Wall Street Journal editorial board had written about the “piling” evidence of net economic harm
from tariffs in an article titled “How Many Tariff Studies Are Enough?”
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near-complete tariff pass-through to consumers,9 we assume that pre-tariff prices did not change

during the trade war. Thus, a product j that was priced at pj,0 at t = 0 would be priced at

pj,1 = (1 + τ) pj,0 at t = 1, where τ is the ad valorem tariff imposed on good j at t = 1.

Furthermore, as this implies that producer prices did not change in response to the tariffs,

we follow Amiti et al. in assuming that the producer supply curves are flat, and so the tariffs

did not incur any losses to producer surplus.10 In this case, computing the deadweight loss from

the tariff on a given good (in a given month) is equivalent to the Harberger exercise discussed in

the introduction. The deadweight loss is given by the area B in Figure 1(a): the total change in

consumer surplus (given by the integral of the unobserved demand curve between the two price

points), less the earned tariff revenues. Amiti et al. impute a demand curve through a linear

interpolation and compute their deadweight loss estimate by calculating the area of the resulting

Harberger triangle.

In order to compute bounds, we consider observations of price and quantity, (pjmc,0, qjmc,0)

and (pjmc,1, qjmc,1), for each triple of product j, month m, and country c for which a tariff was

introduced in 2018. To obtain these price-quantity observations, we draw from the US Customs

data report following the replication code provided by Amiti et al. We close the model by assuming

(as Amiti et al. do) that product sales are independent of each other, so that tariffs on one set of

products do not impact sales on another set that is not yet affected. This allows us to treat each

product’s demand curve independently, and to aggregate the deadweight losses across all affected

products for a total amount.

As the 2018 tariffs affected a variety of very different goods, it may be difficult to conjure an

informative prior on the range of feasible elasticities. Instead, we begin by considering the total

estimated deadweight loss that is implied by four of the interpolations described in Section 2.3:

CES, constant marginal revenue (CMR), exponential, and linear. Figure 8(a) plots the monthly

deadweight loss across all affected products from February through December 2018 for each

demand curve. By Theorem 2, these estimates correspond to one-sided bounds for different

families of demand curves. For instance, as CES demand is the lower extremum for the family of

demand curves that satisfy Marshall’s second law (CA1), the CES estimates in Figure 8(a)

9 This is consistent with the findings of Fajgelbaum et al. and Cavallo et al., who employ different estimation
methodologies than Amiti et al.

10 As Fajgelbaum et al. point out, a more conservative conclusion based on the finding that producer prices did
not change in response to the tariffs is that a flat supply curve is possible, and cannot be ruled out. If this
is the case, our bounds are still valid, but they capture only the deadweight loss incurred by consumers. It
would be possible to do a “doubly robust” version of our bounds to account for the deadweight loss incurred by
producers, but as this does not feature in the papers we are working off of, we omit it for the sake of brevity.
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Figure 8: Comparison of DWL bounds under different assumptions.

provide the lower bound on deadweight loss consistent with Marshall’s second law. Similarly, the

CMR estimates provide the lower bound consistent with decreasing marginal revenue (CA2),

the exponential estimates provide the lower bound consistent with log-concave demand (CA3),

and the linear estimates provide the lower bound consistent with concave demand (CA4).

Notably, while the estimates differ in magnitude in each month—reflecting differences in

seasonal demand as well as the gradual addition of new tariffs—their relative ordering does not

change. This is unsurprising: as we argue in Section 2.3 and show in Appendix C, concavity

implies log-concavity, which implies decreasing marginal revenue and Marshall’s second law.

Thus, the lower bound in the family of concave demand curves must be at least as high as the

lower bound in the family of log-concave demand curves, and so on.

To interpret the estimates in Figure 8(a) as bounds, it is necessary to take a stance on which

assumptions regarding demand are most appropriate. For instance, while the linear estimate for

deadweight loss provides a lower bound consistent with concave demand (CA4), it could instead

be interpreted as the upper bound consistent with convex demand (CA6). Indeed, whereas

Figure 8(a) demonstrates the range of extremal deadweight loss estimates that may be consistent

with common families of demand, one might instead wish to know the tightest bounds that are

consistent with the set of restrictions that pertain to the international trade setting.

In Figure 8(b), we demonstrate how this can be done. Given the prominence of Marshall’s

second law in the trade literature, we focus on (CA1) as a base assumption. By Theorem 2, (CA1)

implies that the lower bound on deadweight loss is given by a 1-piece CES interpolation. The
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corresponding estimate for each month drawn in a black upward-facing triangle in Figure 8(b). As

we note in Section 2.3, absent any other data or restrictions, the conservative (box) upper bound

is admissible and no tighter bound can be guaranteed. However, if there are other assumptions

that fit the setting—whether additional curvature restrictions or elasticity restrictions—they may

be combined with Marshall’s second law.

To illustrate this, the black downward-facing triangles in Figure 8(b) correspond to the upper

bound on deadweight loss if demand is also assumed to be convex (CA6)—the 1-piece linear

interpolation estimates also represented by dots in Figure 8(a). Taken together, the black triangles

in Figure 8(b) present a set of bounds under both (CA1) and (CA6). When the total deadweight

loss is small—as in the early months of the trade war when the size and the number of tariffs

was small—the bounds are very close together as the linear demand curve is a good (Taylor)

approximation to the actual demand curve. However, for months with more tariffs and larger

distortions, the range of admissible deadweight loss estimates is substantial. Summing across all

months, we find that the total deadweight loss from tariffs was at least $12.6 billion and at most

$16.8 billion under both (CA1) and (CA6). As Amiti et al. note, the US government internalized

$15.6 billion in revenues from import tariffs over the course of 2018, meaning that the cost to

consumers and importers ranged from $28.2 billion to $32.4 billion.

The assumptions that are imposed on demand affect the magnitude of these estimates. For

example, when the convexity assumption (CA6) is not appropriate, we might consider how the

upper bound on deadweight loss might change under different elasticity restrictions. Since we do

not have a domain-specific prior over what ranges of elasticities may be reasonable, we consider

symmetric bands around the average elasticity observed in each month.11 The colored downward-

facing triangles in Figure 8(b) present the upper bound for total monthly deadweight loss under

(EA) if elasticities can be within 1%, 2.5%, 5%, and 10% of the observed average. While the

majority of the band estimates fall below the upper bound corresponding to convexity, even the

5% band bound exceeds the convexity bound starting in October. Thus, even demand curves

with modestly decreasing elasticities may be consistent with total deadweight loss estimates that

exceed $16.8 billion.

