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1 Abstract 
Virtual reality (VR) is an emerging technology that enables 

new applications but also introduces privacy risks. In this 
paper, we focus on Oculus VR (OVR), the leading platform in 
the VR space and we provide the frst comprehensive analysis 
of personal data exposed by OVR apps and the platform itself, 
from a combined networking and privacy policy perspective. 
We experimented with the Quest 2 headset and tested the 
most popular VR apps available on the offcial Oculus and the 
SideQuest app stores. We developed OVRSEEN, a method-
ology and system for collecting, analyzing, and comparing 
network traffc and privacy policies on OVR. On the network-
ing side, we captured and decrypted network traffc of VR 
apps, which was previously not possible on OVR, and we 
extracted data fows, defned as happ, data type, destinationi. 
Compared to the mobile and other app ecosystems, we found 
OVR to be more centralized and driven by tracking and an-
alytics, rather than by third-party advertising. We show that 
the data types exposed by VR apps include personally identi-
fable information (PII), device information that can be used 
for fngerprinting, and VR-specifc data types. By comparing 
the data fows found in the network traffc with statements 
made in the apps’ privacy policies, we found that approxi-
mately 70% of OVR data fows were not properly disclosed. 
Furthermore, we extracted additional context from the privacy 
policies, and we observed that 69% of the data fows were 
used for purposes unrelated to the core functionality of apps. 

1 Introduction 

Virtual reality (VR) technology has created an emerging mar-
ket: VR hardware and software revenues are projected to in-
crease from $800 million in 2018 to $5.5 billion in 2023 [53]. 
Among VR platforms, Oculus VR (OVR) is a pioneering, and 
arguably the most popular one: within six months since Oc-
tober 2020, an estimated fve million Quest 2 headsets were 
sold [16, 22]. VR technology enables a number of applica-
tions, including recreational games, physical training, health 
therapy, and many others [52]. 

VR also introduces privacy risks: some are similar to those 
on other Internet-based platforms (e.g., mobile phones [12,13], 
IoT devices [3, 17], and Smart TVs [37, 67]), but others are 
unique to VR. For example, VR headsets and hand controllers 

are equipped with sensors that may collect data about the 
user’s physical movement, body characteristics and activity, 
voice activity, hand tracking, eye tracking, facial expressions, 
and play area [27, 36], which may in turn reveal information 
about our physique, emotions, and home. The privacy aspects 
of VR platforms are currently not well understood [2]. 

To the best of our knowledge, our work is the frst large 
scale, comprehensive measurement and characterization of 
privacy aspects of OVR apps and platform, from a combined 
network and privacy policy point of view. We set out to char-
acterize how sensitive information is collected and shared 
in the VR ecosystem, in theory (as described in the privacy 
policies) and in practice (as exhibited in the network traffc 
generated by VR apps). We center our analysis around the 
concept of data fow, which we defne as the tuple happ, data 
type, destinationi extracted from the network traffc. First, 
we are interested in the sender of information, namely the 
VR app. Second, we are interested in the exposed data types, 
including personally identifable information (PII), device in-
formation that can be used for fngerprinting, and VR sensor 
data. Third, we are interested in the recipient of the infor-
mation, namely the destination domain, which we further 
categorize into entity or organization, frst vs. third party w.r.t. 
the sending app, and ads and tracking services (ATS). Inspired 
by the framework of contextual integrity [40], we also seek 
to characterize whether the data fows are appropriate or not 
within their context. More specifcally, our notion of context 
includes: consistency, i.e., whether actual data fows extracted 
from network traffc agree with the corresponding statements 
made in the privacy policy; purpose, extracted from privacy 
policies and confrmed by destination domains (e.g., whether 
they are ATS); and other information (e.g., “notice and con-
sent”). Our methodology and system, OVRSEEN, is depicted 
on Fig. 1. Next we summarize our methodology and fndings. 

Network traffc: methodology and fndings. We were 
able to explore 140 popular, paid and free, OVR apps; and 
then capture, decrypt, and analyze the network traffc they 
generate in order to assess their practices with respect to col-
lection and sharing of personal data on the OVR platform. 

OVRSEEN collects network traffc without rooting the 
Quest 2, by building on the open-source AntMonitor [54], 
which we had to modify to work on the Android 10-based Ocu-
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Figure 1: Overview of OVRSEEN. We select the most popular apps from the offcial Oculus and SideQuest app stores. First, we 
experiment with them and analyze their network traffc: (1) we obtain raw data in PCAPNG and JSON; (2) we extract data 
fows happ, data type, destinationi; and (3) we analyze them w.r.t. data types and ATS ecosystem. Second, we analyze the same 
apps’ (and their used libraries’) privacy policies: (4) we build VR-specifc data and entity ontologies, informed both by network 
traffc and privacy policy text; and (5) we extract collection statements happ, data type, entityi from the privacy policy. Third, 
we compare the two: (6) using our improved PoliCheck, we map each data fow to a collection statement, and we perform 
network-to-policy consistency analysis. Finally, (7) we translate the sentence containing the collection statement into a text 
segment that Polisis can use to extract the data collection purpose. The end result is that data fows, extracted from network 
traffc, are augmented with additional context, such as consistency with policy and purpose of collection. 

lus OS. Furthermore, we successfully addressed new technical 
challenges for decrypting network traffc on OVR. OVRSEEN 
combines dynamic analysis (using Frida [45]) with binary 
analysis to fnd and bypass certifcate validation functions, 
even when the app contains a stripped binary [66]. This was a 
challenge specifc to OVR: prior work on decrypting network 
traffc on Android [37,55] hooked into standard Android SDK 
functions and not the ones packaged with Unity and Unreal, 
which are the basis for game apps. 

We extracted and analyzed data fows found in the col-
lected network traffc from the 140 OVR apps, and we made 
the following observations. We studied a broad range of 21 
data types that are exposed and found that 33 and 70 apps 
send PII data types (e.g., Device ID, User ID, and Android 
ID) to frst-and third-party destinations, respectively (see Ta-
ble 3). Notably, 58 apps expose VR sensory data (e.g., physi-
cal movement, play area) to third-parties. We used state-of-
the-art blocklists to identify ATS and discovered that, unlike 
other popular platforms (e.g., Android and Smart TVs), OVR 
exposes data primarily to tracking and analytics services, and 
has a less diverse tracking ecosystem. Notably, the blocklists 
identifed only 36% of these exposures. On the other hand, 
we found no data exposure to advertising services as ads on 
OVR is still in an experimental phase [44]. 

Privacy policy: methodology and fndings. We provide 
an NLP-based methodology for analyzing the privacy policies 

that accompany VR apps. More specifcally, OVRSEEN maps 
each data fow (found in the network traffc) to its correspond-
ing data collection statement (found in the text of the privacy 
policy), and checks the consistency of the two. Furthermore, 
it extracts the purpose of data fows from the privacy pol-
icy, as well as from the ATS analysis of destination domains. 
Consistency, purpose, and additional information provide con-
text, in which we can holistically assess the appropriateness 
of a data fow [40]. Our methodology builds on, combines, 
and improves state-of-the-art tools originally developed for 
mobile apps: PolicyLint [4], PoliCheck [5], and Polisis [21]. 
We curated VR-specifc ontologies for data types and entities, 
guided by both the network traffc and privacy policies. We 
also interfaced between different NLP models of PoliCheck 
and Polisis to extract the purpose behind each data fow. 

Our network-to-policy consistency analysis revealed that 
about 70% of data fows from VR apps were not disclosed 
or consistent with their privacy policies: only 30% were con-
sistent. Furthermore, 38 apps did not have privacy policies, 
including apps from the offcial Oculus app store. Some app 
developers also had the tendency to neglect declaring data 
collected by the platform and third parties. We found that by 
automatically including these other parties’ privacy policies 
in OVRSEEN’s network-to-policy consistency analysis, 74% 
of data fows became consistent. We also found that 69% 
of data fows have purposes unrelated to the core function-
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ality (e.g., advertising, marketing campaigns, analytics), and 
only a handful of apps are explicit about notice and consent. 
OVRSEEN’s implementation and datasets are made available 
at [62]. 

Overview. The rest of this paper is structured as follows. 
Section 2 provides background on the OVR platform and its 
data collection practices that motivate our work. Section 3 
provides the methodology and results for OVRSEEN’s net-
work traffc analysis. Section 4 provides the methodology and 
results for OVRSEEN’s policy analysis, network-to-policy 
consistency analysis, and purpose extraction. Section 5 dis-
cusses the fndings and provides recommendations. Section 6 
discusses related work. Section 7 concludes the paper. 

Oculus VR Platform and Apps 

In this paper, we focus on the Oculus VR (OVR), a represen-
tative of state-of-the art VR platform. A pioneer and leader 
in the VR space, OVR was bought by Facebook in 2014 [16] 
(we refer to both as “platform-party”), and it maintains to 
be the most popular VR platform today. Facebook has inte-
grated more social features and analytics to OVR and now 
even requires users to sign in using a Facebook account [41]. 

We used the latest Oculus device, Quest 2, for testing. Quest 
2 is completely wireless: it can operate standalone and run 
apps, without being connected to other devices. In contrast, 
e.g., Sony Playstation VR needs to be connected to a Playsta-
tion 4 as its game controller. Quest 2 runs Oculus OS, a variant 
of Android 10 that has been modifed and optimized to run 
VR environments and apps. The device comes with a few 
pre-installed apps, such as the Oculus browser. VR apps are 
usually developed using two popular game engines called 
Unity [65] and Unreal [15]. Unlike traditional Android apps 
that run on Android JVM, these 3D app development frame-
works compile VR apps into optimized (i.e., stripped) binaries 
to run on Quest 2 [66]. 

Oculus has an offcial app store and a number of third-
party app stores. The Oculus app store offers a wide range 
of apps (many of them are paid), which are carefully curated 
and tested (e.g., for VR motion sickness). In addition to the 
Oculus app store, we focus on SideQuest—the most popular 
third-party app store endorsed by Facebook [34]. In contrast 
to apps from the offcial store, apps available on SideQuest 
are typically at their early development stage and thus are 
mostly free. Many of them transition from SideQuest to the 
Oculus app store once they mature and become paid apps. As 
of March 2021, the offcial Oculus app store has 267 apps 
(79 free and 183 paid), and the SideQuest app store has 1,075 
apps (859 free and 218 paid). 

Motivation: privacy risks in OVR. VR introduces pri-
vacy risks, some of which are similar to other Internet-based 
platforms (e.g., Android [12, 13], IoT devices [3, 17], Smart 

TVs [37, 67]), etc.), while others are unique to the VR plat-
form. For example, VR headsets and hand controllers are 
equipped with sensors that collect data about the user’s physi-
cal movement, body characteristics, voice activity, hand track-
ing, eye tracking, facial expressions, and play area [27,36,38], 
which may in turn reveal sensitive information about our 
physique, emotions, and home. Quest 2 can also act as a ft-
ness tracker, thanks to the built-in Oculus Move app that 
tracks time spent for actively moving and amount of calories 
burned across all apps [43]. Furthermore, Oculus has been 
continuously updating their privacy policy with a trend of 
increasingly collecting more data over the years. Most no-
tably, we observed a major update in May 2018, coinciding 
with the GDPR implementation date. Many apps have no 
privacy policy, or fail to properly include the privacy policies 
of third-party libraries. Please see Appendix A for more de-
tail on observations that motivated our study, and Section 6 
on related work. The privacy risks on the relatively new VR 
platform are not yet well understood. 

