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Abstract

Using rich data on hourly physical productivity and five thousand ownership changes from
US power plants, we study the effects of mergers and acquisitions on efficiency and pro-
vide evidence on the mechanisms. We find that acquired plants experience an average of 4
percent efficiency increase five to eight months after acquisition. Three-quarters of this ef-
ficiency gain is explained by increased productive efficiency; the rest comes from improved
capacity management at the plant level and allocative efficiency at the portfolio level. Our
findings suggest that acquisitions reallocate assets to more productive uses: we find that
high-productivity firms buy under-performing assets from low-productivity firms and make the
acquired asset almost as productive as their existing assets after acquisition. Finally, investi-
gating the mechanism, the evidence suggests that acquired plants achieve higher efficiency
through low-cost operational improvements rather than high-cost capital investments.
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1 Introduction
A fundamental issue in antitrust policy is the trade-off between the efficiency and mar-
ket power effects of mergers. The increase in market power raises prices for consumers;
however, potential efficiency gains can counteract this effect, making the net effect on wel-
fare ambiguous. While there is an extensive literature on the price effects of mergers, we
have limited evidence on how mergers affect efficiency. With little guidance from empir-
ical evidence, studies analyzing competitive effects of prospective mergers often rely on
hypothetical efficiency gains (Farrell and Shapiro (2010), Nocke and Whinston (2022)).1

A major challenge in analyzing the efficiency effects of mergers is distinguishing true
efficiency gains from other factors, such as changes in market power, buyer power, and
product quality. Due to the limitations of production datasets, most research has studied
revenue-based productivity (TFPR), which is estimated from revenues and input expen-
ditures, rather than quantity-based measures (Foster et al. (2008), Atalay (2014)). Using
TFPR is particularly problematic in merger retrospectives because an increase in market
power, buyer power, or quality decline raises TFPR without any efficiency gains. This
makes it very difficult to identify true efficiency gains of mergers.

In this paper, we provide a detailed and large-scale analysis on the efficiency effects of
mergers while tackling these issues. In particular, we ask: (i) Do mergers and acquisitions
improve efficiency? (ii) What are the mechanisms? (iii) How do mergers reallocate assets
between firms?

We focus on the US electricity generation industry between 2000 and 2020. Four dis-
tinct features of this industry and available rich data allow us to overcome the challenges
of estimating the efficiency effects of mergers. First, we observe, at the hourly frequency,
the physical quantity of output and the physical quantity of the largest single input, the
consumption of fuel. With this unusually rich and high-frequency production data, we
construct efficiency measures at the hourly level and analyze how they change around the
time of acquisition. Second, electricity is a homogeneous product, ruling out potential
quality changes that could confound our analysis. Third, the efficiency measure relies on
accurate input and output sensor measurements rather than survey responses, as in many
industries. Finally, and most importantly, the power generation industry experienced a
significant number of mergers and acquisitions during our sample period. We identified

1As an example, consider these quotes from Nocke and Whinston (2022): “there is a clear need for much
better evidence on the efficiency effects”; “we observe that the literature on efficiency effects of horizontal
mergers is extremely limited”; “our reading of the current (meager) evidence in the literature”; “there is
remarkably little solid empirical evidence on this point.”
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around 600 transactions in which about 5,000 generator units, corresponding to 95 per-
cent of cumulative industry capacity, changed ownership between 2000 and 2020. These
ownership changes exhibit significant heterogeneity based on transaction type, transac-
tion size, firm type, and plant and market characteristics, which we use to study which
merger characteristics predict efficiency effects and to test potential mechanisms.

Our analysis starts by employing a difference-in-differences (DID) estimator to com-
pare the efficiency of acquired plants to those not directly involved in merger activity.
Our first finding is that the efficiency of the acquired power plants increased by 4 percent
on average after acquisition. The efficiency increase starts five months after acquisition
and it reaches the new steady-state level after eight months, suggesting that it takes time
for the new owner to implement changes required for efficiency improvements. Our cal-
culations suggest that these efficiency improvements correspond to a total cost saving of 6
billion dollars, and the total cumulative decline in CO2 emissions between 2000 and 2020
is roughly 50 million tons.

This clear evidence of efficiency gains from mergers is important. However, to inform
merger policy and generalize the lessons from this industry to other industries, it is crucial
to understand the underlying mechanisms that generate efficiency gains in a power plant.
Motivated by this, we investigate which plant, firm, and transaction characteristics are
correlated with efficiency gains and what potential mechanisms generate them.

Our first question is how mergers allocate assets between firms. There are two main
theories on the efficiency effects of asset allocations with mergers. The first theory sug-
gests a “high-buys-low” pattern (Jovanovic and Rousseau (2002)) in which acquisitions
transfer assets from low-productivity firms to high-productivity firms. The second theory
assumes a “like-buys-like” pattern (Rhodes-Kropf and Robinson (2008)), in which firms
have no systemic productivity differences, but there are complementaries between assets
and firms. According to this theory, assets are allocated to firms with a higher ability to
utilize those assets. Quantifying the role of these theories in efficiency gains is impor-
tant to understand whether mergers put assets to more productive use and contribute to
aggregate productivity growth.

Our findings suggest that acquisitions reallocate assets to more productive uses: we
find that high-productivity firms buy under-performing assets from low-productivity firms and
make the acquired asset almost as productive as their existing assets after acquisition. Ac-
quirers are, on average, one percent more productive than the target firms, and the target
firms are selling their underperforming assets relative to their other assets. After acquisi-
tion, the productivity of the acquired asset goes up by 4 percent and becomes almost as
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productive as the existing assets in the acquiring firm’s portfolio. This finding suggests
that assets are allocated to firms with both relative and absolute advantages in utilizing
those assets.

We then move to understand what mechanisms generate efficiency gains. A firm can
improve the overall efficiency of a power plant with three distinct mechanisms: (i) increas-
ing its productive efficiency, (ii) better allocating production dynamically, and (iii) allocat-
ing production more efficiently across plants (portfolio efficiency). We develop predictions
for each of these mechanisms and test them empirically. The test for productive efficiency
involves estimating firm-specific cost curves separately for pre- and post-acquisition peri-
ods and then comparing them. For dynamic efficiency, we study whether the production
profile of acquired plants change post-acquisition. And finally, portfolio effects would
suggest that existing plants of the acquirer in the same markets see efficiency improve-
ments. After testing these predictions, we find that productive efficiency explains 75 per-
cent of the total efficiency gain. Testing for dynamic and portfolio efficiency effects sug-
gests evidence for these mechanisms; however, they play a minor role in explaining the
total efficiency gain.

After establishing the role of productive efficiency, the next question is what firms do
to improve productive efficiency. There are two alternatives: (i) low-cost process improve-
ments, which involve adopting best practices and hiring more skilled personnel, and (ii)
high-cost capital investments, which involve equipment upgrades. Process improvements
indicate information transfers after acquisition; capital upgrades indicate liquidity con-
straints of the former owner. To distinguish between these two mechanisms, we augment
our production data with data on plant managers, manager characteristics, non-fuel costs,
and capital expenditures. This data allows us to study how important determinants of
power plant efficiency change after acquisition. Starting with the manager data, we find
that 55 percent of acquired power plants change managers within three months of ac-
quisition. These managers are 5 percentage points more likely to have a master’s degree
and 4 percentage points more likely to have a bachelor’s degree compared to non-merger
manager changes. In contrast, we find no evidence of an increase in capital expenditures,
non-fuel costs and number of employees after the acquisition. These findings suggest that
the new owner of the power plant improves efficiency through operational improvements
rather than high-cost capital investment.

As in all retrospective merger analyses, an important concern in our paper is the en-
dogeneity of mergers. We include three additional analyses to address these concerns.
First, we run placebo tests by looking at the efficiency effects of minority acquisitions and
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company name changes, finding no efficiency effects. Second, we run a battery of robust-
ness tests and show that our results are robust to different specifications. Finally, we look
at whether other important changes in the plant in the absence of mergers generate simi-
lar efficiency effects. For example, we look at how management changes in the absence of
mergers affect efficiency and find that management change leads to a 0.8 percent efficiency
gain, in contrast to four percent caused by mergers.

Although we believe our empirical setting is ideal for studying the efficiency effects
of mergers, there are important caveats worth mentioning. First, the production process
in electricity generation might be different from production in other industries in terms
of variable cost structure and the role of labor. While we focus our analysis on a single
industry to take advantage of the available data and numerous acquisitions, we provide
detailed evidence for mechanisms to draw broader lessons from this study. Second, our
efficiency measure is fuel efficiency rather than total factor productivity (TFP), which is
most commonly used in the productivity literature. While it is possible to estimate TFP for
power plants at the annual frequency, analyzing fuel efficiency provides a more detailed
and complete picture due to the availability of high-frequency efficiency measures.

We conclude the introduction by highlighting that our results do not give a conclusive
answer to the overall impact of mergers on consumer harm, as we identified only one
factor going into the welfare analysis. Although more research is needed to understand
the net effects of mergers, our paper provides a detailed analysis of the efficiency effects
of mergers.

1.1 Literature
This article contributes to several bodies of literature. The first is the literature studying
the effects of mergers and acquisitions on productivity. Since many merger retrospectives
focus on price effects, there are only a few papers studying productivity effects of mergers
(Braguinsky et al. (2015), Blonigen and Pierce (2016), Kulick (2017)). Blonigen and Pierce
(2016) use the methods of De Loecker and Warzynski (2012) to separately identify markup
power and productivity for manufacturing plants in the US and study how mergers affect
them. Their findings suggest significant effects of mergers on market power but no evi-
dence for a productivity effect. Kulick (2017) studies mergers in the ready-mix concrete
industry. He finds evidence for price increase due to a rise in market power post-merger
despite a 6 percent productivity increase in acquired plants.2 Our paper is most closely

2Evidence from other industries include meat product industries (Nguyen and Ollinger (2006)), railroads
(Bitzan and Wilson (2007)), healthcare (Schmitt (2017), Dranove and Lindrooth (2003), Harrison (2011)).
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related to Braguinsky et al. (2015), who study the Japanese cotton spinning industry at the
turn of the 20th century, which experienced a wave of acquisitions over 30 years. They
find that acquirers were not more productive, but they were more profitable due to better
inventory management and lower capacity utilization. After the acquisitions, the acquirer
improves capacity utilization in the acquired plant, raising the productivity level by almost
13 percent.

This article also contributes to the literature studying efficiency in the power generation
industry. This literature has primarily focused on how restructuring that started in the
1990s affected efficiency (Knittel (2002), Bushnell and Wolfram (2005), Davis and Wolfram
(2012), Fabrizio et al. (2007)). These papers compared the performance of plants in states
that pursued restructuring against plants in states that did not. Overall, the results point
to a positive influence of restructuring on the operations of plants.

We contribute to the literature studying the allocative efficiency effects of mergers (Jo-
vanovic and Rousseau (2008), Jovanovic and Rousseau (2002), Rhodes-Kropf and Robin-
son (2008), McGuckin and Nguyen (1995), Schoar (2002)). These papers study mergers and
acquisitions across a range of industries. They investigate the characteristics of buyers and
sellers, how acquisitions transfer assets between firms, and the effects of this on realloca-
tions of resources in the economy. We contribute to this literature by providing detailed
evidence from a single industry on how mergers allocate resources in the economy.

Finally, our paper is related to a recent wave of papers that use retrospective merger
analyses to understand how mergers affect firm behavior. The insights from this growing
literature advance the understanding of cross-market mergers (Lewis and Pflum (2017),
Dafny et al. (2019)), monopsony power (Prager and Schmitt (2021)), buyer power (Craig
et al. (2021)), quality (Eliason et al. (2020)), product availability (Atalay et al. (2020)), and
the price effects of mergers (Luco and Marshall (2020), Bhattacharya et al. (2022)). We
complement this literature by studying how mergers affect firm efficiency and providing
evidence on the mechanisms.

2 Institutional Background and Plant Productivity
This section starts by providing an institutional background of the power generation sector
and an overview of mergers and acquisitions in the industry. We then explain how to
measure efficiency in a power plant.
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2.1 Power Sector
The US electricity sector represents roughly 5 percent of the US GDP, with over 11,000
utility-scale power plants providing 2 to 3 million jobs across the US (Bradley Associates
(2017)). Until the early 1990s, US electricity generation was overwhelmingly supplied by
regulated and vertically integrated investor-owned utilities (IOUs) or government-owned
utilities (municipal and state-owned). Typically, these entities served a specific territory
and owned all parts of the power sector: transmission, distribution, and retailing. The re-
turns of these utility services were regulated through rate-of-return on capital investments
and cost-of-service regulation. This highly regulated market structure left little incentive
for efficiency improvements, generating significant inefficiencies (Fabrizio et al. (2007), Ci-
cala (2015)).

After the 1990s, the industry went through significant deregulation. Electricity gen-
eration was decoupled from transmission and distribution, and most generators began to
earn profit through the market pricing system. This deregulation was accompanied by the
creation of independent system operators (ISOs). ISOs organize the wholesale electricity
market and meet electricity demand by running high-frequency auctions where power
plants bid their willingness to produce. In 2020, roughly 70 percent of US electricity de-
mand was provided through seven ISOs.3 The deregulation also changed the electricity
generation technology mix with a significant amount of plant entry and exit. In the early
1980s, coal was the primary fuel source for electricity generation. As the price of natural
gas fell significantly with the expansion of fracking in the early 2010s, gas-fired genera-
tion became competitive with coal-fired plants, each providing roughly one-third of the
market supply in 2015. In 2020, gas-fired generation reached roughly twice the size of
coal-fired generation.

