
OVRSEEN: Auditing Network Traffc and Privacy Policies in Oculus VR

Rahmadi Trimananda,1 Hieu Le,1 Hao Cui,1 Janice Tran Ho,1 Anastasia Shuba,2 and Athina Markopoulou1

1University of California, Irvine
2Independent Researcher

ar
X

iv
:2

10
6.

05
40

7v
4

[c
s.

C
R

]
19

 N
ov

 2
02

1 Abstract
Virtual reality (VR) is an emerging technology that enables

new applications but also introduces privacy risks. In this
paper, we focus on Oculus VR (OVR), the leading platform in
the VR space and we provide the frst comprehensive analysis
of personal data exposed by OVR apps and the platform itself,
from a combined networking and privacy policy perspective.
We experimented with the Quest 2 headset and tested the
most popular VR apps available on the offcial Oculus and the
SideQuest app stores. We developed OVRSEEN, a method-
ology and system for collecting, analyzing, and comparing
network traffc and privacy policies on OVR. On the network-
ing side, we captured and decrypted network traffc of VR
apps, which was previously not possible on OVR, and we
extracted data fows, defned as happ, data type, destinationi.
Compared to the mobile and other app ecosystems, we found
OVR to be more centralized and driven by tracking and an-
alytics, rather than by third-party advertising. We show that
the data types exposed by VR apps include personally identi-
fable information (PII), device information that can be used
for fngerprinting, and VR-specifc data types. By comparing
the data fows found in the network traffc with statements
made in the apps’ privacy policies, we found that approxi-
mately 70% of OVR data fows were not properly disclosed.
Furthermore, we extracted additional context from the privacy
policies, and we observed that 69% of the data fows were
used for purposes unrelated to the core functionality of apps.

1 Introduction

Virtual reality (VR) technology has created an emerging mar-
ket: VR hardware and software revenues are projected to in-
crease from $800 million in 2018 to $5.5 billion in 2023 [53].
Among VR platforms, Oculus VR (OVR) is a pioneering, and
arguably the most popular one: within six months since Oc-
tober 2020, an estimated fve million Quest 2 headsets were
sold [16, 22]. VR technology enables a number of applica-
tions, including recreational games, physical training, health
therapy, and many others [52].

VR also introduces privacy risks: some are similar to those
on other Internet-based platforms (e.g., mobile phones [12,13],
IoT devices [3, 17], and Smart TVs [37, 67]), but others are
unique to VR. For example, VR headsets and hand controllers

are equipped with sensors that may collect data about the
user’s physical movement, body characteristics and activity,
voice activity, hand tracking, eye tracking, facial expressions,
and play area [27, 36], which may in turn reveal information
about our physique, emotions, and home. The privacy aspects
of VR platforms are currently not well understood [2].

To the best of our knowledge, our work is the frst large
scale, comprehensive measurement and characterization of
privacy aspects of OVR apps and platform, from a combined
network and privacy policy point of view. We set out to char-
acterize how sensitive information is collected and shared
in the VR ecosystem, in theory (as described in the privacy
policies) and in practice (as exhibited in the network traffc
generated by VR apps). We center our analysis around the
concept of data fow, which we defne as the tuple happ, data
type, destinationi extracted from the network traffc. First,
we are interested in the sender of information, namely the
VR app. Second, we are interested in the exposed data types,
including personally identifable information (PII), device in-
formation that can be used for fngerprinting, and VR sensor
data. Third, we are interested in the recipient of the infor-
mation, namely the destination domain, which we further
categorize into entity or organization, frst vs. third party w.r.t.
the sending app, and ads and tracking services (ATS). Inspired
by the framework of contextual integrity [40], we also seek
to characterize whether the data fows are appropriate or not
within their context. More specifcally, our notion of context
includes: consistency, i.e., whether actual data fows extracted
from network traffc agree with the corresponding statements
made in the privacy policy; purpose, extracted from privacy
policies and confrmed by destination domains (e.g., whether
they are ATS); and other information (e.g., “notice and con-
sent”). Our methodology and system, OVRSEEN, is depicted
on Fig. 1. Next we summarize our methodology and fndings.

Network traffc: methodology and fndings. We were
able to explore 140 popular, paid and free, OVR apps; and
then capture, decrypt, and analyze the network traffc they
generate in order to assess their practices with respect to col-
lection and sharing of personal data on the OVR platform.

OVRSEEN collects network traffc without rooting the
Quest 2, by building on the open-source AntMonitor [54],
which we had to modify to work on the Android 10-based Ocu-

1

Network Traffic Analysis

Privacy Policy Analysis

App Stores

Raw Data

PCAPNG

JSON

Network Traffic Collection

Oculus Quest 2

App
Frida
Agent

AntMonitor

PC

Unity & Unreal
Libraries

Frida Client

Oculus/Facebook,
Unity, Unreal,
Third Parties

Privacy Policies

Data Flows
In Context

App

Data Type

Destination

Privacy Policy Analyzer

Entity Ontology

Data Ontology Collection
Statements

App

Data Type

Entity Polisis

Improved
PoliCheck

Translation

Context

Consistency

Purpose

Other

Data Flows

App

Data Type

Destination

Network
Traffic

Analysis

Data Types
Exposures

ATS
Ecosystem

2 31

4

5

6

7

Figure 1: Overview of OVRSEEN. We select the most popular apps from the offcial Oculus and SideQuest app stores. First, we
experiment with them and analyze their network traffc: (1) we obtain raw data in PCAPNG and JSON; (2) we extract data
fows happ, data type, destinationi; and (3) we analyze them w.r.t. data types and ATS ecosystem. Second, we analyze the same
apps’ (and their used libraries’) privacy policies: (4) we build VR-specifc data and entity ontologies, informed both by network
traffc and privacy policy text; and (5) we extract collection statements happ, data type, entityi from the privacy policy. Third,
we compare the two: (6) using our improved PoliCheck, we map each data fow to a collection statement, and we perform
network-to-policy consistency analysis. Finally, (7) we translate the sentence containing the collection statement into a text
segment that Polisis can use to extract the data collection purpose. The end result is that data fows, extracted from network
traffc, are augmented with additional context, such as consistency with policy and purpose of collection.

lus OS. Furthermore, we successfully addressed new technical
challenges for decrypting network traffc on OVR. OVRSEEN
combines dynamic analysis (using Frida [45]) with binary
analysis to fnd and bypass certifcate validation functions,
even when the app contains a stripped binary [66]. This was a
challenge specifc to OVR: prior work on decrypting network
traffc on Android [37,55] hooked into standard Android SDK
functions and not the ones packaged with Unity and Unreal,
which are the basis for game apps.

We extracted and analyzed data fows found in the col-
lected network traffc from the 140 OVR apps, and we made
the following observations. We studied a broad range of 21
data types that are exposed and found that 33 and 70 apps
send PII data types (e.g., Device ID, User ID, and Android
ID) to frst-and third-party destinations, respectively (see Ta-
ble 3). Notably, 58 apps expose VR sensory data (e.g., physi-
cal movement, play area) to third-parties. We used state-of-
the-art blocklists to identify ATS and discovered that, unlike
other popular platforms (e.g., Android and Smart TVs), OVR
exposes data primarily to tracking and analytics services, and
has a less diverse tracking ecosystem. Notably, the blocklists
identifed only 36% of these exposures. On the other hand,
we found no data exposure to advertising services as ads on
OVR is still in an experimental phase [44].

Privacy policy: methodology and fndings. We provide
an NLP-based methodology for analyzing the privacy policies

that accompany VR apps. More specifcally, OVRSEEN maps
each data fow (found in the network traffc) to its correspond-
ing data collection statement (found in the text of the privacy
policy), and checks the consistency of the two. Furthermore,
it extracts the purpose of data fows from the privacy pol-
icy, as well as from the ATS analysis of destination domains.
Consistency, purpose, and additional information provide con-
text, in which we can holistically assess the appropriateness
of a data fow [40]. Our methodology builds on, combines,
and improves state-of-the-art tools originally developed for
mobile apps: PolicyLint [4], PoliCheck [5], and Polisis [21].
We curated VR-specifc ontologies for data types and entities,
guided by both the network traffc and privacy policies. We
also interfaced between different NLP models of PoliCheck
and Polisis to extract the purpose behind each data fow.

Our network-to-policy consistency analysis revealed that
about 70% of data fows from VR apps were not disclosed
or consistent with their privacy policies: only 30% were con-
sistent. Furthermore, 38 apps did not have privacy policies,
including apps from the offcial Oculus app store. Some app
developers also had the tendency to neglect declaring data
collected by the platform and third parties. We found that by
automatically including these other parties’ privacy policies
in OVRSEEN’s network-to-policy consistency analysis, 74%
of data fows became consistent. We also found that 69%
of data fows have purposes unrelated to the core function-

2

2

ality (e.g., advertising, marketing campaigns, analytics), and
only a handful of apps are explicit about notice and consent.
OVRSEEN’s implementation and datasets are made available
at [62].

Overview. The rest of this paper is structured as follows.
Section 2 provides background on the OVR platform and its
data collection practices that motivate our work. Section 3
provides the methodology and results for OVRSEEN’s net-
work traffc analysis. Section 4 provides the methodology and
results for OVRSEEN’s policy analysis, network-to-policy
consistency analysis, and purpose extraction. Section 5 dis-
cusses the fndings and provides recommendations. Section 6
discusses related work. Section 7 concludes the paper.

Oculus VR Platform and Apps

In this paper, we focus on the Oculus VR (OVR), a represen-
tative of state-of-the art VR platform. A pioneer and leader
in the VR space, OVR was bought by Facebook in 2014 [16]
(we refer to both as “platform-party”), and it maintains to
be the most popular VR platform today. Facebook has inte-
grated more social features and analytics to OVR and now
even requires users to sign in using a Facebook account [41].

We used the latest Oculus device, Quest 2, for testing. Quest
2 is completely wireless: it can operate standalone and run
apps, without being connected to other devices. In contrast,
e.g., Sony Playstation VR needs to be connected to a Playsta-
tion 4 as its game controller. Quest 2 runs Oculus OS, a variant
of Android 10 that has been modifed and optimized to run
VR environments and apps. The device comes with a few
pre-installed apps, such as the Oculus browser. VR apps are
usually developed using two popular game engines called
Unity [65] and Unreal [15]. Unlike traditional Android apps
that run on Android JVM, these 3D app development frame-
works compile VR apps into optimized (i.e., stripped) binaries
to run on Quest 2 [66].

Oculus has an offcial app store and a number of third-
party app stores. The Oculus app store offers a wide range
of apps (many of them are paid), which are carefully curated
and tested (e.g., for VR motion sickness). In addition to the
Oculus app store, we focus on SideQuest—the most popular
third-party app store endorsed by Facebook [34]. In contrast
to apps from the offcial store, apps available on SideQuest
are typically at their early development stage and thus are
mostly free. Many of them transition from SideQuest to the
Oculus app store once they mature and become paid apps. As
of March 2021, the offcial Oculus app store has 267 apps
(79 free and 183 paid), and the SideQuest app store has 1,075
apps (859 free and 218 paid).

Motivation: privacy risks in OVR. VR introduces pri-
vacy risks, some of which are similar to other Internet-based
platforms (e.g., Android [12, 13], IoT devices [3, 17], Smart

TVs [37, 67]), etc.), while others are unique to the VR plat-
form. For example, VR headsets and hand controllers are
equipped with sensors that collect data about the user’s physi-
cal movement, body characteristics, voice activity, hand track-
ing, eye tracking, facial expressions, and play area [27,36,38],
which may in turn reveal sensitive information about our
physique, emotions, and home. Quest 2 can also act as a ft-
ness tracker, thanks to the built-in Oculus Move app that
tracks time spent for actively moving and amount of calories
burned across all apps [43]. Furthermore, Oculus has been
continuously updating their privacy policy with a trend of
increasingly collecting more data over the years. Most no-
tably, we observed a major update in May 2018, coinciding
with the GDPR implementation date. Many apps have no
privacy policy, or fail to properly include the privacy policies
of third-party libraries. Please see Appendix A for more de-
tail on observations that motivated our study, and Section 6
on related work. The privacy risks on the relatively new VR
platform are not yet well understood.

Goal and approach: privacy analysis of OVR. In this pa-
per, we seek to characterize the privacy risks introduced when
potentially-sensitive data available on the device are sent by
the VR apps and/or the platform to remote destinations for var-
ious purposes. We followed an experimental and data-driven
approach, and we chose to test and analyze the most popular
VR apps. In Section 3, we characterize the actual behavior
exhibited in the network traffc generated by these VR apps
and platform. In Section 4, we present how we downloaded
the privacy policies of the selected VR apps, the platform,
and relevant third-party libraries, used NLP to extract and
analyze the statements made about data collection, analyzed
their consistency when compared against the actual data fows
found in traffc, and extracted the purpose of data collection.

App corpus. We selected OVR apps that are widely used by
players. Our app corpus consists of 150 popular paid and free
apps from both the offcial Oculus app store and SideQuest.
In contrast, previous work typically considered only free apps
from the offcial app store [12,13,37,67]. We used the number
of ratings/reviews as the popularity metric, and considered
only apps that received at least 3.5 stars. We selected three
groups of 50 apps each: (1) the top-50 free apps and (2) the
top-50 paid apps from the Oculus app store, and (3) the top-50
apps from the SideQuest store. We selected an equal number
of paid and free apps from the Oculus app store to gain insight
into both groups equally. We purposely did not just pick the
top-100 apps, because paid apps tend to receive more reviews
from users and this would bias our fndings towards paid apps.
Specifcally, this would make our corpus consist of 90% paid
and 10% free apps.

Our app corpus is representative of both app stores. Our top-
50 free and top-50 paid Oculus apps constitute close to 40%
of all apps on the Oculus app store, whereas the total number
of downloads of our top-50 SideQuest apps is approximately

3

45% of all downloads for the SideQuest store. Out of these
150 apps, selected for their popularity and representativeness,
we were able to decrypt and analyze the network traffc for
140 of them for reasons explained in Section 3.2.1.