Goal and approach: privacy analysis of OVR. In this pa-
per, we seek to characterize the privacy risks introduced when 
potentially-sensitive data available on the device are sent by 
the VR apps and/or the platform to remote destinations for var-
ious purposes. We followed an experimental and data-driven 
approach, and we chose to test and analyze the most popular 
VR apps. In Section 3, we characterize the actual behavior 
exhibited in the network traffc generated by these VR apps 
and platform. In Section 4, we present how we downloaded 
the privacy policies of the selected VR apps, the platform, 
and relevant third-party libraries, used NLP to extract and 
analyze the statements made about data collection, analyzed 
their consistency when compared against the actual data fows 
found in traffc, and extracted the purpose of data collection. 

App corpus. We selected OVR apps that are widely used by 
players. Our app corpus consists of 150 popular paid and free 
apps from both the offcial Oculus app store and SideQuest. 
In contrast, previous work typically considered only free apps 
from the offcial app store [12,13,37,67]. We used the number 
of ratings/reviews as the popularity metric, and considered 
only apps that received at least 3.5 stars. We selected three 
groups of 50 apps each: (1) the top-50 free apps and (2) the 
top-50 paid apps from the Oculus app store, and (3) the top-50 
apps from the SideQuest store. We selected an equal number 
of paid and free apps from the Oculus app store to gain insight 
into both groups equally. We purposely did not just pick the 
top-100 apps, because paid apps tend to receive more reviews 
from users and this would bias our fndings towards paid apps. 
Specifcally, this would make our corpus consist of 90% paid 
and 10% free apps. 

Our app corpus is representative of both app stores. Our top-
50 free and top-50 paid Oculus apps constitute close to 40% 
of all apps on the Oculus app store, whereas the total number 
of downloads of our top-50 SideQuest apps is approximately 
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45% of all downloads for the SideQuest store. Out of these 
150 apps, selected for their popularity and representativeness, 
we were able to decrypt and analyze the network traffc for 
140 of them for reasons explained in Section 3.2.1. 

3 OVRSEEN: Network Traffc 

In this section, we detail our methodology for collecting 
and analyzing network traffc. In Section 3.1, we present 
OVRSEEN’s system for collecting network traffc and high-
light our decryption technique. Next, in Section 3.2, we de-
scribe our network traffc dataset and the extracted data fows. 
In Section 3.3, we report our fndings on the OVR ATS ecosys-
tem by identifying domains that were labeled as ATS by pop-
ular blocklists. Finally, in Section 3.4, we discuss data types 
exposures in the extracted data fows according to the context 
based on whether their destination is an ATS or not. 

3.1 Network Traffc Collection 
In this section, we present OVRSEEN’s system for collecting 
and decrypting the network traffc that apps generate ( 1 in 
Fig. 1). It is important to mention that OVRSEEN does not re-
quire rooting Quest 2, and as of June 2021, there are no known 
methods for doing so [23]. Since the Oculus OS is based on 
Android, we enhanced AntMonitor [54] to support the Oculus 
OS. Furthermore, to decrypt TLS traffc, we use Frida [45], a 
dynamic instrumentation toolkit. Using Frida to bypass cer-
tifcate validation specifcally for Quest 2 apps presents new 
technical challenges, compared to Android apps that have a 
different structure. Next, we describe these challenges and 
how we address them. 

Traffc collection. For collecting network traffc, 
OVRSEEN integrates AntMonitor [54]—a VPN-based 
tool for Android that does not require root access. It runs 
completely on the device without the need to re-route 
traffc to a server. AntMonitor stores the collected traffc 
in PCAPNG format, where each packet is annotated (in 
the form of a PCAPNG comment) with the name of the 
corresponding app. To decrypt TLS connections, AntMonitor 
installs a user CA certifcate. However, since Oculus OS 
is a modifed version of Android 10, and AntMonitor only 
supports up to Android 7, we made multiple compatibility 
changes to support Oculus OS. In addition, we enhanced 
the way AntMonitor stores decrypted packets: we adjust the 
sequence and ack numbers to make packet re-assembly by 
common tools (e.g., tshark) feasible in post-processing. 
We will submit a pull request to AntMonitor’s open-source 
repository, so that other researchers can make use of it, not 
only on Quest 2, but also on other newer Android devices. 
For further details, see Appendix B.1. 

TLS decryption. Newer Android devices, such as Quest 
2, pose a challenge for TLS decryption: as of Android 7, 

apps that target API level 24 (Android 7.0) and above no 
longer trust user-added certifcates [7]. Since Quest 2 cannot 
be rooted, we cannot install AntMonitor’s certifcate as a sys-
tem certifcate. Thus, to circumvent the mistrust of AntMoni-
tor’s certifcate, OVRSEEN uses Frida (see Fig. 1) to intercept 
certifcate validation APIs. To use Frida in a non-rooted envi-
ronment, we extract each app and repackage it to include and 
start the Frida server when the app loads. The Frida server 
then listens to commands from a Frida client that is running 
on a PC using ADB. Although ADB typically requires a USB 
connection, we run ADB over TCP to be able to use Quest 2 
wirelessly, allowing for free-roaming testing of VR apps. 

OVRSEEN uses the Frida client to load and inject our cus-
tom JavaScript code that intercepts various APIs used to ver-
ify CA certifcates. In general, Android and Quest 2 apps 
use three categories of libraries to validate certifcates: (1) 
the standard Android library, (2) the Mbed TLS library [64] 
provided by the Unity SDK, and (3) the Unreal version of the 
OpenSSL library [14]. OVRSEEN places Frida hooks into 
the certifcate validation functions provided by these three 
libraries. These hooks change the return value of the inter-
cepted functions and set certain fags used to determine the 
validity of a certifcate to ensure that AntMonitor’s certifcate 
is always trusted. While bypassing certifcate validation in 
the standard Android library is a widely known technique [9], 
bypassing validation in Unity and Unreal SDKs is not. Thus, 
we developed the following technique. 

Decrypting Unity and Unreal. Since most Quest 2 apps 
are developed using either the Unity or the Unreal game en-
gines, they use the certifcate validation functions provided 
by these engines instead of the ones in the standard Android 
library. Below, we present our implementation of certifcate 
validation bypassing for each engine. 

For Unity, we discovered that the main function that 
is responsible for checking the validity of certifcates 
is mbedtls_x509_crt_verify_with_profile() in the 
Mbed TLS library, by inspecting its source code [6]. This 
library is used by the Unity framework as part of its SDK. 
Although Unity apps and its SDK are written in C#, the fnal 
Unity library is a C++ binary. When a Unity app is pack-
aged for release, unused APIs and debugging symbols get 
removed from the Unity library’s binary. This process makes 
it diffcult to hook into Unity’s functions since we cannot 
locate the address of a function of interest without having 
the symbol table to look up its address. Furthermore, since 
the binary also gets stripped of unused functions, we can-
not rely on the debug versions of the binary to look up ad-
dresses because each app will have a different number of 
APIs included. To address this challenge, OVRSEEN auto-
matically analyzes the debug versions of the non-stripped 
Unity binaries (provided by the Unity engine), extracts 
the function signature (i.e., a set of hexadecimal numbers) 
of mbedtls_x509_crt_verify_with_profile(), and then 
looks for this signature in the stripped version of the binary 
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.2 Network Data Flows Extracted App Store Apps Domains eSLDs Packets TCP Fl. 

Oculus-Free 43 85 48 2,818 2,126 
Oculus-Paid 49 54 35 2,278 1,883 

SideQuest 48 57 40 2,679 2,260 

Total 140 158 92 7,775 6,269 

3.2

We
1,1
scr

Ap
Table 1: Network traffc dataset summary. Note that the tai
same domains and eSLDs can appear across the three groups 
of “App Store”, so their totals are based on unique counts. 

to fnd its address. This address can then be used to create the 
necessary Frida hook for an app. The details of this automated 
binary analysis can be found in Appendix B.2. 

For Unreal, we discovered that the main function that is 
responsible for checking the validity of certifcates is the func-
tion x509_verify_cert() in the OpenSSL library, which 
is integrated as part of the Unreal SDK. Fortunately, the 
Unreal SDK binary fle comes with a partial symbol table 
that contains the location of x509_verify_cert(), and thus, 
OVRSEEN can set a Frida hook for it. 

3.2 Network Traffc Dataset 

3.2.1 Raw Network Traffc Data 

We used OVRSEEN to collect network traffc for 1401 apps 
in our corpus during the months of March and April 2021. To 
exercise these 140 apps and collect their traffc, we manually 
interacted with each one for seven minutes. Although there are 
existing tools that automate the exploration of regular (non-
gaming) mobile apps (e.g., [30]), automatic interaction with 
a variety of games is an open research problem. Fortunately, 
manual testing allows us to customize app exploration and 
split our testing time between exploring menus within the app 
to cover more of the potential behavior, and actually playing 
the game, which better captures the typical usage by a human 
user. As shown by prior work, such testing criteria lead to 
more diverse network traffc and reveal more privacy-related 
data fows [24, 50, 67]. Although our methodology might not 
be exhaustive, it is inline with prior work [37, 67]. 

Table 1 presents the summary of our network traffc dataset. 
We discovered 158 domains and 92 eSLDs in 6,269 TCP fows 
that contain 7,775 packets. Among the 140 apps, 96 were 
developed using the Unity framework, 31 were developed 
using the Unreal framework, and 13 were developed using 
other frameworks. 

1The remaining 10 apps were excluded for the following reasons: (1) six 
apps could not be repackaged; (2) two apps were browser apps, which would 
open up the web ecosystem, diverting our focus from VR; (3) one app was 
no longer found on the store—we created our lists of top apps one month 
ahead of our experiments; and (4) one app could not start on the Quest 2 even 
without any of our modifcations. 

 processed the raw network traffc dataset and identifed 
35 data fows: happ, data type, destinationi. Next, we de-
ibe our methodology for extracting that information. 

p names. For each network packet, the app name is ob-
ned by AntMonitor [54]. This feature required a modifca-

tion to work on Android 10, as described in Appendix B.1. 

Data types. The data types we extracted from our network 
traffc dataset are listed in Table 3 and can be categorized into 
roughly three groups. First, we fnd personally identifable in-
formation (PII), including: user identifers (e.g., Name, Email, 
and User ID), device identifers (Android ID, Device ID, and 
Serial Number), Geolocation, etc. Second, we found system 
parameters and settings, whose combinations are known to 
be used by trackers to create unique profles of users [37, 39], 
i.e., Fingerprints. Examples include various version informa-
tion (e.g., Build and SDK Versions), Flags (e.g., indicating 
whether the device is rooted or not), Hardware Info (e.g., De-
vice Model, CPU Vendor, etc.), Usage Time, etc. Finally, we 
also fnd data types that are unique to VR devices (e.g., VR 
Movement and VR Field of View) and group them as VR Sen-
sory Data. These can be used to uniquely identify a user or 
convey sensitive information—the VR Play Area, for instance, 
can represent the actual area of the user’s household. 