2.2 Mergers and Acquisitions
Large utility companies are usually organized into several subsidiaries under a big parent
company, serving in different locations and segments of the power sector. The structure of
the subsidiaries tends to follow the boundaries of the vertically integrated utilities before
the deregulation. Parent companies typically own assets in generation, transmission, and
distribution in the same region, with some parent companies having subsidiaries serving
different parts of the country. After the deregulation, significant merger and acquisition

3The sevon ISOs are California ISO (CAISO), New York ISO (NYISO), Electric Reliability Council of
Texas (ERCOT), Midcontinent ISO (MISO), ISO New England (ISO-NE), Southwest Power Pool (SPP), and
Pennsylvania-New Jersey-Maryland Interconnection (PJM).
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activity has occurred between these entities within and across regions. Moreover, financial
firms, predominantly private equities and bank funds, started to invest in power genera-
tion.

Mergers and acquisitions in the power sector can be divided into three main groups:
(i) asset sales, (ii) subsidiary acquisitions (divestitures), and (iii) mergers. In asset sales,
a firm sells part of its power plant portfolio while maintaining its corporate structure. In
this case, the acquired assets fall under the ownership of a subsidiary of the acquirer. In
subsidiary acquisitions, a parent company acquires a subsidiary of another firm with all
its assets. The plant’s owner (subsidiary) remains the same in these cases, but the parent
owner changes. The third type is a merger between two firms, where two companies
merge and form a new company. Appendix Figure 25 provides a visual representation of
these merger types.

All proposed plant acquisitions in the US electricity sector must be reviewed by the
Federal Energy Regulatory Commission (FERC), Department of Justice (DOJ), and state
Public Utility Commissions (PUC). The FERC reviews mergers under Section 203 of the
Federal Power Act, relying on the 1996 revision of the Horizon Merger Guidelines (HMG)
and putting more emphasis on market concentration levels. The DOJ’s review is more ex-
tensive than FERC’s, relying on the 2010 HMG and investigating potential anticompetitive
effects of mergers. If either the DOJ, FERC, or state PUC concludes that the merger harms
competition, they either block it or require assets divestiture on generation or distribu-
tion.4 Despite extensive reviews by three government agencies, most proposed mergers
have been approved in the US electricity sector, with only a few challenged mergers in the
last two decades.

There are several merger motives in the electricity industry, and efficiency improve-
ment in power plants is one of them.5 Firms often argue that mergers will generate syner-
gies between assets, citing enhanced financial flexibility, increased cash flow benefits, and
complementarities between different sectors such as distribution and generation. As fuel
represents roughly 80 percent of operational costs, many merging firms argue for poten-
tial operational efficiency improvements and synergies after the merger.6 As an example,

4To give some examples, in 2005, the Exelon-PSEG merger was not completed after failing to get approval
from state PUCs. In 2012, following the DOJ’s request, Exelon Corporation and Constellation divested three
generating plants in Maryland. In both cases, the FERC concluded that the merger would not harm compe-
tition.

5For most mergers in our sample, we have access to investor presentations and conference calls; therefore,
we can identify the motives precisely.

6Some other examples: (i) AES-DPL merger, which argues that their earlier merger IPL led to improve-
ments in management; (ii) NRG-GenOn merger, which cites measurable and actionable cost synergies of
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Appendix Figure 24 shows a slide from the investor presentation of the 2018 Dynergy and
Vista Energy merger, in which merging parties argue that heat rate improvements will
lead to 125 million dollars in cost savings.

2.3 Electricity Production and Construction of the Efficiency Measure
A major challenge when studying the efficiency effects of mergers is the lack of suitable
data because most industries do not have reliable measures of cost and physical produc-
tivity. The power generation industry is unusual in this respect because rich and high-
frequency efficiency and cost data are publicly available. This section describes the effi-
ciency measures used in this study and explains production in power plants.

A power plant is an industrial facility that generates electricity. In 2020, there were
11,070 utility-scale electric power plants in the US. A typical power plant include multiple
generators, which transform a form of energy into electricity using different production
technologies. Our research focuses on fossil fuel power plants, a type of thermal plants,
because their efficiency is easier to measure. Fossil fuel power plants use energy of heat,
obtained from burning gas or coal to make electricity.7 In this process, the total input is
measured as heat content of the fuel used in electricity generation. This leads to a natural
efficiency measure, called heat rate, which specifies how much heat input is used to pro-
duce a given amount of electricity. Our main measure of efficiency is the inverse of this
measure, defined as the ratio of energy output and input:

Inverse heat rate =
Energy Output (MWh)
Energy Input (MMBtu) . (2.1)

The heat rate characterizes the productivity of a generator, representing how efficiently
fuel is converted into electricity. It is expressed as the ratio of the fuel’s heat content, British
thermal unit (Btu), and the plant’s electricity output, megawatt-hour (MWh). Heat rate is
a standard efficiency measure in the industry, widely used by regulatory agencies and
firms.

A lower heat rate means more efficient production, as the plant generates the same
MWh of electricity with less fuel. Thus, improving heat rates lowers fuel costs, which is

$175 million per year; (iii) Mirant-RRI Energy $150 million in annual cost savings; (iv) Vistra-Dynergy men-
tions geographic, fuel, market and earnings diversification benefits. Other cited reasons are increasing the
consumer base, diversifying the portfolio across technologies and regions, and accelerating efforts to meet
potential future environmental regulations.

7In a thermal power plant, water is heated in a boiler to generate steam, which is then moved through
a turbine that attached to a shaft. As the steam moves, it causes the shaft to spin. This spinning shaft is
connected to a generator, which produces electricity.
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Figure 1: Heat Rate Curve
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Note: The green line represents the marginal cost of producing elec-
tricity at a given capacity without potential ramping costs. The blue
bars represent the distribution of actual production levels.

the major input representing roughly 80 percent of operating costs (Fabrizio et al. (2007)).
Most importantly for our study, the fuel efficiency of a power plant provides an ideal set-
ting to study the effects of mergers and acquisitions on productivity. First, our measure is
a quantity-based efficiency measure obtained from quantity input and output, not affected
by buyer or market power changes. Second, electricity is a homogeneous product, thus
not affected by potential quality changes after acquisition. Finally, the efficiency measure
relies on accurate sensor measurements of input and output rather than survey responses,
as in many industries.

Several factors affect the heat rate in a power plant. Figure 1 shows an example of a heat
rate curve, where blue bars show the production distribution as the percentage of capacity
and the green line shows efficiency (inverse heat rate). First, the efficiency of a power plant
varies with its production level. Production at high or low capacity leads to low efficiency.
Second, power plants must rapidly adjust their production to respond to highly volatile
demand, which requires technical expertise and can affect the power plant’s overall effi-
ciency. The associated cost with this adjustment is called ramp-up and ramp-down cost.
Therefore, power plants whose production varies a lot tend to produce electricity less effi-
ciently. These determinants of power plant efficiency depends on the skills and expertise
of power plant personnel who monitor and control production (Bushnell and Wolfram
(2009)). Finally, fuel type plays an important role. Coal-fired generators often have 10–12
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MMBtu/MWh, whereas natural gas-fired generators have 7–9 MMBtu/MWh.8

Although the electricity generation process seems relatively mechanical, there is con-
siderable heterogeneity in power plant productivity in the US. Figure 2 shows the distribu-
tion of yearly residual log productivity of power plants in the US after controlling for plant
age, fuel type, technology, capacity, and other characteristics.9 The difference between the
10th percentile and the 90th percentile is 0.38, indicating that plants in the top part of the
productivity distribution are more than twice as productive as plants in the bottom part
of the productivity distribution.10 This heterogeneity in productivity has been observed
by others in the literature (Sargent & Lundy (2009), Staudt and Macedonia (2014)).11 The
large dispersion in productivity conditional on a very rich set of observables highlights the
role of unobserved heterogeneity in efficiency, indicating potential room for improvement
in many power plants.

Improving heat rate is a complex process that can be done in two main ways: (i) low-
cost operational improvements and (ii) costly capital upgrades. Low-cost practices, such
as process optimization, personnel training, efficient maintenance, and avoiding ramp-up
costs, can significantly improve the heat rate. Every year, power plant managers gather at
the Heat Rate Improvement Conference to discuss these practices (EPRI (2022)).12 An im-
portant determinant of operational practices is labor. As documented in detail in Bushnell
and Wolfram (2009), individual skills of key personnel could make a significant difference
in the performance of generating plants. Another way to improve plant efficiency is by
upgrading key equipment, such as boilers, fuel feeders, and cooling systems, as the old
equipment degrades and new technology becomes available.

Improving the efficiency of a plant is also important for environmental considerations.
The more efficiently a plant operates, the less fuel it requires, emitting lower local pol-

8Even within a fuel type, there could be small differences in efficiency depending on the processing of
the fuel. For example, using different coal types can lead to different efficiency levels due to factors like
moisture content and pulverization procedures. Since we observe fuel and quality (for coal), we can control
for changes in fuel types.

9We explain this estimation in Appendix B.1.
10This dispersion is slightly smaller than the dispersion identified in other manufacturing industries

(Syverson (2011)
11For example, Sargent and Lundy’s report commissioned by the EPA found that coal-fired power plants in

the US require on average 10,400 British thermal units (Btu) to produce one kilowatt-hour (kWh) of electrical
energy, but range from heat rates of 5 MMBtu/MWh to 32.7 MMBtu/MWh (Sargent & Lundy 2009). Staudt
and Macedonia (2014) examine factors that contributed to heat rate using data from US EPA’s National
Electric Energy Database (NEEDS), including facility size, capacity factor, emission controls, steam cycle
(supercritical versus subcritical), and coal type. They determined that each factor played an essential role
in the generator’s heat rate. However, they also determined that there was much unexplained variability in
the data.

12Appendix Figure 25 highlights a few case studies of low-cost improvements.
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Figure 2: Distribution of Residual Log Productivity
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Note: This figure shows the distribution of residual yearly log productivity of
fossil fuel plants in the US between 2000 and 2020 after controlling for plant age,
fuel type, technology, capacity, and other characteristics.

lutants and GHG emissions. As a result, improving plant efficiency can be an effective
tool to decrease local and global pollution. The potential role of increasing power plant
efficiency has been recognized by policymakers in the US. In the 2016 Clean Power Plan
Act introduced by the Obama administration, improving the heat rate of existing power
plants was proposed as the first building block to reduce the carbon intensity of electricity
generation (EPA (2018)).13

3 Data
Our primary goal is to construct an hourly measure of generator efficiency and the uni-
verse of ownership changes to examine the impacts of M&A on efficiency in electricity
generation industry. An attractive feature of the power generation industry is that it has
richer data on production and ownership than most industries. We take advantage of this
and create a unique dataset on ownership and production.

We combine several datasets from the FERC, EPA, Department of Energy’s Energy In-
formation Administration (EIA), S&P Global, Velocity Suite, and S&P CapitalIQ Pro at the
firm, plant, and generator level for all coal- and gas-fired power plants in the US between

13An analysis conducted by National Energy Technology Laboratory (NETL) supported this conclusion.
Under a scenario where generation from coal is constant at the 2008 level, increasing average efficiency from
32.5 to 36 percent reduces US GHG by 175 MMmt/year, or 2.5 percent of total US GHG emissions in 2008.
Moreover, NETL notes that ”if each plant achieved their maximum efficiency each year, 5 percent reduction
in CO2 could result” (Campbell (2013)).
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2000 and 2020. This results in close to a billion data points with the hourly generation at
the generator level. This section briefly describes our process using several data sources.
We provide a more detailed description of the data sources, construction of variables, and
descriptive statistics in Appendix A.

Plant-Level Characteristics We use Velocity Suite, S&P Global, and EIA Forms 860 and 923
to construct detailed data on generator-level and plant-level characteristics for all fossil fuel
power plants in the US. We assembled information on fuel type, capacity, regulation status,
boiler model, and boiler manufacturer for generator units. For plants, we constructed
data on plant age, location, ISO, and FERC region. For roughly half of the plants in the
sample, we also have annual information on the number of employees, non-fuel costs,
and capital expenditures between 2008 and 2020. Data provider Velocity Suite sourced
this information from FERC Form 1, which is available only for investor-owned utilities.

Production and Efficiency Data We utilize the EPA’s (EPA) Continuous Emissions Mon-
itoring Systems (CEMS) for hourly generation and input data. The CEMS program was
developed to systematically monitor power plant emissions for implementing environ-
mental controls. It provides hourly power output, power input, emission, and heat rate
of almost every fossil fuel power plant in the US.14 We merged this dataset with the unit
characteristics data from other datasets using generator names. In some cases, generator
names in the EIA dataset and CEMS do not match.15 We used EPA’s Power Sector Data
Crosswalk in those cases. Finally, we manually matched the retired and unmatched power
plants using the principles described in the Appendix. We restrict our sample to all US
fossil-fuel generators that comply with the CEMS program, except those in Alaska and
Hawaii.

Mergers and Acquisitions Data We construct the ownership panel data for the universe
of fossil fuel power plants from two separate ownership and transaction datasets obtained
from S&P Global. The ownership data includes the ownership structure of all power
plants at the subsidiary and parent company levels. We observe not only the majority own-
ers but any firm that owns shares of the power plant. Transaction data provides detailed
information about the transferred assets and transactions, such as acquired power plants,
deal size, buyer, seller, announcement and close dates, conference call transcripts, and deal
description. Since regulatory authorities must review all transactions, this data is available

14Every power plant in the US with more than 25 MW capacity that burns fossil fuel must comply with
the EPA CEMS program. This sample represents approximately 95 percent of the US fossil-fuel generating
capacity.