3 OVRSEEN: Network Traffc

In this section, we detail our methodology for collecting
and analyzing network traffc. In Section 3.1, we present
OVRSEEN’s system for collecting network traffc and high-
light our decryption technique. Next, in Section 3.2, we de-
scribe our network traffc dataset and the extracted data fows.
In Section 3.3, we report our fndings on the OVR ATS ecosys-
tem by identifying domains that were labeled as ATS by pop-
ular blocklists. Finally, in Section 3.4, we discuss data types
exposures in the extracted data fows according to the context
based on whether their destination is an ATS or not.

3.1 Network Traffc Collection
In this section, we present OVRSEEN’s system for collecting
and decrypting the network traffc that apps generate (1 in
Fig. 1). It is important to mention that OVRSEEN does not re-
quire rooting Quest 2, and as of June 2021, there are no known
methods for doing so [23]. Since the Oculus OS is based on
Android, we enhanced AntMonitor [54] to support the Oculus
OS. Furthermore, to decrypt TLS traffc, we use Frida [45], a
dynamic instrumentation toolkit. Using Frida to bypass cer-
tifcate validation specifcally for Quest 2 apps presents new
technical challenges, compared to Android apps that have a
different structure. Next, we describe these challenges and
how we address them.

Traffc collection. For collecting network traffc,
OVRSEEN integrates AntMonitor [54]—a VPN-based
tool for Android that does not require root access. It runs
completely on the device without the need to re-route
traffc to a server. AntMonitor stores the collected traffc
in PCAPNG format, where each packet is annotated (in
the form of a PCAPNG comment) with the name of the
corresponding app. To decrypt TLS connections, AntMonitor
installs a user CA certifcate. However, since Oculus OS
is a modifed version of Android 10, and AntMonitor only
supports up to Android 7, we made multiple compatibility
changes to support Oculus OS. In addition, we enhanced
the way AntMonitor stores decrypted packets: we adjust the
sequence and ack numbers to make packet re-assembly by
common tools (e.g., tshark) feasible in post-processing.
We will submit a pull request to AntMonitor’s open-source
repository, so that other researchers can make use of it, not
only on Quest 2, but also on other newer Android devices.
For further details, see Appendix B.1.

TLS decryption. Newer Android devices, such as Quest
2, pose a challenge for TLS decryption: as of Android 7,

apps that target API level 24 (Android 7.0) and above no
longer trust user-added certifcates [7]. Since Quest 2 cannot
be rooted, we cannot install AntMonitor’s certifcate as a sys-
tem certifcate. Thus, to circumvent the mistrust of AntMoni-
tor’s certifcate, OVRSEEN uses Frida (see Fig. 1) to intercept
certifcate validation APIs. To use Frida in a non-rooted envi-
ronment, we extract each app and repackage it to include and
start the Frida server when the app loads. The Frida server
then listens to commands from a Frida client that is running
on a PC using ADB. Although ADB typically requires a USB
connection, we run ADB over TCP to be able to use Quest 2
wirelessly, allowing for free-roaming testing of VR apps.

OVRSEEN uses the Frida client to load and inject our cus-
tom JavaScript code that intercepts various APIs used to ver-
ify CA certifcates. In general, Android and Quest 2 apps
use three categories of libraries to validate certifcates: (1)
the standard Android library, (2) the Mbed TLS library [64]
provided by the Unity SDK, and (3) the Unreal version of the
OpenSSL library [14]. OVRSEEN places Frida hooks into
the certifcate validation functions provided by these three
libraries. These hooks change the return value of the inter-
cepted functions and set certain fags used to determine the
validity of a certifcate to ensure that AntMonitor’s certifcate
is always trusted. While bypassing certifcate validation in
the standard Android library is a widely known technique [9],
bypassing validation in Unity and Unreal SDKs is not. Thus,
we developed the following technique.

Decrypting Unity and Unreal. Since most Quest 2 apps
are developed using either the Unity or the Unreal game en-
gines, they use the certifcate validation functions provided
by these engines instead of the ones in the standard Android
library. Below, we present our implementation of certifcate
validation bypassing for each engine.

For Unity, we discovered that the main function that
is responsible for checking the validity of certifcates
is mbedtls_x509_crt_verify_with_profile() in the
Mbed TLS library, by inspecting its source code [6]. This
library is used by the Unity framework as part of its SDK.
Although Unity apps and its SDK are written in C#, the fnal
Unity library is a C++ binary. When a Unity app is pack-
aged for release, unused APIs and debugging symbols get
removed from the Unity library’s binary. This process makes
it diffcult to hook into Unity’s functions since we cannot
locate the address of a function of interest without having
the symbol table to look up its address. Furthermore, since
the binary also gets stripped of unused functions, we can-
not rely on the debug versions of the binary to look up ad-
dresses because each app will have a different number of
APIs included. To address this challenge, OVRSEEN auto-
matically analyzes the debug versions of the non-stripped
Unity binaries (provided by the Unity engine), extracts
the function signature (i.e., a set of hexadecimal numbers)
of mbedtls_x509_crt_verify_with_profile(), and then
looks for this signature in the stripped version of the binary

4

.2 Network Data Flows Extracted App Store Apps Domains eSLDs Packets TCP Fl.

Oculus-Free 43 85 48 2,818 2,126
Oculus-Paid 49 54 35 2,278 1,883

SideQuest 48 57 40 2,679 2,260

Total 140 158 92 7,775 6,269

3.2

We
1,1
scr

Ap
Table 1: Network traffc dataset summary. Note that the tai
same domains and eSLDs can appear across the three groups
of “App Store”, so their totals are based on unique counts.

to fnd its address. This address can then be used to create the
necessary Frida hook for an app. The details of this automated
binary analysis can be found in Appendix B.2.

For Unreal, we discovered that the main function that is
responsible for checking the validity of certifcates is the func-
tion x509_verify_cert() in the OpenSSL library, which
is integrated as part of the Unreal SDK. Fortunately, the
Unreal SDK binary fle comes with a partial symbol table
that contains the location of x509_verify_cert(), and thus,
OVRSEEN can set a Frida hook for it.

3.2 Network Traffc Dataset

3.2.1 Raw Network Traffc Data

We used OVRSEEN to collect network traffc for 1401 apps
in our corpus during the months of March and April 2021. To
exercise these 140 apps and collect their traffc, we manually
interacted with each one for seven minutes. Although there are
existing tools that automate the exploration of regular (non-
gaming) mobile apps (e.g., [30]), automatic interaction with
a variety of games is an open research problem. Fortunately,
manual testing allows us to customize app exploration and
split our testing time between exploring menus within the app
to cover more of the potential behavior, and actually playing
the game, which better captures the typical usage by a human
user. As shown by prior work, such testing criteria lead to
more diverse network traffc and reveal more privacy-related
data fows [24, 50, 67]. Although our methodology might not
be exhaustive, it is inline with prior work [37, 67].

Table 1 presents the summary of our network traffc dataset.
We discovered 158 domains and 92 eSLDs in 6,269 TCP fows
that contain 7,775 packets. Among the 140 apps, 96 were
developed using the Unity framework, 31 were developed
using the Unreal framework, and 13 were developed using
other frameworks.

1The remaining 10 apps were excluded for the following reasons: (1) six
apps could not be repackaged; (2) two apps were browser apps, which would
open up the web ecosystem, diverting our focus from VR; (3) one app was
no longer found on the store—we created our lists of top apps one month
ahead of our experiments; and (4) one app could not start on the Quest 2 even
without any of our modifcations.

 processed the raw network traffc dataset and identifed
35 data fows: happ, data type, destinationi. Next, we de-
ibe our methodology for extracting that information.

p names. For each network packet, the app name is ob-
ned by AntMonitor [54]. This feature required a modifca-

tion to work on Android 10, as described in Appendix B.1.

Data types. The data types we extracted from our network
traffc dataset are listed in Table 3 and can be categorized into
roughly three groups. First, we fnd personally identifable in-
formation (PII), including: user identifers (e.g., Name, Email,
and User ID), device identifers (Android ID, Device ID, and
Serial Number), Geolocation, etc. Second, we found system
parameters and settings, whose combinations are known to
be used by trackers to create unique profles of users [37, 39],
i.e., Fingerprints. Examples include various version informa-
tion (e.g., Build and SDK Versions), Flags (e.g., indicating
whether the device is rooted or not), Hardware Info (e.g., De-
vice Model, CPU Vendor, etc.), Usage Time, etc. Finally, we
also fnd data types that are unique to VR devices (e.g., VR
Movement and VR Field of View) and group them as VR Sen-
sory Data. These can be used to uniquely identify a user or
convey sensitive information—the VR Play Area, for instance,
can represent the actual area of the user’s household.

We use several approaches to fnd these data types in
HTTP headers and bodies, and also in any raw TCP seg-
ments that contain ASCII characters. First, we use string
matching to search for data that is static by nature. For exam-
ple, we search for user profle data (e.g., User Name, Email,
etc.) using our test OVR account and for any device iden-
tifers (e.g., Serial Number, Device ID, etc.) that can be re-
trieved by browsing the Quest 2 settings. In addition, we
search for their MD5 and SHA1 hashes. Second, we utilize
regular expressions to capture more dynamic data types. For
example, we can capture different Unity SDK versions using
UnityPlayer/[\d.]+\d. Finally, for cases where a packet
contains structured data (e.g., URL query parameters, HTTP
Headers, JSON in HTTP body, etc.), we split the packet into
key-value pairs and create a list of unique keys that appear
in our entire network traffc dataset. We then examine this
list to discover keys that can be used to further enhance our
search for data types. For instance, we identifed that the keys
“user_id” and “x–playeruid” can be used to fnd User IDs.
Appendix C.1 provides more details on our data types.

Destinations. To extract the destination fully qualifed do-
main name (FQDN), we use the HTTP Host feld and the TLS
SNI (for cases where we could not decrypt the traffc). Using
tldextract, we also identify the effective second-level domain
(eSLD) and use it to determine the high level organization
that owns it via Crunchbase. We also adopt similar labeling
methodologies from [67] and [5] to categorize each destina-
tion as either frst-, platform-, or third-party. To perform the

5

0 50 100
Number of Apps

mixpanel.com
cloudfunctions.net

google-analytics.com
googleapis.com

google.com
unity3d.com

oculuscdn.com
oculus.com

facebook-hardware.com
facebook.com

eS
LD

Third-party
Platform-party

0 50 100
Number of Apps

www.google-analytics.com
yurapp-502de.firebaseapp.com

api.mixpanel.com
example.com

perf-events.cloud.unity3d.com
cdp.cloud.unity3d.com

config.uca.cloud.unity3d.com
scontent.oculuscdn.com

graph.oculus.com
graph.facebook-hardware.com

AT
S

 F
Q

D
N

Third-party
Platform-party

(b)(a)

Figure 2: Top-10 platform and third-party (a) eSLDs and (b) ATS FQDNs. They are ordered by the number of apps that
contact them. Each app may have a few frst-party domains: we found that 46 out of 140 (33%) apps contact their own eSLDs.

categorization, we also make use of collected privacy poli-
cies (see Fig. 1 and Section 4), as described next. First, we
tokenize the domain and the app’s package name. We label a
domain as frst-party if the domain’s tokens either appear in
the app’s privacy policy URL or match the package name’s
tokens. If the domain is part of cloud-based services (e.g.,
vrapp.amazonaws.com), we only consider the tokens in the
subdomain (vrapp). Second, we categorize the destination as
platform-party if the domain contains the keywords “oculus”
or “facebook”. Finally, we default to the third-party label.
This means that the data collection is performed by an entity
that is not associated with app developers nor the platform,
and the developer may not have control of the data being
collected. The next section presents further analysis of the
destination domains.

3.3 OVR Advertising & Tracking Ecosystem

In this section, we explore the destination domains found in
our network traffc dataset (see Section 3.2.2). Fig. 2a presents
the top-10 eSLDs for platform and third-party. We found that,
unlike the mobile ecosystem, the presence of third-parties
is minimal and platform traffc dominates in all apps (e.g.,
oculus.com, f acebook.com). The most prominent third-party
organization is Unity (e.g., unity3d.com), which appears in
68 out of 140 apps (49%). This is expected since 96 apps in
our dataset were developed using the Unity engine (see Sec-
tion 3.2.1). Conversely, although 31 apps in our dataset were
developed using the Unreal engine, it does not appear as a ma-
jor third-party data collector because Unreal does not provide
its own analytics service. Beyond Unity, other small players
include Alphabet (e.g., google.com, cloudfunctions.net) and
Amazon (e.g., amazonaws.com). In addition, 87 out of 140
apps contact four or fewer third-party eSLDs (62%).

Identifying ATS domains. To identify ATS domains, we
apply the following popular domain-based blocklists: (1) Pi-
Hole’s Default List [46], a list that blocks cross-platform ATS
domains for IoT devices; (2) Mother of All Adblocking [8],

a list that blocks both ads and tracking domains for mobile
devices; and (3) Disconnect Me [10], a list that blocks track-
ing domains. For the rest of the paper, we will refer to the
above lists simply as “blocklists”. We note that there are no
blocklists that are curated for VR platforms. Thus, we choose
blocklists that balance between IoT and mobile devices, and
one that specializes in tracking.

OVR ATS ecosystem. The majority of identifed ATS do-
mains relate to social and analytics-based purposes. Fig. 2b
provides the top-10 ATS FQDNs that are labeled by our block-
lists. We found that the prevalent platform-related FQDNs
along with Unity, the prominent third party, are labeled as
ATS. This is expected: domains such as graph.oculus.com
and perf-events.cloud.unity3d.com are utilized for social
features like managing leaderboards and app analytics,
respectively. We also consider the presence of organiza-
tions based on the number of unique domains contacted.
The most popular organization is Alphabet, which has
13 domains, such as google-analytics.com and frebase-
settings.crashlytics.com. Four domains are associated with
Facebook, such as graph.facebook.com. Similarly, four are
from Unity, such as userreporting.cloud.unity3d.com and
confg.uca.cloud.unity3d.com. Other domains are associated
with analytics companies that focus on tracking how users
interact with apps (e.g., whether they sign up for an ac-
count) such as logs-01.loggly.com, api.mixpanel.com, and
api2.amplitude.com. Lastly, we provide an in-depth compari-
son to other ecosystems in Section 5.1.