11 The average elasticity can be inferred from (p0, q0) and (p1, q1) alone: εavg = log(q1)−log(q0)
log(p1)−log(p0) . As in Section 4.1,

an α · 100%-band around the average elasticity εavg means that ε = (1−∆)× εavg and ε = (1 + ∆)× εavg.
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4.3 Old-age pensions

Recent work in public finance has heeded calls to “harness the gains of the ‘credibility revolution’

for the goal of welfare analysis” (Finkelstein and Hendren, 2020) by relating carefully estimated

policy impacts to measures of willingness to pay that can be composed into a “marginal value of

public funds” (MVPF) and compared across different outlets of government spending. Many of

these studies evaluate programs that give a discrete subsidy to a specific group of individuals (e.g.,

Pell Grants, supplemental security income, and pensions).12 To evaluate welfare, the recipients

of the subsidy are typically split into two groups: marginal recipients who are determined to

have switched their behavior on the basis of the subsidy (e.g., enrolled in college or retired), and

inframarginal recipients who benefit from the subsidy with no change in behavior. Since they do

not exhibit a demand response by definition, inframarginal recipients are presumed to internalize

the full benefit of every dollar of subsidy. However, assessing the surplus gained by marginal

recipients requires a stronger assumption—and often, studies assume that the marginal recipients

internalize no benefit whatsoever from the subsidy.

In this subsection, we consider an example of the MVPF approach through a study on the

impact of the 1908 Old-Age Pension Act (OPA) in the UK by Giesecke and Jäger (2021). The

OPA launched the first universal pension for low-income workers in the UK. Giesecke and Jäger

use individual level data from the UK census in 1891, 1901, and 1911 to assess the impact that the

introduction of the OPA had on labor force participation by eligible workers. Using a regression

discontinuity design around the minimum age of eligibility (70) immediately after the introduction

of the OPA, Giesecke and Jäger find that labor participation for eligible workers dropped from

46% to 40%—nearly all due to workers who retired. Assuming that the labor force participation

rate would have continued to evolve after the cutoff age (71+) at the same rate as for people aged

65–69 absent the OPA, they conclude that the OPA caused the total number of eligible workers

who retired to grow from 557, 505 to 613, 873: a change from 52% to 58% of all eligible workers.

To estimate the welfare impact of the OPA, we consider a model of retirement on the basis of

foregone wages and pension benefits. Giesecke and Jäger report that the overwhelming majority

of pension recipients received the maximum pension of 260 shillings per year (22% of average

earnings). However, there is little data on the distribution of incomes, other than the fact that

the total annual income of most workers was no higher than 420 shillings a year (36% of average

earnings) in order to qualify for the maximum pension.

12 See https://policyimpacts.org/policy-impacts-library for a running list of studies that the MVPF has
been computed for.
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Figure 9: Illustration of how probability of retirement varies with pension offered.

As such, we apply our framework to bound the welfare impact of the OPA with respect to

uncertainty about the distribution of incomes among eligible workers. We consider each worker’s

probability of retirement as a function of the pension that is available to him. Each eligible worker

i derives a utility from working wi that includes his wage, taste for working, and distaste for

retirement. For simplicity, we assume that wi is drawn independently from the same distribution

F for each eligible worker. Given a pension amount p, the worker retires if and only if p ≥ wi.

The probability that a given worker retires is thus F (p), and by the central limit theorem (as

in Section 3.3), the proportion of workers who retire is asymptotically distributed according to a

Gaussian distribution with mean F (p) and variance F (p) [1− F (p)] /N .13

The change in worker surplus can now be expressed as a linear functional of the distribution F ,

just as how the change in consumer surplus is a linear functional of the demand curve in (1). As

shown in Figure 9, the distribution F can be thought of as a supply curve: F (p) is the proportion

of workers who would retire at a pension of p. Thus, when the OPA increased pensions from

p0 = 0 shillings to p1 = 260 shillings, worker surplus increased accordingly by

∆W =

∫ p1

p0

F (p) dp.

As F is not observed, Giesecke and Jäger adopt a conservative approach by assuming that

marginal workers who retired because of the OPA were indifferent between working and receiving

a pension. By this assumption, only inframarginal retirees benefited from their pensions, and the

13 Here N refers to the number of eligible workers; at the time of the OPA, there were 1, 068, 486 such people.
We apply the central limit theorem to the Bernoulli random variable 1p≥wi , which indicates if worker i retires
when he receives a pension amount of p.
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total surplus gained by workers is proportional to the fraction of inframarginal pension recipients:

0.91 shillings of surplus for every shilling distributed. Giesecke and Jäger’s assumption is equivalent

to assuming that the willingness to pay for retirement is constant between p0 = 0 shillings and

p1 = 260 shillings for eligible workers (depicted by the blue curve in Figure 9).

While this bound on ∆W is conservative, it would only be attained if all marginal workers

required a pension of 260 shillings to be willing to retire—and nothing less. This is unlikely to

be the case as Giesecke and Jäger describe substantial heterogeneity in hours worked prior to

retirement—suggesting nontrivial curvature in the distribution of wi between p0 = 0 shillings and

p1 = 260 shillings. Commonly assumed functional forms for income are log-concave (McDonald

and Ransom, 1979), and can be parameterized via assumptions on ρ-concavity and ρ-convexity

(Caplin and Nalebuff, 1991a). Figure 10(a) illustrates bounds implied by our Theorem 2 when

ρ varies. When F is ρ-concave, the value plotted in Figure 10(a) corresponds to a lower bound;

and when F is ρ-convex, the value corresponds to an upper bound.14 In the limiting case of

ρ → −∞, our bounds coincide with the conservative bounds (where Giesecke and Jäger’s bound

is the lower bound implied by a (−∞)-concave, or quasi-concave, distribution F ). As in the

discussion following Theorem 2, these values can be combined in some cases as well. For example,

when F is log-concave and convex, then Figure 10(a) implies an upper bound of 0.954 and a lower

bound of 0.953.

Beyond curvature, we can also parametrize uncertainty in the distribution F through the

standard deviation of wi. The conservative bounds (the lower of which is Giesecke and Jäger’s
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Figure 10: Gain in worker surplus due to the OPA based on Giesecke and Jäger (2021).