15The EPA uses boiler names as a unit, whereas EIA uses generator names.
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for the universe of transactions during the sample period. Ownership and merger datasets
often suffer from falsely identified ownership changes because firm name changes and re-
structuring of the parent company sometimes appear as ownership changes. We identify
false ownership changes by cross-matching the plants in the transaction data with the ones
in the ownership data. We also use corporate structure data to identify changes that are
merely a restructuring within the same parent company. We use those false ownership
changes for placebo tests. We also identified ownership changes that are forced divesti-
tures due to deregulation in the early 2000’s and excluded them from our sample.

Personnel Data Since plant personnel is an important determinant of efficiency, we as-
sembled panel data on personnel information for each plant in our sample from the EPA.
The EPA has this information because each power plant that complies with a EPA program
must submit a plant representative to EPA. This data includes the representative’s name,
start and end date of their tenure, and contact information. To obtain more information
about the personnel, we matched roughly 70 percent of them to their LinkedIn profiles,
obtaining title, education, and employment history. From LinkedIn data, we confirmed
that 80 percent of the reported personnel are plant managers, and the rest are mostly en-
vironmental compliance personnel. Therefore, we treat the personnel in our data as plant
managers for the rest of the study.

Other Datasets To control for renewable generation, we gathered hourly data for solar and
wind power generation from FERC and S&P Global for each Balancing Authority Area
(BAA) and ISO Zone.16 We also obtained information about firm characteristics, such as
asset size, market cap, and industry information, from S&P CapitalIQ Pro.

4 Descriptive Statistics on M&A in the US Power Industry
This section presents descriptive statistics about mergers and acquisitions of fossil fuel
power plants in the US electricity generation industry. Our goal is to demonstrate that
the industry experienced a significant number of acquisitions with rich heterogeneity in
terms of transaction size, acquirer and target firm types, and location. These facts allow
us to study several aspects of how acquisitions affect efficiency, and they will be essential
to keep in mind when we conduct our empirical analysis.

95 percent of Industry Capacity Changed Ownership between 2000 and 2020. There has
been a large number of mergers and acquisitions in the US fossil fuel power generation

16Since demand-side variations lead to expected or unexpected changes in power plant production, con-
trolling for demand shocks is critical to understanding plant efficiency.
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Figure 3: Share of Capacity with Majority Owner Change
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Note: This figure shows the change in percentage cumulative ownership of
fossil fuel plants in the US between 2000 and 2020.

industry between 2000 and 2020. Figure 3 shows the percentage of fossil fuel electricity
generation capacity that changed ownership from 2000 to 2020. We see that an average
of 5 percent capacity changes ownership annually, with some fluctuations year-to-year.17

Cumulatively, this corresponds to 95 percent of industry capacity during our sample pe-
riod.18 This is also reflected in the large number of power plants that changed ownership.
Table 1 presents some summary statistics on plants, firms, and deal characteristics from
the universe of acquisitions between 2000 and 2020. Our data includes 690 transactions
involving 4,834 generation units and 1,567 plants. About 80 percent of these transactions
involves a generator whose majority owner changes, giving us 4,030 generators with an
ownership change. These generators will constitute our primary sample. Finally, looking
at the firm characteristics, we see 267 unique acquirer firms and 266 target firms in the
data.

Despite many acquisitions in our study period, we do not observe a meaningful change
in market concentration. Appendix Figure 26 reports the national market shares of the
largest 5, 10, 20, and 30 firms in terms of capacity owned. The concentration fluctuates

17We define acquisition as an ownership change if a different firm owns the majority of the plant’s shares
after the acquisition. For a small number of plants, no firm owns more than 50 percent of shares. For those
plants, an acquisition is defined as the change of the largest shareholder.

18This is cumulative capacity, so it double-counts the capacity of generators that have changed owner-
ship multiple times. We observe that 2,200 generators change ownership at least once, corresponding to 50
percent of the industry’s total capacity.
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Figure 4: Market Share by Firm Type
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Note: These figures show change in market share of industry and owner types of fossil fuel plants in the US
between 2000 and 2020

over time; however, it is broadly stable in the sample period.19 This is because there is a
considerable firm turnover in the industry, as suggested by the large number of acquirers
and targets in Table 1. Some examples can be seen in Appendix Figures 17 and 18, where
we report firms with the largest capacity increase and decrease between 2010 and 2020.

To show the composition of firms in the industry, Figure 4a displays the evolution of
ownership by the primary activity of the parent company (utilities, industries, financials),
and Figure 4b displays the evolution of ownership by whether the ultimate owner is a
public firm. Looking at Panel 4a, we see an increasing presence of financial firms between
2000 and 2020 in the industry. The share of total capacity owned by financial firms goes
from 3 percent in 2000 to 20 percent in 2020, suggesting substantial asset allocations from
utilities to financial firms. Figure 4b highlights that public firms own most industry capac-
ity, and the share of public firms remains stable over time. Finally, government institutions
own 12 percent of the industry capacity. Except for the federally run Tennessee Valley Au-
thority, these are local governments in rural areas that operate power plants that supply
electricity to the public.

Most Acquisitions Reallocate Assets between Incumbent Firms. Most acquisitions are
partial asset sales between two incumbent firms, but we also see some transactions where
the target exits or the acquirer enters the industry. Columns 2 and 3 of Table 1 report the

19Note that these concentration ratios are not informative about the changes in market power due to the
local nature of wholesale electricity markets. We report these changes at the national level to see whether
large firms increase their dominance in this industry through acquisitions.
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Table 1: M&A Summary Statistics

(1) (2) (3) (4)

All Acquirer Firm
Enters Market

Target Firm
Exits Market

Change in
Majority Owner

Unit Characteristics

# of Units 4834 701 1692 4030
# of Plants 1567 268 482 1264
# of Unique Units 2365 585 1355 2198
# of Unique Plants 735 222 393 674
# of Acquirer Firms 267 126 107 234
# of Target Firms 266 99 148 229
% Gas 0.81 0.89 0.74 0.81
% Coal 0.13 0.09 0.18 0.13
% Oil 0.06 0.02 0.08 0.06
% Becomes Unregulated 0.04 0.06 0.03 0.04
% in Regulated State 0.24 0.25 0.39 0.24
% in ISO 0.77 0.76 0.71 0.76

Firm Characteristics

# of Units Target Owns 35.03 0.00 25.56 32.50
(49.28) (0.00) (39.54) (46.15)

# of Units Acquirer Owns 44.60 35.22 11.92 44.05
(52.49) (47.16) (22.16) (52.02)

Acquirer Firm Capacity 5459 0 4189 5055
(8765) (0) (6883) (8049)

Target Firm Capacity 7025 5312 1738 6912
(9655) (8314) (3588) (9453)

Transaction Characteristics

# of Deals 689 132 147 532

Deal Size in # of Units 7.0 5.3 11.5 7.6
(14.7) (8.9) (21.8) (16.0)

Deal Size in Capacity 1233 986 1922 1298
(2640) (1981) (3798) (2813)

Note: This table includes M&A activities that include fossil fuel-generating units in the US be-
tween 2000 and 2020. Each column reports the counts and characteristics in the data at varying
levels of sample restrictions. Column (1) reports data from all acquisitions. Column (2) and Col-
umn (3) present data from transactions where the acquirer firm enters the market and the target
firm exits the market, respectively. Column (4) reports data from majority acquisitions only.
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Figure 5: Heterogeneity in Merger Size

Note: This figure shows the differences in the size of deals that include fossil
fuel plants in the US between 2000 and 2020.

summary statistics by transactions where the acquirer firm enters and the target firm exits
the industry. The rest of the transactions occur between incumbent firms, which have a
presence in the industry pre-and post-acquisition. In 20 percent of the transactions, the
acquirer firm enters the market, and in about 20 percent of transactions, the target firm
exits the market. Overall, these summary statistics suggest a significant reallocation of
assets between firms in the industry, which allows us to test some important hypotheses
about the allocative effects of acquisitions.

Heterogeneity in Transaction Size. Our sample includes mega-mergers that involve hun-
dreds of generators and small transactions that involve only changes in minority owners.
In Figure 5, we report the distribution of capacity that changed ownership across 689
transactions. While most small transactions involve one or a few plants with small ca-
pacity, some moderate-size transactions include ownership change of 5,000–10,000 MWh
capacity. Finally, our sample includes mega-mergers that involve more than 10,000 MWh
capacity. Observing this rich heterogeneity is useful because (i) our evidence does not
come from a small number of large mergers, and (ii) we can test the heterogeneity of the
effect by transaction size.

Ownership Changes at Different Level of Corporate Structure. Ownership changes can
occur at two levels in a corporate structure: (i) the owner level (subsidiary) and (ii) the
parent company level. Typically, a subsidiary of a holding company is the legal entity that
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Figure 6: Ownership Change Types
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Note: This figure shows the differences in the ownership level of deals that includes fossil
fuel plants in the US between 2000 and 2020.

owns the power plant, and a parent company owns that subsidiary. When a parent com-
pany acquires a subsidiary of another parent company, the entity that owns the power
plant remains the same, but the parent company changes. On the other hand, if a sub-
sidiary acquires a power plant in a partial asset sale, both the owner and parent company
change. Figure 6a shows ownership changes at the owner and parent company levels.
The figure suggests that in around 1,700 acquisitions, the owner remains the same and
the parent company changes. We will use this variation to study the efficiency effects of
acquisition at different levels of corporate structures. Moreover, in our data, we observe
not only the majority of acquisitions, which involve more than 50 percent of the plant’s
shares, but also minority acquisitions, where the buyer acquires less than 50 percent of a
power plant. The distribution of shares that change ownership is reported in Figure 6b.
Perhaps surprisingly, there is a large number of minority acquisitions. We use these mi-
nority acquisitions in placebo tests, as one should expect no change in efficiency after a
minority acquisition.

As explained in the previous section, some states regulate power plants’ returns from
power generation. One might be concerned about the role of regulations, as they might
change merger motives and the incentive to improve productivity after an acquisition.
To investigate this, Table 1 shows the fraction of acquisitions that occur in regulated vs.
deregulated markets. We see that the majority of the ownership changes, 76 percent, occur
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in deregulated markets.20 This is also reflected in the geographic variation of acquisitions
(Appendix Figure 23). Another concern could be that ownership changes coincide with
forced divestitures due to deregulation. Even though most state restructuring took place
in the 1990s, some state restructuring overlaps with our sample period. For this reason,
we look at how many ownership changes coincide with forced divestitures. Table 1 re-
ports that only a handful of deregulation happened after 2000, which we exclude from
our acquisition sample.

5 Empirical Results
Our empirical strategy aims to identify the causal effect of acquisitions on power plant
productivity and study potential mechanisms. To do this, we compare productivity trends
at acquired generators to those not directly involved in merger activity; we refer to these
generators as “control generators” or “controls.” In most estimations, each observation
is a unique combination of generator and week, with variables containing productivity,
ownership, and several units and plant characteristics.

The main advantage of our empirical setting is that we observe a high-frequency mea-
sure of the productivity of power plants, allowing us to track the productivity immediately
before and after acquisition. As a result, we can identify the effects of acquisition within
a short time window, not years before or after acquisition. This is in contrast to data avail-
ability in most manufacturing industries, where production data is typically at the annual
level. This unique data feature provides an important advantage for identification because
we can consider acquisitions as discrete events.

Before estimating our model, we make several additional sample restrictions. First,
we eliminate generators that are inactive more than 90 percent of the time during their
lifetime.21 Second, we drop acquisition events that correspond to forced divestitures due
to deregulation. Third, we require that target generators have at least one year of data
before and after acquisition so that all in-sample acquired plants contribute to identify-
ing variation in both the pre-merger and post-merger effect coefficients. Fourth, we focus
only on the first acquisitions if a unit is acquired multiple times (half of all treated units).
We remove the observations of units after the post-treatment period if they are acquired
multiple times so that other acquisitions are not included in the sample. Fifth, we remove
all treated units acquired again within a year of the first acquisition. We provide several
robustness checks for these sample restrictions in Section 8.

20This is expected because, in most regulated markets, public ownership serves the local population.
21Lifetime is defined as the period between the first and last time of production observed in the data.
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We find that acquisitions increase the productivity of power plants 4 percent, but only
when ownership changes both at the parent company and owner level. In contrast, own-
ership changes at the parent company level only do not lead to a significant productivity
increase. The productivity increase starts five months after the acquisition and reaches
the new steady-state level after eight months. After documenting the evidence on effi-
ciency, we close the section by studying the heterogeneity of the effects. To facilitate the
exposition, we defer the detailed examination of mechanisms to Section 7.

5.1 Mergers and Efficiency
This section presents our main difference-in-differences results from estimating the effects
of mergers on efficiency. To do this, we follow Braguinsky et al. (2015) and estimate a
regression of the following form:

log(yit) = θ1l preit + θ2e postit + θ3l postit +Xit + µt + αi + ηit, (5.1)

where yit is the efficiency of generator i at week t (measured as inverse heat rate given in
Equation (2.1)); the controls,Xit, include state-month fixed effects, time-varying generator
characteristics such as age and fuel type (for coal), capacity and indicators for whether the
unit is connected to the grid and whether it is an internal generator. αi is generator fixed
effect and µt is week fixed effect. By controlling for state-month fixed effect, we flexibly
account for changes in demand and the supply of non-fossil fuel electricity generators
(mainly entry of renewables) at the state level. Although it happens rarely, generators can
change their capacity and fuel type; we include fuel type and capacity to control for these
cases. Including generator and week fixed effects implies that merger effects are identified
within generator changes following a merger event.