Missed by blocklists. The three blocklists that we use in
OVRSEEN are not tailored for the Oculus platform. As a
result, there could be domains that are ATS related but not
labeled as such. To that end, we explored and leveraged data
fows to fnd potential domains that are missed by blocklists.
In particular, we start from data types exposed in our network
traffc, and identify the destinations where these data types
are sent to. Table 2 summarizes third-party destinations that
collect the most data types and are not already captured by
any of the blocklists. We found the presence of 11 different

6

https://api2.amplitude.com
https://api.mixpanel.com
https://logs-01.loggly.com
https://config.uca.cloud.unity3d.com
https://userreporting.cloud.unity3d.com
https://graph.facebook.com
https://settings.crashlytics.com
https://google-analytics.com
https://perf-events.cloud.unity3d.com
https://graph.oculus.com
https://amazonaws.com
https://cloudfunctions.net
https://google.com
https://unity3d.com
https://facebook.com
https://oculus.com
https://vrapp.amazonaws.com

FQDN Organization Data Types

bdb51.playfabapi.com Microsoft 11

sharedprod.braincloudservers.com bitHeads Inc. 8

cloud.liveswitch.io Frozen Mountain
Software

7

datarouter.ol.epicgames.com Epic Games 6

9e0j15elj5.execute-api.us-west-
1.amazonaws.com

Amazon 5

Table 2: Top-5 third-party FQDNs that are missed by block-
lists based on the number of data types exposed.

Data Types (21)
PII 1st

Apps
3rd Pl.

FQDNs
1st 3rd Pl.

% Blocked
1st 3rd Pl.

Device ID
User ID
Android ID
Serial Number
Person Name
Email
Geolocation

6
5
6
0
1
2
0

64
65
31

0
7
5
5

2
0

18
18

0
0
0

6
5
6
0
1
2
0

13
13

7
0
4
5
4

1
0
2
2
0
0
0

0
20
17

-
0
0
-

38
38
43

-
50
20
50

100
-

50
50

-
-
-

Fingerprint

SDK Version
Hardware Info
System Version
Session Info
App Name
Build Version
Flags
Usage Time
Language
Cookies

VR Sensory Data

23
21
16

7
4
0
6
2
5
5

69
65
62
66
65
61
53
59
28

4

20
19
19

2
2
0
2
0

16
2

34
25
20

7
4
0
6
2
5
5

28
23
21
13
10

3
8
4
9
3

4
3
3
1
1
0
1
0
1
1

6
4
5

14
25

-
0
0
0
0

46
39
43
46
40

100
50
50
56
33

0
33
33

100
100

-
100

-
0

100

VR Play Area
VR Movement
VR Field of View
VR Pupillary
Distance

0
1
0
0

40
24
16
16

0
2
0
0

0
1
0
0

1
6
1
1

0
1
0
0

-
0
-
-

100
67

100
100

-
100

-
-

Total 33 70 22 44 39 5 5 36 20

Table 3: Data types exposed in the network traffc dataset.
Column “Apps” reports the number of apps that send the data
type to a destination; column “FQDNs” reports the number of
FQDNs that receive that data type; and column “% Blocked”
reports the percentage of FQDNs blocked by blocklists. Using
sub-columns, we denote party categories: frst (1st), third (3rd),
and platform (Pl.) parties.

organizations, not caught by blocklists, including: Microsoft,
bitHeads Inc., and Epic Games—the company that created
the Unreal engine. The majority are cloud-based services that
provide social features, such as messaging, and the ability to
track users for engagement and monetization (e.g., promotions
to different segments of users). We provide additional FQDNs
missed by blocklists in Appendix C.2.

7

3.4 Data Flows in Context
The exposure of a particular data type, on its own, does not
convey much information: it may be appropriate or inappropri-
ate depending on the context [40]. For example, geolocation
sent to the GoogleEarth VR or Wander VR app is necessary
for the functionality, while geolocation used for ATS purposes
is less appropriate. The network traffc can be used to partly
infer the purpose of data fows, e.g., depending on whether
the destination being frst-, third-, or platform-party; or an
ATS. Table 3 lists all data types found in our network traffc,
extracted using the methods explained in Section 3.2.2.

Third party. Half of the apps (70 out of 140) expose data
fows to third-party FQDNs, 36% of which are labeled as
ATS by blocklists. Third parties collect a number of PII data
types, including Device ID (64 apps), User ID (65 apps), and
Android ID (31 apps), indicating cross-app tracking. In addi-
tion, third parties collect system, hardware, and version info
from over 60 apps—denoting the possibility that the data
types are utilized to fngerprint users. Further, all VR specifc
data types, with the exception of VR Movement, are collected
by a single third-party ATS domain belonging to Unity. VR
Movement is collected by a diverse set of third-party desti-
nations, such as google-analytics.com, playfabapi.com and
logs-01.loggly.com, implying that trackers are becoming in-
terested in collecting VR analytics.

Platform party. Our fndings on exposures to platform-
party domains are a lower bound since not all platform traffc
could be decrypted (see Section 7). However, even with lim-
ited decryption, we see a number of exposures whose destina-
tions are fve third-party FQDNs. Although only one of these
FQDNs is labeled as ATS by the blocklists, other platform-
party FQDNs could be ATS domains that are missed by block-
lists (see Section 3.3). For example, graph.facebook.com is an
ATS FQDN, and graph.oculus.com appears to be its counter-
part for OVR; it collects six different data types in our dataset.
Notably, the platform party is the sole party responsible for
collecting a sensitive hardware ID that cannot be reset by the
user—the Serial Number. In contrast to OVR, the Android
developer guide strongly discourages its use [19].

First party. Only 33 apps expose data fows to frst-party
FQDNs, and only 5% of them are labeled as ATS. Interest-
ingly, the blocklists tend to have higher block rates for frst-
party FQDNs if they collect certain data types, e.g., Android
ID (17%), User ID (20%), and App Name (25%). Popular
data types collected by frst-party destinations are Hardware
Info (21 apps), SDK Version (23 apps), and System Version
(16 apps). For developers, this information can be used to
prioritize bug fxes or improvements that would impact the
most users. Thus, it makes sense that only ~5% of frst-party
FQDNs that collect this information are labeled as ATS.

Summary. The OVR ATS ecosystem is young when com-
pared to Android and Smart TVs. It is dominated by tracking

https://graph.oculus.com
https://graph.facebook.com
https://logs-01.loggly.com
https://playfabapi.com
https://google-analytics.com

domains for social features and analytics, but not by ads. We 4.1.1 Consistency Analysis System
have detailed 21 different data types that OVR sends to frst-,
third-, and platform-parties. State-of-the-art blocklists only
captured 36% of exposures to third parties, missing some
sensitive exposures such as Email, User ID, and Device ID.

4 OVRSEEN: Privacy Policy Analysis

In this section, we turn our attention to the intended data
collection and sharing practices, as stated in the text privacy
policy. For example, from the text ”We may collect your email
address and share it for advertising purposes”, we want to ex-
tract the collection statement (“we”, which implies the app’s
frst-party entity; “collect” as action; and “email address” as
data type) and the purpose (“advertising”). In Section 4.1.1,
we present our methodology for extracting data collection
statements, and comparing them against data fows found in
network traffc for consistency. OVRSEEN builds and im-
proves on state-of-the-art NLP-based tools: PoliCheck [5]
and PolicyLint [4], previously developed for mobile apps.
In Section 4.1.2, we present our VR-specifc ontologies for
data types and entities. In Section 4.1.3, we report network-
to-policy consistency results. Section 4.2 describes how we
interface between the different NLP models of PoliCheck and
Polisis to extract the data collection purpose and other context
for each data fow.

Collecting privacy policies. For each app in Section 3, we
also collected its privacy policy on the same day that we
collected its network traffc. Specifcally, we used an auto-
mated Selenium [59] script to crawl the webstore and ex-
tracted URLs of privacy policies. For apps without a policy
listed, we followed the link to the developer’s website to fnd
a privacy policy. We also included eight third-party policies
(e.g., from Unity, Google), referred to by the apps’ policies.

For the top-50 free apps on the Oculus store, we found that
only 34 out of the 43 apps have privacy policies. Surprisingly,
for the top-50 paid apps, we found that only 39 out of 49
apps have privacy policies. For the top-50 apps on SideQuest,
we found that only 29 out of 48 apps have privacy policies.
Overall, among apps in our corpus, we found that only 102
(out of 140) apps provide valid English privacy policies. We
treated the remaining apps as having empty privacy policies,
ultimately leading OVRSEEN to classify their data fows as
omitted disclosures.

4.1 Network-to-Policy Consistency

Our goal is to analyze text in the app’s privacy policy, extract
statements about data collection (and sharing), and compare
them against the actual data fows found in network traffc.

OVRSEEN builds on state-of-the-art tools: PolicyLint [4] and
PoliCheck [5]. PolicyLint [4] provides an NLP pipeline that
takes a sentence as input. For example, it takes the sentence

“We may collect your email address and share it for advertising
purposes”, and extracts the collection statement “(entity: we,
action: collect, data type: email address)”. More generally,
PolicyLint takes the app’s privacy policy text, parses sentences
and performs standard NLP processing, and eventually ex-
tracts data collection statements defned as the tuple P =happ,
data type, entityi, where app is the sender and entity is the
recipient performing an action (collect or not collect) on the
data type. PoliCheck [5] takes the app’s data fows (extracted
from the network traffc and defned as F =hdata type, entityi)
and compares it against the stated P for consistency.

PoliCheck classifes the disclosure of F as clear (if the data
fow exactly matches a collection statement), vague (if the
data fow matches a collection statement in broader terms),
omitted (if there is no collection statement corresponding to
the data fow), ambiguous (if there are contradicting collection
statements about a data fow), or incorrect (if there is a data
fow for which the collection statement states otherwise). Fol-
lowing PoliCheck’s terminology [5], we further group these
fve types of disclosures into two groups: consistent (clear and
vague disclosures) and inconsistent (omitted, ambiguous, and
incorrect) disclosures. The idea is that for consistent disclo-
sures, there is a statement in the policy that matches the data
type and entity, either clearly or vaguely. Table 4 provides
real examples of data collection disclosures extracted from
VR apps that we analyzed.

Consistency analysis relies on pre-built ontologies and syn-
onym lists used to match (i) the data type and destination that
appear in each F with (ii) any instance of P that discloses the
same (or a broader) data type and destination2. OVRSEEN’s
adaptation of ontologies specifcally for VR is described in
Section 4.1.2. We also improved several aspects of PoliCheck,
as described in detail in Appendix D.1. First, we added a fea-
ture to include a third-party privacy policy for analysis if it is
mentioned in the app’s policy. We found that 30% (31/102) of
our apps’ privacy policies reference third-party privacy poli-
cies, and the original PoliCheck would mislabel third-party
data fows from these apps as omitted. Second, we added a
feature to more accurately resolve frst-party entity names.
Previously, only frst-person pronouns (e.g., “we”) were used
to indicate a frst-party reference, while some privacy policies
use company and app names in frst-party references. The
original PoliCheck would incorrectly recognize these frst-

2For example (see Fig. 3a), “email address” is a special case of “contact
info” and, eventually, of “pii”. There is a clear disclosure w.r.t. data type if
the “email address” is found in a data fow and a collection statement. A
vague disclosure is declared if the “email address” is found in a data fow
and a collection statement that uses the term “pii” in the privacy policy. An
omitted disclosure means that “email address” is found in a data fow, but
there is no mention of it (or any of its broader terms) in the privacy policy.

8

Disclosure Type Privacy Policy Text Action : Data Collection Statement (P) Data Flow (F)

Clear “For example, we collect information ..., and a collect : hcom.cvr.terminus, usage time, wei husage time, wei
timestamp for the request.”

Vague “We will share your information (in some cases collect : hcom.HomeNetGames.WW1oculus, hserial number, oculusi
personal information) with third-parties, ...” pii, third partyi handroid id, oculusi

In
co

ns
is

te
nt

C

on
si

st
en

t

Omitted - collect : hcom.kluge.SynthRiders, -, -i hsystem version, oculusi
hsdk version, oculusi
hhardware information, oculusi

Ambiguous “..., Skydance will not disclose any Personally
Identifable Information to third parties ...
your Personally Identifable Information will be
disclosed to such third parties and ...”

collect : hcom.SDI.TWD, pii, third partyi hserial number, oculusi
handroid id, oculusi

Incorrect “We do not share our customer’s personal in-
formation with unaffliated third parties ...”

not_collect : hcom.downpourinteractive.
onward, pii, third partyi

hdevice id, unityi
huser id, oculusi

Table 4: Examples to illustrate the types of disclosures identifed by PoliCheck. A data collection statement (P) is extracted
from the privacy policy text and is defned as the tuple P =happ, data type, entityi. A data fow (F) is extracted from the network
traffc and is defned as F =hdata type, entityi. During the consistency analysis, each P can be mapped to zero, one, or more F .

party references as third-party entities for 16% (16/102) of
our apps’ privacy policies.

4.1.2 Building Ontologies for VR

Ontologies are used to represent subsumptive relationships
between terms: a link from term A to term B indicates that A is
a broader term (hypernym) that subsumes B. There are two on-
tologies, namely data and entity ontologies: the data ontology
maps data types and entity ontology maps destination entities.
Since PoliCheck was originally designed for Android mobile
app’s privacy policies, it is important to adapt the ontologies
to include data types and destinations specifc to VR’s privacy
policies and actual data fows.