We use several approaches to fnd these data types in 
HTTP headers and bodies, and also in any raw TCP seg-
ments that contain ASCII characters. First, we use string 
matching to search for data that is static by nature. For exam-
ple, we search for user profle data (e.g., User Name, Email, 
etc.) using our test OVR account and for any device iden-
tifers (e.g., Serial Number, Device ID, etc.) that can be re-
trieved by browsing the Quest 2 settings. In addition, we 
search for their MD5 and SHA1 hashes. Second, we utilize 
regular expressions to capture more dynamic data types. For 
example, we can capture different Unity SDK versions using 
UnityPlayer/[\d.]+\d. Finally, for cases where a packet 
contains structured data (e.g., URL query parameters, HTTP 
Headers, JSON in HTTP body, etc.), we split the packet into 
key-value pairs and create a list of unique keys that appear 
in our entire network traffc dataset. We then examine this 
list to discover keys that can be used to further enhance our 
search for data types. For instance, we identifed that the keys 
“user_id” and “x–playeruid” can be used to fnd User IDs. 
Appendix C.1 provides more details on our data types. 

Destinations. To extract the destination fully qualifed do-
main name (FQDN), we use the HTTP Host feld and the TLS 
SNI (for cases where we could not decrypt the traffc). Using 
tldextract, we also identify the effective second-level domain 
(eSLD) and use it to determine the high level organization 
that owns it via Crunchbase. We also adopt similar labeling 
methodologies from [67] and [5] to categorize each destina-
tion as either frst-, platform-, or third-party. To perform the 
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Figure 2: Top-10 platform and third-party (a) eSLDs and (b) ATS FQDNs. They are ordered by the number of apps that 
contact them. Each app may have a few frst-party domains: we found that 46 out of 140 (33%) apps contact their own eSLDs. 

categorization, we also make use of collected privacy poli-
cies (see Fig. 1 and Section 4), as described next. First, we 
tokenize the domain and the app’s package name. We label a 
domain as frst-party if the domain’s tokens either appear in 
the app’s privacy policy URL or match the package name’s 
tokens. If the domain is part of cloud-based services (e.g., 
vrapp.amazonaws.com), we only consider the tokens in the 
subdomain (vrapp). Second, we categorize the destination as 
platform-party if the domain contains the keywords “oculus” 
or “facebook”. Finally, we default to the third-party label. 
This means that the data collection is performed by an entity 
that is not associated with app developers nor the platform, 
and the developer may not have control of the data being 
collected. The next section presents further analysis of the 
destination domains. 

3.3 OVR Advertising & Tracking Ecosystem 

In this section, we explore the destination domains found in 
our network traffc dataset (see Section 3.2.2). Fig. 2a presents 
the top-10 eSLDs for platform and third-party. We found that, 
unlike the mobile ecosystem, the presence of third-parties 
is minimal and platform traffc dominates in all apps (e.g., 
oculus.com, f acebook.com). The most prominent third-party 
organization is Unity (e.g., unity3d.com), which appears in 
68 out of 140 apps (49%). This is expected since 96 apps in 
our dataset were developed using the Unity engine (see Sec-
tion 3.2.1). Conversely, although 31 apps in our dataset were 
developed using the Unreal engine, it does not appear as a ma-
jor third-party data collector because Unreal does not provide 
its own analytics service. Beyond Unity, other small players 
include Alphabet (e.g., google.com, cloudfunctions.net) and 
Amazon (e.g., amazonaws.com). In addition, 87 out of 140 
apps contact four or fewer third-party eSLDs (62%). 

Identifying ATS domains. To identify ATS domains, we 
apply the following popular domain-based blocklists: (1) Pi-
Hole’s Default List [46], a list that blocks cross-platform ATS 
domains for IoT devices; (2) Mother of All Adblocking [8], 

a list that blocks both ads and tracking domains for mobile 
devices; and (3) Disconnect Me [10], a list that blocks track-
ing domains. For the rest of the paper, we will refer to the 
above lists simply as “blocklists”. We note that there are no 
blocklists that are curated for VR platforms. Thus, we choose 
blocklists that balance between IoT and mobile devices, and 
one that specializes in tracking. 

OVR ATS ecosystem. The majority of identifed ATS do-
mains relate to social and analytics-based purposes. Fig. 2b 
provides the top-10 ATS FQDNs that are labeled by our block-
lists. We found that the prevalent platform-related FQDNs 
along with Unity, the prominent third party, are labeled as 
ATS. This is expected: domains such as graph.oculus.com 
and perf-events.cloud.unity3d.com are utilized for social 
features like managing leaderboards and app analytics, 
respectively. We also consider the presence of organiza-
tions based on the number of unique domains contacted. 
The most popular organization is Alphabet, which has 
13 domains, such as google-analytics.com and frebase-
settings.crashlytics.com. Four domains are associated with 
Facebook, such as graph.facebook.com. Similarly, four are 
from Unity, such as userreporting.cloud.unity3d.com and 
confg.uca.cloud.unity3d.com. Other domains are associated 
with analytics companies that focus on tracking how users 
interact with apps (e.g., whether they sign up for an ac-
count) such as logs-01.loggly.com, api.mixpanel.com, and 
api2.amplitude.com. Lastly, we provide an in-depth compari-
son to other ecosystems in Section 5.1. 

Missed by blocklists. The three blocklists that we use in 
OVRSEEN are not tailored for the Oculus platform. As a 
result, there could be domains that are ATS related but not 
labeled as such. To that end, we explored and leveraged data 
fows to fnd potential domains that are missed by blocklists. 
In particular, we start from data types exposed in our network 
traffc, and identify the destinations where these data types 
are sent to. Table 2 summarizes third-party destinations that 
collect the most data types and are not already captured by 
any of the blocklists. We found the presence of 11 different 
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FQDN Organization Data Types 

bdb51.playfabapi.com Microsoft 11 

sharedprod.braincloudservers.com bitHeads Inc. 8 

cloud.liveswitch.io Frozen Mountain 
Software 

7 

datarouter.ol.epicgames.com Epic Games 6 

9e0j15elj5.execute-api.us-west-
1.amazonaws.com 

Amazon 5 

Table 2: Top-5 third-party FQDNs that are missed by block-
lists based on the number of data types exposed. 

Data Types (21) 
PII 1st 

Apps 
3rd Pl. 

FQDNs 
1st 3rd Pl. 

% Blocked 
1st 3rd Pl. 

Device ID 
User ID 
Android ID 
Serial Number 
Person Name 
Email 
Geolocation 

6 
5 
6 
0 
1 
2 
0 

64 
65 
31 

0 
7 
5 
5 

2 
0 

18 
18 

0 
0 
0 

6 
5 
6 
0 
1 
2 
0 

13 
13 

7 
0 
4 
5 
4 

1 
0 
2 
2 
0 
0 
0 

0 
20 
17 

-
0 
0 
-

38 
38 
43 

-
50 
20 
50 

100 
-

50 
50 

-
-
-

Fingerprint 

SDK Version 
Hardware Info 
System Version 
Session Info 
App Name 
Build Version 
Flags 
Usage Time 
Language 
Cookies 

VR Sensory Data 

23 
21 
16 

7 
4 
0 
6 
2 
5 
5 

69 
65 
62 
66 
65 
61 
53 
59 
28 

4 

20 
19 
19 

2 
2 
0 
2 
0 

16 
2 

34 
25 
20 

7 
4 
0 
6 
2 
5 
5 

28 
23 
21 
13 
10 

3 
8 
4 
9 
3 

4 
3 
3 
1 
1 
0 
1 
0 
1 
1 

6 
4 
5 

14 
25 

-
0 
0 
0 
0 

46 
39 
43 
46 
40 

100 
50 
50 
56 
33 

0 
33 
33 

100 
100 

-
100 

-
0 

100 

VR Play Area 
VR Movement 
VR Field of View 
VR Pupillary 
Distance 

0 
1 
0 
0 

40 
24 
16 
16 

0 
2 
0 
0 

0 
1 
0 
0 

1 
6 
1 
1 

0 
1 
0 
0 

-
0 
-
-

100 
67 

100 
100 

-
100 

-
-

Total 33 70 22 44 39 5 5 36 20 

Table 3: Data types exposed in the network traffc dataset. 
Column “Apps” reports the number of apps that send the data 
type to a destination; column “FQDNs” reports the number of 
FQDNs that receive that data type; and column “% Blocked” 
reports the percentage of FQDNs blocked by blocklists. Using 
sub-columns, we denote party categories: frst (1st), third (3rd), 
and platform (Pl.) parties. 

organizations, not caught by blocklists, including: Microsoft, 
bitHeads Inc., and Epic Games—the company that created 
the Unreal engine. The majority are cloud-based services that 
provide social features, such as messaging, and the ability to 
track users for engagement and monetization (e.g., promotions 
to different segments of users). We provide additional FQDNs 
missed by blocklists in Appendix C.2. 
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3.4 Data Flows in Context 
The exposure of a particular data type, on its own, does not 
convey much information: it may be appropriate or inappropri-
ate depending on the context [40]. For example, geolocation 
sent to the GoogleEarth VR or Wander VR app is necessary 
for the functionality, while geolocation used for ATS purposes 
is less appropriate. The network traffc can be used to partly 
infer the purpose of data fows, e.g., depending on whether 
the destination being frst-, third-, or platform-party; or an 
ATS. Table 3 lists all data types found in our network traffc, 
extracted using the methods explained in Section 3.2.2. 

Third party. Half of the apps (70 out of 140) expose data 
fows to third-party FQDNs, 36% of which are labeled as 
ATS by blocklists. Third parties collect a number of PII data 
types, including Device ID (64 apps), User ID (65 apps), and 
Android ID (31 apps), indicating cross-app tracking. In addi-
tion, third parties collect system, hardware, and version info 
from over 60 apps—denoting the possibility that the data 
types are utilized to fngerprint users. Further, all VR specifc 
data types, with the exception of VR Movement, are collected 
by a single third-party ATS domain belonging to Unity. VR 
Movement is collected by a diverse set of third-party desti-
nations, such as google-analytics.com, playfabapi.com and 
logs-01.loggly.com, implying that trackers are becoming in-
terested in collecting VR analytics. 

Platform party. Our fndings on exposures to platform-
party domains are a lower bound since not all platform traffc 
could be decrypted (see Section 7). However, even with lim-
ited decryption, we see a number of exposures whose destina-
tions are fve third-party FQDNs. Although only one of these 
FQDNs is labeled as ATS by the blocklists, other platform-
party FQDNs could be ATS domains that are missed by block-
lists (see Section 3.3). For example, graph.facebook.com is an 
ATS FQDN, and graph.oculus.com appears to be its counter-
part for OVR; it collects six different data types in our dataset. 
Notably, the platform party is the sole party responsible for 
collecting a sensitive hardware ID that cannot be reset by the 
user—the Serial Number. In contrast to OVR, the Android 
developer guide strongly discourages its use [19]. 

First party. Only 33 apps expose data fows to frst-party 
FQDNs, and only 5% of them are labeled as ATS. Interest-
ingly, the blocklists tend to have higher block rates for frst-
party FQDNs if they collect certain data types, e.g., Android 
ID (17%), User ID (20%), and App Name (25%). Popular 
data types collected by frst-party destinations are Hardware 
Info (21 apps), SDK Version (23 apps), and System Version 
(16 apps). For developers, this information can be used to 
prioritize bug fxes or improvements that would impact the 
most users. Thus, it makes sense that only ~5% of frst-party 
FQDNs that collect this information are labeled as ATS. 