The regression includes three variables of interest: (i) l pre, an indicator variable for 1 to
5 months pre-treatment, (ii) e post, an indicator variable for 1 to 5 months post-treatment,
and (iii) l post, an indicator variable for 6 to 10 months post-treatment. By including early
and late post-acquisition treatment indicators, we aim to capture the dynamic effects of
mergers and identify when efficiency changes happen. We include l pre to see whether
there are any productivity effects of the acquisition before the acquisition. This could
happen due to anticipation effects or disruption in the production process, as most acqui-
sitions are announced months in advance. Finally, we cluster all standard errors at the
plant level.

It is important to highlight that our unit of analysis is a generator rather than a plant.
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Table 2: Balance Table

Acquired Never Acquired
Coal Unit 0.18 0.26
Gas Unit 0.74 0.67
Oil 0.08 0.07
Capacity 179 176
Install Year 1987 1985
Unit in ISO 0.75 0.58
Note: This figure shows the differences acquired
and never acquired fossil fuel plants in the US
between 2000 and 2020.

While the same firms typically own all generators in a plant, they might have different
production profiles and maintenance schedules, which would affect efficiency estimates
if inputs and production are aggregated at the plant level. Moreover, in a few ownership
changes, we see that only some of the units in the plant change ownership. Therefore, we
think that generator is the right level of analysis and maintain this throughout the paper.

Before moving to the results, in Table 2 we report the average characteristics of acquired
power plants and power plants that have never been acquired. Treated and control groups
look similar in terms of capacity and install year. There are slight differences in fuel type:
acquired plants are more likely to be gas-powered than the control group. This difference
is expected because there is substantial policy uncertainty about the future of coal power
plants, which deters potential buyers. Finally, regarding geographical distribution, we see
that treated and control groups are similar.

Table 6 shows the results from estimating Equation (5.1) for the outcome variable of
log productivity. It does so for the entire sample of acquisitions (all M&A) as well as
different acquisition events: (i) both the parent company and owner firm change; (ii) the
parent company changes and the owner remains the same, (iii) minority acquisitions; and
(iv) owner name changes. Estimates from (iii) and (iv) provide placebo tests, as discussed
later.

The results in the first numerical column of 6 indicate the efficiency rises after the ac-
quisition. The efficiency change in the early acquisition period is only 0.7 percent and
marginally statistically significant, underscoring that there is no considerable change in
efficiency immediately after acquisition. However, in the late post-acquisition period, 6 to
10 months after acquisition, the efficiency increases by 2 percent above the pre-acquisition
level. Thus, acquired generators’ efficiency levels improve following acquisition, though

22



Table 3: Regression Results

All
M&A

Owner/Parent
Company
Changes

Only Parent
Company
Changes

Minority
Owner Changes

(Placebo)

Name
Changes
(Placebo)

(i) (ii) (iii) (iv) (v)
Late pre- 0.002 -0.003 -0.003 -0.004 -0.007
acquisition (0.005) (0.007) (0.007) (0.008) (0.006)
Early post- 0 0.005 -0.002 -0.008 -0.004
acquisition (0.005) (0.007) (0.007) (0.020) (0.043)
Late post- 0.014 0.039 -0.006 0.001 0.007
acquisition (0.006) (0.012) (0.007) (0.01) (0.01)

Adj. R2 0.622 0.635 0.622 0.652 0.635
# of Obs. 1.79M 1.38M 1.4M 1.12M 1.22M
# of Acq. 1760 897 921 405 456
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.

it takes time for this to fully manifest.
Columns (ii) and (iii) of 6 test whether different types of ownership affect efficiency

differently. Column ii estimates a difference-in-difference specification, where treatment
is defined as ownership change at the parent company and owner (subsidiary) levels. In
contrast, in Column (iii), a plant is treated when the parent company changes, but the
owner firm remains the same after acquisition. One might expect the efficiency effects of
an acquisition to be different in these two cases because the owner firm typically has di-
rect control over the operation and personnel of the power plant. In contrast, the parent
company controls the power plant indirectly.22 Comparing these two columns reveals sig-
nificant heterogeneity in the treatment effect. There is no effect when the owner company
remains the same, whereas it is 4 percent if both the owner and parent company change.
These results confirm our intuition that, for operational changes in the power plant, the
direct owner plays a more important role than the ultimate parent. A change in indirect
control does not affect power plant productivity.

The last two columns of the table serve as placebo tests. For the first placebo test,
22Moreover, ownership changes at the parent level tend to be financial acquisitions, in which the motive

is to achieve diversification or safe returns.
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we use the 512 minority acquisitions in the data. These are the transactions where the
majority owner remains the same after an acquisition. For the second placebo test, we
identify 612 generators whose owner changes their name, but the generator is not involved
in an acquisition. These are “false” ownership changes that would have been classified
as “acquisitions” from the ownership data, but cross-checking with the transaction data
reveals no ownership change. We use these two types of events as placebo tests because
we should expect no impact on power plant efficiency. The results confirm our expectation
that we do not see any significant change in power plant efficiency after these events. These
placebo tests give us confidence that confounders do not drive our main results.

To interpret the results from the specification in Equation (5.1) as causal, we rely on the
assumption that an acquisition creates a discontinuous change in power plant behavior. In
contrast, any efficiency trends that might lead to selection would be either common to the
control plants or gradual enough to be distinguished from the more discrete direct effect.
This assumption is likely to hold in our setting because we observe production at short
intervals and include a rich set of control variables that account for industry-specific effi-
ciency changes.23 Still, there could be unobservable factors that would change efficiency
in the absence of mergers, and those are observed by the acquirers affecting their acqui-
sition decision. For example, the acquirer might observe that the target plant’s manager
will retire and decide to buy the plant, anticipating that the new manager will improve
efficiency. To test whether the effect comes from manager changes, we estimate the effects
of manager changes on efficiency in the absence of mergers and find that the efficiency
increase is only 0.6 percent (Appendix Figure 19). Finally, we do a battery of robustness
checks that are presented in Section 8, including matching estimators, Goodman-Bacon
(2021) estimator, and estimation with daily and hourly data, to show that our results are
robust to several specification choices.

After showing the significant impact of acquisitions on efficiency, we turn to the dy-
namic effects to identify more precisely when efficiency change occurs and whether there
are any differences in pre-trends. For this purpose, we plot power plant efficiency during
the period around acquisition using the following regression specification:

log(yit) =
∑

s∈(−16,16)

δsDt−s +Xit + µt + αi + ηijt, (5.2)

whereDt−s is a dummy variable for generator i being acquired at month t and controls are
23The average power plant efficiency gain in the industry is 0.3 percent. Therefore, in power plant gener-

ation, we do not see a significant fluctuation in efficiency.
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Figure 7: Impact of Merger on Productivity
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.

the same as the regressions estimated above, including generator fixed effects. Because we
identify the significant efficiency impact of ownership changes at the owner and parent
company level, we study only those acquisitions hereafter.

The results from the dynamic effect regression in Figure 7 suggest no significant evi-
dence of pre-treatment trends. For the treatment group, the coefficients on t ∈ (−16, 0) are
small and insignificant, suggesting that acquired plants do not have a different efficiency
trend before acquisition than those not acquired. The difference remains close to zero until
five months post-acquisition. And after that, the efficiency of acquired plants and control
plants diverges. The cumulative efficiency increase is 4 percent. The fact that plants expe-
rience efficiency gain five months after the acquisition suggests that it takes time for the
new owner to change power plant operations necessary for efficiency improvements.24

5.2 Discussion
How large is the average 4 percent efficiency gain after acquisition, and what are the corre-
sponding cost savings? To understand how large our finding is, we compare it to average
within-plant productivity growth in the industry. In power generation, the contribution

24This finding is suggestive of how the efficiency gain occurs. Our interviews with power plant managers
indicated that five months is not long enough to make costly capital investments and upgrades. This suggests
that efficiency improvements occur primarily due to operational changes and adopting best practices rather
than costly capital investments. We will return to this question later for a more formal analysis.
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of within-plant productivity growth to aggregate productivity is small, as most of the
productivity growth comes from plant entry and exit. We show this in Appendix Figure
22, which plots the average year-to-year within-plant productivity growth for the plants
that were not involved in an acquisition. The within-plant productivity growth fluctuates
around 0, with an average 0.3 percent annual increase over the sample period. This small
average productivity growth makes the efficiency gain after acquisitions more striking
because acquired plants achieve the level of productivity increase that an average plant
achieves in twelve years without mergers.

Next, we quantify the cost saving due to the efficiency increase after an acquisition.
We calculate this number under three simplifying assumptions; (i) acquired plants will
keep the efficiency level after the acquisition; (ii) acquired plants will maintain the same
production level that we observed pre-acquisition; and (iii) there is no redistribution of
production across plants. Under these simplifying assumptions, we find that the total
cost saving is six billion dollars. However, whether these cost savings would be passed to
consumers is more complicated. It depends on whether the acquired plants are marginal
or infra-marginal and how much market power they have. Although we think this is an
important point, it is outside the scope of this paper.

Finally, we also aim to estimate the social gains due to positive externalities resulting
from a decline in fuel usage in electricity generation. For this estimation, we assume that
(i) CO2 emissions are linearly increasing with heat rate; (ii) CO2 emissions a roughly 0.4
tons per MWh for gas power plants, and 1 ton per MWh for coal power plants. Under
these assumptions, the total cumulative decline in CO2 emission between 2000 and 2020 is
roughly 50 million tons. This corresponds to emission reduction from replacing 125 TWh
gas power plant with renewables.

5.3 What Predicts Efficiency Gains: Heterogeneity Analysis
Estimating the average effects of past mergers is important to understand the overall im-
pacts of mergers. However, to draw broader lessons from this industry and guide merger
policy, it is crucial to learn the underlying mechanisms that lead to post-merger changes
and understand what merger and firm characteristics predict them. Thus, our next set of
analyses examines which characteristics of mergers predict merger effects. Results from
this section are important because they can help anti-trust authorities predict which merg-
ers will lead to more efficiency gains.

Our rich data will allow us to study the relationship between efficiency gains and sev-
eral plant, firm, and transaction characteristics. For this purpose, we estimate the follow-
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ing regressions:

log(yit) = θ1Dit + θ2Dit × Zit +Xit + µt + αi + ηit, (5.3)

where Dit is an indicator variable for treatment and Zit is a plant, firm, or transaction
characteristic. We estimate this equation for many plant, firm, or transaction characteristic
separately and report the estimates of θ2. The details of the estimation procedure for the
heterogeneity analysis and how sub-samples are constructed are provided in Appendix
C.

We begin by considering five plant characteristics: fuel type (natural gas or coal), age,
regulation status, capacity, and whether the plant is infra-marginal or marginal.25 Looking
at the results, we do not detect heterogeneity by fuel type, mostly because a small number
of coal power plants have been acquired during our sample period. However, there is sig-
nificant heterogeneity based on other power plant characteristics. The efficiency increase
is higher in older power plants. This is reasonable because there is degradation in perfor-
mance over time, and therefore there is more room for efficiency improvements in older
plants. The efficiency improvements are also higher if the plant is unregulated, larger, or
infra-marginal. In all of these cases, the owner has more incentive to improve power plant
efficiency.26

Next, we look at which firm characteristics predict efficiency gains. We focus on trans-
actions where the target firm exits the market, the acquirer enters the market, the acquirer
is a financial firm, the acquirer is large, and it is a serial acquirer. In this specification,
we do not see any heterogeneity by target firm exiting, acquirer firm entering, and the
acquirer being a financial firm. However, efficiency improvement is 0.02 percent higher
when the acquirer is large (in total capacity) and is 0.05 percent larger when the acquirer
is a serial acquirer. These results are consistent with the interpretation that a firm’s expe-
rience in plant operations and acquisitions is an important predictor of efficiency increase
after acquisition.

Finally, we study five transaction characteristics: deal size by deal value (which in-
cludes non-power plant assets), whether the transaction occurs after 2010, the acquir-
ers’ existing capacity in the market, transaction size by acquired fossil fuel capacity, and
whether the transaction is a bankruptcy sale. First, we see that larger transactions by deal

25Details about the heterogeneity variables are provided in Appendix B.2. The coefficient estimates can
be found in Appendix Tables 7-9.

26This is because in unregulated plants, any cost-savings will be retained as profit; for infra-marginal and
larger plants, production is higher, so any efficiency improvement would lead to a higher return.
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Figure 8: Heterogeneity of the Merger Effects on Productivity
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Note: Estimates of θ2 from Equation (5.3) along with the 95 percent of confidence intervals. Stan-
dard errors are clustered at the plant level. Details about the heterogeneity variables are provided
in Appendix B.2. The coefficient estimates can be found in Appendix Tables 7-9.

size do not lead to higher efficiency increase. Transactions after 2010 lead to slightly higher
efficiency, suggesting that the results are not specific to deals that occur in a particular time
frame. The acquirer’s overall capacity and the capacity in the market are correlated with
higher efficiency improvements. Finally, we see that efficiency improvements are signifi-
cantly larger, close to 20 percent, when the transaction is due to bankruptcy sales.