VR data ontology. Fig. 3a shows the data ontology we de-
veloped for VR apps. Leaf nodes correspond to all 21 data
types found in the network traffc and listed in Table 3. Non-
leaf nodes are broader terms extracted from privacy policies
and may subsume more specifc data types, e.g., “device iden-
tifer” is a non-leaf node that subsumes “android id”. We built
a VR data ontology, starting from the original Android data
ontology, in a few steps as follows. First, we cleaned up the
original data ontology by removing data types that do not
exist on OVR (e.g., “IMEI”, “SIM serial number”, etc.). We
also merged similar terms (e.g., “account information” and
“registration information”) to make the structure clearer. Next,
we used PoliCheck to parse privacy policies from VR apps.
When PoliCheck parses the sentences in a privacy policy, it
extracts terms and tries to match them with the nodes in the
data ontology and the synonym list. If PoliCheck does not fnd
a match for the term, it will save it in a log fle. We inspected
each term from this log fle, and added it either as a new node
in the data ontology or as a synonym to an existing term in
the synonym list. Finally, we added new terms for data types
identifed in network traffc (see Section 3.4) as leaf nodes in
the ontology. Most notably, we added VR-specifc data types
(see VR Sensory Data category shown in Table 3): “biomet-

ric info” and “environment info”. The term “biometric info”
includes physical characteristics of human body (e.g., height,
weight, voice, etc.); we found some VR apps that collect
user’s “pupillary distance” information. The term “environ-
ment information” includes VR-specifc sensory information
that describes the physical environment; we found some VR
apps that collect user’s “play area” and “movement”. Table 5
shows the summary of the new VR data ontology. It consists
of 63 nodes: 39 nodes are new in OVRSEEN’s data ontology.
Overall, the original Android data ontology was used to track
12 data types (i.e., 12 leaf nodes) [5], whereas our VR data
ontology is used to track 21 data types (i.e., 21 leaf nodes)
appearing in the network traffc (see Table 3 and Fig. 3a).

VR entity ontology. Entities are names of companies and
other organizations which refer to destinations. We use a list
of domain-to-entity mappings to determine which entity each
domain belongs to (see Appendix D.1)—domain extraction
and categorization as either frst-, third-, or platform-party
are described in detail in Section 3.2.2. We modifed the An-
droid entity ontology to adapt it to VR as follows: (1) we
pruned entities that were not found in privacy policies of VR
apps or in our network traffc dataset, and (2) we added new
entities found in both sources. Table 5 summarizes the new
entity ontology. It consists of 64 nodes: 21 nodes are new in
OVRSEEN’s entity ontology. Fig. 3b shows our VR entity
ontology, in which we added two new non-leaf nodes: “plat-
form provider” (which includes online distribution platforms
or app stores that support the distribution of VR apps) and
“api” (which refers to various third-party APIs and services
that do not belong to existing entities). We identifed 16 new
entities that were not included in the original entity ontology.
We visited the websites of those new entities and found that:
three are platform providers, four are analytic providers, and
12 are service providers; these become the leaf nodes of “api”.
We also added a new leaf node called “others” to cover a few
data fows, whose destinations cannot be determined from the
IP address or domain name.

9

(a) Data Ontology (b) Entity Ontology

Figure 3: Ontologies for VR data fows. Please recall that each data fow, F, is defned as F =hdata type, entityi. We started
from the PoliCheck ontologies, originally developed for Android (printed in gray). First, we eliminated nodes that did not appear
in our VR network traffc and privacy policies. Then, we added new leaf nodes (printed in black) based on new data types found
in the VR network traffc and/or privacy policies text. Finally, we defned additional non-leaf nodes, such as “biometric info” and
”api”, in the resulting VR data and entity ontologies.

Platform Data Ontology Entity Ontology

Android [5] 38 nodes 209 nodes
OVR (OVRSEEN) 63 nodes 64 nodes

New nodes in OVR 39 nodes 21 nodes

Table 5: Comparison of PoliCheck and OVRSEEN Ontologies.
Nodes include leaf nodes (21 data types and 16 entities) and
non-leaf nodes (see Fig. 3).

Summary. Building VR ontologies has been non-trivial.
We had to examine a list of more than 500 new terms and
phrases that were not part of the original ontologies. Next, we
had to decide whether to add a term into the ontology as a new
node, or as a synonym to an existing node. In the meantime,
we had to remove certain nodes irrelevant to VR and merge
others because the original Android ontologies were partially
machine-generated and not carefully curated.

4.1.3 Network-to-Policy Consistency Results

We ran OVRSEEN’s privacy policy analyzer to perform
network-to-policy consistency analysis. Please recall that we
extracted 1,135 data fows from 140 apps (see Section 3.2.2).

OVR data fow consistency. In total, 68% (776/1,135) data
fows are classifed as inconsistent disclosures. The large ma-
jority of them 97% (752/776) are omitted disclosures, which
are not declared at all in the apps’ respective privacy policies.

Fig. 4 presents the data-fow-to-policy consistency analysis
results. Out of 93 apps which expose data types, 82 apps have
at least one inconsistent data fows. Among the remaining
32% (359/1,135) consistent data fows, 86% (309/359) are
classifed as vague disclosures. They are declared in vague
terms in the privacy policies (e.g., the app’s data fows contain
the data type “email address”, whereas its privacy policy only
declares that the app collects “personal information”). Clear
disclosures are found in only 16 apps.

Data type consistency. Fig. 5a reports network-to-policy
consistency analysis results by data types—recall that in Sec-
tion 3.2.2 we introduced all the exposed data types into three
categories: PII, Fingerprint, and VR Sensory Data. The PII
category contributes to 22% (250/1,135) of all data fows.
Among the three categories, PII has the best consistency: 57%
(142/250) data fows in this category are classifed as consis-
tent disclosures. These data types are well understood and also
treated as PII in other platforms. On Android [5], it is reported
that 59% of PII fows were consistent—this is similar to our
observation on OVR. The Fingerprint category constitutes
69% (784/1,135) of all data fows: around 25% (199/784) of
data fows in this category are classifed as consistent disclo-
sures. The VR Sensory Data category constitutes around 9%
(101/1,135) of all data fows—this category is unique to the
VR platform. Only 18% (18/101) data fows of this category
are consistent—this indicates that the collection of data types
in this category is not properly disclosed in privacy policies.

10

consistent inconsistent

1st
 pa

rty

fac
ebo

ok
uni

ty

1st
 pa

rty

(pla
tfo

rm
)

ocu
lus

fac
ebo

ok
uni

ty

(ot
her

 3r
d p

art
ies

)
goo

gle
pla

yfa
b

am
plit

udeepi
c

ava
tar

 sd
k

1st
 pa

rty

(pla
tfo

rm
)

ocu
lus

fac
ebo

ok
uni

ty

(ot
her

 3r
d p

art
ies

)
goo

gle
pla

yfa
b

dre
am

lo

am
plit

ude

mixp
ane

l

micro
sof

t
gith

ubepi
c

ava
tar

 sd
k

1st
 pa

rtyuni
ty

pla
yfa

b

1st
 pa

rty
ocu

lusuni
ty

am
plit

ude

Entity

(PII)
user id

device id
android id

serial number
person name

email address
geolocation

(Fingerprint)
sdk version

hardware info
system version

session info
app name

build version
usage time

flags
language

cookie
(VR Sensory Data)

vr play area
vr movement

vr field of view
vr pupillary distance

Da
ta

 Ty
pe

1 11 3 24 8 1 2 2 1 1 24 3 2 1 1 1
4 1 1 35 6 2 2 1 1 24 3 2 1 2 1 1
4 9 8 1 17 1 1 1 7 6 1 10 2 2 1 2 1

9 8 1 7 6 1 2
2 2 1 2 1 1

2 1 1 1 1 1 1
2 1 3 1 1

11 9 1 1 13 20 20 49 21 3 3 3 2 2 2 2 2 1
11 1 1 12 1 10 18 17 1 49 18 1 2 3 1 1 2 1

2 7 1 1 12 7 18 17 1 48 16 2 2 3 1 1
11 6 1 1 4 1 1 50 12 2 1 3 2

3 1 1 12 1 1 1 49 6 2 2
12 49

1 11 1 20 1 28
2 1 1 10 4 1 1 43 3 2
4 8 8 14 5 1 2 6 6 9 2 1 2 1

1 2 1 1 2 1 1 4 1 1

7 33
1 4 1 1 1 16 6 2 1 1

3 13
3 10 3

clear vague omitted incorrect ambiguous

0

10

20

30

40

50

Nu
m

be
r o

f D
at

a F
low

s

Figure 4: Summary of network-to-policy consistency analysis results. Columns whose labels are in parentheses provide
aggregate values: e.g., column “(platform)” aggregates the columns “oculus” and “facebook”; column “(other 3rd parties)”
aggregates the subsequent columns. The numbers count data fows; each data fow is defned as happ, data type, destinationi).

Entity consistency. Fig. 5b reports our network-to-policy
consistency results, by entities. Only 29% (298/1,022) of third-
party and platform data fows are classifed as consistent dis-
closures. First-party data fows constitute 10% (113/1,135) of
all data fows: 54% (61/113) of these frst-party data fows are
classifed as consistent disclosures. Thus, 69% (785/1,135) of
all data fows are classifed as inconsistent disclosures. Third-
party and platform data fows constitute 90% (1,022/1,135) of
all data fows—surprisingly, only 29% (298/1,022) of these
third-party and platform data fows are classifed as consistent
disclosures.

Unity is the most popular third-party entity, with 66%
(746/1,135) of all data fows. Only 31% (232/746) of these
Unity data fows are classifed as consistent, while the ma-
jority (69%) are classifed as inconsistent disclosures. Plat-
form (i.e., Oculus and Facebook) data fows account for 11%
(122/1,135) of all data fows; only 28% (34/122) of them are
classifed as consistent disclosures. Other less prevalent enti-
ties account only around 14% (154/1,135) of all data fows.

Referencing Oculus and Unity privacy policies. Privacy
policies can link to each other. For instance, when using Quest
2, users should be expected to consent to the Oculus privacy
policy (for OVR). Likewise, when app developers utilize a
third party engine (e.g., Unity) their privacy policies should
include the Unity privacy policy. To the best of our knowledge,
this aspect has not been considered in prior work [5, 29, 72].

Interestingly, when we included the Oculus and Unity

privacy policies (when applicable) in addition to the app’s
own privacy policy, we found that the majority of platform
(116/122 or 96%) and Unity (725/746 or 97%) data fows get
classifed as consistent disclosures. Thus, 74% (841/1,135) of
all data fows get classifed as consistent disclosures. Fig. 6
shows the comparison of the results from this new experiment
with the previous results shown in Fig. 5b. These show that
data fows are properly disclosed in Unity and Oculus privacy
policies even though the app developers’ privacy policies
usually do not refer to these two important privacy policies.
Furthermore, we noticed that the Oculus and Unity privacy
policies are well-written and clearly disclose collected data
types. As discussed in [5], developers may be unaware of their
responsibility to disclose third-party data collections, or they
may not know exactly how third-party SDKs in their apps
collect data from users. This is a recommendation for future
improvement.

Validation of PoliCheck results (network-to-policy consis-
tency). To test the correctness of PoliCheck when applied
to VR apps, we manually inspected all data fows from apps
that provided a privacy policy, and checked their consistency
with corresponding collection statements in the policy. Three
authors had to agree on the consistency result (one of the fve
disclosure types) of each data fow. We found the following.

First, we considered multi-class classifcation into consis-
tent, omitted and incorrect disclosures, similar to PoliCheck’s
evaluation [5]. The performance of multi-class classifcation

11

0 50 100
Number of Data Flows

vr field of view
vr pupillary distance

vr movement
vr play area

(VR Sensory Data)
cookie

language
build version

usage time
flags

app name
session info

system version
hardware info

sdk version
(Fingerprint)

geolocation
email address
person name

serial number
android id
device id

user id
(PII)

Da
ta

 Ty
pe

clear
vague
omitted
incorrect
ambiguous

(a)

0 200 400 600
Number of Data Flows

microsoft
avatar sdk

mixpanel
github

dreamlo
google

epic
facebook

amplitude
playfab
oculus

unity
1st party

En
tit

y

clear
vague
omitted
incorrect
ambiguous

(b)

Figure 5: Network-to-policy consistency analysis results ag-
gregated by (a) data types, and (b) destination entities.

can be assessed using micro-averaging or macro-averaging
of metrics across classes. Micro-averaging is more appro-
priate for imbalanced datasets and was also used for consis-
tency analysis of Android apps [5] and Alexa skills [29]. In
our VR dataset, we obtained 84% micro-averaged precision,
recall and F1-score3. This is comparable to the correspond-
ing numbers when applying PoliCheck to mobile [5] and
Alexa Skills [29], which reported 90.8% and 83.3% (micro-
averaged) precision/recall/F1-score, respectively. For com-
pleteness, we also computed the macro-averaged precision,
recall and F1-score to be 74%, 89%, and 81% respectively
(see Table 8).

Second, we considered the binary classifcation case (i.e.,
we treat inconsistent disclosures as positive and consistent
disclosures as negative samples). We obtained 77% precision,
94% recall, and 85% F1-score (see Appendix D.2 for more
details). Overall, PoliCheck, along with our improvements for
OVRSEEN, works well on VR apps4.

3In multi-class classifcation, every misclassifcation is a false positive
for one class and a false negative for other classes; thus, micro-averaged
precision, recall, and F1-score are all the same (see Appendix D.2).

4However, the precision is lower when distinguishing between clear and

0 200 400 600
Number of Data Flows

unity

oculus

1st party

En
tit

y

previous results
clear
vague
omitted
incorrect
ambiguous

Figure 6: Referencing Oculus and Unity privacy policies.
Comparing the results from the ideal case (including Unity
and Oculus privacy policies by default) and the previous ac-
tual results (only including the app’s privacy policy and any
third-party privacy policies linked explicitly therein).

4.2 Data Collection in Context

Consistent (i.e., clear, or even vague) disclosures are desirable
because they notify the user about the VR apps’ data collec-
tion and sharing practices. However, they are not suffcient to
determine whether the information fow is within its context
or social norms. This context includes (but is not limited to)
the purpose and use, notice and consent, whether it is legally
required, and other aspects of the “transmission principle” in
the terminology of contextual integrity [40]. In the previous
section, we have discussed the consistency of the network
traffc w.r.t. the privacy policy statements: this provides some
context. In this section, we identify an additional context: we
focus on the purpose of data collection.

Purpose. We extract purpose from the app’s privacy pol-
icy using Polisis [21]—an online privacy policy analysis ser-
vice based on deep learning. Polisis annotates privacy policy
texts with purposes at text-segment level. We developed a
translation layer to map annotated purposes from Polisis into
consistent data fows (see Appendix D.3). This mapping is
possible only for data fows with consistent disclosures, since
we need the policy to extract the purpose of a data fow. We
were able to process 293 (out of 359) consistent data fows5

that correspond to 141 text segments annotated by Polisis.
Out of the 293 data fows, 69 correspond to text segments an-
notated as “unspecifc”, i.e., Polisis extracted no purpose. The
remaining 224 data fows correspond to text segments anno-
tated with purposes. Since a data fow can be associated with
multiple purposes, we expanded the 224 into 370 data fows,
so that each data fow has exactly one purpose. There are nine
distinct purposes identifed by Polisis (including advertising,
analytics, personalization, legal, etc.; see Fig. 7).

vague disclosures. Our validation shows 23% vague disclosures were actu-
ally clearly disclosed. This is because OVRSEEN’s privacy policy analyzer
inherits the limitations of PoliCheck’s NLP model which cannot extract data
types and entities from a collection statement that spans multiple sentences..