Summary. The OVR ATS ecosystem is young when com-
pared to Android and Smart TVs. It is dominated by tracking 

https://graph.oculus.com
https://graph.facebook.com
https://logs-01.loggly.com
https://playfabapi.com
https://google-analytics.com


domains for social features and analytics, but not by ads. We 4.1.1 Consistency Analysis System 
have detailed 21 different data types that OVR sends to frst-, 
third-, and platform-parties. State-of-the-art blocklists only 
captured 36% of exposures to third parties, missing some 
sensitive exposures such as Email, User ID, and Device ID. 

4 OVRSEEN: Privacy Policy Analysis 

In this section, we turn our attention to the intended data 
collection and sharing practices, as stated in the text privacy 
policy. For example, from the text ”We may collect your email 
address and share it for advertising purposes”, we want to ex-
tract the collection statement (“we”, which implies the app’s 
frst-party entity; “collect” as action; and “email address” as 
data type) and the purpose (“advertising”). In Section 4.1.1, 
we present our methodology for extracting data collection 
statements, and comparing them against data fows found in 
network traffc for consistency. OVRSEEN builds and im-
proves on state-of-the-art NLP-based tools: PoliCheck [5] 
and PolicyLint [4], previously developed for mobile apps. 
In Section 4.1.2, we present our VR-specifc ontologies for 
data types and entities. In Section 4.1.3, we report network-
to-policy consistency results. Section 4.2 describes how we 
interface between the different NLP models of PoliCheck and 
Polisis to extract the data collection purpose and other context 
for each data fow. 

Collecting privacy policies. For each app in Section 3, we 
also collected its privacy policy on the same day that we 
collected its network traffc. Specifcally, we used an auto-
mated Selenium [59] script to crawl the webstore and ex-
tracted URLs of privacy policies. For apps without a policy 
listed, we followed the link to the developer’s website to fnd 
a privacy policy. We also included eight third-party policies 
(e.g., from Unity, Google), referred to by the apps’ policies. 

For the top-50 free apps on the Oculus store, we found that 
only 34 out of the 43 apps have privacy policies. Surprisingly, 
for the top-50 paid apps, we found that only 39 out of 49 
apps have privacy policies. For the top-50 apps on SideQuest, 
we found that only 29 out of 48 apps have privacy policies. 
Overall, among apps in our corpus, we found that only 102 
(out of 140) apps provide valid English privacy policies. We 
treated the remaining apps as having empty privacy policies, 
ultimately leading OVRSEEN to classify their data fows as 
omitted disclosures. 

4.1 Network-to-Policy Consistency 

Our goal is to analyze text in the app’s privacy policy, extract 
statements about data collection (and sharing), and compare 
them against the actual data fows found in network traffc. 

OVRSEEN builds on state-of-the-art tools: PolicyLint [4] and 
PoliCheck [5]. PolicyLint [4] provides an NLP pipeline that 
takes a sentence as input. For example, it takes the sentence 

“We may collect your email address and share it for advertising 
purposes”, and extracts the collection statement “(entity: we, 
action: collect, data type: email address)”. More generally, 
PolicyLint takes the app’s privacy policy text, parses sentences 
and performs standard NLP processing, and eventually ex-
tracts data collection statements defned as the tuple P =happ, 
data type, entityi, where app is the sender and entity is the 
recipient performing an action (collect or not collect) on the 
data type. PoliCheck [5] takes the app’s data fows (extracted 
from the network traffc and defned as F =hdata type, entityi) 
and compares it against the stated P for consistency. 

PoliCheck classifes the disclosure of F as clear (if the data 
fow exactly matches a collection statement), vague (if the 
data fow matches a collection statement in broader terms), 
omitted (if there is no collection statement corresponding to 
the data fow), ambiguous (if there are contradicting collection 
statements about a data fow), or incorrect (if there is a data 
fow for which the collection statement states otherwise). Fol-
lowing PoliCheck’s terminology [5], we further group these 
fve types of disclosures into two groups: consistent (clear and 
vague disclosures) and inconsistent (omitted, ambiguous, and 
incorrect) disclosures. The idea is that for consistent disclo-
sures, there is a statement in the policy that matches the data 
type and entity, either clearly or vaguely. Table 4 provides 
real examples of data collection disclosures extracted from 
VR apps that we analyzed. 

Consistency analysis relies on pre-built ontologies and syn-
onym lists used to match (i) the data type and destination that 
appear in each F with (ii) any instance of P that discloses the 
same (or a broader) data type and destination2. OVRSEEN’s 
adaptation of ontologies specifcally for VR is described in 
Section 4.1.2. We also improved several aspects of PoliCheck, 
as described in detail in Appendix D.1. First, we added a fea-
ture to include a third-party privacy policy for analysis if it is 
mentioned in the app’s policy. We found that 30% (31/102) of 
our apps’ privacy policies reference third-party privacy poli-
cies, and the original PoliCheck would mislabel third-party 
data fows from these apps as omitted. Second, we added a 
feature to more accurately resolve frst-party entity names. 
Previously, only frst-person pronouns (e.g., “we”) were used 
to indicate a frst-party reference, while some privacy policies 
use company and app names in frst-party references. The 
original PoliCheck would incorrectly recognize these frst-

2For example (see Fig. 3a), “email address” is a special case of “contact 
info” and, eventually, of “pii”. There is a clear disclosure w.r.t. data type if 
the “email address” is found in a data fow and a collection statement. A 
vague disclosure is declared if the “email address” is found in a data fow 
and a collection statement that uses the term “pii” in the privacy policy. An 
omitted disclosure means that “email address” is found in a data fow, but 
there is no mention of it (or any of its broader terms) in the privacy policy. 
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Disclosure Type Privacy Policy Text Action : Data Collection Statement (P) Data Flow (F) 

Clear “For example, we collect information ..., and a collect : hcom.cvr.terminus, usage time, wei husage time, wei 
timestamp for the request.” 

Vague “We will share your information (in some cases collect : hcom.HomeNetGames.WW1oculus, hserial number, oculusi 
personal information) with third-parties, ...” pii, third partyi handroid id, oculusi 

In
co

ns
is

te
nt

 
C

on
si

st
en

t 

Omitted - collect : hcom.kluge.SynthRiders, -, -i hsystem version, oculusi 
hsdk version, oculusi 
hhardware information, oculusi 

Ambiguous “..., Skydance will not disclose any Personally 
Identifable Information to third parties ... 
your Personally Identifable Information will be 
disclosed to such third parties and ...” 

collect : hcom.SDI.TWD, pii, third partyi hserial number, oculusi 
handroid id, oculusi 

Incorrect “We do not share our customer’s personal in-
formation with unaffliated third parties ...” 

not_collect : hcom.downpourinteractive. 
onward, pii, third partyi 

hdevice id, unityi 
huser id, oculusi 

Table 4: Examples to illustrate the types of disclosures identifed by PoliCheck. A data collection statement (P) is extracted 
from the privacy policy text and is defned as the tuple P =happ, data type, entityi. A data fow (F) is extracted from the network 
traffc and is defned as F =hdata type, entityi. During the consistency analysis, each P can be mapped to zero, one, or more F . 

party references as third-party entities for 16% (16/102) of 
our apps’ privacy policies. 

4.1.2 Building Ontologies for VR 

Ontologies are used to represent subsumptive relationships 
between terms: a link from term A to term B indicates that A is 
a broader term (hypernym) that subsumes B. There are two on-
tologies, namely data and entity ontologies: the data ontology 
maps data types and entity ontology maps destination entities. 
Since PoliCheck was originally designed for Android mobile 
app’s privacy policies, it is important to adapt the ontologies 
to include data types and destinations specifc to VR’s privacy 
policies and actual data fows. 

VR data ontology. Fig. 3a shows the data ontology we de-
veloped for VR apps. Leaf nodes correspond to all 21 data 
types found in the network traffc and listed in Table 3. Non-
leaf nodes are broader terms extracted from privacy policies 
and may subsume more specifc data types, e.g., “device iden-
tifer” is a non-leaf node that subsumes “android id”. We built 
a VR data ontology, starting from the original Android data 
ontology, in a few steps as follows. First, we cleaned up the 
original data ontology by removing data types that do not 
exist on OVR (e.g., “IMEI”, “SIM serial number”, etc.). We 
also merged similar terms (e.g., “account information” and 
“registration information”) to make the structure clearer. Next, 
we used PoliCheck to parse privacy policies from VR apps. 
When PoliCheck parses the sentences in a privacy policy, it 
extracts terms and tries to match them with the nodes in the 
data ontology and the synonym list. If PoliCheck does not fnd 
a match for the term, it will save it in a log fle. We inspected 
each term from this log fle, and added it either as a new node 
in the data ontology or as a synonym to an existing term in 
the synonym list. Finally, we added new terms for data types 
identifed in network traffc (see Section 3.4) as leaf nodes in 
the ontology. Most notably, we added VR-specifc data types 
(see VR Sensory Data category shown in Table 3): “biomet-

ric info” and “environment info”. The term “biometric info” 
includes physical characteristics of human body (e.g., height, 
weight, voice, etc.); we found some VR apps that collect 
user’s “pupillary distance” information. The term “environ-
ment information” includes VR-specifc sensory information 
that describes the physical environment; we found some VR 
apps that collect user’s “play area” and “movement”. Table 5 
shows the summary of the new VR data ontology. It consists 
of 63 nodes: 39 nodes are new in OVRSEEN’s data ontology. 
Overall, the original Android data ontology was used to track 
12 data types (i.e., 12 leaf nodes) [5], whereas our VR data 
ontology is used to track 21 data types (i.e., 21 leaf nodes) 
appearing in the network traffc (see Table 3 and Fig. 3a). 

VR entity ontology. Entities are names of companies and 
other organizations which refer to destinations. We use a list 
of domain-to-entity mappings to determine which entity each 
domain belongs to (see Appendix D.1)—domain extraction 
and categorization as either frst-, third-, or platform-party 
are described in detail in Section 3.2.2. We modifed the An-
droid entity ontology to adapt it to VR as follows: (1) we 
pruned entities that were not found in privacy policies of VR 
apps or in our network traffc dataset, and (2) we added new 
entities found in both sources. Table 5 summarizes the new 
entity ontology. It consists of 64 nodes: 21 nodes are new in 
OVRSEEN’s entity ontology. Fig. 3b shows our VR entity 
ontology, in which we added two new non-leaf nodes: “plat-
form provider” (which includes online distribution platforms 
or app stores that support the distribution of VR apps) and 
“api” (which refers to various third-party APIs and services 
that do not belong to existing entities). We identifed 16 new 
entities that were not included in the original entity ontology. 
We visited the websites of those new entities and found that: 
three are platform providers, four are analytic providers, and 
12 are service providers; these become the leaf nodes of “api”. 
We also added a new leaf node called “others” to cover a few 
data fows, whose destinations cannot be determined from the 
IP address or domain name. 
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(a) Data Ontology (b) Entity Ontology 

Figure 3: Ontologies for VR data fows. Please recall that each data fow, F, is defned as F =hdata type, entityi. We started 
from the PoliCheck ontologies, originally developed for Android (printed in gray). First, we eliminated nodes that did not appear 
in our VR network traffc and privacy policies. Then, we added new leaf nodes (printed in black) based on new data types found 
in the VR network traffc and/or privacy policies text. Finally, we defned additional non-leaf nodes, such as “biometric info” and 
”api”, in the resulting VR data and entity ontologies. 