The analysis in this section suggests that heterogeneity in efficiency effects can be ex-
plained by many plant, firm, and deal characteristics. The direction of these effects is
consistent with firms having more incentives to improve the efficiency and experience of
the firm. We would also like to note that these findings should not be interpreted as causal
as, in many cases, the effect can be explained by other factors.
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We believe that the results from this section are valuable for merger policy. Predicting
the efficiency effects of mergers through counterfactual simulations is particularly difficult
as most merger simulations focus on predicting price effects. Therefore, evidence on the
efficiency effects of mergers conditional on a merger’s attributes provides valuable infor-
mation to assess which mergers would lead to efficiency gains ex-ante.

6 Do Mergers Allocate Resources Efficiently?
Mergers and acquisitions represent a significant source of reallocation in the economy and
account for vast flows of resources between firms. This reallocation can generate allocative
efficiency gain in the economy if the assets are allocated from less productive firms to
more productive firms or acquirers utilize the acquired assets more productively.27 Our
empirical setting provides an ideal opportunity to study the allocative efficiency effects
of mergers because we observe hundreds of asset reallocations between incumbent firms
in our sample. Motivated by this, this section investigates whether (i) acquirers are more
productive than target firms and (ii) acquirers have a comparative advantage in utilizing
the acquired assets over the target firm.

There are two main theories on how acquisitions raise aggregate productivity through
resource reallocation. The first, the Q theory of mergers (Jovanovic and Rousseau (2002)),
posits that there are inherent productivity differences between firms, and acquisitions
transfer resources from low- to high-productivity firms. This implies a “high-buys-low”
pattern in the merger market. According to the second theory, proposed by Rhodes-Kropf
and Robinson (2008), there are no systemic productivity differences between firms, but
assets and firms could be complementary. Therefore, firms could have different levels of
ability to operate different assets. This implies a “like-buys-like” pattern, as we expect to
see acquisitions of complementary assets. A body of literature has tested these theories of
merger gains (Maksimovic and Phillips (2001), Jovanovic and Rousseau (2008)) without
conclusive empirical evidence.

The answer to these questions is an important input to quantify efficiency gains in
merger analysis. In merger simulations of two firms with different marginal costs, the
question of what should be the marginal cost post-merger is an empirical one. In other
words, we need to know whether efficiency is transferable. It is well known that organi-
zational challenges for integrating merged firms and dis-economies of scale at the senior

27Another view of the literature suggests that most acquisitions are undertaken for other motives, such as
empire-building and managerial hubris.
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Figure 9: Efficiency of Acquirer and Target’s Plants
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Note: Regression estimates from Equation (6.1). Error bars indicate 95 percent confi-
dence intervals. Standard errors are clustered at the plant level.

management level could prevent firms from transferring best practices that improve pro-
ductivity. In our empirical analysis, we also provide evidence for this important question.

To understand how mergers allocate resources in the economy, we estimate a difference-
in-differences specification where we study the efficiency of three different types of assets:
(i) acquired plants, (ii) plants of the acquirer not subject to the transaction, and (iii) plants
of the target not subject to the transaction. In particular, we estimate the following speci-
fication:

log(yit) =
∑
j

(
θj1e prejit + θj2l prejit + θj3e postjit + θj4l postjit

)
+Xit + µt + ηit. (6.1)

This regression aims to estimate both the level and change of efficiency, separately for
the target’s assets, acquirer’s assets, and acquired assets around the time of acquisition.
Equipped with these estimates, we can compare the efficiency of the target and acquirer’s
existing assets and identify how they perform relative to acquired plants. This regression
does not include generator fixed effects because we are interested in estimating level dif-
ferences, not only changes. We deal with potential endogeneity concerns due to the lack of
generator fixed effects by including a very rich set of controls, including age, boiler type,
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fuel type, boiler model, boiler manufacturer, and plant capacity. We restrict the sample to
acquisitions where both the acquirer and target firms own plants pre- and post-acquisition
that are not subject to the transaction. We also normalize the efficiency level of acquirers’
assets to zero in the early pre-acquisition period, so all other coefficients are estimated
relative to θ11.

Figure 9 reports the estimates of three sets of coefficients. The red, blue, and black col-
ors, respectively, indicate the change in the efficiency of the existing assets of the acquirer,
the existing assets of the target, and the acquired assets. First, comparing the efficiency
levels of acquirer and target’s assets reveals several interesting findings. First, we see that
the productivity levels of both the target and the acquirer’s existing plants are roughly con-
stant around the time of the acquisition.28 Second, comparing the efficiency level of the
acquirer and target, we see that the acquirer is 1 percent more efficient than the target firm.
These estimates suggest that assets are allocated from high-productive to low-productivity
firms; however, the productivity differences are small.

We next compare the efficiency level of acquired assets with the other asset types. The
first observation is that the assets sold by the target firm are underperforming relative
to other assets in the target’s portfolio: the acquired asset’s efficiency is 4 percent lower
than the average efficiency of other assets in the target’s portfolio. This suggests some
heterogeneity in within-firm plant productivity. More interestingly, it also shows that
target firms sell their underperforming plants.

What happens to these underperforming assets after the acquisition? The efficiency of
these assets improves after acquisition with an increase of 3 percent. This effect is similar
to what we found in the previous section; however, it is estimated less precisely due to the
decline in sample size. When we compare the post-merger efficiency of the acquired assets
with the acquirer’s portfolio, we see that the acquired assets become almost as efficient as
the acquired firm’s other assets.

Overall, the empirical findings in this section suggest that high-productivity firms buy
underperforming assets of low-productivity firms and make the acquired asset almost as
productive as its existing assets after acquisition. These results provide clear evidence for
the two merger efficiency gain hypotheses discussed above. In particular, we find evidence
for the high-buys-low pattern, as the acquirers are more efficient than the targets. We also
find evidence for complementary asset theory in that acquirer firms have the ability to
improve the productivity of the underperforming assets of the target firm. These results

28This result provides evidence against the target- or acquirer-level unobservables that lead to the selec-
tion.

31



overall are strong evidence for the allocative efficiency effects of acquisitions. Because
the acquired assets are underutilized under the ownership of the target firm and improve
performance under the ownership of the acquirer, acquisitions potentially contribute to
aggregate productivity in the power generation sector.

7 Mechanisms
Our results so far uncovered large improvements in the efficiency of acquired plants after
acquisition. However, if we want to draw broader lessons from this industry, we need
to understand the mechanisms that generate efficiency gains. This section investigates the
potential mechanisms of efficiency gains in power plants and provides two major findings.
First, we find that most efficiency gains come from improvement in productive efficiency
within a generator. Second, firms achieve these efficiency gains with operational improve-
ments rather than costly capital investments.

7.1 Mechanisms of Efficiency Improvements
We propose three mechanisms that could generate the efficiency increase identified in
the previous section: (i) increase in productive efficiency, (ii) dynamic efficiency, and (iii)
portfolio (allocative) efficiency. We first explain these mechanisms and then develop an
empirical prediction for each mechanism that can be tested in the data. We find evidence
consistent with each of the three mechanisms, but most of the efficiency gain comes from
an increase in productive efficiency.

Increase in Productive Efficiency. The first mechanism that could generates efficiency
change is productive efficiency. Productive efficiency arises when the plant’s new owner
adopts operational processes that lower production cost or invests in new equipment. This
mechanism does not rely on synergies with other plants in the same market; it arises be-
cause the new owner knows how to operate the plant more efficiently. An implication of
productive efficiency is the decline in the cost curve at every production level, illustrated
in Figure 10. Based on this implication, a distinct prediction of this mechanism is:

Prediction 1: If firms increase overall efficiency by improving productive efficiency, the cost
curve of production will shift down.

Dynamic Efficiency. The second mechanism that could improve efficiency is dynamic ef-
ficiency, which arises due to better allocation of production over time. An important fea-
ture of power generation is that efficiency depends on the level of production as well as the
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Figure 10: Productive Efficiency
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Figure 11: Improved Capacity Utilization
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Figure 12: Portfolio Effects
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change in production. As discussed in Section 2.3, there is typically an efficient scale above
and below which efficiency declines and firms incur ramp-up and ramp-down costs. Since
the demand is stochastic and not perfectly predictable, balancing production by consider-
ing ramp-up and ramp-down costs and the shape of the cost curve is not straightforward.
For example, it requires coordination between the trading desk personnel, who choose a
bidding strategy, and plant personnel, who observes marginal cost and decide on produc-
tion. Optimizing these margins allows a firm to produce more with less input by adjusting
the production profile even if the cost curve remains identical pre- and post-acquisition.
Figure 11 demonstrates this effect where production is more concentrated around the effi-
cient scale post-acquisition, implying less ramp-up and ramp-down. A prediction of this
mechanism is:

Prediction 2: If firms improve dynamic efficiency, the standard deviation of heat rate goes
down.

Portfolio (Allocative) Efficiency. The third mechanism to improve efficiency is portfolio
effects. Plant owners solve complex optimization problems with thousands of parameters
as they face stochastic demand and time-varying transmission constraints. Having multi-
ple power plants with different production costs in the same market can give firms more
flexibility and improve efficiency by allocating production optimally across power plants.
This effect is illustrated in Figure 12. Since this mechanism is present only if firms have
other plants in the same market, a prediction for portfolio efficiency is:

Prediction 3: The efficiency of the existing plants of the acquirer firm in the same market
will improve.

7.2 Quantifying Mechanisms of Efficiency Gains
We start by testing for the presence of productive efficiency using an empirical strategy
guided by Prediction 1. In particular, we estimate the cost curves of generators non-parametrically
by flexibly controlling for ramp-up and ramp-down costs and production level:

yit = fiτ (Qit, rit),

where yit is heat rate, Qit is production level as percentage of total capacity of generator
i at time t, and rit is the ramp defined as the percentage change in production relative to
t− 1. fiτ (Qit, rit) is generator-specific cost function that depends on production level and
ramp. We estimate this cost function for each generator separately using data one year
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Figure 13: Estimated Cost Curves
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Note: These figures shows estimates of average costs curves one year before acquisition and one year after
acquisition. Panel (a) shows this for the treated group and panel (b) is for the control group.

prior and one year after acquisition. As a result, fi0 corresponds to the cost curve before
acquisition, and fi1 corresponds cost curve after acquisition.29

It is worth highlighting two critical features of this exercise. First, the estimated cost
function is generator-specific, as indicated by the index i. Estimating the cost curve at
the generator level is important to capture heterogeneity in production technology across
generators. Second, different from our main specification, we estimate this regression
using hourly data to control for change in production level accurately. Moreover, hourly-
level data allows us to estimate generator-specific cost functions since we have thousands
of observations from each generator pre- and post-acquisition. This estimation highlights
the advantage of the rich data environment, as traditional production function estimation
typically requires aggregation at the industry level.

We estimate fi0 and fi1 for every generator acquired during our sample period and
ask how the cost curve changes after acquisition controlling for ramp. In particular, we
quantify the productive efficiency gain in the following way:

∆C(Q) = cpost(Q)− cpre(Q) =
∑
i

fi1(Q, 0)− fi0(Q, 0)

where Q ∈ (0, 100), cpost(Q) is the average cost at production level Q after acquisition, and
29We estimate these functions for generators that are operating more than 20 percent of the time in the

window one year pre- and post-acquisition. This excludes some generators that produce only during peak
demand and others that are not active before acquisition.
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Figure 14: Change in Variation of Heat Rate
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ation of heat rate on treatment dummies. Error bars show 95
percent confidence intervals.

cpre(Q) is the average cost at production levelQ before acquisition. The difference between
these two functions gives us changes in productive efficiency at production level Q.

Figure 13a displays cpre(Q) and cpost(Q) for the acquired generators, and Figure 13b
displays the same curves for the control generators that have never acquired.30 Comparing
the pre- and post-acquisition cost curve demonstrates that the cost curve shifts downs at
every production level for the treated plants, and the cost curves are almost identical for
the control plants. The difference between the cost curves for the treated group is slightly
larger at production levels close to the efficient scale, but this difference is not statistically
significant. These results provide direct and strong evidence that the acquirers improve
the productive efficiency of the acquired plants.

This analysis also allows us to quantify the role of productive efficiency. To see this,
we integrate the difference between the cost curves to quantify the total productivity gain
from productivity efficiency:

∆ =
1

Nacq

Nacq∑
i

∫ (
fi1(Q, 0)− fi0(Q, 0)

)
dFi(Q),

whereNacq is the number of acquired generators and dFi(Qit) is the distribution of produc-
tion level of generator i before acquisition. This calculation suggests the overall efficiency

30Details of how the control units are constructed are given in the Appendix. We also provide the boot-
strapped standard errors for the difference between the two cost curves in the Appendix.
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Figure 15: Impact of Merger on Other Plants
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Note: Panel (a) shows coefficient estimates from a regression of log efficiency on treatment dummies where
existing units of the acquirer in the acquisition market are treated. Panel (b) shows the results from the same
regression except that existing units of the acquirer in the different markets are treated. Error bars show 95
percent confidence intervals. Standard errors are clustered at the plant level.

gain explained by productive efficiency is 3 percent, corresponding to 75 percent of the
total efficiency gain identified in the previous section. Therefore, we conclude that most
efficiency gain comes from productive efficiency.

Next, we move to dynamic efficiency. According to Prediction 2, an increase in dynamic
efficiency should reduce the standard deviation of the heat rate after acquisition. To test
this hypothesis, we estimate the same specification as in Equation (5.1) but use the weekly
standard deviation of heat rate as the outcome variable. Figure 14 shows the results from
this specification. We find that the average standard deviation of the heat rate goes down
after acquisition. Unlike the efficiency results, the decline in the volatility of heat rate is
realized more rapidly. From this regression, we conclude that the firms not only improve
production efficiency but also dynamically allocate production more efficiently over time
to reduce ramp-up and ramp-down costs.