5Polisis did not process the text segments that correspond to the remaining
66 consistent data fows: it did not annotate the text segments and simply
reported that their texts were too short to analyze.

12

unity 255

Oculus 251

SideQuest 119

advertising 119

analytics 70

merger 64

user id 51

session info 45

usage time 44

1st party 43
additional feature 38

sdk version 29

language 27

android id 27
device id 27

marketing 27

hardware info 20

loggly 20
system version 19

oculus 19
basic feature 17playfab 15

security 14
personalization 12

flags 11
app name 11
build version 11
email address 10
serial number 9

legal 9
vr movement 7
vr play area 7
person name 6

others 5

cookie 4

epic 4

vr field of view 3

facebook 3

vr pupillary distance 2

avatar sdk 2
google 2

gamesparks 1
firefox 1

Destination (Entity)

App
Purpose

Data Type

Figure 7: Data fows in context. We consider the data fows (happ, data type, destinationi) found in the network traffc, and,
in particular, the 370 data fows associated with consistent disclosures. We analyze these in conjunction with their purpose
as extracted from the privacy policy text and depict the augmented tuples happ, data type, destination, purpose i in the above
alluvial diagram. The diagram is read from left to right, for example: (1) out of 251 data fows from the Oculus app store, no
more than 51 data fows collect User ID and send it to various destinations; (2) the majority of User ID is collected by Unity; and
(3) Unity is responsible for the majority of data fows with the purpose of advertising. Finally, the color scheme of the edges helps
keep track of the fow. From App to Data Type, the color indicates the app store: blue for Oculus apps and gray for SideQuest
apps. From Data Type to Destination, the color indicates the type of data collected: PII and VR Sensory Data data fows are in
orange, while Fingerprinting data fows are in green. From Destination to Purpose, we use blue to denote frst-party destinations
and red to denote third-party destinations.

To further understand whether data collection is essential
to app functionality, we distinguish between purposes that
support core functionality (i.e., basic features, security, per-
sonalization, legal purposes, and merger) and those unrelated
to core functionality (i.e., advertising, analytics, marketing,
and additional features) [35]. Intuitively, core functionality in-
dicates services that users expect from an app, such as reading
articles from a news app or making a purchase with a shopping
app. We found that only 31% (116/370) of all data fows are re-
lated to core functionality, while 69% (254/370) are unrelated.
Interestingly, 81% (94/116) of core-functionality-related data
fows are associated with third-party entities, indicating that
app developers use cloud services. On the other hand, data
collection purposes unrelated to core functionality can be
used for marketing emails or cross-platform targeted adver-
tisements. This is partly also corroborated by our ATS fndings
in Section 3.3: 83% (211/254) are associated with third-party
tracking entities. In OVR, data types can be collected for
tracking purposes and used for ads on other mediums (e.g.,
Facebook website) and not on the Quest 2 device itself.

Next, we looked into the data types exposed for different
purposes. The majority of data fows related to core function-
ality (56% or 65/116) expose PII data types, while Fingerprint-
ing data types appear in most (66% or 173/254) data fows
unrelated to functionality. We found that 15 data types are

collected for functionality: these are comprised of Fingerprint-
ing (41% or 48/116 data fows) and VR Sensory Data (3% or
3/116 data fows). We found that 19 data types are collected
for purposes unrelated to functionality: these are comprised
of PII (26% or 65/254 data fows) and VR Sensory Data (6%
or 16/254 data fows). Interestingly, VR Movement, VR Play
Area, and VR Field of View are mainly used for “advertising”,
while VR Movement and VR Pupillary Distance are used for
“basic features”, “security”, and “merger” purposes [21].

Validation of Polisis results (purpose extraction). In or-
der to validate the results pertaining to purpose extraction, we
read all the 141 text segments previously annotated by Polisis.
Then, we manually annotated each text segment with one or
more purposes (based on the nine distinct purposes identi-
fed by Polisis). We had three authors look at each segment
independently and then agree upon its annotation. We then
compared our annotation with the purpose output by Polisis
for the same segment. We found that this purpose extraction
has 80%, 79%, and 78% micro-averaged precision, recall, and
F1-score respectively6. These micro-averaged results are di-
rectly comparable to the Polisis’ results in [21]: OVRSEEN’s
purpose extraction works well on VR apps. For completeness,
we also computed the macro-averaged precision, recall, and

6Please note that this is multi-label classifcation. Thus, unlike multi-class
classifcation for PoliCheck, precision, recall, and F1-score are different.

13

F1-score: 81%, 78%, and 78%, respectively. Table 9 in Ap-
pendix D.3 reports the precision, recall, and F1-score for each
purpose classifcation, and their micro- and macro-averages.

5 Discussion

5.1 VR-Specifc Considerations
VR tracking has unique aspects and trends compared to other
ecosystems, including but not limited to the following.

VR ads. The VR advertising ecosystem is currently at its
infancy. Our analysis of destinations from the network traffc
revealed that ad-related activity was missing entirely from
OVR at the time of our experiments. Facebook recently started
testing on-device ads for Oculus in June 2021 [44]. Ads on
VR platforms will be immersive experiences instead of fat
visual images; for example, Unity uses separate virtual rooms
for ads [63]. We expect that tracking will further expand once
advertising comes into VR (e.g., to include tracking how
users interact and behave within the virtual ad space). As VR
advertising and tracking evolve, our OVRSEEN methodology,
system, and datasets will continue to enable analysis that was
not previously possible on any VR platforms.

Comparison to other ecosystems. Our analysis showed
that the major players in the OVR tracking ecosystem are
currently Facebook and Unity (see Fig. 2 and 5). The more
established ecosystems such as mobile and Smart TVs are
dominated by Alphabet [25,67]; they also have a more diverse
playing feld of trackers (e.g., Amazon, Comscore Inc., and
Adobe)—spanning hundreds of tracking destinations [25, 55,
67]. OVR currently has only a few players (e.g., Facebook,
Unity, Epic, and Alphabet). OVRSEEN can be a useful tool
for continuing the study on this developing ecosystem.

Sensitive data. Compared to other devices, such as mobile,
Smart TVs and IoT, the type of data that can be collected from
a VR headset is arguably more sensitive. For example, OVR
has access to various biometric information (e.g., pupillary
distance, hand geometry, and body motion tracking data) that
can be used to identify users and even infer their health [43].
A study by Miller et al. [36] revealed the feasibility of identi-
fying users with a simple machine learning model using less
than fve minutes of body motion tracking data from a VR
device. Our experiments found evidence of apps collecting
data types that are unique to VR, including biometric-related
data types (see Section 3.2.2). While the numbers we found
are small so far, with the developing VR tracking ecosystem,
it is important to have a system such as OVRSEEN to detect
the increasing collection of sensitive data over time.

Generalization. Within OVR, we only used OVRSEEN to
analyze 140 apps in our corpus. However, we believe that it
can be applied to other OVR apps, as long as they are created
according to OVR standards. Beyond OVR, the network traffc

analysis and network-to-policy consistency analysis can also
be applied to other platforms, as long as their network traffc
can be decrypted, as was the case with prior work on Android,
Smart TV, etc. [37, 48, 54, 67].

5.2 Recommendations

Based on our fndings, we provide recommendations for the
OVR platform and developers to improve their data trans-
parency practices.

Provide a privacy policy. We found that 38 out of the 140
popular apps, out of which 19 are from the Oculus app store,
did not provide any privacy policy at all. Furthermore, 97%
of inconsistent data fow disclosures were due to omitted
disclosures by these 38 apps missing privacy policies (see
Section 4). We recommend that the OVR platform require de-
velopers to provide a privacy policy for their apps, especially
those available on the offcial Oculus app store.

Reference other parties’ privacy policies. Developers are
not the only ones collecting data during the usage of an app:
third-parties (e.g., Unity, Microsoft) and platform-party (e.g.,
Oculus/Facebook) can also collect data. We found that 81
out of 102 app privacy policies did not reference policies of
third-party libraries used by the app. We recommend that
developers reference third-party and platform-party privacy
policies. If they do that, then the consistency of disclosures
will be quite high: up to 74% of data fows in the network
traffc we collected (see Section 4.1.3). This indicates that, at
least at this early stage, the VR ecosystem is better behaved
than the mobile tracking ecosystem.

Notice and consent. We found that fewer than 10 out of
102 apps that provide a privacy policy explicitly ask users to
read it and give consent to data collection (e.g., for analytics
purposes) upon frst opening the app. We recommend that de-
velopers provide notice and ask for users’ consent (e.g., when
a user launches the app for the frst time) for data collection
and sharing, as required by privacy laws such as GDPR [70].

Notifying developers. We contacted Oculus as well as the
developers of the 140 apps that we tested. We provided cour-
tesy notifcations of the specifc data fows and consistency
we identifed in their apps, along with recommendations. We
received 24 responses (see the details in Appendix E). Devel-
opers were, in general, appreciative of the information and
willing to adopt recommendations to improve their privacy
policies. Several indicated they did not have the training or
tools to ensure consistent disclosures.

6 Related Work

Privacy in Context. The framework of “Privacy in Con-
text" [40] specifes the following aspects of information fow:

14

(1) actors: sender, recipient, subject; (2) type of informa-
tion; and (3) transmission principle. The goal is to determine
whether the information fow is appropriate within its con-
text. The “transmission principle" is key in determining the
appropriateness of the fow and may include: the purpose of
data collection, notice and consent, required by law, etc. [40].
In this paper, we seek to provide context for the data fows
(happ, data type, destinationi) found in the network traffc.
We primarily focus on the network-to-policy consistency, pur-
pose of data collection, and we briefy comment on notice
and consent. Most prior work on network analysis only char-
acterized destinations (frst vs. third parties, ATS, etc.) or data
types exposed without additional contexts. One exception is
MobiPurpose [24], which inferred data collection purposes of
mobile (not VR) apps, using network traffc and app features
(e.g., URL paths, app metadata, domain name, etc.); the au-
thors stated that “the purpose interpretation can be subjective
and ambiguous”. Our notion of purpose is explicitly stated
in the privacy policies and/or indicated by the destination
domain matching ATS blocklists. Shvartzshnaider et al. intro-
duced the contextual integrity (CI) framework to understand
and evaluate privacy policies [57]—they, however, leveraged
manual inspection and not automation.

Privacy of various platforms. The research community
has looked into privacy risks in various platforms, using static
or dynamic code analysis, and—most relevant to us—network
traffc analysis. Enck et al. performed static analysis of An-
droid apps [13] and discovered PII misuse (e.g., personal/-
phone identifers) and ATS activity. Taintdroid, frst intro-
duced taint tracking for mobile apps [12]. Ren et al. [49]
did a comprehensive evaluation of information exposure on
smart home IoT devices. Moghaddam et al. and Varmarken
et al. observed the prevalence of PII exposures and ATS ac-
tivity [37, 67] in Smart TVs. Lentzsch et al. [29] performed
a comprehensive evaluation on Alexa, a voice assistant plat-
form. Ren et al. [50], Razaghpanah et al. [48], and Shuba et
al. [54–56] developed tools for analysis of network traffc gen-
erated by mobile apps, and inspection for privacy exposures
and ATS activity. Our work is the frst to perform network
traffc analysis on the emerging OVR platform, using dynamic
analysis to capture and decrypt networking traffc on the de-
vice; this is more challenging for Unity and Unreal based
apps because, unlike prior work that dealt with standard An-
droid APIs, we had to deal with stripped binary fles (i.e.,
no symbol table). Augmented reality (AR) is another plat-
form the research community has been focusing on in the
past decade [1, 26, 28, 47, 51, 69]. While AR augments our
perception and interaction with the real world, VR replaces
the real world with a virtual one. Nevertheless, some AR pri-
vacy issues are similar to those in VR since they have similar
sensors, e.g., motion sensors.

tual keyboards) [11, 31–33], the privacy of VR is currently
not fully understood. Adams et al. [2] interviewed VR users
and developers on security and privacy concerns, and learnt
that they were concerned with data collection potentially per-
formed by VR devices (e.g., sensors, device being always
on) and that they did not trust VR manufacturers (e.g., Face-
book owning Oculus). Miller et al. present a study on the
implications of the ability of VR technology to track body
motions [36]. Our work is motivated by these concerns but
goes beyond user surveys to analyze data collection practices
exhibited in the network traffc and stated in privacy policies.

Privacy policy analysis. Privacy policy and consistency anal-
ysis in various app ecosystems [4, 5, 21, 58, 68, 71, 72] is be-
coming increasingly automated. Privee [71] is a privacy policy
analyzer that uses NLP to classify the content of a website pri-
vacy policy using a set of binary questions. Slavin et al. used
static code analysis, ontologies, and information fow analysis
to analyze privacy policies for mobile apps on Android [58].
Wang et al. applied similar techniques to check for privacy
leaks from user-entered data in GUI [68]. Zimmeck et al. also
leveraged static code analysis for privacy policy consistency
analysis [72]; they improved on previous work by attempting
to comply with legal requirements (e.g., frst vs. third party,
negative policy statements, etc.). In Section 4, we leverage two
state-of-the-art tools, namely PoliCheck [5] and Polisis [21],
to perform data-fow-to-policy consistency analysis and to
extract the data collection purpose, respectively. PoliCheck
was built on top of PolicyLint [4], a privacy policy analyzer
for mobile apps. It analyzes both positive and negative data
collection (and sharing) statements, and detects contradic-
tions. Lentzsch et al. also used off-the-shelf PoliCheck using
a data ontology crafted for Alexa skills. OVRSEEN focuses
on OVR and improves on PoliCheck in several ways, includ-
ing VR-specifc ontologies, referencing third-party policies,
and extracting data collection purposes.