Platform Data Ontology Entity Ontology 

Android [5] 38 nodes 209 nodes 
OVR (OVRSEEN) 63 nodes 64 nodes 

New nodes in OVR 39 nodes 21 nodes 

Table 5: Comparison of PoliCheck and OVRSEEN Ontologies. 
Nodes include leaf nodes (21 data types and 16 entities) and 
non-leaf nodes (see Fig. 3). 

Summary. Building VR ontologies has been non-trivial. 
We had to examine a list of more than 500 new terms and 
phrases that were not part of the original ontologies. Next, we 
had to decide whether to add a term into the ontology as a new 
node, or as a synonym to an existing node. In the meantime, 
we had to remove certain nodes irrelevant to VR and merge 
others because the original Android ontologies were partially 
machine-generated and not carefully curated. 

4.1.3 Network-to-Policy Consistency Results 

We ran OVRSEEN’s privacy policy analyzer to perform 
network-to-policy consistency analysis. Please recall that we 
extracted 1,135 data fows from 140 apps (see Section 3.2.2). 

OVR data fow consistency. In total, 68% (776/1,135) data 
fows are classifed as inconsistent disclosures. The large ma-
jority of them 97% (752/776) are omitted disclosures, which 
are not declared at all in the apps’ respective privacy policies. 

Fig. 4 presents the data-fow-to-policy consistency analysis 
results. Out of 93 apps which expose data types, 82 apps have 
at least one inconsistent data fows. Among the remaining 
32% (359/1,135) consistent data fows, 86% (309/359) are 
classifed as vague disclosures. They are declared in vague 
terms in the privacy policies (e.g., the app’s data fows contain 
the data type “email address”, whereas its privacy policy only 
declares that the app collects “personal information”). Clear 
disclosures are found in only 16 apps. 

Data type consistency. Fig. 5a reports network-to-policy 
consistency analysis results by data types—recall that in Sec-
tion 3.2.2 we introduced all the exposed data types into three 
categories: PII, Fingerprint, and VR Sensory Data. The PII 
category contributes to 22% (250/1,135) of all data fows. 
Among the three categories, PII has the best consistency: 57% 
(142/250) data fows in this category are classifed as consis-
tent disclosures. These data types are well understood and also 
treated as PII in other platforms. On Android [5], it is reported 
that 59% of PII fows were consistent—this is similar to our 
observation on OVR. The Fingerprint category constitutes 
69% (784/1,135) of all data fows: around 25% (199/784) of 
data fows in this category are classifed as consistent disclo-
sures. The VR Sensory Data category constitutes around 9% 
(101/1,135) of all data fows—this category is unique to the 
VR platform. Only 18% (18/101) data fows of this category 
are consistent—this indicates that the collection of data types 
in this category is not properly disclosed in privacy policies. 
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Figure 4: Summary of network-to-policy consistency analysis results. Columns whose labels are in parentheses provide 
aggregate values: e.g., column “(platform)” aggregates the columns “oculus” and “facebook”; column “(other 3rd parties)” 
aggregates the subsequent columns. The numbers count data fows; each data fow is defned as happ, data type, destinationi). 

Entity consistency. Fig. 5b reports our network-to-policy 
consistency results, by entities. Only 29% (298/1,022) of third-
party and platform data fows are classifed as consistent dis-
closures. First-party data fows constitute 10% (113/1,135) of 
all data fows: 54% (61/113) of these frst-party data fows are 
classifed as consistent disclosures. Thus, 69% (785/1,135) of 
all data fows are classifed as inconsistent disclosures. Third-
party and platform data fows constitute 90% (1,022/1,135) of 
all data fows—surprisingly, only 29% (298/1,022) of these 
third-party and platform data fows are classifed as consistent 
disclosures. 

Unity is the most popular third-party entity, with 66% 
(746/1,135) of all data fows. Only 31% (232/746) of these 
Unity data fows are classifed as consistent, while the ma-
jority (69%) are classifed as inconsistent disclosures. Plat-
form (i.e., Oculus and Facebook) data fows account for 11% 
(122/1,135) of all data fows; only 28% (34/122) of them are 
classifed as consistent disclosures. Other less prevalent enti-
ties account only around 14% (154/1,135) of all data fows. 

Referencing Oculus and Unity privacy policies. Privacy 
policies can link to each other. For instance, when using Quest 
2, users should be expected to consent to the Oculus privacy 
policy (for OVR). Likewise, when app developers utilize a 
third party engine (e.g., Unity) their privacy policies should 
include the Unity privacy policy. To the best of our knowledge, 
this aspect has not been considered in prior work [5, 29, 72]. 

Interestingly, when we included the Oculus and Unity 

privacy policies (when applicable) in addition to the app’s 
own privacy policy, we found that the majority of platform 
(116/122 or 96%) and Unity (725/746 or 97%) data fows get 
classifed as consistent disclosures. Thus, 74% (841/1,135) of 
all data fows get classifed as consistent disclosures. Fig. 6 
shows the comparison of the results from this new experiment 
with the previous results shown in Fig. 5b. These show that 
data fows are properly disclosed in Unity and Oculus privacy 
policies even though the app developers’ privacy policies 
usually do not refer to these two important privacy policies. 
Furthermore, we noticed that the Oculus and Unity privacy 
policies are well-written and clearly disclose collected data 
types. As discussed in [5], developers may be unaware of their 
responsibility to disclose third-party data collections, or they 
may not know exactly how third-party SDKs in their apps 
collect data from users. This is a recommendation for future 
improvement. 

Validation of PoliCheck results (network-to-policy consis-
tency). To test the correctness of PoliCheck when applied 
to VR apps, we manually inspected all data fows from apps 
that provided a privacy policy, and checked their consistency 
with corresponding collection statements in the policy. Three 
authors had to agree on the consistency result (one of the fve 
disclosure types) of each data fow. We found the following. 

First, we considered multi-class classifcation into consis-
tent, omitted and incorrect disclosures, similar to PoliCheck’s 
evaluation [5]. The performance of multi-class classifcation 
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Figure 5: Network-to-policy consistency analysis results ag-
gregated by (a) data types, and (b) destination entities. 

can be assessed using micro-averaging or macro-averaging 
of metrics across classes. Micro-averaging is more appro-
priate for imbalanced datasets and was also used for consis-
tency analysis of Android apps [5] and Alexa skills [29]. In 
our VR dataset, we obtained 84% micro-averaged precision, 
recall and F1-score3. This is comparable to the correspond-
ing numbers when applying PoliCheck to mobile [5] and 
Alexa Skills [29], which reported 90.8% and 83.3% (micro-
averaged) precision/recall/F1-score, respectively. For com-
pleteness, we also computed the macro-averaged precision, 
recall and F1-score to be 74%, 89%, and 81% respectively 
(see Table 8). 

Second, we considered the binary classifcation case (i.e., 
we treat inconsistent disclosures as positive and consistent 
disclosures as negative samples). We obtained 77% precision, 
94% recall, and 85% F1-score (see Appendix D.2 for more 
details). Overall, PoliCheck, along with our improvements for 
OVRSEEN, works well on VR apps4. 

3In multi-class classifcation, every misclassifcation is a false positive 
for one class and a false negative for other classes; thus, micro-averaged 
precision, recall, and F1-score are all the same (see Appendix D.2). 

4However, the precision is lower when distinguishing between clear and 
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Figure 6: Referencing Oculus and Unity privacy policies. 
Comparing the results from the ideal case (including Unity 
and Oculus privacy policies by default) and the previous ac-
tual results (only including the app’s privacy policy and any 
third-party privacy policies linked explicitly therein). 

4.2 Data Collection in Context 

Consistent (i.e., clear, or even vague) disclosures are desirable 
because they notify the user about the VR apps’ data collec-
tion and sharing practices. However, they are not suffcient to 
determine whether the information fow is within its context 
or social norms. This context includes (but is not limited to) 
the purpose and use, notice and consent, whether it is legally 
required, and other aspects of the “transmission principle” in 
the terminology of contextual integrity [40]. In the previous 
section, we have discussed the consistency of the network 
traffc w.r.t. the privacy policy statements: this provides some 
context. In this section, we identify an additional context: we 
focus on the purpose of data collection. 

Purpose. We extract purpose from the app’s privacy pol-
icy using Polisis [21]—an online privacy policy analysis ser-
vice based on deep learning. Polisis annotates privacy policy 
texts with purposes at text-segment level. We developed a 
translation layer to map annotated purposes from Polisis into 
consistent data fows (see Appendix D.3). This mapping is 
possible only for data fows with consistent disclosures, since 
we need the policy to extract the purpose of a data fow. We 
were able to process 293 (out of 359) consistent data fows5 

that correspond to 141 text segments annotated by Polisis. 
Out of the 293 data fows, 69 correspond to text segments an-
notated as “unspecifc”, i.e., Polisis extracted no purpose. The 
remaining 224 data fows correspond to text segments anno-
tated with purposes. Since a data fow can be associated with 
multiple purposes, we expanded the 224 into 370 data fows, 
so that each data fow has exactly one purpose. There are nine 
distinct purposes identifed by Polisis (including advertising, 
analytics, personalization, legal, etc.; see Fig. 7). 

vague disclosures. Our validation shows 23% vague disclosures were actu-
ally clearly disclosed. This is because OVRSEEN’s privacy policy analyzer 
inherits the limitations of PoliCheck’s NLP model which cannot extract data 
types and entities from a collection statement that spans multiple sentences.. 

5Polisis did not process the text segments that correspond to the remaining 
66 consistent data fows: it did not annotate the text segments and simply 
reported that their texts were too short to analyze. 
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orange, while Fingerprinting data fows are in green. From Destination to Purpose, we use blue to denote frst-party destinations 
and red to denote third-party destinations. 

To further understand whether data collection is essential 
to app functionality, we distinguish between purposes that 
support core functionality (i.e., basic features, security, per-
sonalization, legal purposes, and merger) and those unrelated 
to core functionality (i.e., advertising, analytics, marketing, 
and additional features) [35]. Intuitively, core functionality in-
dicates services that users expect from an app, such as reading 
articles from a news app or making a purchase with a shopping 
app. We found that only 31% (116/370) of all data fows are re-
lated to core functionality, while 69% (254/370) are unrelated. 
Interestingly, 81% (94/116) of core-functionality-related data 
fows are associated with third-party entities, indicating that 
app developers use cloud services. On the other hand, data 
collection purposes unrelated to core functionality can be 
used for marketing emails or cross-platform targeted adver-
tisements. This is partly also corroborated by our ATS fndings 
in Section 3.3: 83% (211/254) are associated with third-party 
tracking entities. In OVR, data types can be collected for 
tracking purposes and used for ads on other mediums (e.g., 
Facebook website) and not on the Quest 2 device itself. 