Finally, we test the portfolio efficiency effects of acquisitions. According to Prediction
3, portfolio efficiency occurs only if the acquirer owns other plants in the same market,
and plants in other markets are not affected by portfolio efficiency. To test this prediction,
we estimate our main specification in Equation (5.1) where we treat the generators owned
by the acquirer. We do this estimation separately for the acquirer’s generators in the same
market where acquisition happens and for those in different markets. We assume power
plants are in the same market if they are located in the same balancing authority.

Figure 15 presents results for these regressions. Figure 15a shows the change in the
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heat rate of the generators owned by the acquirer and located in the same market as the
acquired plant. Figure 15b shows the change in heat rate of the plants owned by the ac-
quirer but located in different markets. We find that acquirers’ power plants in the same
market exhibit efficiency improvements by 1.3 percent, whereas acquirers’ power plants
in different markets show no change in the average heat rate. On balance, these results
suggest an efficiency increase for acquirers’ existing power plants, but only if they are in
the same market, consistent with portfolio efficiency. Moreover, we observe that the ef-
ficiency improvement of the acquirer’s plants is much lower than the efficiency improve-
ments of the acquired plants, 1.3 vs. 4 percent, suggesting that the scope for improvement
through productive efficiency is larger than the scope of improvements through allocative
efficiency.

To summarize this section, we find evidence for all three mechanisms we identified: (i)
productive efficiency, (ii) dynamic efficiency, and (iii) allocative efficiency. The mechanism
with the largest effect is productive efficiency, explaining 75 percent of the total efficiency
gain. The rest is explained by dynamic and allocative efficiency.

7.3 How Do Firms Improve Productive Efficiency?
So far, our results have provided clear evidence of an efficiency increase after acquisition,
and this efficiency increase primarily comes from productive efficiency. The next natural
question is what firms do to achieve this efficiency gain. In this section, we investigate this
question.

In Section 2.3, we posited two potential ways to improve power plants’ productive ef-
ficiency. The first is that acquirers make operational improvements or hire more skilled
personnel after acquisition. This would point transfer of knowledge from the acquirer to
acquired generator. The second is large-cost capital investments, where acquirers upgrade
the capital. If efficiency improvements occur this way, it would suggest that the previous
owner has liquidity constraints and cannot make efficiency-improving capital investments.
Disentangling these two sources of efficiency gains is important for merger policy because
efficiency gains have to be merger-specific for them to be viewed as cognizable. Efficiency
increases due to relaxing capital constraints are not merger-specific, as they can be accom-
plished by lending or investment subsidy. However, knowledge transfer is merger-specific
since it happens in an organization and is unlikely to be accomplished without a merger.

We disentangle the sources of productive efficiency improvements with additional
datasets on manager changes, capital expenditures and non-fuel costs. In particular, we
ask whether power plants experience personnel changes after the acquisition and whether
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Figure 16: Probability of Management Change
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Note: Coefficient estimates from a regression of management change dummy on pre-
and post-treatment variables. Error bars show 95 percent confidence intervals.

there is any significant change in capital expenditures and costs. Personnel changes would
provide suggestive evidence for significant operational changes after acquisition, and changes
in capital expenditures would provide direct evidence for the role of cost investment.

To study whether power plant managers change after an acquisition, we estimate the
dynamic difference-in-differences specification given in Equation (5.2). The outcome is
an indicator variable that equals one if the power plant manager is replaced after acqui-
sition and zero otherwise. We include the same control variables but estimate the re-
gression at the monthly level. Figure 16 reports coefficient estimates. We see that the
probability of management change jumps with acquisition, with 15 percent of acquired
power plants changing their managers within one month and 30 percent changing their
managers within two months. The cumulative change is 55 percent within 12 months
after acquisition.31 These results suggest that acquired firms make operational changes
through new management, potentially affecting efficiency. The potential role of manage-
ment changes in explaining productivity differences is plausible, given the recent findings
of Bloom and Van Reenen (2010), who show that productivity measures correlate with var-
ious management practices.

Next, we turn to results from capital expenditures, which are reported in Table 4. Since
this variable is at the annual level, we estimate the difference-in-differences specification
with yearly data. The results suggest that acquirers do not increase their capital expen-

31Note that the unconditional probability of management change in a given year is only 10 percent.
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Table 4: Effects of Mergers on Non-fuel Costs

Non-fuel Cost Number of Employees Capital Expenditures
(i) (ii) (iii)

Post-Merger × Treat -0.068 -0.054 -0.020
(0.053) (0.031) (0.032)

# of Acq 655 584 678
# of Obs 29325 26866 29418
R2 0.62 0.92 0.86
Unit FE X X X
Year FE X X X
Note: This table presents the coefficient estimates from estimating the effects of mergers on non-fuel cost,
number of employees and capital expenditures with annual data. Standard errors are clustered at the plant
level.

ditures after acquisition. As additional analyses, we study the number of employees and
non-fuel costs to understand whether there are substitutions to other inputs. The results,
reported in Columns 2 and 3, do not suggest any evidence for substitution effects.

Finally, the timing of the efficiency effects also provides indirect evidence against the
capital expenditure hypothesis. Large capital expenditures often require significant down-
time in the power plant; therefore, efficiency gains through investment take a long time to
be realized. In contrast, we see efficiency begin to rise right after acquisition and reach a
new level in six months. Overall, the evidence in this section suggests that firms achieve
productive efficiency through operational improvements rather than costly capital expen-
ditures.

8 Robustness Checks
In this section, we investigate the robustness of our results to alternative specifications.

8.1 All Acquisitions
In our estimations, we only use the first acquisitions of generators if they are acquired
multiple times (about 25 percent of all plants). We did this because it was unclear how
to properly estimate the event study with generators acquired more than once. In this ro-
bustness check, we repeat our estimation procedure by including all acquisitions of gen-
erators if they are acquired more than once in our sample period. The results, reported in
Appendix E, are broadly similar to our main results.
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8.2 Estimation with Daily and Hourly Data
Our main specification estimates the effects of acquisitions with data at the weekly level.
Aggregation at the weekly level decreases computation time and reduces noise in the
hourly data. To understand how robust our results are to this choice, Appendix E shows
the estimation results from daily and hourly data. We see that the results are robust to
estimation frequency, with some increase in standard errors.

8.3 Staggered Difference-in-Differences
Recent literature in econometrics has shown that the difference-in-differences method
could yield a weighted average of all possible permutations of pairwise difference-in-
differences estimators, where a pair is either the never-treated control group compared
with the cohort treated at time t, or a cohort treated at time t compared with a cohort
treated later (Goodman-Bacon (2021), Callaway and SantAnna (2021), and De Chaise-
martin and dHaultfoeuille (2020)). To address this point, we estimate cohort-specific treat-
ment effects using the Callaway and SantAnna (2021) method and report dynamic treat-
ment effects.

8.4 Matching Difference-in-Differences
Our main specification uses standard difference-in-differences estimation estimated with
two-way fixed effects. In Appendix E, we also consider a matching estimator. The match-
ing estimator matches acquired generators to similar generator and calculate generator-
specific treatment effects by comparing them to match plants. To implement this esti-
mation, we identify the three nearest neighbors from our sample pool of 2,500 control
units. We match on capacity, age, and fuel type using a least-squares metric to calculate
the distances between generation units, with weights inversely proportional to standard
deviation for age and capacity. We use our distance measure to select the three nearest
neighbors for each acquired unit, allowing control units to be matched to multiple ac-
quired plants. We exclude the generators in the same market from the pool of potential
control plants due to potential spillover effects.

8.5 Weighted Difference-in-Differences
In our main specification, we estimate average treatment effects without considering the
different capacity sizes of acquired plants. An alternative estimation would be weighting
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observations by their production level or capacity, which would be a more accurate mea-
sure of total cost savings. We report estimates from this specification in Appendix E, and
the results are broadly similar.

9 Concluding Remarks
By allocating resources between firms, mergers and acquisitions affect a significant por-
tion of the economy. Despite this importance, there is limited systematic evidence of their
effects on productivity and market power. This study provides detailed empirical analy-
ses of the efficiency effects of mergers by examining a large sample of power plant mergers
and acquisitions between 2000 and 2020. Our empirical results can be summarized into
three principal findings. First, we find that acquired plants experience an average of four
percent efficiency increase five to eight months after acquisition, and most of this produc-
tivity increase is explained by improvements in productive efficiency. Second, our find-
ings suggest that acquisitions reallocate assets to more productive uses: we find that high-
productivity firms buy underperforming assets from low-productivity firms and make the
acquired asset almost as productive as their existing assets after acquisition. Finally, we
find that the new owners improve productivity by changing operational processes rather
than making costly capital investments.

The underlying source of our findings is using a large number of acquisitions in the
power generation industry and taking advantage of high-frequency physical productivity
measures obtained from physical input and output quantities. With physical measure and
studying a homogeneous product, we can disentangle the productivity effects from other
potential merger effects, such as market power, buyer power, and changes in quality. With
high-frequency data, we can treat mergers as discrete events and compare firm produc-
tivity immediately before and after the acquisition. Finally, by aggregating evidence from
a large number of mergers and acquisitions, we have statistical power to uncover many
interesting mechanisms that could generate efficiency gains.

Our findings have important policy implications, as they can be a direct input to evalu-
ating the trade-off between market power and efficiency due to mergers. Beyond antitrust,
our results have important implications for the role of mergers on aggregate productivity
growth. Our finding that mergers reallocate assets to more productive firms suggests that
mergers contribute to aggregate productivity growth.

We believe that the availability of this high-frequency and high-quality data on power
plant production can be useful for understanding other important issues for antitrust and
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productivity, such as quantifying total welfare effects by estimating price effects of mergers
together with efficiency and studying how strategic firm behavior changes after a merger.
These various issues various could be fruitful areas for future research.
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A Data Appendix

A.1 Unit Level Data
We use EIA Forms 860 and 923, EPA’s Continuous Emissions Monitoring Systems (CEMS),
S&P Global, and Velocity Suite to construct a dataset for unit characteristics. The EIA
forms and CEMS are public data sources, whereas S&P Global and Velocity Suite are data
providers for energy markets that require a subscription. The EIA Forms cover the uni-
verse of power plants in the US, whereas CEMS data include power plants with a capacity
above 25 MWh that are subject to environmental regulations. Private data providers S&P
Global and Velocity Suite compile unit- and plant-level data from various resources, in-
cluding EIA, EPA, and FERC. We merged these datasets based on unit and plant names
available in all datasets. The final dataset includes information on generation, regula-
tion status, technology type, install year, fuel type, coal type, boiler type, boiler model,
boiler manufacturer, capacity, fuel cost, prime mover category, and dispatch type. We
also know whether a unit is connected to the grid, is an internal generator, is marginal
or infra-marginal, and can switch fuel. We identify deregulation cases as changes in the
regulation status at the plant level in Form 860. This procedure results in a monthly panel
data (except for generation) on unit characteristics. We provide more details about some
of the variables below.

Generation Continuous Emission Monitoring Systems (CEMS) are required under some
of the EPA regulations for continual compliance determinations of environmental regu-
lation. For this purpose, EPA collects boiler-level hourly data on heat rates from fossil-
powered power plants and makes this data publicly available. The coverage corresponds
to roughly 95 percent of fossil-powered generation in the US. Even though the data is
available starting in 1995, the data quality is poor before 2000. For this reason, we restrict
the study period from 2000 to 2020. We remove power plants in Alaska and Hawaii and
winsorize the heat rate if they are larger than 16 and lower than 5, which affects less than 1
percent of observations. We also eliminate generators that are not active for more than 10
percent of their lifetime. With these restrictions, the final sample includes all the US fossil-
fuel generators under the CEMS program, except those in Alaska and Hawaii and those
that are active less than 10 percent of the time during their lifetime. This procedure results
in an hourly unit-level dataset on generation fuel input, and heat rate between 2000 and
2020. We aggregate this data to daily to weekly levels in some of the analyses employed
in the paper.
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We match unit-generation data from CEMS to unit-level data from other data sources
mentioned above. While most units are easily matched using the unit name, some do not
match as EPA uses boiler names as a unit, whereas EIA uses generator names. For those
cases, we rely on the EPA’s Power Sector Data Crosswalk available on EPA’s website.32.
This crosswalk does not include units that retire before 2020. For those retired and other
unmatched units, we manually match based on capacity, installment year, and retirement
year information.

Gross vs. Net Generation The generation and heat rate provided by EPA are based on
gross generation, including the ancillary services and other non-market products and con-
sumption at the unit, such as scrubbers. For our study, gross generation is the relevant
variable for understanding the overall efficiency of power plants since we study how fuel
is transformed into electricity, not revenue obtained from the generation.

Capacity EPA data does not provide capacity data. Therefore, we need to assign a ca-
pacity for those units that do not exactly match the EIA and CEMS data. We infer capacity
from their generation using the following algorithm for these units. We first keep units
that work more than two weeks’ worth of hours each year. Then, we obtain the hourly
generation distribution each year and use the 99th percentile of the generation as the ca-
pacity for the unit every year. This algorithm generates unit capacity that is stable over
time for most units. However, there is a significant yearly variation for some units with
no apparent capacity change at EIA plant-level data. In that case, we take the unit’s max-
imum capacity for consecutive years. To check the accuracy of this algorithm, we look at
how close the capacity provided in EIA is for the units that have a perfect match in the EPA
and the EIA. We find that capacity generated from the EPA data align with those provided
by EIA.