14 When ρ = 1, this value corresponds to the upper (resp. lower) bound for a convex (resp. concave) F ; and when
ρ = 0, it corresponds to the lower (resp. upper) bound for a log-concave (resp. log-convex) F .
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bound) are attained only when the standard deviation of each wi is exactly zero between p0 = 0

shillings and p1 = 260 shillings. Narrower bounds prevail when the standard deviation of wi is not

zero, as we illustrate in Figure 10(b). As we show in Appendix D, these bounds can be derived in

a similar manner to Theorems 1 and 2 using the approach of Appendix B.

Finally, our bounds on ∆W translate into bounds on the MVPF of pensions in the context of

the OPA. Giesecke and Jäger argue that each £1 of pension payments cost the government £1.13,

so that bounds on the MVPF can be obtained via the formula MVPF = ∆W/1.13. For example,

when the standard deviation of wi between p0 = 0 shillings and p1 = 260 shillings is 50 shillings,

we obtain a lower bound of 0.81 and an upper bound of 0.88 on the MVPF.

4.4 Income taxation

In this subsection, we show how our framework may be used to study such fiscal externalities when

the extent to which taxpayers would reduce their taxable income in response to different tax rates

is uncertain. A popular approach to this question has focused on establishing “sufficient statistics”

for welfare changes around marginal increases in taxes.15 Invoking the envelope theorem to argue

that the secondary effects of a small tax increase are of second-order importance when consumers

are optimizing, a typical analysis decomposes the marginal welfare gain (dW/dτ) into a simple

function of marginal consumption utilities that can be inferred by revealed preference from data

(under context-appropriate assumptions). As Chetty (2009) demonstrates, this approach can be

applied to generate empirical measurements of welfare effects for a broad set of policy settings.

However, an estimate of the marginal change in welfare may be less meaningful when the

change in the tax rate is substantial. In this case, estimating the change in welfare requires

taking a stance on how to integrate dW/dτ and parametric interpolations are often invoked.16

When policy changes are small, Taylor’s theorem ensures that parametric approximations work

well. But there is no such guarantee when policy changes are large—which is often the case in

applications. For these cases, our approach allows the researcher to assess global effects through

robust bounds. The bounds are estimated using the same empirical moments that are considered

under “sufficient statistics”—local elasticity measurements with respect to the policy variables.

But instead of relying on local approximation assumptions, they characterize the extremal welfare

changes that are consistent with prior knowledge like estimates from the contemporary literature.

15 See Chetty (2009) and Kleven (2021) for thorough and accessible overviews of the sufficient statistics approach
to welfare analysis and how it may be applied to different settings in public economics.

16 Kleven (2021) suggests including higher-order terms as an alternative to parametric interpolations.
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Figure 11: Feldstein’s sufficient statistics approach to estimating the excess burden of income taxation.

To demonstrate, we consider an exercise based on Feldstein (1999)—one of the first papers to

apply sufficient statistics to study optimal income tax policy. Feldstein considers the excess burden

of income taxes given equilibrium income production and (costly) income sheltering. Individuals

choose how much labor to supply (across different sources with different costs and wages), how

much of the earned income to shelter from tax authorities (given the cost of sheltering different

amounts of money) and how to distribute the income left after taxation across consumption.

Despite the many moving parts of this model, Feldstein invokes an envelope theorem argument

to show that the excess burden of a marginal increase from a tax rate t is proportional to the

marginal decrease in taxable income (TI):17

dW (τ)

dτ
= τ · d TI(τ)

dτ
.

That is, although it accounts for income effects in labor decisions, the (local) first-order estimate

of deadweight loss relies only on a local measurement of the elasticity of taxable income.

In Figures 11(a) and 11(b), we demonstrate Feldstein’s approach in relation to our Harberger

example in Section 1. We consider the change in taxable income TI(τ) as the effective tax rate

changes from τ0 to τ1. By the envelope theorem, the marginal increase in excess burden at any

point τ along the curve is approximated by τ · d TI(τ)/dτ . The net change in excess burden

17 To make clear the connection between the sufficient statistics approach and ours, our discussion of Feldstein’s
analysis follows the expositional logic laid out by Chetty (2009), who gives a complete derivation of dW (τ)/dτ .
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between τ0 and τ1 is therefore given by the sum of areas B and D:

∆W = W (τ1)−W (τ0) =

∫ τ1

τ0

τ · TI′(τ) dτ

= [τ1 TI(τ1)− τ0 TI(τ0)]−
∫ τ1

τ0

TI(τ) dτ

= − (area B + area D) .

As in the Harberger example, area D is simple to evaluate without further assumptions: it is given

by the product of τ0 and TI(τ0)−TI(τ1). However, as the curve TI(τ) is not observed, evaluating

area B requires further assumptions.

To resolve this, Feldstein proposes a formula that approximates the change in welfare by the

difference between the areas of triangle in Figure 11(b):

∆W ≈ ∆W1 −∆W0.

When τ0 and τ1 are small, each triangle can be thought of as a Taylor approximation around zero,

independently of the shape of TI(τ). However, for most applications, the triangles may be better

thought of as (unconditional) 1-piece linear interpolations. The interpretation of Feldstein’s result

therefore depends on the family of plausible TI(τ) curves from which the observed points were

drawn.

To illustrate how our robust bounds approach relates to Feldstein’s formula, we consider a

numerical example discussed in his paper. Feldstein considers a taxpayer with an income of

$180, 000, who would have been subject to a marginal tax rate increase from 31% to 38.9% in

1993, and been predicted to reduce their taxable income by $21, 340 in response. To evaluate

the excess burden for this individual, Feldstein imputes a linear TI(τ) function using a taxable

income elasticity of ετ = −1.04, based on a difference-in-differences exercise by Feldstein (1995).

However, he notes that contemporary papers had estimated elasticities ranging from −1.33 to

−0.55 using different methodologies. Under a linear interpolation, Feldstein estimates an excess

burden of around $7, 458 for this taxpayer.

However, this estimate is not without loss of generality. Applying our robust bounds approach,

conservative bounds for the taxpayer’s excess burden—which make no assumptions on curvature

or elasticities—suggest that it is between $6, 615 and $8, 301. Restricting elasticities to range

between −1.33 and −0.55 shrinks the feasible magnitudes of the excess burden to between $7, 400

and $7, 418 by applying our Theorem 1. Feldstein’s estimate of $7, 458 lies outside of these bounds,
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however. This implies that a linear interpolation is incompatible with Feldstein’s range of elasticity

estimates—a fact that we can verify directly as well.