Next, we looked into the data types exposed for different 
purposes. The majority of data fows related to core function-
ality (56% or 65/116) expose PII data types, while Fingerprint-
ing data types appear in most (66% or 173/254) data fows 
unrelated to functionality. We found that 15 data types are 

collected for functionality: these are comprised of Fingerprint-
ing (41% or 48/116 data fows) and VR Sensory Data (3% or 
3/116 data fows). We found that 19 data types are collected 
for purposes unrelated to functionality: these are comprised 
of PII (26% or 65/254 data fows) and VR Sensory Data (6% 
or 16/254 data fows). Interestingly, VR Movement, VR Play 
Area, and VR Field of View are mainly used for “advertising”, 
while VR Movement and VR Pupillary Distance are used for 
“basic features”, “security”, and “merger” purposes [21]. 

Validation of Polisis results (purpose extraction). In or-
der to validate the results pertaining to purpose extraction, we 
read all the 141 text segments previously annotated by Polisis. 
Then, we manually annotated each text segment with one or 
more purposes (based on the nine distinct purposes identi-
fed by Polisis). We had three authors look at each segment 
independently and then agree upon its annotation. We then 
compared our annotation with the purpose output by Polisis 
for the same segment. We found that this purpose extraction 
has 80%, 79%, and 78% micro-averaged precision, recall, and 
F1-score respectively6. These micro-averaged results are di-
rectly comparable to the Polisis’ results in [21]: OVRSEEN’s 
purpose extraction works well on VR apps. For completeness, 
we also computed the macro-averaged precision, recall, and 

6Please note that this is multi-label classifcation. Thus, unlike multi-class 
classifcation for PoliCheck, precision, recall, and F1-score are different. 
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F1-score: 81%, 78%, and 78%, respectively. Table 9 in Ap-
pendix D.3 reports the precision, recall, and F1-score for each 
purpose classifcation, and their micro- and macro-averages. 

5 Discussion 

5.1 VR-Specifc Considerations 
VR tracking has unique aspects and trends compared to other 
ecosystems, including but not limited to the following. 

VR ads. The VR advertising ecosystem is currently at its 
infancy. Our analysis of destinations from the network traffc 
revealed that ad-related activity was missing entirely from 
OVR at the time of our experiments. Facebook recently started 
testing on-device ads for Oculus in June 2021 [44]. Ads on 
VR platforms will be immersive experiences instead of fat 
visual images; for example, Unity uses separate virtual rooms 
for ads [63]. We expect that tracking will further expand once 
advertising comes into VR (e.g., to include tracking how 
users interact and behave within the virtual ad space). As VR 
advertising and tracking evolve, our OVRSEEN methodology, 
system, and datasets will continue to enable analysis that was 
not previously possible on any VR platforms. 

Comparison to other ecosystems. Our analysis showed 
that the major players in the OVR tracking ecosystem are 
currently Facebook and Unity (see Fig. 2 and 5). The more 
established ecosystems such as mobile and Smart TVs are 
dominated by Alphabet [25,67]; they also have a more diverse 
playing feld of trackers (e.g., Amazon, Comscore Inc., and 
Adobe)—spanning hundreds of tracking destinations [25, 55, 
67]. OVR currently has only a few players (e.g., Facebook, 
Unity, Epic, and Alphabet). OVRSEEN can be a useful tool 
for continuing the study on this developing ecosystem. 

Sensitive data. Compared to other devices, such as mobile, 
Smart TVs and IoT, the type of data that can be collected from 
a VR headset is arguably more sensitive. For example, OVR 
has access to various biometric information (e.g., pupillary 
distance, hand geometry, and body motion tracking data) that 
can be used to identify users and even infer their health [43]. 
A study by Miller et al. [36] revealed the feasibility of identi-
fying users with a simple machine learning model using less 
than fve minutes of body motion tracking data from a VR 
device. Our experiments found evidence of apps collecting 
data types that are unique to VR, including biometric-related 
data types (see Section 3.2.2). While the numbers we found 
are small so far, with the developing VR tracking ecosystem, 
it is important to have a system such as OVRSEEN to detect 
the increasing collection of sensitive data over time. 

Generalization. Within OVR, we only used OVRSEEN to 
analyze 140 apps in our corpus. However, we believe that it 
can be applied to other OVR apps, as long as they are created 
according to OVR standards. Beyond OVR, the network traffc 

analysis and network-to-policy consistency analysis can also 
be applied to other platforms, as long as their network traffc 
can be decrypted, as was the case with prior work on Android, 
Smart TV, etc. [37, 48, 54, 67]. 

5.2 Recommendations 

Based on our fndings, we provide recommendations for the 
OVR platform and developers to improve their data trans-
parency practices. 

Provide a privacy policy. We found that 38 out of the 140 
popular apps, out of which 19 are from the Oculus app store, 
did not provide any privacy policy at all. Furthermore, 97% 
of inconsistent data fow disclosures were due to omitted 
disclosures by these 38 apps missing privacy policies (see 
Section 4). We recommend that the OVR platform require de-
velopers to provide a privacy policy for their apps, especially 
those available on the offcial Oculus app store. 

Reference other parties’ privacy policies. Developers are 
not the only ones collecting data during the usage of an app: 
third-parties (e.g., Unity, Microsoft) and platform-party (e.g., 
Oculus/Facebook) can also collect data. We found that 81 
out of 102 app privacy policies did not reference policies of 
third-party libraries used by the app. We recommend that 
developers reference third-party and platform-party privacy 
policies. If they do that, then the consistency of disclosures 
will be quite high: up to 74% of data fows in the network 
traffc we collected (see Section 4.1.3). This indicates that, at 
least at this early stage, the VR ecosystem is better behaved 
than the mobile tracking ecosystem. 

Notice and consent. We found that fewer than 10 out of 
102 apps that provide a privacy policy explicitly ask users to 
read it and give consent to data collection (e.g., for analytics 
purposes) upon frst opening the app. We recommend that de-
velopers provide notice and ask for users’ consent (e.g., when 
a user launches the app for the frst time) for data collection 
and sharing, as required by privacy laws such as GDPR [70]. 

Notifying developers. We contacted Oculus as well as the 
developers of the 140 apps that we tested. We provided cour-
tesy notifcations of the specifc data fows and consistency 
we identifed in their apps, along with recommendations. We 
received 24 responses (see the details in Appendix E). Devel-
opers were, in general, appreciative of the information and 
willing to adopt recommendations to improve their privacy 
policies. Several indicated they did not have the training or 
tools to ensure consistent disclosures. 

6 Related Work 

Privacy in Context. The framework of “Privacy in Con-
text" [40] specifes the following aspects of information fow: 
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(1) actors: sender, recipient, subject; (2) type of informa-
tion; and (3) transmission principle. The goal is to determine 
whether the information fow is appropriate within its con-
text. The “transmission principle" is key in determining the 
appropriateness of the fow and may include: the purpose of 
data collection, notice and consent, required by law, etc. [40]. 
In this paper, we seek to provide context for the data fows 
(happ, data type, destinationi) found in the network traffc. 
We primarily focus on the network-to-policy consistency, pur-
pose of data collection, and we briefy comment on notice 
and consent. Most prior work on network analysis only char-
acterized destinations (frst vs. third parties, ATS, etc.) or data 
types exposed without additional contexts. One exception is 
MobiPurpose [24], which inferred data collection purposes of 
mobile (not VR) apps, using network traffc and app features 
(e.g., URL paths, app metadata, domain name, etc.); the au-
thors stated that “the purpose interpretation can be subjective 
and ambiguous”. Our notion of purpose is explicitly stated 
in the privacy policies and/or indicated by the destination 
domain matching ATS blocklists. Shvartzshnaider et al. intro-
duced the contextual integrity (CI) framework to understand 
and evaluate privacy policies [57]—they, however, leveraged 
manual inspection and not automation. 

Privacy of various platforms. The research community 
has looked into privacy risks in various platforms, using static 
or dynamic code analysis, and—most relevant to us—network 
traffc analysis. Enck et al. performed static analysis of An-
droid apps [13] and discovered PII misuse (e.g., personal/-
phone identifers) and ATS activity. Taintdroid, frst intro-
duced taint tracking for mobile apps [12]. Ren et al. [49] 
did a comprehensive evaluation of information exposure on 
smart home IoT devices. Moghaddam et al. and Varmarken 
et al. observed the prevalence of PII exposures and ATS ac-
tivity [37, 67] in Smart TVs. Lentzsch et al. [29] performed 
a comprehensive evaluation on Alexa, a voice assistant plat-
form. Ren et al. [50], Razaghpanah et al. [48], and Shuba et 
al. [54–56] developed tools for analysis of network traffc gen-
erated by mobile apps, and inspection for privacy exposures 
and ATS activity. Our work is the frst to perform network 
traffc analysis on the emerging OVR platform, using dynamic 
analysis to capture and decrypt networking traffc on the de-
vice; this is more challenging for Unity and Unreal based 
apps because, unlike prior work that dealt with standard An-
droid APIs, we had to deal with stripped binary fles (i.e., 
no symbol table). Augmented reality (AR) is another plat-
form the research community has been focusing on in the 
past decade [1, 26, 28, 47, 51, 69]. While AR augments our 
perception and interaction with the real world, VR replaces 
the real world with a virtual one. Nevertheless, some AR pri-
vacy issues are similar to those in VR since they have similar 
sensors, e.g., motion sensors. 

tual keyboards) [11, 31–33], the privacy of VR is currently 
not fully understood. Adams et al. [2] interviewed VR users 
and developers on security and privacy concerns, and learnt 
that they were concerned with data collection potentially per-
formed by VR devices (e.g., sensors, device being always 
on) and that they did not trust VR manufacturers (e.g., Face-
book owning Oculus). Miller et al. present a study on the 
implications of the ability of VR technology to track body 
motions [36]. Our work is motivated by these concerns but 
goes beyond user surveys to analyze data collection practices 
exhibited in the network traffc and stated in privacy policies. 

Privacy policy analysis. Privacy policy and consistency anal-
ysis in various app ecosystems [4, 5, 21, 58, 68, 71, 72] is be-
coming increasingly automated. Privee [71] is a privacy policy 
analyzer that uses NLP to classify the content of a website pri-
vacy policy using a set of binary questions. Slavin et al. used 
static code analysis, ontologies, and information fow analysis 
to analyze privacy policies for mobile apps on Android [58]. 
Wang et al. applied similar techniques to check for privacy 
leaks from user-entered data in GUI [68]. Zimmeck et al. also 
leveraged static code analysis for privacy policy consistency 
analysis [72]; they improved on previous work by attempting 
to comply with legal requirements (e.g., frst vs. third party, 
negative policy statements, etc.). In Section 4, we leverage two 
state-of-the-art tools, namely PoliCheck [5] and Polisis [21], 
to perform data-fow-to-policy consistency analysis and to 
extract the data collection purpose, respectively. PoliCheck 
was built on top of PolicyLint [4], a privacy policy analyzer 
for mobile apps. It analyzes both positive and negative data 
collection (and sharing) statements, and detects contradic-
tions. Lentzsch et al. also used off-the-shelf PoliCheck using 
a data ontology crafted for Alexa skills. OVRSEEN focuses 
on OVR and improves on PoliCheck in several ways, includ-
ing VR-specifc ontologies, referencing third-party policies, 
and extracting data collection purposes. 