A.2 Plant Level Data
We use EIA Forms 860 and 923 and Velocity Suite to construct data for characteristics.
From these data sources, we obtain information on location, ISO, NERC region, regulation
status, capital expenditures, number of personnel, and non-fuel costs. Data on capital
expenditures, number of personnel, and non-fuel costs are obtained from Velocity Suite,
which is compiled from annual FERC Form 1. FERC Form No. 1 is a comprehensive
financial and operating report submitted for Electric Rate regulation and financial audits.

32https://www.epa.gov/airmarkets/power-sector-data-crosswalk.

49

https://www.epa.gov/airmarkets/power-sector-data-crosswalk.


It is mandatory for investor-owned utilities; therefore, the coverage for these variables is
lower than the coverage of other variables.

Regulation To identify ownership changes due to deregulation, we use Cicala (2022)’s
deregulation list from 2000-2012. After 2012, we rely on EIA 860’s regulation status for
plants. Using this dataset, we flag ownership changes that coincide with a change in the
regulation status, and we exclude those from the merger sample. This results in a total of
181 plants between 2000 and 2020 that we remove from the merger sample.

A.3 Load Data and Market
We collect data and hourly demand and market definition. Market definitions in electric-
ity markets are time-varying due to nodal pricing and congestion. These definitions are
especially relevant for market power considerations (Mercadal (2022)). However, this pa-
per only uses ISO market definitions and relies on Velocity data for plants’ corresponding
ISOs.

Hourly data on electricity usage (load) is obtained from S&P Global either at the Bal-
ancing Authority Areas (BAA) or ISO Zone level, depending on data availability. We also
use FERC Form 714 to obtain data on the fuel composition of total generation. FERC Form
714 treats Power Control Areas (PCA)s as markets, and the PCA market definition overlaps
with our ISO market definitions for the deregulated plants and gives further granularity to
regulated plants. Before 2006, data from FERC 714 was not complete, so we assemble data
on load after 2006. We rely on EIA’s market definitions to match load data with plants,
resulting in data on load for roughly 70 percent of the plants.

A.4 Personnel Data
Each power plant subject to at least one of the EPA programs must submit a representa-
tive to EPA. This representative information is essential for EPA, as a potential problem
like leakage needs to be addressed quickly, and responsible parties should be account-
able. This data is self-reported and includes the representative’s name, start and end date,
and contact information. We use data on plant representatives from EPA between 2000
and 2020 to construct personnel data. Even though this data is complete between these
years, it does not include some key information, such as job titles. To obtain this infor-
mation, we matched representative names to their Linkedin profiles and found about 70
percent of representatives on Linkedin. The match rate improves over time, reaching 80-90
percent in later years. We obtain a history of job titles, employment, and education from

50



Linkedin profiles. The job title suggests that about 70-80 percent of representatives are
plant managers and the rest are engineers or regulatory compliance managers. Given that
most of these representatives are plant managers, we treat this personnel information as
plant managers in this study.

This procedure results in a monthly plant-level panel data on plant managers. In this
data, we know the manager’s exact start and end date of tenure, and we have information
on the manager’s employment and education history.

A.5 Ownership Data
Every acquisition that involves a power plant, however small it is, should be notified to
the corresponding state or federal agency for approval. For this reason, very rich data
is available on the universe of power plant mergers and acquisitions. To construct this
dataset, we use two separate data from S&P Global: ownership and transaction datasets.

The first dataset includes all shareholders (name and company ID) of a generator, how
much share is owned by each shareholder, and the exact date of the change in the power
plant ownership. For a given generator, this dataset is updated when there is a change in
the owners of the generator. In particular, for any given ownership change, we observe
the names of the owner before the change and after the change along with the owner-
ship changes. We turned this data into a month-generator panel dataset and included the
largest three shareholders into this panel. For each generator, we started this panel from
the installment date of the generator and remove the ownership information before the
installment data and after the retirement date. Another advantage of this dataset is that
it provides the subsidiary that owns a power plant and the parent company that owns
the subsidiary. Therefore, we can see the corporate structure of the owner of this power
plant. S&P Global backfills any company name change, so firm name changes do not
affect the ownership structure significantly over time. Our final ownership results in a
month-generator panel with the following information: the largest three shareholders of
the generator, the parent company of each shareholder, and the percentage of the power
plant owned by each shareholder.

The second dataset is mergers and acquisition data. This dataset provides detailed
information for every transaction, such as buyer, sellers, transaction type (divestitures,
cash deal, LBO), and deal value. This dataset includes a transaction ID and transaction
description. Around 80-85 percent of transactions include transaction descriptions where
one can see acquired assets, acquisition motives, and other important information. The
rest of the transactions do not have a description. For these transactions, we manually
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search for companies involved in the transaction and manually classify whether these are
true ownership changes or corporate restructuring. Most of these transactions without a
description turned out to be false acquisitions.

Next, we merged the two datasets using transaction ID and company names. This gives
us a complete picture of ownership changes, including new owners and previous owners,
and very rich data on merger characteristics. After merging these datasets, we removed
the ownership changes we identified as false ownership changes from the transaction data.
This gave us the final sample of data on ownership changes.

A.6 Firm Data
Even though the transaction data provides useful information about buyers and sellers, we
used CapitalIQ to obtain more information about companies involved in transactions. For
this purpose, we merged company balance sheet data from CapitalIQ with the ownership
data from S&P Global. This data merge is straightforward for about 80 percent of the
companies because, for those, S&P Global and CapitalIQ use the same company ID. For
the rest, we manually searched for company names in CapitalIQ and matched those to the
ownership data. Except for a few companies that went bankrupt or were company funds,
we could match all company names. This firm data provides information such as industry,
year founded, asset size, and various balance sheet information.

A.7 Sample Restrictions
Before employing the empirical analysis, we made some other sample restrictions. This
section describes those restrictions. We first take month-unit level ownership data for
fossil fuel generators from S&P Global between 2000 and 2020, which rely on EIA data for
unit definitions. We drop a few power plants with missing ownership data for the entire
study period.

Then we match S&P Global ownership data with EPA CEMS data. We use our cross-
walk on top of EPA’s crosswalk between CEMS and EIA for the mismatch cases. For plants
whose unit owners are the same, mismatch cases do not present any problem, as we can
directly impose ownership on all the units on CEMS data. Sometimes, our crosswalk leads
to possible one-to-one ownership matches for the plants with different unit owners, even
when there are multiple owners. For other cases, we merge ownerships at the CEMS unit
level by using capacity-weighted average ownership shares.

After the match, we remove units in S&P Global that are missing in CEMS data. Some
units in CEMS data produce only steam. Moreover, some units do not have any production
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data in our observation period. We remove these units from our sample in both cases.
Heat rate observation is calculated by dividing the total heat input by the total electric-

ity output for an hour. Therefore if there are significant changes in the production within
the hour, the heat rate could be very high or very low. This sometimes generates noise in
hourly heat rates, especially at small production levels. Therefore, we winsorize heat rates
above 16 or below 6 MMBtu per MWh. This winsorization affects less than 1 percent of
all observations.

53



B Estimation Details

B.1 Estimation of Residual Productivity

B.2 Heterogeneity Analysis
This section provides the estimation details for the heterogeneity analysis that are pre-
sented in Section 5.3.

To increase the power in detecting heterogeneity, we consider a standard event study
setting where we include a post-treatment dummy variable and interact with the variable
for which we want to understand heterogeneity. In particular, we estimate the following
specification:

log(yit) = θ1Dit + θ2TreatitDit × Zit +Xit + µt + αi + ηit,

where yit is the efficiency of generator i at week t (measured as inverse heat rate given in
Equation (2.1), the controls, Xit, include state-month fixed effects, time-varying generator
characteristics such as age and fuel type (for coal), capacity, indicators for whether the unit
is connected to the grid and whether it is an internal generator. αi is generator fixed effect
and µt is week fixed effect. Zit is a plant, firm, or transaction characteristic we would like
to test heterogeneity. The results report the estimates of θ3.

B.2.1 Plant Characteristics

• Gas Plant: An indicator variable that equals one if the acquired unit is powered by
natural gas and zero otherwise. Since most of the acquired natural gas power plants,
this variable equals 1 for 90 percent of transactions.

• Plant Age>Median An indicator variable that equals one if the age of the acquired
unit is larger than the median. We consider all the units in our main specification to
calculate the median age and find the median value.

• Unregulated Plant: An indicator variable that is one if the plant is unregulated and
zero otherwise.

• Unit Capacity > Median: An indicator variable that equals one if the age of the ac-
quired unit is larger than the median. To calculate the median capacity, we consider
all the units in our main specification and find the median capacity.

54



• infra-marginal Plant: An indicator variable that equals one if the acquired plant is
infra-marginal and zero otherwise. This categorization is provided by Velocity Suite,
which classifies plants as base load or peaker units.

B.2.2 Firm Characteristics

• Target Exits: An indicator variable that equals one if the target firm owns no fossil
fuel power plants post-transaction and zero otherwise.

• Acquirer Enters An indicator variable that equals one if the acquirer firm owns no
fossil fuel power plants pre-transaction and zero otherwise.

• Financial Aquirer: An indicator variable that equals one if the acquirer is a financial
firm and zero otherwise. The firm classification is obtained from CapitalIQ Pro.

• Acquirer Size > Median: An indicator variable that equals one if the total capacity
of the acquirer pre-transaction is larger than the median capacity of firms that have
been involved in a transaction between 2000-2020.

• Serial Acquirer: An indicator variable that equals one if the total capacity acquired
by the acquirer between 2000-2020 is larger than the median of the total capacity
acquired by firms between 2000-2020.

B.2.3 Deal Characteristics

• Deal Value > Median: An indicator variable that equals one if the total transaction
value (including assets other than power plants) and zero otherwise.

• Year>2010 An indicator variable that equals one if the acquisition occurs later after
2010 and zero otherwise.

• Acquirer’s Capacity in the Market>Median: An indicator variable that equals one
if the acquirer’s capacity in the ISO where the plant is located is greater than the
median capacity.

• Acquired Capacity>Median: An indicator variable that equals one if the total fossil
fuel plant acquired capacity in the transaction is larger than the median.

• Bankrupt Sale: An indicator variable that equals one if the transaction is a bankrupt
sale and zero otherwise.
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C Robustness Checks
In this section, we provide the details of the robustness checks we employ in this paper.

C.1 Acquisition Sample
Since our sample covers 20 years, many units are acquired more than once. Out of the
total 2500 units that have been acquired, 1200 of them were acquired more than once. In
our main specification, we considered only the first acquisitions because, with multiple
acquisitions, the post period of the first acquisition overlaps with the other acquisitions.
So to simplify the differences and differences analysis, we consider the first acquisitions
and drop the observations of the firm’s multiple acquisitions 16 months after the acquisi-
tion. This section analyzes how robust our results are in considering different acquisition
samples. In particular, we will consider all acquisitions, units acquired only once, and
acquisitions after the first.

The specification with all acquisitions includes all acquisitions except for those that
are within 32 months of each other. We drop these because the post and pre-acquisitions
periods overlap. Then we will estimate the same equation but include all acquisitions. In
this specification, 16 months following the acquisition, we will have the post-treatment
indicators for each month; 16 months before the acquisition, we include pre-treatment in-
dicator variables for each month. We will include a single dummy variable for the periods
after 16 months after the last acquisition and single dummy variable 16 months before the
last acquisition. We assume control and treated groups follow the same trend for other
periods. The results from this estimation are reported in Appendix Figure 30 and Table
14.

In another specification, we include units that are acquired only once. This specifica-
tion reduces the number of acquired units significantly because 75 percent of acquisition
events come from units that are acquired multiple times. Nevertheless, we want to see
whether the results are robust. The results from this estimation are reported in Table 12.

C.2 Data Frequency
In our main specification, we considered estimation at the weekly frequency where the
efficiency is defined as total electricity output divided by total heat input. The weekly
frequency reduces the computational burden and reduces noise in the hourly data. We
repeat our estimation with daily and hourly data to understand whether our results are
robust to estimation frequency.
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Estimation with daily data follows the same steps as the estimation in weekly data. We
aggregate input and output to a daily level, define efficiency at the daily level, and include
monthly indicator variables for treated units before and after acquisition. We estimate
the same specification as in Equation, with an additional control variable: the day of the
week. Since the day of the week is a strong driver of demand, estimation with daily data
better controls for demand fluctuations. The results from this estimation are reported in
Appendix Table 10 and Figure 27. The effect of mergers on efficiency is similar to what we
found with the weekly data.

In estimation with hourly data, we use the raw data obtained from CEMS. We have
electricity input and fuel input every hour. We consider the same specification as weekly
and daily data, but we also add fixed effects hour of the day. Since the hour of the week
is a strong predictor of demand, the hourly specification controls for demand much more
precisely than daily and hourly data. The results from this estimation are reported in
Appendix Table 11 and Figure 28. The effect of mergers on efficiency is similar to the
results with weekly data, but estimates are less precise since hourly data is noisier.

Overall, these robustness checks suggest that our results are robust to aggregation of
input and output at the daily and weekly levels.