We can apply a version of Feldstein’s exercise to evaluate the excess burden from taxes levied

to fund the 1908 OPA in the UK, which we studied in the previous subsection. UK legislators

increased marginal tax rates for the top 1% of earners by 1 to 5 percentage points (with the highest

increases for the wealthiest bracket). If high earners were elastic in their earning behavior, it may

be that the OPA tax increases led to distorted incomes and substantial deadweight loss.

To evaluate the excess burden from taxes levied to fund the OPA, Giesecke and Jäger propose a

range of taxable income elasticities that can be used to evaluate the policy: a “mid-range estimate

from the empirical literature” obtained from Diamond and Saez (2011) of −0.25, and an “extreme

case” elasticity of −5. Following Giesecke and Jäger, we consider the wealthiest bracket of tax

payers, who earned at least 5, 000 shillings and were hit with the largest increase in marginal tax

rates: from 3.8% to 8.3%. Although we do not know how the income that these taxpayers earned

changed after the OPA was introduced, we can bound it using the feasible elasticity range. The

resulting excess burden for an individual at the margin of the top tax bracket is then bounded

between £50.50 and £227.

5 Conclusion

The rapid growth of academic articles on welfare analysis in the last decade (shown in Figure 1

of Kleven, 2021, for example) is testament to its importance and relevance to policy. While the

welfare analysis of small policy changes is well understood, traditional approaches to the analysis

of large policy changes often employ functional form assumptions. These approaches have played

a crucial role in the understanding economists have gained about policy in different markets, but

a question of robustness arises: how much do these intuitions depend on particular choices of

functional forms?

In this paper, we answer this question by developing a different approach. We provide bounds

on welfare that hold under various families of assumptions that are commonly made in different

literatures, and illustrate our theoretical framework in a series of empirical applications. Our

results demonstrate a serendipitous connection between information and mechanism design and

welfare analysis in empirical work, which we view as a promising area for future research.
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Appendix A Closed-form expressions for welfare bounds

In this appendix, we present closed-form expressions for the welfare bounds that we characterized

in the paper. We then show how these expressions generalize to an extension where the researcher

observes both ε(p0) and ε(p1).

A.1 Welfare bounds from Section 2

Our characterization of welfare bounds under the elasticity assumption (EA) in Theorem 1 and

the curvature assumptions (CA1)–(CA8) in Theorem 2 imply closed-form expressions for ∆CS

and ∆CS. These closed-form expressions are provided in Table 1.

A.2 Welfare bounds combining elasticity and curvature restrictions

Next, we show how our closed-form expressions for welfare bounds can be extended to incorporate

information about price elasticities at p0 and p1—in addition to the curvature assumptions (CA1)–

(CA8)—which might sometimes be available from treatment effects estimates.

Formally, denote by Di(ε0, ε1) the family of consistent demand curves that, in addition to

satisfying (CAi), have elasticities at p0 and p1 given by ε(p0) = ε0 and ε(p1) = ε1. We thus derive

upper bound: max
D(·)∈Di(ε0,ε1)

∫ p1

p0

D(p) dp,

lower bound: min
D(·)∈Di(ε0,ε1)

∫ p1

p0

D(p) dp.

(†)

Each family Di(ε0, ε1) is clearly more restrictive than its corresponding Di. Thus, the welfare

bounds with elasticity information are narrower than those without.

The problem of deriving welfare bounds with elasticity information and curvature assumptions

(†) is a generalization of the problem of deriving welfare bounds with only curvature assumptions

considered in Section 2.3. However, elasticity information can be straightforwardly incorporated

into the proof of Theorem 2; Theorem 2 continues to hold in this setting. In turn, Theorem 2

implies closed-form expressions for welfare bounds, which are provided in Table 2.
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Demand family Lower bound Upper bound

D (elasticity restrictions) p0q0

[(
q0p

ε
1

q1pε0

) 1+ε
ε−ε − 1

]
1 + ε

+

p1q1

[
1−

(
q0p

ε
1

q1p
ε
0

) 1−ε
ε−ε
]

1− ε

p0q0

[(
q1p

ε
0

q0p
ε
1

) 1+ε
ε−ε − 1

]
1 + ε

+

p1q1

[
1−

(
q1p

ε
0

q0pε1

) 1−ε
ε−ε

]
1− ε

D1 (Marshall’s second law)
(p1q1 − p0q0) log(p1/p0)

log(q1/q0) + log(p1/p0)
q0 (p1 − p0)

D2 (decreasing MR)
(p1 − p0) q0q1 log(q0/q1)

q0 − q1
q0 (p1 − p0)

D3 (log-concave demand)
(p1 − p0) (q0 − q1)

log(q0/q1)
q0 (p1 − p0)

D4 (concave demand)
(p1 − p0) (q1 + q0)

2
q0 (p1 − p0)

D5 (ρ-concave demand) ρ (p1 − p0)
(
q1+ρ0 − q1+ρ1

)
(ρ+ 1) (qρ0 − q

ρ
1)

q0 (p1 − p0)

D6 (convex demand) q1 (p1 − p0) (p1 − p0) (q1 + q0)

2

D7 (log-convex demand) q1 (p1 − p0) (p1 − p0) (q0 − q1)
log(q0/q1)

D8 (ρ-convex demand) q1 (p1 − p0) ρ (p1 − p0)
(
q1+ρ0 − q1+ρ1

)
(ρ+ 1) (qρ0 − q

ρ
1)

Table 1: Welfare bounds for ∆CS implied by Theorems 1 and 2.
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Di(ε0, ε1) Lower bound Upper bound p∗ q∗

D1(ε0, ε1)

(p1q1 − p0q0) log(p1/p0)

log(q1/q0) + log(p1/p0)︸ ︷︷ ︸
≡L1(p0,p1,q0,q1)

L1(p0, p∗, q0, q∗) +
L1(p∗, p1, q∗, q1)

(
q0p
−ε0
0

q1p
−ε1
1

) 1
ε1−ε0

q0p
−ε0
0 pε0∗

D2(ε0, ε1)

(p1 − p0) q0q1 log(q0/q1)

q0 − q1︸ ︷︷ ︸
≡L2(p0,p1,q0,q1)

L2(p0, p∗, q0, q∗) +
L2(p∗, p1, q∗, q1)

p0p1×
q0 (1 + ε1)− q1 (1 + ε0)

p0q0ε1 − p1q1ε0

q0
1 + ε0 − ε0p∗

p0

D3(ε0, ε1)