7 Conclusion

Summary. We present the frst comprehensive study of pri-
vacy aspects for Oculus VR (OVR), the most popular VR
platform. We developed OVRSEEN, a methodology and sys-
tem to characterize the data collection and sharing practices
of the OVR ecosystem by (1) capturing and analyzing data
fows found in the network traffc of 140 popular OVR apps,
and (2) providing additional contexts via privacy policy anal-
ysis that checks for consistency and identifes the purpose of
data collection. We make OVRSEEN’s implementation and
datasets publicly available at [62]. This is the extended ver-
sion of our paper, with the same title, published at USENIX
Security Symposium 2022. Please take a look at our project
page for more information [62].

Privacy of VR. Although there is work on security aspects Limitations and future directions. On the networking
of VR devices (e.g., authentication and attacks on using vir- side, we were able to decrypt, for the frst time, traffc of OVR

15

apps, but the OVR platform itself is closed and we could not
decrypt most of its traffc. In future work, we will explore the
possibility of addressing this limitation by further exploring
binary analysis. On the privacy policy side, PoliCheck and
Polisis rely on different underlying NLP model, with inherent
limitations and incompatibilities—this motivates future work
on a unifed privacy policy and context analyzer.

Acknowledgment

This project was supported by NSF Awards 1815666 and
1956393. We would like to thank our shepherd, Tara Whalen,
and the USENIX Security 2022 reviewers for their feedback,
which helped to signifcantly improve the paper. We would
also like to thank Yiyu Qian, for his help with part of our data
collection process.

References

[1] A. Acquisti, R. Gross, and F. D. Stutzman. Face Recog-
nition and Privacy in the Age of Augmented Reality.
Journal of Privacy and Confdentiality, 6(2):1, 2014.

[2] D. Adams, A. Bah, C. Barwulor, N. Musaby, K. Pitkin,
and E. M. Redmiles. Ethics Emerging: the Story of
Privacy and Security Perceptions in Virtual Reality. In
SOUPS, Aug. 2018.

[3] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose.
SoK: Security Evaluation of Home-Based IoT Deploy-
ments. In IEEE SP, 2019.

[4] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker,
W. Enck, B. Reaves, K. Singh, and T. Xie. PolicyLint:
Investigating Internal Privacy Policy Contradictions on
Google Play. In USENIX Security, Aug. 2019.

[5] B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck,
B. Reaves, K. Singh, and S. Egelman. Actions Speak
Louder than Words: Entity-Sensitive Privacy Policy and
Data Flow Analysis with PoliCheck. In USENIX Secu-
rity, Aug. 2020.

[6] ARMmbed. mbedtls: x509_crt.c. https:
//github.com/ARMmbed/mbedtls/blob/
development/library/x509_crt.c, 2021.

[7] C. Brubaker and Android Security team. Changes to
trusted certifcate authorities in android nougat. https:
//android-developers.googleblog.com/2016/
07/changes-to-trusted-certificate.html, July
2016.

[8] BSDgeek_Jake (XDA Developer). Moaab: Mother of all
ad-blocking. https://forum.xda-developers.com/
showthread.php?t=1916098, 2019.

[9] P. Cipolloni. Universal android ssl pinning bypass with
frida. https://techblog.mediaservice.net/2017/
07/universal-android-ssl-pinning-bypass-
with-frida/, July 2017.

[10] Disconnect, Inc. disconnect-tracking-protection:
Canonical repository for the disconnect services fle.
https://github.com/disconnectme/disconnect-
tracking-protection, 2021.

[11] R. Duezguen, P. Mayer, S. Das, and M. Volkamer. To-
wards Secure and Usable Authentication for Augmented
and Virtual Reality Head-Mounted Displays. arXiv
preprint arXiv:2007.11663, 2020.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Pri-
vacy Monitoring on Smartphones. In OSDI, Oct. 2010.

[13] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A Study of Android Application Security. In USENIX
Security, Aug. 2011.

[14] Epic Games, Inc. Openssl (unreal version). https:
//github.com/EpicGames/UnrealEngine/tree/
master/Engine/Source/ThirdParty/OpenSSL,
2021.

[15] Epic Games, Inc. Unreal engine. https://
www.unrealengine.com/, 2021.

[16] Facebook. Facebook to acquire oculus.
https://about.fb.com/news/2014/03/facebook-
to-acquire-oculus/, March 2014.

[17] E. Fernandes, J. Jung, and A. Prakash. Security Analysis
of Emerging Smart Home Applications. In IEEE SP,
2016.

[18] Google. Android developers - behavior changes:
all apps. https://developer.android.com/about/
versions/10/behavior-changes-all, 2021.

[19] Google. Android developers - best practices
for unique. https://developer.android.com/
training/articles/user-data-ids, 2021.

[20] Google. Android developers - privacy changes in an-
droid 10. https://developer.android.com/about/
versions/10/privacy/changes, 2021.

[21] H. Harkous, K. Fawaz, R. Lebret, F. Schaub, K. G. Shin,
and K. Aberer. Polisis: Automated Analysis and Pre-
sentation of Privacy Policies Using Deep Learning. In
USENIX Security, Aug. 2018.

16

https://github.com/ARMmbed/mbedtls/blob/development/library/x509_crt.c
https://github.com/ARMmbed/mbedtls/blob/development/library/x509_crt.c
https://github.com/ARMmbed/mbedtls/blob/development/library/x509_crt.c
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/EpicGames/UnrealEngine/tree/master/Engine/Source/ThirdParty/OpenSSL
https://github.com/EpicGames/UnrealEngine/tree/master/Engine/Source/ThirdParty/OpenSSL
https://github.com/EpicGames/UnrealEngine/tree/master/Engine/Source/ThirdParty/OpenSSL
https://www.unrealengine.com/
https://www.unrealengine.com/
https://about.fb.com/news/2014/03/facebook-to-acquire-oculus/
https://about.fb.com/news/2014/03/facebook-to-acquire-oculus/
https://developer.android.com/about/versions/10/behavior-changes-all
https://developer.android.com/about/versions/10/behavior-changes-all
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/about/versions/10/privacy/changes
https://developer.android.com/about/versions/10/privacy/changes

[22] S. Hayden. Oculus quest 2 surpasses original quest in
monthly active users. https://www.roadtovr.com/
oculus-quest-2-monthly-active-users/, Jan-
uary 2021.

[23] D. Heaney. The oculus quest 2 ‘jailbreak’ seems to
be fake. https://uploadvr.com/oculus-quest-2-
jailbreak-seems-fake/, November 2020.

[24] H. Jin, M. Liu, K. Dodhia, Y. Li, G. Srivastava,
M. Fredrikson, Y. Agarwal, and J. I. Hong. Why Are
They Collecting My Data? Inferring the Purposes of
Network Traffc in Mobile Apps. In ACM IMWUT,
2018.

[25] K. Kollnig, A. Shuba, R. Binns, M. V. Kleek, and
N. Shadbolt. Are iPhones Really Better for Privacy?
Comparative Study of iOS and Android Apps. arXiv
preprint arXiv:2109.13722, 2021.

[26] A. Kotsios. Privacy in an Augmented Reality. Inter-
national Journal of Law and Information Technology,
23(2):157–185, 2015.

[27] B. Lang. Where to change quest 2 privacy set-
tings and see your vr data collected by facebook.
https://www.roadtovr.com/oculus-quest-2-
privacy-facebook-data-collection-settings/,
October 2020.

[28] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Towards
Security and Privacy for Multi-User Augmented Reality:
Foundations with End Users. In IEEE SP, 2018.

[29] C. Lentzsch, S. J. Shah, B. Andow, M. Degeling, A. Das,
and W. Enck. Hey Alexa, is this Skill Safe?: Taking a
Closer Look at the Alexa Skill Ecosystem. In NDSS,
2021.

[30] Y. Li, Z. Yang, Y. Guo, and X. Chen. DroidBot: a
Lightweight UI-Guided Test Input Generator for An-
droid. In IEEE/ACM ICSE-C, 2017.

[31] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu. I
Know What You Enter on Gear VR. In IEEE CNS, 2019.

[32] S. Luo, A. Nguyen, C. Song, F. Lin, W. Xu, and Z. Yan.
OcuLock: Exploring Human Visual System for Authen-
tication in Virtual Reality Head-mounted Display. In
NDSS, 2020.

[33] F. Mathis, J. H. Williamson, K. Vaniea, and M. Khamis.
Fast and Secure Authentication in Virtual Reality us-
ing Coordinated 3D Manipulation and Pointing. ACM
ToCHI, 2021.

https://techcrunch.com/2020/09/23/the-
oculus-quests-unofficial-app-store-gets-
backing-from-oculus-founder-palmer-luckey/,
September 2020.

[35] E. McCallister, T. Grance, and K. Scarfone. Guide to
Protecting the Confdentiality of Personally Identifable
Information (PII). Technical Report NIST Special Pub-
lication (SP) 800-122, 2010.

[36] M. R. Miller, F. Herrera, H. Jun, J. A. Landay, and J. N.
Bailenson. Personal Identifability of User Tracking
Data during Observation of 360-degree VR Video. Sci-
entifc Reports, 2020.

[37] H. Mohajeri Moghaddam, G. Acar, B. Burgess,
A. Mathur, D. Y. Huang, N. Feamster, E. W. Felten,
P. Mittal, and A. Narayanan. Watching You Watch: The
Tracking Ecosystem of Over-the-Top TV Streaming De-
vices. In ACM CCS, 2019.

[38] Mozilla Corporation and Individual mozilla.org
contributors. Privacy & security guide: Oculus quest
2 vr headset. https://foundation.mozilla.org/
en/privacynotincluded/oculus-quest-2-vr-
headset/, November 2020.

[39] Mozilla Corporation and Individual mozilla.org contrib-
utors. What is fngerprinting and why you should block
it. https://www.mozilla.org/en-US/firefox/
features/block-fingerprinting/, 2021.

[40] H. Nissenbaum. Privacy in Context - Technology, Policy,
and the Integrity of Social Life. 2010.

[41] Oculus. A single way to log into oculus and unlock
social features. https://www.oculus.com/blog/a-
single-way-to-log-into-oculus-and-unlock-
social-features/, August 2020.

[42] Oculus. Supplemental oculus data policy. https://
www.oculus.com/legal/privacy-policy/, October
2020.

[43] Oculus. Track your ftness in vr with oculus move.
https://support.oculus.com/move/, 2021.

[44] Oculus Blog. Testing In-Headset VR Ads.
https://www.oculus.com/blog/testing-in-
headset-vr-ads, Sep 2021.

[45] Ole André V. Ravnås. Frida - dynamic instrumentation
toolkit for developers, reverse-engineers, and security
researchers. https://frida.re/, 2021.

[34] L. Matney. The oculus quest’s unoffcial app store [46] Pi-hole. Pi-hole: Network-wide ad blocking. https:
gets backing from oculus founder palmer luckey. //pi-hole.net/, 2021.

17

https://www.roadtovr.com/oculus-quest-2-monthly-active-users/
https://www.roadtovr.com/oculus-quest-2-monthly-active-users/
https://uploadvr.com/oculus-quest-2-jailbreak-seems-fake/
https://uploadvr.com/oculus-quest-2-jailbreak-seems-fake/
https://www.roadtovr.com/oculus-quest-2-privacy-facebook-data-collection-settings/
https://www.roadtovr.com/oculus-quest-2-privacy-facebook-data-collection-settings/
https://techcrunch.com/2020/09/23/the-oculus-quests-unofficial-app-store-gets-backing-from-oculus-founder-palmer-luckey/
https://techcrunch.com/2020/09/23/the-oculus-quests-unofficial-app-store-gets-backing-from-oculus-founder-palmer-luckey/
https://techcrunch.com/2020/09/23/the-oculus-quests-unofficial-app-store-gets-backing-from-oculus-founder-palmer-luckey/
https://foundation.mozilla.org/en/privacynotincluded/oculus-quest-2-vr-headset/
https://foundation.mozilla.org/en/privacynotincluded/oculus-quest-2-vr-headset/
https://foundation.mozilla.org/en/privacynotincluded/oculus-quest-2-vr-headset/
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/
https://www.oculus.com/blog/a-single-way-to-log-into-oculus-and-unlock-social-features/
https://www.oculus.com/blog/a-single-way-to-log-into-oculus-and-unlock-social-features/
https://www.oculus.com/blog/a-single-way-to-log-into-oculus-and-unlock-social-features/
https://www.oculus.com/legal/privacy-policy/
https://www.oculus.com/legal/privacy-policy/
https://support.oculus.com/move/
https://www.oculus.com/blog/testing-in-headset-vr-ads
https://www.oculus.com/blog/testing-in-headset-vr-ads
https://frida.re/
https://pi-hole.net/
https://pi-hole.net/
https://mozilla.org
https://mozilla.org

[47] P. A. Rauschnabel, J. He, and Y. K. Ro. Antecedents
to the Adoption of Augmented Reality Smart Glasses:
A Closer Look at Privacy Risks. Journal of Business
Research, 92:374–384, 2018.

[48] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill.
Apps, Trackers, Privacy, and Regulators: A Global Study
of the Mobile Tracking Ecosystem. In NDSS, 2018.

[49] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari,
R. Kolcun, and H. Haddadi. Information Exposure From
Consumer IoT Devices: A Multidimensional, Network-
Informed Measurement Approach. In IMC, 2019.

[50] J. Ren, A. Rao, M. Lindorfer, A. Legout, and
D. Choffnes. ReCon: Revealing and Controlling PII
Leaks in Mobile Network Traffc. In MobiSys, 2016.

[51] F. Roesner, T. Kohno, and D. Molnar. Security and Pri-
vacy for Augmented Reality Systems. CACM, 57(4):88–
96, 2014.

[52] S. Rogers. Virtual reality for good use cases: From
educating on racial bias to pain relief during childbirth.
https://www.forbes.com/sites/solrogers/2020/
03/09/virtual-reality-for-good-use-cases-
from-educating-on-racial-bias-to-pain-
relief-during-childbirth/, March 2020.

[53] P. Sarnoff. The vr in the enterprise report: How
retailers and brands are illustrating vr’s potential in
sales, employee training, and product development.
https://www.businessinsider.com/virtual-
reality-for-enterprise-sales-employee-
training-product-2018-12, December 2018.