C.3 Observation Weights
In our regressions, we weighted units equally. A natural alternative to this is to weigh
them by size, which would be robust to the case where all efficiency gains come from
small units. Moreover, it would be more informative about how much total production
is affected by efficiency gains. To investigate this, we estimate Equations (5.1) and (5.2)
by weighting units by their capacity. The results from this estimation are reported in Ap-
pendix Table 13 and Figure 31. We find that the efficiency effect is slightly larger when
we weigh units by capacity, which is consistent with the finding reported in Figure 8 that
the efficiency effect is larger for larger units. This finding also suggests that acquisitions
of small units do not drive our main results.

C.4 Matching Estimators
Our main specification uses standard difference-in-differences estimation estimated with
two-way fixed effects. In this section, we also consider a difference-in-differences matching
estimator as a robustness check.

We match each of our 2365 acquired units to the three nearest neighbors from the pool
of 2500 units that have never been acquired during our sample period. For each treated
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unit, we first find the unit that is active during the time of the acquisitions with the same
fuel type and in a different ISO (to prevent spillovers). This constitutes the pool of candi-
date control units for that unit. Then, we find the nearest neighbor units on capacity and
age using a least-squares metric to calculate the distances between generation units. The
weights in the metric are inversely proportional to the standard deviation of the corre-
sponding variable. We allow for control units to be matched to multiple acquired plants.
Using these nearest neighbors, we calculate the unit-specific treatment effect as follows:

∆̂Yit = Yit(1)− Ŷit(1) (C.1)

where Ŷit(1) is the average heat rate of the control units that are matched to i and scaled
such that the average outcome of the control at the time of acquisition is the same as the
outcome of the treated unit. By indexing the levels to a baseline period, we obtain a unit-
specific âĂĲdifference-in-differencesâĂİ estimate for any outcome of interest. We take the
average of the unit-specific treatment effects to obtain the final estimates.

To construct the confidence intervals, we employ a bootstrap procedure, where we
resample without replacement both the never treated plants and treated plants and follow
the same matching procedure. We repeat this procedure 100 times and take the 2.5 and
97.5 percentile of the bootstrap distribution to construct the confidence intervals.

The results from this estimation are reported in Appendix Figure 29.
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D Additional Tables and Figures

Table 5: Largest 25 Acqusitions

Acquirer Target Year Capacity # of units
NRG Energy, Inc. GenOn Energy, Inc. 2012 26174 139
Investor group Calpine Corporation 2018 22991 127
RRI Energy, Inc. Mirant Corporation 2000 22748 140
Duke Energy Corporation Progress Energy, Inc. 2012 19048 134
GC Power Acquisition LLC CenterPoint Energy, Inc. 2004 13204 43
NRG Energy, Inc. Texas Genco Inc. 2006 13017 42
Westar Energy, Inc. Great Plains Energy 2018 12237 66
Investor group TXU Corp. 2007 11116 45
Exelon Corporation Constellation Energy Group, Inc. 2012 10790 66
PPL Corporation E.ON AG 2010 10035 44
NRG Energy, Inc. Edison Mission Energy 2014 9052 30
FirstEnergy Corp. Allegheny Energy, Inc. 2011 8631 36
Investor group Engie SA 2017 8604 39
Reliant Resources, Inc. Orion Power Holdings, Inc. 2002 8247 85
Carolina Power & Light Company Florida Progress Corporation 2000 7721 63
Powergen PLC LG&E Energy Corp. 2000 7445 31
ArcLight Capital Partners, LLC Tenaska Energy Inc. 2015 7398 79
Dynegy Inc. Energy Capital Partners LLC 2015 7334 28
MidAmerican Energy Holdings NV Energy, Inc. 2013 7149 52
Astoria Generating Co. EBG Holdings LLC 2007 7143 66
Riverstone Holdings LLC Talen Energy Corporation 2016 6941 12
Dynegy Inc. LS Power Group 2007 5909 26
Reliant Energy Power Generation Inc. Sithe Energies Inc. 2000 5852 61
KGen Partners LLC Duke Energy Corporation 2004 5253 44
Emera Incorporated TECO Energy, Inc. 2016 5131 23

Note: Largest 25 acquisitions in the fossil fuel power generation industry between 2000–2020. The columns
indicate the year the transaction occurs, total production capacity that changed ownership and the total
number of units that changed ownership.

59



Table 6: Regression Results

Owner’s
Existing Assets

in the Same Market

Owner’s
Existing Assets

in Different Market

Standard Deviation of
Heat Rate

(i) (ii) (iii)
Late-Pre 0.004 0 0.08

(0.006) (0.003) (0.061)
Early-Post -0.004 -0.002 -0.113

(0.005) (0.003) (0.057)
Late-Post 0.015 0.001 -0.161

(0.006) (0.004) (0.105)
R2 0.628 0.625 0.514
# of Obs 1.4M 1.68M 1.22M
# of Acq 897 897 583
Unit FE X X X
State by Month FE X X X
Week FE X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.
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Table 7: Plant Characteristics Heterogeneity Coefficients

Gas
Plant

Plant Capacity
> Median

Unregulated
Plant

Plant Age
> Median

infra-marginal
Plant

Post x Treat 0.007 -0.017 -0.023 0.015 -0.01
(0.022) (0.007) (0.016) (0.009) (0.007)

Post x Treat x Z 0.026 0.079 0.064 0.034 0.085
(0.022) (0.012) (0.018) (0.015) (0.013)

# of Acquired Units 897 897 897 897 897
# of Units with (Z = 1) 809 448 777 416 297
# of Obs 1.19 1.19 1.19 1.19 1.19
Adj. R2 0.638 0.638 0.638 0.638 0.638
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: Estimates of θ2 from Equation (5.3) for plant characteristics. Standard errors are clustered at the plant
level.

Table 8: Firm Characteristics Heterogeneity Coefficients

Financial
Acquirer

Serial
Acquirer

Target
Exits

Acquirer
Enters

Acquirer Size
> Median

Post x Treat 0.029 0.011 0.039 0.037 0.016
(0.009) (0.008) (0.01) (0.009) (0.007)

Post x Treat x Z 0.014 0.053 -0.017 -0.019 0.028
(0.015) (0.015) (0.014) (0.013) (0.013)

# of Acquired Units 897 897 897 897 897
# of Units with (Z = 1) 199 430 393 236 421
# of Obs 1.19 1.19 1.19 1.19 1.19
Adj. R2 0.638 0.638 0.638 0.638 0.638
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: Estimates of θ2 from Equation (5.3) for firm characteristics. Standard errors are clustered at the plant
level.
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Table 9: Transaction Characteristics Heterogeneity Coefficients

Acquired
Capacity
> Median

Acquirer’s Capacity
in the Market
> Median

Bankrupt
Sale

Year
> 2010

Trans. Value
> Median

Post x Treat 0.009 -0.001 0.011 0.016 0.023
(0.008) (0.008) (0.007) (0.009) (0.007)

Post x Treat x Z 0.056 0.058 0.191 0.026 0.034
(0.015) (0.013) (0.02) (0.014) (0.021)

# of Acquired Units 897 897 897 897 897
# of Units with (Z = 1) 448 407 60 374 193
# of Obs 1.19 1.19 1.19 1.19 1.19
Adj. R2 0.638 0.638 0.639 0.638 0.638
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: Estimates of θ2 from Equation (5.3) for transactions characteristics. Standard errors are clustered at the
plant level.
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Figure 17: Firms with Largest Capacity Increase: 2010-2020
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Note: This figure shows firms with the largest capacity increase in fossil fuel
plants in the US between 2000 and 2020

Figure 18: Firms with Largest Capacity Decrease: 2010-2020
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Figure 19: Effects Of Manager Change without Mergers on Ef-
ficiency
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Figure 20: Case Studies of Heat Rate Improvement

(a) a (b) a

Note: These pictures demonstrate some methods that were implemented in power
plants to improve heat rate.
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Figure 21: Confidence Band for Cost Curve Differences
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Note: This figure shows average year-to-year within-plant productivity growth for the
plants that were not involved in an acquisition.

Figure 22: Average Within-Plant Annual Productivity Change
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Note: This figure shows average year-to-year within-plant productivity growth for the
plants that were not involved in an acquisition.
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Figure 23: Change of Percentage of Fossil Fuel Generation Capacity
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Note: Geographical distribution of power plant acquisitions by capacity. The diamond indicates
the regulated states.

Figure 24: Acquiring Firms often make claims about Heat Rate
improvement

Note: This figure is from the conference call of acquisition of Dynergy by
Vista Energy (2018, $1.74 billion deal)
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Figure 25: Ownership Change Types
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Note: These pictures demonstrate some methods that were implemented in power
plants to improve heat rate.
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Figure 26: Change in Market Concentration
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Note: This figures show change of the HHI in the overall US fossil fuel power plants
market between 2000 and 2020
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E Robustness Checks Results

Table 10: Impact of Merger on Productivity (Daily Data)

All
M&A

Owner/Parent
Company
Changes

Only Parent
Company
Changes

Minority
Owner Changes

(Placebo)

Name
Changes
(Placebo)

Late pre- 0.001 -0.003 -0.004 -0.005 -0.006
acquisition (0.005) (0.007) (0.006) (0.007) (0.009)
Early post- 0 0.005 -0.003 -0.01 -0.003
acquisition (0.005) (0.007) (0.006) (0.007) (0.006)
Late post- 0.012 0.034 -0.004 -0.007 0.006
acquisition (0.006) (0.012) (0.006) (0.01) (0.01)
Adj. R2 0.645 0.652 0.642 0.663 0.655
# of Obs. 8.3M 6.26M 6.48M 5.12M 5.77M
# of Acq. 1760 897 921 405 456

Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.
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Table 11: Impact of Merger on Productivity (Hourly Data)

All
M&A

Owner/Parent
Company
Changes

Only Parent
Company
Changes

Minority
Owner Changes

(Placebo)

Name
Changes
(Placebo)

Late pre- 0.001 0 -0.008 -0.01 -0.003
acquisition (0.005) (0.008) (0.006) (0.011) (0.011)
Early post- -0.004 0.005 -0.008 -0.023 -0.001
acquisition (0.006) (0.008) (0.008) (0.011) (0.008)
Late post- 0.02 0.042 0.001 -0.021 0.005
acquisition (0.008) (0.017) (0.007) (0.013) (0.012)
Adj. R2 0.353 0.365 0.348 0.358 0.373
# of Obs. 146.06M 111.61M 122.03M 99.15M 109M
# of Acq. 1760 897 921 405 456

Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.

Table 12: Impact of Merger on Productivity (Single Acquisition Units)

All
M&A

Owner/Parent
Company
Changes

Only Parent
Company
Changes

Minority
Owner Changes

(Placebo)

Name
Changes
(Placebo)

Late pre- 0.001 0.003 -0.005 0.006 -0.028
acquisition (0.007) (0.012) (0.009) (0.018) (0.014)
Early post- -0.001 -0.007 0.002 0.012 -0.013
acquisition (0.006) (0.009) (0.008) (0.016) (0.012)
Late post- -0.002 0.025 -0.017 0.001 0.002
acquisition (0.008) (0.016) (0.01) (0.019) (0.022)
Adj. R2 0.632 0.646 0.631 0.646 0.65
# of Obs. 1.21M 1.03M 1.13M 1.02M 1.03M
# of Acq. 489 133 311 139 112

Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.
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Table 13: Impact of Merger on Productivity Weighted Regressions

All
M&A

Owner/Parent
Company
Changes

Only Parent
Company
Changes

Minority
Owner Changes

(Placebo)

Name
Changes
(Placebo)

Late pre- 0.001 0.002 -0.009 -0.007 -0.012
acquisition (0.005) (0.008) (0.007) (0.008) (0.009)
Early post- 0.002 0.01 -0.006 -0.015 -0.003
acquisition (0.005) (0.009) (0.006) (0.009) (0.007)
Late post- 0.014 0.045 -0.01 0.001 0.012
acquisition (0.007) (0.013) (0.008) (0.01) (0.01)
Adj. R2 0.599 0.62 0.599 0.631 0.613
# of Obs. 1.79 1.38 1.4 1.12 1.22
# of Acq. 1760 897 921 405 456
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.

Table 14: Impact of Merger on Productivity All Acquisitions

All
M&A

Owner/Parent
Company
Changes

Only Parent
Company
Changes

Minority
Owner Changes

(Placebo)

Name
Changes
(Placebo)

Late pre- 0.002 0.003 -0.003 -0.005 -0.011
acquisition (0.004) (0.007) (0.006) (0.008) (0.008)
Early post- 0.002 0.007 0.002 -0.009 0
acquisition (0.004) (0.007) (0.006) (0.007) (0.005)
Late post- 0.016 0.036 0.003 0.001 0.011
acquisition (0.01) (0.009) (0.01) (0.008)
Adj. R2 0.622 0.635 0.622 0.652 0.635
# of Obs. 1.79 1.38 1.4 1.12 1.22
# of Acq. 2913 1202 1198 430 677
Unit FE X X X X X
State by Month FE X X X X X
Week FE X X X X X
Note: This table presents the coefficient estimates from estimating Equation (5.1). Standard errors are clus-
tered at the plant level.
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Figure 27: Impact of Merger on Productivity (Daily Data)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.

Figure 28: Impact of Merger on Productivity (Hourly Data)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.
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Figure 29: Impact of Merger on Productivity (Matching Esti-
mators)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.

Figure 30: Impact of Merger on Productivity (All Acquisitions)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.
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Figure 31: Impact of Merger on Productivity (Weighted By Ca-
pacity)
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Note: The dynamic effects of acquisitions estimated from Equation (5.2).
Standard errors are clustered at the plant level.
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