(p1 − p0) (q0 − q1)

log(q0/q1)︸ ︷︷ ︸
≡L3(p0,p1,q0,q1)

L3(p0, p∗, q0, q∗) +
L3(p∗, p1, q∗, q1)

[
ε1 − ε0 + log

(
q0
q1

)]
×

p1ε0 − p0ε1
ε1 − ε0

q0e
ε0

(
p∗
p0
−1

)

D4(ε0, ε1)

(p1 − p0) (q1 + q0)

2︸ ︷︷ ︸
≡L4(p0,p1,q0,q1)

L4(p0, p∗, q0, q∗) +
L4(p∗, p1, q∗, q1)

p0p1×
q0 (1− ε0)− q1 (1− ε1)

p0q1ε1 − p1q0ε0

q0 (1− ε0) +

ε0q0
p0

p∗

D5(ε0, ε1)

ρ (p1 − p0)
(
q1+ρ0 − q1+ρ1

)
(ρ+ 1) (qρ0 − q

ρ
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L5(p0, p∗, q0, q∗) +
L5(p∗, p1, q∗, q1)

p0p1×

qρ0 (1− ρε0)− qρ1 (1− ρε1)

ρ (p0q
ρ
1ε1 − p1q

ρ
0ε0)

q0×(
1− ρε0 +

ρε0p∗
p0

) 1
ρ

D6(ε0, ε1)
U6(p0, p∗, q0, q∗) +
U6(p∗, p1, q∗, q1)

(p1 − p0) (q1 + q0)

2︸ ︷︷ ︸
≡U6(p0,p1,q0,q1)

p0p1×
q0 (1− ε0)− q1 (1− ε1)

p0q1ε1 − p1q0ε0

q0 (1− ε0) +

ε0q0
p0

p∗

D7(ε0, ε1)
U7(p0, p∗, q0, q∗) +
U7(p∗, p1, q∗, q1)

(p1 − p0) (q0 − q1)

log(q0/q1)︸ ︷︷ ︸
≡U7(p0,p1,q0,q1)

[
ε1 − ε0 + log

(
q0
q1

)]
×

p1ε0 − p0ε1
ε1 − ε0

q0e
ε0

(
p∗
p0
−1

)

D8(ε0, ε1)
U8(p0, p∗, q0, q∗) +
U8(p∗, p1, q∗, q1)

ρ (p1 − p0)
(
q1+ρ0 − q1+ρ1

)
(ρ+ 1) (qρ0 − q

ρ
1)︸ ︷︷ ︸

≡U8(p0,p1,q0,q1)

p0p1×

qρ0 (1− ρε0)− qρ1 (1− ρε1)

ρ (p0q
ρ
1ε1 − p1q

ρ
0ε0)

q0×(
1− ρε0 +

ρε0p∗
p0

) 1
ρ

Table 2: Welfare bounds for ∆CS for each Di(ε0, ε1) implied by Theorem 2.
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Appendix B Alternative proof of Theorem 1

In this appendix, we provide an alternative proof of Theorem 1 that differs from the geometric

proof presented in the paper.

B.1 Proof of Theorem 1

This alternative proof highlights a connection between our problem (2) and Bayesian persuasion

problems that have been considered by the theoretical literature stemming from Kamenica and

Gentzkow (2011). We divide the proof into three steps: (i) employing a change of variables to map

the problem into an appropriate functional space; (ii) endowing this space with a partial order and

characterizing its extremal functions; and (iii) mapping the solution back to the original problem.

Step #1: Changing variables

We begin by employing a change of variables. Instead of choosing a demand curve to maximize

or minimize ∆CS as in problem (2), we choose the elasticity function η(·) expressed as a function

of log-price, rather than price:

η(π) := ε(eπ).

Given η(·), the demand curve D(·) is completely determined, and vice versa:

η(π) =
eπD′(eπ)

D(eπ)
⇐⇒ D(p) = q0 exp

[∫ log p

log p0

η(π) dπ

]
for any p ∈ [p0, p1]. (3)

Analogous to the family of demand curves D, we define the set of elasticity functions that are

consistent with (A2) and (EA):

E :=

{
η : [log p0, log p1]→ [ε, ε] s.t.

∫ log p1

log p0

η(π) dπ = log

(
q1
q0

)}
.

Thus we arrive at the equivalent problem:
∆CS = q0 ·max

η∈E

∫ p1

p0

exp

[∫ log p

log p0

η(π) dπ

]
dp,

∆CS = q0 ·min
η∈E

∫ p1

p0

exp

[∫ log p

log p0

η(π) dπ

]
dp.

(4)

50



Step #2: Characterizing the set E

We now endow the set E with a partial order. Formally, for any two functions η1, η2 ∈ E , we write

η1 � η2 ⇐⇒
∫ log p

log p0

η1(π) dπ ≥
∫ log p

log p0

η2(π) dπ for every p ∈ [p0, p1].

This partial order is motivated by the definition of second-order stochastic dominance, but with

a few differences: η is not necessarily a monotone function, nor is η(log p0) or η(log p1) fixed. For

these reasons, η cannot be interpreted as a cumulative distribution function (CDF), making the

above definition slightly different from second-order stochastic dominance.

Nevertheless, a familiar mathematical property of second-order stochastic dominance holds in

this environment. Just as the second-order stochastic dominance order defines a lattice structure

on the set of all CDFs with the same mean, the partial order � defines a lattice structure on the

set E .

Lemma 1. Any function η ∈ E satisfies η∗ � η � η∗, where

η∗(π) :=


ε if π >

1

ε− ε
· log

(
q1p

ε
0

q0p
ε
1

)
,

ε if π ≤ 1

ε− ε
· log

(
q1p

ε
0

q0p
ε
1

)
,

and η∗(π) :=


ε if π >

1

ε− ε
· log

(
q0p

ε
1

q1p
ε
0

)
,

ε if π ≤ 1

ε− ε
· log

(
q0p

ε
1

q1p
ε
0

)
.

Proof. To see that η∗ � η for any η ∈ E , observe that

∫ log p

log p0

η∗(π) dπ =


log

(
p

p0

)
· ε ≥

∫ log p

log p0

η(π) dπ for any p0 ≤ p ≤
(
q1p

ε
0

q0p
ε
1

) 1
ε−ε

,

log

(
q1
q0

)
− log

(
p1
p

)
· ε ≥

∫ log p

log p0

η(π) dπ for any

(
q1p

ε
0

q0p
ε
1

) 1
ε−ε

< p ≤ p1.