[54] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and
A. Markopoulou. AntMonitor: A System for On-Device
Mobile Network Monitoring and its Applications. arXiv
preprint arXiv:1611.04268, 2016.

[55] A. Shuba and A. Markopoulou. NoMoATS: Towards
Automatic Detection of Mobile Tracking. In PETS,
2020.

[56] A. Shuba, A. Markopoulou, and Z. Shafq. NoMoAds:
Effective and Effcient Cross-App Mobile Ad-Blocking.
In PETS, 2018.

[57] Y. Shvartzshnaider, N. Apthorpe, N. Feamster, and
H. Nissenbaum. Going Against the (Appropriate) Flow:
a Contextual Integrity Approach to Privacy Policy Anal-
ysis. In HCOMP, 2019.

[58] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Kr-
ishnan, J. Bhatia, T. D. Breaux, and J. Niu. Toward a
Framework for Detecting Privacy Policy Violations in
Android Application Code. In ACM/IEEE ICSE, 2016.

[59] Software Freedom Conservancy. Seleniumhq browser
automation. https://www.selenium.dev/, 2021.

[60] Spatial Systems, Inc. Spatial: Virtual spaces that bring
us together. https://spatial.io/, 2021.

[61] StackExchange. Micro Average vs Macro average
Performance in a Multiclass classifcation set-
ting. https://datascience.stackexchange.com/
questions/15989/micro-average-vs-macro-
average-performance-in-a-multiclass-
classification-settin, 2017.

[62] UCI Networking Group. OVRseen project page. https:
//athinagroup.eng.uci.edu/projects/ovrseen/.

[63] Unity. The Virtual Room ad: a real way to make money
in VR. https://create.unity3d.com/virtual-
room-ad, 2021.

[64] Unity Technologies. mbed tls: An open source, portable,
easy to use, readable and fexible ssl library. https://
github.com/Unity-Technologies/mbedtls, 2021.

[65] Unity Technologies. Unity - the leading platform
for creating interactive, real-time content. https://
unity.com/, 2021.

[66] Unity Technologies. Unity manual: Managed
code stripping. https://docs.unity3d.com/Manual/
ManagedCodeStripping.html, 2021.

[67] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and
Z. Shafq. The TV is Smart and Full of Trackers: Mea-
suring Smart TV Advertising and Tracking. In PETS,
2020.

[68] X. Wang, X. Qin, M. Bokaei Hosseini, R. Slavin, T. D.
Breaux, and J. Niu. GUILeak: Tracing Privacy Policy
Claims on User Input Data for Android Applications. In
IEEE/ACM ICSE, 2018.

[69] B. Wassom. Augmented Reality Law, Privacy, and
Ethics: Law, Society, and Emerging AR Technologies.
2014.

[70] B. Wolford. What is gdpr, the eu’s new data protection
law? https://gdpr.eu/what-is-gdpr/, 2019.

[71] S. Zimmeck and S. M. Bellovin. Privee: An Architecture
for Automatically Analyzing Web Privacy Policies. In
USENIX Security, Aug. 2014.

[72] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu,
F. Schaub, S. Wilson, N. M. Sadeh, S. M. Bellovin,
and J. R. Reidenberg. Automated Analysis of Privacy
Requirements for Mobile Apps. In NDSS, 2017.

18

https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.businessinsider.com/virtual-reality-for-enterprise-sales-employee-training-product-2018-12
https://www.businessinsider.com/virtual-reality-for-enterprise-sales-employee-training-product-2018-12
https://www.businessinsider.com/virtual-reality-for-enterprise-sales-employee-training-product-2018-12
https://www.selenium.dev/
https://spatial.io/
https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin
https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin
https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin
https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin
https://athinagroup.eng.uci.edu/projects/ovrseen/
https://athinagroup.eng.uci.edu/projects/ovrseen/
https://create.unity3d.com/virtual-room-ad
https://create.unity3d.com/virtual-room-ad
https://github.com/Unity-Technologies/mbedtls
https://github.com/Unity-Technologies/mbedtls
https://unity.com/
https://unity.com/
https://docs.unity3d.com/Manual/ManagedCodeStripping.html
https://docs.unity3d.com/Manual/ManagedCodeStripping.html
https://gdpr.eu/what-is-gdpr/

APPENDICES

A Data Privacy on Oculus

In this appendix, we provide more details from our observa-
tions on data collection practices on OVR that complements
our explanation in Section 2. In our preliminary observation,
we discovered two fndings that motivate us to further study
VR privacy in the context of OVR.

First, we discovered that Oculus has been actively updating
their privacy policy over the years. We collected different
versions of Oculus privacy policy [42] over time using Way-
back Machine and examined them manually. Most notably,
we observed a major change in their privacy policy around
May 2018. We suspect that this is due to the implementation
of the GDPR on May 25, 2018 [70]—this has required Oculus
to be more transparent about its data collection practices. For
example, the privacy policy version before May 2018 declares
that Oculus collects information about “physical movements
and dimensions”. The version after May 2018 adds “play area”
as an example for “physical movements and dimensions”. Al-
though it has not been strictly categorized as PII, “play area”
might represent the area of one’s home—it loosely contains
“information identifying personally owned property” that can
potentially be linked to an individual [35]. This motivates us
to empirically study the data collection practices on OVR. We
report how we use OVRSEEN to collect network traffc and
study data exposures on OVR in Section 3.

Second, we found that many apps do not have privacy poli-
cies. Even if they have one, we found that many developers
neglect updating their privacy policies regularly. Many of
these privacy policies even do not have last updated times
information. We found that only around 40 (out of 267) apps
from the offcial Oculus app store and 60 (out of 1075) apps
from the SideQuest app store have updated their privacy pol-
icy texts in 2021. Thus, we suspect that an app’s actual data
collection practices might not always be consistent with the
app’s privacy policy. This motivates us to study how consis-
tent an app’s privacy policy describes the app’s actual data
collection practices. We report how we use OVRSEEN to
analyze privacy policies in Section 4.

B Network Traffc Collection Details

In this appendix, we provide more details on OVRSEEN’s
system for collecting and decrypting network traffc, intro-
duced in Section 3.1. Fig. 8 depicts a detailed version of the
network traffc collection system (i.e., 1 in Fig. 1), which
consists of two main components—AntMonitor and Frida. In
Appendix B.1, we describe the improvements we made to
AntMonitor; and in Appendix B.2, we provide the detailed
workfow of our automated binary analysis technique for fnd-
ing addresses of certifcate validation functions so that we can
hook into them with Frida.

Oculus Quest 2

App

Android SDK

Certificate verifier
functions

Frida Agent

Frida Hooks

ADB

PC

Frida Client

Unity SDK

Mbed TLS
mbedtls_x509_crt_

verify_with_profile()

Android-SDK-verifier-
functions Hook

Address-based Hook

AntMonitor

PCAPNG

TLS Certificate-
pinning Bypass

Script

Unreal SDK

Open SSL
x509_verify_cert()

Function-based Hook

Frida hook

ADB control

Network
traffic

Figure 8: Network traffc collection and decryption.

B.1 Improving AntMonitor
The original version of AntMonitor has several limitations,
which we address in this paper. First, the released version of
AntMonitor supports only up to Android 7. Unfortunately,
Quest 2 runs Oculus OS that is based on Android 10—a ver-
sion of Android which underwent a multitude of changes
to TLS [18] and flesystem access [20], effectively breaking
AntMonitor’s decryption and packet-to-app mapping capa-
bilities. To restore decryption, we frst downgraded all con-
nections handled by AntMonitor to TLS 1.2 so that we can
extract servers’ certifcates, which are encrypted in TLS 1.3
(the default TLS version in Android 10). The servers’ certif-
cates are needed so that AntMonitor can sign them with its
own CA and pass them on to the client app. In addition to
downgrading the TLS version, we also updated to new APIs
for setting the SNI (server name identifcation), since the orig-
inal version used Java refection to access hidden methods
which were no longer available in Android 10. Further, we
updated how AntMonitor checks for trusted certifcates to
remain compatible with Android 10’s stricter security require-
ments. Similarly, in order to fx the packet-to-app mapping,
which relied on reading the now-restricted /proc/net fles,
we re-implemented the functionality using Android 10’s new
APIs from the ConnectivityManager.

Second, AntMonitor prevents common traffc analysis
tools, such as tshark, from re-assembling TCP streams be-
cause it saves both encrypted and decrypted versions of pack-
ets in the same PCAPNG fle and does not adjust the sequence
and ack numbers accordingly. In our work, we wanted to take
advantage of tshark’s re-assembly features, namely the de-
segmentation of TCP streams and HTTP headers and bodies,
so that we could analyze parsed HTTP traffc with confdence.
To that end, we modifed AntMonitor to keep track of de-
crypted sequence and ack numbers for each decrypted fow
and to save decrypted packets in a separate PCAPNG fle
with their adjusted sequence and ack numbers. Without this
improvement, the encrypted and decrypted packets would
share the same sequence and ack numbers, inhibiting TCP
re-assembly.

19

Figure 9: Our decryption technique. Example on Spatial,
an app that enables people to meet through VR [60].

In order to enable other researchers to continue using
AntMonitor in newer Android versions, we will submit a pull
request to its open source repository.

B.2 Binary Analysis Workfow

In Section 3.1 we introduced our automated binary analy-
sis technique for fnding addresses of certifcate validation
functions in Unity’s [64] library so that we can hook into
them with Frida. Fig. 9 illustrates how this technique is ap-
plied on Spatial, an app that enables people to meet through
VR [60], as our example. First (Step 1), we take the app’s
APK fle and extract the version of the Unity framework used
to package the app by scanning its confguration fles—here
we fnd that the Spatial app uses Unity 2020.1.14f1. Sec-
ond (Step 2), we try to fnd Unity 2020.1.14f1 from a
collection of Unity frameworks (we frst have to download
all versions of Unity onto our system). Third (Step 3), we lo-
cate mbedtls_x509_crt_verify_with_profile() in the
(non-stripped) symbolicated pre-compiled Unity SDK bi-
nary fle that comes with Unity 2020.1.14f1. Subse-
quently, we extract the binary signature of the certifcate
validation function, which consists of the 4 bytes preced-
ing the start of the function (i.e., FD FD FF 17) and
the frst 16 bytes starting from the function address (i.e.,
F7 5B BD A9 F5 53 01 A9 F3 7B 02 A9 F4 03 02 AA).
We found that we could not use the entire function as our
signature due to binary compilation optimizations and strip-
ping. Fourth (Step 4), we use this binary signature to locate

mbedtls_x509_crt_verify_with_profile() in the app’s
stripped binary fle and extract its actual address—for the
Spatial app the function is located at address 0x814468. Fi-
nally, we use this extracted address to set a Frida hook for
mbedtls_x509_crt_verify_with_profile() in the Frida
script (see Fig. 8).

C Data Types and ATS Details

In Appendix C.1, we provide details about how we identify
and group data types, which complements our work in Sec-
tion 3.2.2. In Appendix C.2, we provide the full list of po-
tential ATS destinations that are missed by blocklists, which
complements our work in Section 3.3.

C.1 Extracting Data Types
Please recall that Section 3.2.2 introduced our methodology
for extracting data types from our network traffc dataset.

Data types can be identifed through static values (e.g.,
Email, Serial Number, Android ID) which rely on string
matching of keywords. On the other hand, dynamic values
can change based on the application being tested (e.g., SDK
Version), which rely on a combination of string matching
and regular expressions. Table 6 provides the details on the
keywords and regular expressions that we use to extract data
types. For instance, to capture different versions of Unity SDK
Versions being exposed, we rely on the regular expression
UnityPlayer/[\d.]+\d.

Our 21 data types are groups of other fner grain data types,
detailed in Table 6. For example, the data type SDK Version
considers both Unity and Unreal versions, while Usage Time
considers the Start Time and Duration of app usage. Grouping
of data types allows us to provide a more complete picture of
data collection on OVR.

C.2 Missed by Blocklists
As OVR is an emerging platform, there are currently no spe-
cialized blocklists for it. To facilitate the identifcation of do-
mains that are potential ATS, we target domains that collect
multiple different data types. As a result, we extend Table 2
from Section 3.3 and provide the full details of domains that
were missed by blocklists in Table 7.

D Privacy Policy Analysis Details

In this appendix, we provide more details about OVRSEEN’s
privacy policy analysis we described in Section 4. We de-
scribe the details of our improvements for PoliCheck in
Appendix D.1, our manual validation for PoliCheck in Ap-
pendix D.2, and how we integrated Polisis into OVRSEEN
(including our manual validation for Polisis) in Appendix D.3.