7 Conclusion 

Summary. We present the frst comprehensive study of pri-
vacy aspects for Oculus VR (OVR), the most popular VR 
platform. We developed OVRSEEN, a methodology and sys-
tem to characterize the data collection and sharing practices 
of the OVR ecosystem by (1) capturing and analyzing data 
fows found in the network traffc of 140 popular OVR apps, 
and (2) providing additional contexts via privacy policy anal-
ysis that checks for consistency and identifes the purpose of 
data collection. We make OVRSEEN’s implementation and 
datasets publicly available at [62]. This is the extended ver-
sion of our paper, with the same title, published at USENIX 
Security Symposium 2022. Please take a look at our project 
page for more information [62]. 

Privacy of VR. Although there is work on security aspects Limitations and future directions. On the networking 
of VR devices (e.g., authentication and attacks on using vir- side, we were able to decrypt, for the frst time, traffc of OVR 
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apps, but the OVR platform itself is closed and we could not 
decrypt most of its traffc. In future work, we will explore the 
possibility of addressing this limitation by further exploring 
binary analysis. On the privacy policy side, PoliCheck and 
Polisis rely on different underlying NLP model, with inherent 
limitations and incompatibilities—this motivates future work 
on a unifed privacy policy and context analyzer. 
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APPENDICES 

A Data Privacy on Oculus 

In this appendix, we provide more details from our observa-
tions on data collection practices on OVR that complements 
our explanation in Section 2. In our preliminary observation, 
we discovered two fndings that motivate us to further study 
VR privacy in the context of OVR. 

First, we discovered that Oculus has been actively updating 
their privacy policy over the years. We collected different 
versions of Oculus privacy policy [42] over time using Way-
back Machine and examined them manually. Most notably, 
we observed a major change in their privacy policy around 
May 2018. We suspect that this is due to the implementation 
of the GDPR on May 25, 2018 [70]—this has required Oculus 
to be more transparent about its data collection practices. For 
example, the privacy policy version before May 2018 declares 
that Oculus collects information about “physical movements 
and dimensions”. The version after May 2018 adds “play area” 
as an example for “physical movements and dimensions”. Al-
though it has not been strictly categorized as PII, “play area” 
might represent the area of one’s home—it loosely contains 
“information identifying personally owned property” that can 
potentially be linked to an individual [35]. This motivates us 
to empirically study the data collection practices on OVR. We 
report how we use OVRSEEN to collect network traffc and 
study data exposures on OVR in Section 3. 

Second, we found that many apps do not have privacy poli-
cies. Even if they have one, we found that many developers 
neglect updating their privacy policies regularly. Many of 
these privacy policies even do not have last updated times 
information. We found that only around 40 (out of 267) apps 
from the offcial Oculus app store and 60 (out of 1075) apps 
from the SideQuest app store have updated their privacy pol-
icy texts in 2021. Thus, we suspect that an app’s actual data 
collection practices might not always be consistent with the 
app’s privacy policy. This motivates us to study how consis-
tent an app’s privacy policy describes the app’s actual data 
collection practices. We report how we use OVRSEEN to 
analyze privacy policies in Section 4. 

B Network Traffc Collection Details 

In this appendix, we provide more details on OVRSEEN’s 
system for collecting and decrypting network traffc, intro-
duced in Section 3.1. Fig. 8 depicts a detailed version of the 
network traffc collection system (i.e., 1 in Fig. 1), which 
consists of two main components—AntMonitor and Frida. In 
Appendix B.1, we describe the improvements we made to 
AntMonitor; and in Appendix B.2, we provide the detailed 
workfow of our automated binary analysis technique for fnd-
ing addresses of certifcate validation functions so that we can 
hook into them with Frida. 

Oculus Quest 2

App
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Certificate verifier 
functions

Frida Agent

Frida Hooks

ADB

PC

Frida Client

Unity SDK

Mbed TLS
mbedtls_x509_crt_
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Figure 8: Network traffc collection and decryption. 

B.1 Improving AntMonitor 
The original version of AntMonitor has several limitations, 
which we address in this paper. First, the released version of 
AntMonitor supports only up to Android 7. Unfortunately, 
Quest 2 runs Oculus OS that is based on Android 10—a ver-
sion of Android which underwent a multitude of changes 
to TLS [18] and flesystem access [20], effectively breaking 
AntMonitor’s decryption and packet-to-app mapping capa-
bilities. To restore decryption, we frst downgraded all con-
nections handled by AntMonitor to TLS 1.2 so that we can 
extract servers’ certifcates, which are encrypted in TLS 1.3 
(the default TLS version in Android 10). The servers’ certif-
cates are needed so that AntMonitor can sign them with its 
own CA and pass them on to the client app. In addition to 
downgrading the TLS version, we also updated to new APIs 
for setting the SNI (server name identifcation), since the orig-
inal version used Java refection to access hidden methods 
which were no longer available in Android 10. Further, we 
updated how AntMonitor checks for trusted certifcates to 
remain compatible with Android 10’s stricter security require-
ments. Similarly, in order to fx the packet-to-app mapping, 
which relied on reading the now-restricted /proc/net fles, 
we re-implemented the functionality using Android 10’s new 
APIs from the ConnectivityManager. 

Second, AntMonitor prevents common traffc analysis 
tools, such as tshark, from re-assembling TCP streams be-
cause it saves both encrypted and decrypted versions of pack-
ets in the same PCAPNG fle and does not adjust the sequence 
and ack numbers accordingly. In our work, we wanted to take 
advantage of tshark’s re-assembly features, namely the de-
segmentation of TCP streams and HTTP headers and bodies, 
so that we could analyze parsed HTTP traffc with confdence. 
To that end, we modifed AntMonitor to keep track of de-
crypted sequence and ack numbers for each decrypted fow 
and to save decrypted packets in a separate PCAPNG fle 
with their adjusted sequence and ack numbers. Without this 
improvement, the encrypted and decrypted packets would 
share the same sequence and ack numbers, inhibiting TCP 
re-assembly. 
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Figure 9: Our decryption technique. Example on Spatial, 
an app that enables people to meet through VR [60]. 

In order to enable other researchers to continue using 
AntMonitor in newer Android versions, we will submit a pull 
request to its open source repository. 

B.2 Binary Analysis Workfow 

In Section 3.1 we introduced our automated binary analy-
sis technique for fnding addresses of certifcate validation 
functions in Unity’s [64] library so that we can hook into 
them with Frida. Fig. 9 illustrates how this technique is ap-
plied on Spatial, an app that enables people to meet through 
VR [60], as our example. First (Step 1), we take the app’s 
APK fle and extract the version of the Unity framework used 
to package the app by scanning its confguration fles—here 
we fnd that the Spatial app uses Unity 2020.1.14f1. Sec-
ond (Step 2), we try to fnd Unity 2020.1.14f1 from a 
collection of Unity frameworks (we frst have to download 
all versions of Unity onto our system). Third (Step 3), we lo-
cate mbedtls_x509_crt_verify_with_profile() in the 
(non-stripped) symbolicated pre-compiled Unity SDK bi-
nary fle that comes with Unity 2020.1.14f1. Subse-
quently, we extract the binary signature of the certifcate 
validation function, which consists of the 4 bytes preced-
ing the start of the function (i.e., FD FD FF 17) and 
the frst 16 bytes starting from the function address (i.e., 
F7 5B BD A9 F5 53 01 A9 F3 7B 02 A9 F4 03 02 AA). 
We found that we could not use the entire function as our 
signature due to binary compilation optimizations and strip-
ping. Fourth (Step 4), we use this binary signature to locate 

mbedtls_x509_crt_verify_with_profile() in the app’s 
stripped binary fle and extract its actual address—for the 
Spatial app the function is located at address 0x814468. Fi-
nally, we use this extracted address to set a Frida hook for 
mbedtls_x509_crt_verify_with_profile() in the Frida 
script (see Fig. 8). 

C Data Types and ATS Details 

In Appendix C.1, we provide details about how we identify 
and group data types, which complements our work in Sec-
tion 3.2.2. In Appendix C.2, we provide the full list of po-
tential ATS destinations that are missed by blocklists, which 
complements our work in Section 3.3. 

C.1 Extracting Data Types 
Please recall that Section 3.2.2 introduced our methodology 
for extracting data types from our network traffc dataset. 

Data types can be identifed through static values (e.g., 
Email, Serial Number, Android ID) which rely on string 
matching of keywords. On the other hand, dynamic values 
can change based on the application being tested (e.g., SDK 
Version), which rely on a combination of string matching 
and regular expressions. Table 6 provides the details on the 
keywords and regular expressions that we use to extract data 
types. For instance, to capture different versions of Unity SDK 
Versions being exposed, we rely on the regular expression 
UnityPlayer/[\d.]+\d. 

Our 21 data types are groups of other fner grain data types, 
detailed in Table 6. For example, the data type SDK Version 
considers both Unity and Unreal versions, while Usage Time 
considers the Start Time and Duration of app usage. Grouping 
of data types allows us to provide a more complete picture of 
data collection on OVR. 

C.2 Missed by Blocklists 
As OVR is an emerging platform, there are currently no spe-
cialized blocklists for it. To facilitate the identifcation of do-
mains that are potential ATS, we target domains that collect 
multiple different data types. As a result, we extend Table 2 
from Section 3.3 and provide the full details of domains that 
were missed by blocklists in Table 7. 

D Privacy Policy Analysis Details 

In this appendix, we provide more details about OVRSEEN’s 
privacy policy analysis we described in Section 4. We de-
scribe the details of our improvements for PoliCheck in 
Appendix D.1, our manual validation for PoliCheck in Ap-
pendix D.2, and how we integrated Polisis into OVRSEEN 
(including our manual validation for Polisis) in Appendix D.3. 
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PII Finer Grain Data Types Keywords or Regular Expressions 

Android ID - (hard-coded Android ID), android_id, x–android–id 

Device ID - (hard-coded Oculus Device ID), deviceid, device_id, device–id 

Email - (hard-coded user email address), email 

Geolocation Country Code, Time Zone, GPS countryCode, timeZoneOffset, gps_enabled 

Person Name First Name, Last Name (hard-coded from Facebook Account) 

Serial Number - (hard-coded Oculus Serial Number), x–oc–selected–headset–serial 

User ID User ID and PlayFab ID user_id, UserID, x–player, x–playeruid, profleId, anonymousId, PlayFabIDs 

Fingerprint 

App Name App Name and App Version app_name, appid, application_name, applicationId, X–APPID, gameId, package_name, 
app_build, localprojectid, android_app_signature, gameVersion, package_version 

Build Version - build_guid, build_tags 

Cookies 

Flags 

Hardware Info 

-

Do Not Track, Tracking, Jail Break, 
Subtitle On, Connection Type, In-
stall Mode, Install Store, Scripting 
Backend 

Device Model, Device RAM, De-
vice VRAM, CPU Vendor, CPU 
Flags, Platform CPU Count and Fre-
quency, GPU Name, GPU Driver, 
GPU Information, OpenGL Ver-
sion, Screen Resolution, Screen DPI, 
Fullscreen Mode, Screen Orienta-
tion, Refresh Rate, Device Info, Plat-
form 

cookie 

x–do–not–track, tracking, rooted_or_jailbroken, rooted_jailbroken, subtitles, connection– 
type, install_mode, install_store, device_info_fags, scripting_backend 

device_model, device_type, enabled_vr_devices, vr_device_name, vr_device_model, 
Oculus/Quest/hollywood, Oculus[+ ]?Quest, Quest[ ]?2, device_ram, de-
vice_vram, Qualcomm Technologies, Inc KONA, ARM64 FP ASIMD AES, 
ARMv7 VFPv3 NEON, cpu_count, cpu_freq, ARM64+FP+ASIMD+AES, arm64-
v8a,+armeabi-v7a,+armeabi, Adreno (TM) 650, GIT@09c6a36, GIT@a8017ed, 
gpu_api, gpu_caps, gpu_copy_texture_support, gpu_device_id, gpu_vendor_id, 
gpu_driver, gpu_max_cubemap_size, gpu_max_texture_size, gpu_shader_caps, 
gpu_supported_render_target_count, gpu_texture_format_support, gpu_vendor, 
gpu_version, OpenGL ES 3.2, \+3664,\+1920 , 3664 x 1920, 3664x1920, width=3664, 
screen_size, screen_dpi, is_fullscreen, screen_orientation, refresh_rate, device_info_fags, 
releasePlatform, platform, platformid 