The inequalities follow from the fact that im η ⊂ [η, η] for any η ∈ E . A similar argument shows

that η � η∗ for any η ∈ E .

It is easy to check that η∗, η∗ ∈ E . Therefore, Lemma 1 characterizes the largest and smallest

elements of the partially ordered set (E ,�). With more work, one can show that (E ,�) is a lattice

(cf. Theorem 3.3 of Müller and Scarsini, 2006); however, as the lattice property is not important

for our purposes, we do not pursue that here.
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Step #3: Mapping back to the original problem

Having characterized the largest and smallest elements of (E ,�), it remains to map these back to

the original problem. To this end, we define the functional ∆CS : E → R by

∆CS(η) := q0

∫ p1

p0

exp

[∫ log p

log p0

η(π) dπ

]
dp.

Our problem (4) is equivalent to maximizing and minimizing this functional over the family E .

The following lemma shows that this can be done with the aid of the partial order � defined in

our previous step:

Lemma 2. The functional ∆CS(·) is increasing in the partial order �:

q0

∫ p1

p0

exp

[∫ log p

log p0

η1(π) dπ

]
dp ≥ q0

∫ p1

p0

exp

[∫ log p

log p0

η2(π) dπ

]
dp for any η1 � η2.

Proof. Since η1 � η2, it follows from the monotonicity of the exponential function that

exp

[∫ log p

log p0

η1(π) dπ

]
≥ exp

[∫ log p

log p0

η1(π) dπ

]
for any p0 ≤ p ≤ p1.

The result thus follows from a pointwise comparison of the two integrands.

Together, Lemmas 1 and 2 imply that:

Proposition 3. The functional ∆CS(·) is maximized at η∗ and minimized at η∗:

∆CS = ∆CS(η∗) and ∆CS = ∆CS(η∗).

To complete the alternative proof of Theorem 1, it remains to show that η∗ and η∗ correspond

to the demand curves D∗ and D∗ respectively (defined in Section 2) via the relation (3). This is

readily verified by straightforward computation and omitted for the sake of brevity.

B.2 Discussion

We conclude this appendix with a few remarks on how this alternative proof compares with the

proof of Theorem 1 presented in the paper, and with some notes on its connections to similar

problems in the information design literature.
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As noted in Section 2, while this proof is more complex than our geometric proof, it has the

advantage of being easily generalizable. Although additional constraints on the demand family—

such as the ones that we consider in Section 3—might not have a simple geometric interpretation,

they can be accommodated as constraints on the functional space E . Notice also that Lemma 2 does

not depend on how E is defined. Therefore, different constraints on E only require determining the

analog of Lemma 1 for the constrained problem—that is, finding the largest and smallest elements

of the partially ordered set (E ,�).

It is worth pointing out that the structure of E is reminiscent of Bayesian persuasion problems

stemming from the work of Kamenica and Gentzkow (2011). If −η could be interpreted as a

posterior belief, then the mean constraint∫ log p1

log p0

η(π) dπ = log

(
q1
q0

)
could be interpreted as a Bayes plausibility constraint, where − log(q1/q0) is the mean of the prior

belief. This analogy breaks down for the sole reason that −η cannot be interpreted as a posterior

belief: −η is not monotone and hence cannot be a cumulative distribution function.

Yet this observation also indicates that there is an exact equivalence between such Bayesian

persuasion problems and an extension we consider in Section 2.3, rather than our basic model.

Precisely, the analogy holds when we instead consider the problem of finding welfare bounds under

Marshall’s second law in addition to (A2) and (EA). Marshall’s second law implies that η must

be decreasing; hence −η is increasing and, with appropriate rescaling, can be interpreted as a

cumulative distribution function representing the posterior belief.

The fortuitous connection between our problem of bounding welfare in different families of

demand and Bayesian persuasion problems implies that tools developed for constrained information

design problems can potentially also be used to evaluate robust welfare bounds. From a technical

point of view, our approach (in the alternative proof presented above) is based on the proof

strategy of Kang and Vondrák (2019), who solve an infinite-dimensional optimization problem by

showing that the objective functional is monotone with respect to the convex partial order. For

the convex partial order in particular, Kleiner, Moldovanu, and Strack (2021) recently develop an

approach based on a characterization of extreme points, which yields a general solution to similar

problems—even when the objective function is not monotone with respect to the convex partial

order. While their method can be applied to many problems in information and mechanism design,

our discussion here suggests potential applications also to robust welfare bounds.
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Appendix C Assumptions on the curvature of demand

In this appendix, we demonstrate the relationship between the different assumptions (CA1)–

(CA8) and review some common demand curves that satisfy these assumptions.

C.1 Relationship between assumptions

We begin by showing that

(CA1)

(CA4) (CA3) and (CA7) (CA6).

(CA2)

(CA4) =⇒ (CA3)

Proof. Given a concave demand curve D(·), suppose on the contrary that there exist pH > pL

such that
D′(pH)

D(pH)
>
D′(pL)

D(pL)
=⇒ D(pL)D′(pH) > D(pH)D′(pL).

Since D(·) is concave, D′(pH) ≤ D′(pL); since D(·) is decreasing, D′(·) ≤ 0 and D(pL) ≥ D(pH).

Thus

D(pL)D′(pH) ≤ D(pH)D′(pH) ≤ D(pH)D′(pL).

This is a contradiction. Hence D(·) is log-concave.

(CA3) =⇒ (CA1)

Proof. For any pH > pL, log-concavity implies that

D′(pH)

D(pH)
≤ D′(pL)

D(pL)
=⇒ pHD

′(pH)

D(pH)
≤ pLD

′(pH)

D(pH)
≤ pLD

′(pL)

D(pL)
.

Here, we have used the fact that D′(·) ≤ 0 as D(·) is decreasing. Since the above inequalities hold

for any pH > pL, it follows that D(·) satisfies Marshall’s second law.
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(CA3) =⇒ (CA2)

Proof. For any pH > pL, log-concavity implies that

D′(pH)

D(pH)
≤ D′(pL)

D(pL)
=⇒ pH +

D(pH)

D′(pH)
≥ pL +

D(pL)

D′(pL)
.

Since this holds for any pH > pL, it follows that D(·) has a decreasing marginal revenue curve.