20

PII Finer Grain Data Types Keywords or Regular Expressions

Android ID - (hard-coded Android ID), android_id, x–android–id

Device ID - (hard-coded Oculus Device ID), deviceid, device_id, device–id

Email - (hard-coded user email address), email

Geolocation Country Code, Time Zone, GPS countryCode, timeZoneOffset, gps_enabled

Person Name First Name, Last Name (hard-coded from Facebook Account)

Serial Number - (hard-coded Oculus Serial Number), x–oc–selected–headset–serial

User ID User ID and PlayFab ID user_id, UserID, x–player, x–playeruid, profleId, anonymousId, PlayFabIDs

Fingerprint

App Name App Name and App Version app_name, appid, application_name, applicationId, X–APPID, gameId, package_name,
app_build, localprojectid, android_app_signature, gameVersion, package_version

Build Version - build_guid, build_tags

Cookies

Flags

Hardware Info

-

Do Not Track, Tracking, Jail Break,
Subtitle On, Connection Type, In-
stall Mode, Install Store, Scripting
Backend

Device Model, Device RAM, De-
vice VRAM, CPU Vendor, CPU
Flags, Platform CPU Count and Fre-
quency, GPU Name, GPU Driver,
GPU Information, OpenGL Ver-
sion, Screen Resolution, Screen DPI,
Fullscreen Mode, Screen Orienta-
tion, Refresh Rate, Device Info, Plat-
form

cookie

x–do–not–track, tracking, rooted_or_jailbroken, rooted_jailbroken, subtitles, connection–
type, install_mode, install_store, device_info_fags, scripting_backend

device_model, device_type, enabled_vr_devices, vr_device_name, vr_device_model,
Oculus/Quest/hollywood, Oculus[+]?Quest, Quest[]?2, device_ram, de-
vice_vram, Qualcomm Technologies, Inc KONA, ARM64 FP ASIMD AES,
ARMv7 VFPv3 NEON, cpu_count, cpu_freq, ARM64+FP+ASIMD+AES, arm64-
v8a,+armeabi-v7a,+armeabi, Adreno (TM) 650, GIT@09c6a36, GIT@a8017ed,
gpu_api, gpu_caps, gpu_copy_texture_support, gpu_device_id, gpu_vendor_id,
gpu_driver, gpu_max_cubemap_size, gpu_max_texture_size, gpu_shader_caps,
gpu_supported_render_target_count, gpu_texture_format_support, gpu_vendor,
gpu_version, OpenGL ES 3.2, \+3664,\+1920 , 3664 x 1920, 3664x1920, width=3664,
screen_size, screen_dpi, is_fullscreen, screen_orientation, refresh_rate, device_info_fags,
releasePlatform, platform, platformid

SDK Version

Session Info

Unity Version, Unreal Version,
Client Library, VR Shell Version

App Session, Session Counts,
Events, Analytics, Play Session
Status, Play Session Message, Play
Session ID

Unity[-]?v?20[12]\d \.\d +\.\d +, Unity[-]?v?[0-6]\.\d +\.\d +,
UnityPlayer/[\d .]+\d, UnitySDK-[\d .]+\d, x–unity–version, sdk_ver, en-
gine_version, X–Unity–Version, sdk_ver_full, ARCore, X-UnrealEngine-VirtualAgeStats,
engine=UE4, UE4 0.0.1 clientLib, clientLibVersion, x–oc–vrshell–build–name

AppSession, session_id, sessionid, event-id, event_id, objective_id, event-count,
event_count, session-count, session_count, analytic, joinable, lastSeen, join_channel, Join-
Party, SetPartyActiveGameOrWorldID, SetPartyIDForOculusRoomID, JoinOpenWorld,
partyID, worldID, gameOrWorldID, oculusRoomID

System Version - (hard-coded OS version strings), x-build-version-incremental, os_version, operatingSys-
tem, os_family

Usage Time Start Time, Duration t_since_start, startTime, realtimeDuration, seconds_played, game_time, gameDuration

Language - language, language_region, languageCode, system_language

VR Sensory Data

VR Field of View - vr_feld_of_view

VR Movement Position, Rotation, Sensor Flags vr_position, vr_rotation, gyroscope, accelerometer, magnetometer, proximity, sensor_fags,
left_handed_mode

VR Play Area Play Area, Play Area Geometry, Play
Area Dimention, Tracked Area Ge-
ometry, Tracked Area Dimension

vr_play_area_geometry, vr_play_area_dimension, playarea, vr_tracked_area_geometry,
vr_tracked_area_dimension

VR Pupillary Distance - vr_user_device_ipd

Table 6: Extracting data types. Summarizes how we group data types and the keywords and regular expressions (italicized) that
we use to identify them (Section 3.2 and Appendix C.1).

21

FQDN Organization Data Types

bdb51.playfabapi.com, 1c31b.playfabapi.com Microsoft Android ID, User ID, Device ID, Person Name, Email, Geolocation,
Hardware Info, System Version, App Name, Session Info, VR Movement

sharedprod.braincloudservers.com bitHeads Inc. User ID, Geolocation, Hardware Info, System Version, SDK Version,
App Name, Session Info, Language

cloud.liveswitch.io Frozen Mountain Soft- User ID, Device ID, Hardware Info, System Version, App Name, Lan-
ware guage, Cookie

datarouter.ol.epicgames.com Epic Games User ID, Device ID, Hardware Info, SDK version, App Name, Session
Info

9e0j15elj5.execute-api.us-west-1.amazonaws.com Amazon User ID, Hardware Info, System Version, SDK Version, Usage Time

63fdd.playfabapi.com Microsoft Android ID, User ID, Email, SDK Version, App Name

us1-mm.unet.unity3d.com Unity Hardware Info, System Version, SDK Version, Usage Time

scontent.oculuscdn.com Facebook Hardware Info, System Version, SDK Version

api.avatarsdk.com Itseez3d User ID, Hardware Info, SDK Version

52.53.43.176 Amazon Hardware Info, System Version, SDK Version

kingspraymusic.s3-ap-southeast-2.amazonaws.com, Amazon Hardware Info, System Version, SDK Version
s3-ap-southeast-2.amazonaws.com

pserve.sidequestvr.com SideQuestVR Hardware Info, System Version, Language

gsp-auw003-se24.gamesparks.net, GameSparks Device ID, Flags
gsp-auw003-se26.gamesparks.net,
gsp-auw003-se30.gamesparks.net,
live-t350859c2j0k.ws.gamesparks.net

yurapp-502de.frebaseapp.com Alphabet Hardware Info, SDK Version

Table 7: Missed by blocklists continued. We provide third-party FQDNs that are missed by blocklists based on the number
data types that are exposed. This is the full details of Table 2.

D.1 Other PoliCheck Improvements

In Section 4.1.1, we mentioned that we have improved
PoliCheck in OVRSEEN. We detail the improvements below.

Inclusion of third-party privacy policies. PoliCheck as-
sumes that each app has one privacy policy. In practice, many
apps do not disclose third-party data collection clearly in the
privacy policies. Instead, they put links to external third-party
policies and direct users to read them for more information.
For example, consider the following sentence from one of the
privacy policies of apps in our dataset: “For more information
on what type of information Unity collects, please visit their
Privacy Policy page <link>...”

OVRSEEN’s privacy policy analyzer includes statements
from external privacy policies if they are referred to in the
app’s privacy policy. In this case, frst-person pronouns (e.g.,
“we”) in the external privacy policies are translated to the
actual entity names (e.g., “Unity”). Thus, in the above ex-
ample, the app’s data fows are checked against the policy
statements extracted both from the app’s privacy policy and
Unity’s privacy policy.

Resolution of frst-party entity names. Some privacy
policies use full company names to refer to the frst party,
while PoliCheck only considers frst-person pronouns (e.g.,

“we”) as indications of frst-party references. Thus, we found
that PoliCheck wrongly recognizes these company names as
third parties. As a result, frst-party data fows of these apps
were wrongly classifed as omitted disclosure.

To fx this issue, OVRSEEN privacy policy analyzer uses a
per-app list of frst-party names—this list was extracted from:
(1) package names, (2) app store metadata, and (3) special
sentences in privacy policies such as titles, the frst occurrence
of a frst-party name, and copyright notices. These names are
treated as frst party.

Entities. Entities are names of companies and other organi-
zations. We translate domains to entities in order to associate
data fows with disclosures in the privacy policies in Section 4.

Similar to [5], we use a manually-crafted list of domain-to-
entity mappings to determine which entity that each domain
belongs to. For example, *.playfabapi.com is a domain of
the entity Playfab. We started from the original PoliCheck’s
mapping, and added missing domains and entities to it. We
visited each new domain and read the information on the
website to determine its entity. If we could not determine the
entity for a domain, we labeled its entity as unknown third
party. Fig. 3b displays a partial view of our entity ontology.

22

https://playfabapi.com

Label Prec. Recall F1 Support

three-class classifcation

consistent 0.93 0.74 0.82 454
incorrect 0.50 1.00 0.67 2
omitted 0.77 0.94 0.85 425
macro-average 0.74 0.89 0.81
micro-average 0.84 0.84 0.84

binary classifcation

inconsistent (positive) 0.77 0.94 0.85 427
consistent (negative) 0.93 0.74 0.82 454

Table 8: PoliCheck validation. Multi-class and binary clas-
sifcation metrics for each disclosure type along with the av-
eraged performance. Note that support is in terms of number
of data fows.

D.2 PoliCheck Validation
We briefy described our manual validation for PoliCheck
in Section 4.1.3. To test the correctness of OVRSEEN’s pri-
vacy policy analyzer, which is based on PoliCheck that was
ported into the VR domain, we followed the methodology
described in the PoliCheck paper [5] and another study that
applies PoliCheck on Alexa skills [29]. They sampled a por-
tion of consistency results and manually read through the
corresponding privacy policies to validate the results.

In PoliCheck, network-to-policy consistency analysis is a
single-label fve-class classifcation task. To mitigate biases
from human annotators, PoliCheck authors skipped ambigu-
ous disclosures and did not differentiate between clear and
vague disclosures during manual validation, which turned
it into a three-class (i.e., consistent, omitted, and incorrect)
classifcation task. We followed this validation methodology
and obtained the complete results that are shown in Table 8.
The authors reported micro-averaged precision [5]. For com-
pleteness and consistency with PoliCheck results, we also
report recall, F1-score, and macro-averaged metrics. Micro-
and macro-averaging are both popular methods to calculate
aggregated precision and recall in multi-class classifcation
tasks [61]. Macro-averaged precision/recall simply reports the
averaged precision/recall of each class. For example, macro-
averaged precision is

1
Prmacro = (Pr1 + Pr2 + ... + PrN)N

where N is the number of classes and Pri is the precision of
class i. In contrast, micro-averaging sums numbers of true pos-
itives and false positives of all classes frst, and then calculates
the metrics. Thus, micro-averaged precision is

TP1 + TP2 + ... + TPNPrmicro =
(TP1 + TP2 + ... + TPN)+(FP1 + FP2 + ... + FPN)

where TPi and FPi are numbers of true positive and false

Label Prec. Recall F1 Support

additional service feature 0.74 0.70 0.72 20
advertising 0.94 1.00 0.97 16
analytics research 0.91 0.80 0.85 25
basic service feature 0.82 0.45 0.58 20
legal requirement 0.64 1.00 0.78 9
marketing 0.92 0.75 0.83 16
merger acquisition 0.78 0.88 0.82 8
personalization customization 0.80 0.67 0.73 6
service operation and security 0.82 0.64 0.72 14
unspecifc 0.75 0.90 0.81 49

macro-average 0.81 0.78 0.78
micro-average 0.80 0.79 0.79

Table 9: Polisis validation. Multi-label classifcation metrics
for each purpose along with the averaged performance. Note
that support is in terms of number of text segments. Text
segments that Polisis does not annotate with a purpose is
annotated as “unspecifc”.

positive samples of class i. In single-label multi-class classif-
cation, every misclassifcation is a false positive for one class
and a false negative for other classes. Thus, the denominators
in precision and recall are always equal to the population of
samples: micro-averaged precision, recall and F1-score are
all the same. Micro-averaging is preferable when the distribu-
tion of classes is highly imbalanced, which is the case in our
dataset.

In addition, we also report, in Table 8, the precision, recall
and F1-score of the binary classifcation case, where we only
care about whether the data fows are consistent or not with
privacy policy statements. In this case, inconsistent fows are
seen as positive samples.

D.3 Polisis Integration and Validation
We described how we used Polisis for purpose extraction in
Section 4.2. Polisis is available as a black-box online pri-
vacy policy analysis service (https://pribot.org/). We
feed privacy policies (in HTML format) into Polisis and get
text segments annotated with purposes via Polisis Web API.
To the best of our knowledge, it internally uses end-to-end
deep learning classifers to annotate purposes at text-segment
level [21], which is different from PoliCheck’s sentence-level
NLP technique. Since Polisis is not open-sourced, we know
very little about how Polisis segments and processes text in-
ternally.

We developed a translation layer to associate OVRSEEN
data fows with purposes from Polisis. The translation layer
emulates PoliCheck’s text processing on Polisis text segments
to break them into sentences. Next, it compares binary bag-of-
words representation to match sentences from PoliCheck with
sentences from Polisis. Two sentences from both sides match
if one sentence contains all the words in the other sentence.
A successful match yields data type and destination from

23

https://pribot.org/

PoliCheck, and purpose from Polisis. Although we made the
sentence matching very tolerant, it still failed to fnd some
matches due to edge cases caused by the very different text
processing pipelines of PoliCheck and Polisis.

Polisis validation. We evaluated the performance of Polisis
by manually annotating text segments with purposes. The
evaluation process is described in Section 4.2 and the com-
plete results are shown in the upper part of Table 9.

E Responses from Developers

We sent courtesy notifcation emails to inform Oculus and the
developers of the 140 apps about our fndings on September
13 and 14, 2021. We provide a summary of responses from
these developers in Section 5.2. Within a period of two weeks,
we received 24 responses from these developers: three devel-
opers of Oculus free apps, six developers of Oculus paid apps,
and 15 developers of SideQuest apps. Most of these develop-
ers (21/24) responded positively and thanked us for sharing
our fndings about their apps; others responded simply that
they have received the message (e.g., through an automated
reply), or said that the email address we sent our message
to was the wrong one. Five of 19 developers reiterated their
position about their data collection practices and/or referred
us back to their privacy policy. Notably, 12 of 19 developers
inquired further about our fndings: they discussed with us to
gain deeper insights from our fndings, promised to improve
their privacy policy, and asked for our advice on how they can
write better privacy policies. In particular, some developers ex-
pressed the need for training on privacy policy writing and the
diffculty in ensuring consistent disclosures—this implicates
the need for tools, such as OVRSEEN.

24

	1 Introduction
	2 Oculus VR Platform and Apps
	3 OVRseen: Network Traffic
	3.1 Network Traffic Collection
	3.2 Network Traffic Dataset
	3.2.1 Raw Network Traffic Data
	3.2.2 Network Data Flows Extracted

	3.3 OVR Advertising & Tracking Ecosystem
	3.4 Data Flows in Context

	4 OVRseen: Privacy Policy Analysis
	4.1 Network-to-Policy Consistency
	4.1.1 Consistency Analysis System
	4.1.2 Building Ontologies for VR
	4.1.3 Network-to-Policy Consistency Results

	4.2 Data Collection in Context

	5 Discussion
	5.1 VR-Specific Considerations
	5.2 Recommendations

	6 Related Work
	7 Conclusion
	A Data Privacy on Oculus
	B Network Traffic Collection Details
	B.1 Improving AntMonitor
	B.2 Binary Analysis Workflow

	C Data Types and ATS Details
	C.1 Extracting Data Types
	C.2 Missed by Blocklists

	D Privacy Policy Analysis Details
	D.1 Other PoliCheck Improvements
	D.2 PoliCheck Validation
	D.3 Polisis Integration and Validation

	E Responses from Developers