(CA7) =⇒ (CA6)

Proof. For any pH > pL, log-convexity implies that

D′(pH)

D(pH)
≥ D′(pL)

D(pL)
=⇒ D(pL)D′(pH) ≥ D(pH)D′(pL).

Since D(·) is decreasing, D′(·) ≤ 0 and D(pL) ≥ D(pH). Thus

D(pH)D′(pH) ≥ D(pL)D′(pH) ≥ D(pH)D′(pL) =⇒ D′(pH) ≥ D′(pL).

Since this holds for any pH > pL, it follows that D(·) is convex.

C.2 Common demand curves

We now review some common demand curves that satisfy these assumptions. These demand

curves play a crucial role in our analysis in Section 2.3 (cf. Theorem 2).

(i) CES demand curves. Each CES demand curve is parametrized by its elasticity ε ≤ 0:

D(p) = q0

(
p

p0

)ε
.

Because elasticity is constant, it must also be trivially decreasing. Hence any CES demand

curve satisfies Marshall’s second law (CA1).

(ii) Constant marginal revenue demand curve. Analogous to a CES demand curve, each constant

marginal revenue demand curve is parametrized by its marginal revenue 0 ≤ µ < p0:

D(p) =
q0 (p0 − µ)

p− µ
.
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Because marginal revenue is constant, it must also be trivially decreasing. Hence each

constant marginal revenue demand curve exhibits decreasing marginal revenue (CA2).

(iii) Exponential demand curves. Each exponential demand curve is parametrized by λ ≥ 0:

D(p) = q0 exp [−λ (p− p0)] .

Observe that the logarithm of any exponential demand curve is linear in p:

logD(p) = log q0 − λ (p− p0) .

Hence each exponential demand curve is both log-concave (CA3) and log-convex (CA7).

(iv) Linear demand curves. Each linear demand curve is parametrized by λ ≥ 0:

D(p) = q0 − λ (p− p0) .

Each linear demand curve is both concave (CA4) and convex (CA6).

(v) ρ-linear demand curves. Each ρ-linear demand curve is parametrized by λ ≥ 0:

D(p) = [q0 − λ (p− p0)]1/ρ .

Each ρ-linear demand curve is both ρ-concave (CA5) and ρ-convex (CA8).
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Appendix D Other proofs and additional discussion

This appendix collects all other omitted proofs and includes some additional discussion.

D.1 Proof of Theorem 2

In this section, we present the geometric proof of Theorem 2 for the case of Marshall’s second law

(CA1). For brevity, we omit the proofs for the other curvature assumptions (CA2)–(CA8) as

they are similar.

log p1

log q1

log p0

log q00
log q

log p

Figure D.1: Sketch of the proof of Theorem 2.

Figure D.1 summarizes our geometric proof. To begin, observe that the upper bound (in red)

remains unchanged from Theorem 1, except that—in the absence of (A2)—we set ε = −∞ and

ε = 0. That is, because the upper bound from Theorem 1 satisfies Marshall’s second law (CA1),

it remains the upper bound among all demand curves that satisfy Marshall’s second law (CA1).

It remains to show that the lower bound (in green) is attained by linearly interpolating between

the two points on the log-price–log-quantity plot. To this end, notice that Marshall’s second law

(CA1) implies that log-price is concave in log-quantity. The pointwise smallest concave, decreasing

curve that passes through the two points is precisely the straight line that connects them. This

corresponds to a CES demand curve with elasticity equal to the average elasticity implied by the

two points:

ε =
log(q1/q0)

log(p1/p0)
.

This concludes our proof of Theorem 2.
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D.2 Additional discussion for Theorem 2

While Theorem 2 states our bounds by replacing (EA) with curvature assumptions, we can also

derive bounds by imposing both (EA) and each curvature assumption. This is the case, for

example, in some empirical applications that we consider in Section 4, where the researcher might

observe one or both elasticities and is also willing to make additional curvature assumptions, such

as Marshall’s second law (CA1).

To give a concrete example, consider the problem of deriving bounds on ∆CS under the

assumptions (A2), (EA), and (CA1). It can be readily verified that the geometric proof of

Theorem 2 supplied in Appendix D.1 continues to hold: the upper bound is attained by a 2-piece

CES interpolation, whereas the lower bound is attained by a 1-piece CES interpolation.

Things are not as straightforward, however, if we were to impose a slightly different set of

assumptions, such as (A2), (EA), and (CA2). Crucially, the geometric picture (e.g., Figure D.1)

no longer captures all the relevant binding constraints except for special choices of ε and ε. Instead,

to derive bounds, one would have to formalize the problem using the approach of Appendix B,

and then solve the resulting optimization problem.

D.3 Proof of Proposition 2

We prove Proposition 2 for the case of Marshall’s second law (CA1); for brevity, we omit the

proofs for the other curvature assumptions (CA2)–(CA8) as they are similar. To this end, we

adapt the proof of Theorem 1 in Appendix B by replacing (EA) with (CA1). We express the

elasticity function η(·) as a function of log-price, rather than price:

η(π) := ε(eπ).

We also define the set of elasticity functions that are consistent with (A2) and (CA1):

E :=

{
η : [log p0, log p1]→ [ε, ε] is decreasing and

∫ log p1

log p0

η(π) dπ = log

(
q1
q0

)}
.

Clearly, E is convex, and as a convex set (in the real vector space L1), E is connected. Now, define

the functional ∆CS : E → R by

∆CS(η) := q0

∫ p1

p0

exp

[∫ log p

log p0

η(π) dπ

]
dp.
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It is routine to check that ∆CS is a continuous map (in the L1 topology) from E to R; by continuity,

its image must be connected in R and hence an interval. Thus the identified set [∆CS1,∆CS1] is

sharp.

D.4 Proof of Theorem 5

To prove Theorem 5, we build on our proof of Theorem 2. We begin by fixing the elasticities at the

points (p0, q0), . . . , (pn−1, qn−1) at ε0 < · · · < εn−1. Our proof of Theorem 2 then implies that the

upper bound between any two adjacent points is a 2-piece CES interpolation, whereas the lower

bound between any two adjacent points is a 1-piece CES interpolation. This immediately implies

that the smallest possible change in consumer surplus between (p0, q0) and (pn−1, qn−1) is attained

by an (n− 1)-point CES interpolation; hence it remains to prove the corresponding statement for

the largest possible change in consumer surplus.

To this end, we make the additional observation that the 2-piece CES interpolation that yields

the upper bound between any two adjacent points must have elasticities equal to the elasticities

at the two points. That is, for any i = 1, . . . , n − 2, the 2-piece CES interpolation that attains

the largest change in consumer surplus between (pi, qi) and (pi+1, qi+1) consists of a piece with

elasticity εi and another piece with elasticity εi+1. Thus, although the statement of Theorem 2

indicates that (at most) 2n − 2 pieces are required, this argument shows that only n pieces are

required as adjacent pieces that join at the points (p1, q1), . . . , (pn−2, qn−2) are actually part of the

same CES demand curve. Since this argument holds for any ε0 < · · · < ε1, the largest possible

change in consumer surplus must be attained by an n-piece CES interpolation, as claimed.

D.5 Technical details for Sections 4.2 and 4.3

For each application in Section 4, we aimed to present the clearest discussion of the paper whose

exercise we followed with a focus on how our bounding approach applies. To this effect, we followed

the data work and framing that the authors of the original papers used as much as possible. In

several cases, the original paper’s exercise included a few setting-specific subtleties that we felt

would distract from our main point. These subtleties introduce small discrepancies between the

bounds we obtain and the welfare estimates that they report. For readers who wish to compare

our numbers directly to the numbers in the original papers, we include a brief description of these

discrepancies below.
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D.5.1 Technical details for Section 4.2

In order to compute our bounds for the example in Section 4.2, we follow Amiti et al.’s (2019) data

appendix to obtain a comprehensive dataset of products hit by new tariffs during 2018. Products

are denoted by a ten-digit Harmonized Tariff Schedule (HTS10) product code and by country or

origin. The dataset contains a unit quantity and total import value for each product, along with

a tariff amount for each month. Unit prices are derived by dividing the total import value by the

unit quantity. For each product and country, we compare the unit price in each month during

2018 against the unit price of the same product/country in the same month during 2017.

Amiti et al. take several further standardization steps to this effect. First, they impute 2018

prices using the regression of log import quantity changes against log tariff changes described in

column (3) of their Table 1. Although this step is not necessary for our exercise, we follow it in

order to make our results most comparable to their exercise. Second, as they explain in footnote

9 (pp. 199–200), they make use of a second Taylor approximation in computing deadweight loss:

− log(m1/m0) ≈ (m0 −m1)/m1,

where mt is the total import value of a product in year t. In general, it can be shown that this

approximation will underestimate deadweight loss:

− log z ≤ 1

z
− 1 for any z ∈ R.

As the magnitudes of the tariffs are substantial, we find that this approximation shrinks the

deadweight loss estimates substantially and makes the comparison across assumptions more

difficult to interpret. As such, we skip this approximation step in our calculations and instead

present the deadweight loss estimates from linear (and other) interpolations using just the

quantities and prices produced in their first step.

D.5.2 Technical details for Section 4.3

Giesecke and Jäger (2021) apply two separate strategies to predict the change in retirement

following the OPA. Their main exercise applies a regression discontinuity design around the

cutoff age for pensions (70 years old) and finds a marginal change of 6%. Giesecke and Jäger

report that the total number of eligible 70-year-old workers at the time of the OPA was

140, 288—8, 459 of whom were thus marginal. In addition, another 928, 198 workers above the
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age of 70 years old were also eligible at the same time. For this group, Giesecke and Jäger

assume that the linear trend of retirement would have continued from the 65–69 age group

absent the OPA. Comparing this hypothetical retirement rate against the realized retirement

rate for workers above the age of 70 years old after the OPA, they estimate a 5.1% increase in

retirement rate. To compute the total change in welfare, we follow Giesecke and Jäger in

combining these two groups. The total number of eligible workers is thus 140, 288 + 928, 198 =

1, 068, 486; the total number of marginal workers is 8, 459 + 47, 909 = 56, 368; and the total

number of retired workers following the OPA is 613, 873. We use the fractions 557,505
1,068,486

≈ 0.52

and 613,873
1,068,486

≈ 0.58 as the average propensities to retire before and after the OPA, respectively.

To supplement our bounds given curvature assumptions based on Theorem 2 in Figure 10(a),

we presented bounds given the standard deviation of wi in Figure 10(b). Formally, these bounds

solve: 
∆W (σ) := max

F∈F

{∫ p1

p0

F (p) dp :

∫ p1

p0

p2 dF (p)−
[∫ p1

p0

p dF (p)

]2
= σ2

}
,

∆W (σ) := min
F∈F

{∫ p1

p0

F (p) dp :

∫ p1

p0

p2 dF (p)−
[∫ p1

p0

p dF (p)

]2
= σ2

}
,

where

F := {F : [p0, p1]→ [0, 1] is increasing and satisfies F (pt) = qt for t = 0, 1} .

Integrating by parts, we get

µ :=

∫ p1

p0

p dF (p) = p1q1 − p0q0 −
∫ p1

p0

F (p) dp.

Thus our problem is equivalent to
∆W (σ) := max

F∈F

{
p1q1 − p0q0 − µ :

∫ p1

p0

p dF (p) = µ,

∫ p1

p0

p2 dF (p) = µ2 + σ2

}
,

∆W (σ) := min
F∈F

{
p1q1 − p0q0 − µ :

∫ p1

p0

p dF (p) = µ,

∫ p1

p0

p2 dF (p) = µ2 + σ2

}
.

We now characterize extremal distributions F ∗(·;σ) and F∗(·;σ) that respectively attain the

bounds ∆W (σ) and ∆W (σ). Removing constants in the objective function that do not depend

on F , we see that

F ∗(·;σ) ∈ arg min
F∈F

{
µ :

∫ p1

p0

p dF (p) = µ,

∫ p1

p0

p2 dF (p) = µ2 + σ2

}
.
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In turn, this can be rewritten as

F ∗(·;σ) ∈ arg min
F∈F , µ∈[0,1]

{∫ p1

p0

p2 dF (p) :

∫ p1

p0

p dF (p) = µ

}
.

It can be easily verified that the approach of Appendix B applies to this transformed problem

for each feasible µ. In particular, our approach implies that F ∗(·;σ) consists of two atoms in the

interval [p0, p1], one at p0 and p1. This reduces our a priori infinite-dimensional to a unidimensional

problem (where the only choice variable is the size of the atom at p0, as their sum must be q1−q0).
A similar logic holds for F∗(·;σ). We solve these unidimensional problems numerically to obtain

the bounds ∆W (σ) and ∆W (σ) presented in Figure 10(b).
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