SDK Version 

Session Info 

Unity Version, Unreal Version, 
Client Library, VR Shell Version 

App Session, Session Counts, 
Events, Analytics, Play Session 
Status, Play Session Message, Play 
Session ID 

Unity[- ]?v?20[12]\d \.\d +\.\d +, Unity[- ]?v?[0-6]\.\d +\.\d +, 
UnityPlayer/[\d .]+\d, UnitySDK-[\d .]+\d, x–unity–version, sdk_ver, en-
gine_version, X–Unity–Version, sdk_ver_full, ARCore, X-UnrealEngine-VirtualAgeStats, 
engine=UE4, UE4 0.0.1 clientLib, clientLibVersion, x–oc–vrshell–build–name 

AppSession, session_id, sessionid, event-id, event_id, objective_id, event-count, 
event_count, session-count, session_count, analytic, joinable, lastSeen, join_channel, Join-
Party, SetPartyActiveGameOrWorldID, SetPartyIDForOculusRoomID, JoinOpenWorld, 
partyID, worldID, gameOrWorldID, oculusRoomID 

System Version - (hard-coded OS version strings), x-build-version-incremental, os_version, operatingSys-
tem, os_family 

Usage Time Start Time, Duration t_since_start, startTime, realtimeDuration, seconds_played, game_time, gameDuration 

Language - language, language_region, languageCode, system_language 

VR Sensory Data 

VR Field of View - vr_feld_of_view 

VR Movement Position, Rotation, Sensor Flags vr_position, vr_rotation, gyroscope, accelerometer, magnetometer, proximity, sensor_fags, 
left_handed_mode 

VR Play Area Play Area, Play Area Geometry, Play 
Area Dimention, Tracked Area Ge-
ometry, Tracked Area Dimension 

vr_play_area_geometry, vr_play_area_dimension, playarea, vr_tracked_area_geometry, 
vr_tracked_area_dimension 

VR Pupillary Distance - vr_user_device_ipd 

Table 6: Extracting data types. Summarizes how we group data types and the keywords and regular expressions (italicized) that 
we use to identify them (Section 3.2 and Appendix C.1). 
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FQDN Organization Data Types 

bdb51.playfabapi.com, 1c31b.playfabapi.com Microsoft Android ID, User ID, Device ID, Person Name, Email, Geolocation, 
Hardware Info, System Version, App Name, Session Info, VR Movement 

sharedprod.braincloudservers.com bitHeads Inc. User ID, Geolocation, Hardware Info, System Version, SDK Version, 
App Name, Session Info, Language 

cloud.liveswitch.io Frozen Mountain Soft- User ID, Device ID, Hardware Info, System Version, App Name, Lan-
ware guage, Cookie 

datarouter.ol.epicgames.com Epic Games User ID, Device ID, Hardware Info, SDK version, App Name, Session 
Info 

9e0j15elj5.execute-api.us-west-1.amazonaws.com Amazon User ID, Hardware Info, System Version, SDK Version, Usage Time 

63fdd.playfabapi.com Microsoft Android ID, User ID, Email, SDK Version, App Name 

us1-mm.unet.unity3d.com Unity Hardware Info, System Version, SDK Version, Usage Time 

scontent.oculuscdn.com Facebook Hardware Info, System Version, SDK Version 

api.avatarsdk.com Itseez3d User ID, Hardware Info, SDK Version 

52.53.43.176 Amazon Hardware Info, System Version, SDK Version 

kingspraymusic.s3-ap-southeast-2.amazonaws.com, Amazon Hardware Info, System Version, SDK Version 
s3-ap-southeast-2.amazonaws.com 

pserve.sidequestvr.com SideQuestVR Hardware Info, System Version, Language 

gsp-auw003-se24.gamesparks.net, GameSparks Device ID, Flags 
gsp-auw003-se26.gamesparks.net, 
gsp-auw003-se30.gamesparks.net, 
live-t350859c2j0k.ws.gamesparks.net 

yurapp-502de.frebaseapp.com Alphabet Hardware Info, SDK Version 

Table 7: Missed by blocklists continued. We provide third-party FQDNs that are missed by blocklists based on the number 
data types that are exposed. This is the full details of Table 2. 

D.1 Other PoliCheck Improvements 

In Section 4.1.1, we mentioned that we have improved 
PoliCheck in OVRSEEN. We detail the improvements below. 

Inclusion of third-party privacy policies. PoliCheck as-
sumes that each app has one privacy policy. In practice, many 
apps do not disclose third-party data collection clearly in the 
privacy policies. Instead, they put links to external third-party 
policies and direct users to read them for more information. 
For example, consider the following sentence from one of the 
privacy policies of apps in our dataset: “For more information 
on what type of information Unity collects, please visit their 
Privacy Policy page <link>...” 

OVRSEEN’s privacy policy analyzer includes statements 
from external privacy policies if they are referred to in the 
app’s privacy policy. In this case, frst-person pronouns (e.g., 
“we”) in the external privacy policies are translated to the 
actual entity names (e.g., “Unity”). Thus, in the above ex-
ample, the app’s data fows are checked against the policy 
statements extracted both from the app’s privacy policy and 
Unity’s privacy policy. 

Resolution of frst-party entity names. Some privacy 
policies use full company names to refer to the frst party, 
while PoliCheck only considers frst-person pronouns (e.g., 

“we”) as indications of frst-party references. Thus, we found 
that PoliCheck wrongly recognizes these company names as 
third parties. As a result, frst-party data fows of these apps 
were wrongly classifed as omitted disclosure. 

To fx this issue, OVRSEEN privacy policy analyzer uses a 
per-app list of frst-party names—this list was extracted from: 
(1) package names, (2) app store metadata, and (3) special 
sentences in privacy policies such as titles, the frst occurrence 
of a frst-party name, and copyright notices. These names are 
treated as frst party. 

Entities. Entities are names of companies and other organi-
zations. We translate domains to entities in order to associate 
data fows with disclosures in the privacy policies in Section 4. 

Similar to [5], we use a manually-crafted list of domain-to-
entity mappings to determine which entity that each domain 
belongs to. For example, *.playfabapi.com is a domain of 
the entity Playfab. We started from the original PoliCheck’s 
mapping, and added missing domains and entities to it. We 
visited each new domain and read the information on the 
website to determine its entity. If we could not determine the 
entity for a domain, we labeled its entity as unknown third 
party. Fig. 3b displays a partial view of our entity ontology. 
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Label Prec. Recall F1 Support 

three-class classifcation 

consistent 0.93 0.74 0.82 454 
incorrect 0.50 1.00 0.67 2 
omitted 0.77 0.94 0.85 425 
macro-average 0.74 0.89 0.81 
micro-average 0.84 0.84 0.84 

binary classifcation 

inconsistent (positive) 0.77 0.94 0.85 427 
consistent (negative) 0.93 0.74 0.82 454 

Table 8: PoliCheck validation. Multi-class and binary clas-
sifcation metrics for each disclosure type along with the av-
eraged performance. Note that support is in terms of number 
of data fows. 

D.2 PoliCheck Validation 
We briefy described our manual validation for PoliCheck 
in Section 4.1.3. To test the correctness of OVRSEEN’s pri-
vacy policy analyzer, which is based on PoliCheck that was 
ported into the VR domain, we followed the methodology 
described in the PoliCheck paper [5] and another study that 
applies PoliCheck on Alexa skills [29]. They sampled a por-
tion of consistency results and manually read through the 
corresponding privacy policies to validate the results. 

In PoliCheck, network-to-policy consistency analysis is a 
single-label fve-class classifcation task. To mitigate biases 
from human annotators, PoliCheck authors skipped ambigu-
ous disclosures and did not differentiate between clear and 
vague disclosures during manual validation, which turned 
it into a three-class (i.e., consistent, omitted, and incorrect) 
classifcation task. We followed this validation methodology 
and obtained the complete results that are shown in Table 8. 
The authors reported micro-averaged precision [5]. For com-
pleteness and consistency with PoliCheck results, we also 
report recall, F1-score, and macro-averaged metrics. Micro-
and macro-averaging are both popular methods to calculate 
aggregated precision and recall in multi-class classifcation 
tasks [61]. Macro-averaged precision/recall simply reports the 
averaged precision/recall of each class. For example, macro-
averaged precision is 

1
Prmacro = (Pr1 + Pr2 + ... + PrN)N 

where N is the number of classes and Pri is the precision of 
class i. In contrast, micro-averaging sums numbers of true pos-
itives and false positives of all classes frst, and then calculates 
the metrics. Thus, micro-averaged precision is 

TP1 + TP2 + ... + TPNPrmicro = 
(TP1 + TP2 + ... + TPN)+(FP1 + FP2 + ... + FPN) 

where TPi and FPi are numbers of true positive and false 

Label Prec. Recall F1 Support 

additional service feature 0.74 0.70 0.72 20 
advertising 0.94 1.00 0.97 16 
analytics research 0.91 0.80 0.85 25 
basic service feature 0.82 0.45 0.58 20 
legal requirement 0.64 1.00 0.78 9 
marketing 0.92 0.75 0.83 16 
merger acquisition 0.78 0.88 0.82 8 
personalization customization 0.80 0.67 0.73 6 
service operation and security 0.82 0.64 0.72 14 
unspecifc 0.75 0.90 0.81 49 

macro-average 0.81 0.78 0.78 
micro-average 0.80 0.79 0.79 

Table 9: Polisis validation. Multi-label classifcation metrics 
for each purpose along with the averaged performance. Note 
that support is in terms of number of text segments. Text 
segments that Polisis does not annotate with a purpose is 
annotated as “unspecifc”. 

positive samples of class i. In single-label multi-class classif-
cation, every misclassifcation is a false positive for one class 
and a false negative for other classes. Thus, the denominators 
in precision and recall are always equal to the population of 
samples: micro-averaged precision, recall and F1-score are 
all the same. Micro-averaging is preferable when the distribu-
tion of classes is highly imbalanced, which is the case in our 
dataset. 

In addition, we also report, in Table 8, the precision, recall 
and F1-score of the binary classifcation case, where we only 
care about whether the data fows are consistent or not with 
privacy policy statements. In this case, inconsistent fows are 
seen as positive samples. 

D.3 Polisis Integration and Validation 
We described how we used Polisis for purpose extraction in 
Section 4.2. Polisis is available as a black-box online pri-
vacy policy analysis service (https://pribot.org/). We 
feed privacy policies (in HTML format) into Polisis and get 
text segments annotated with purposes via Polisis Web API. 
To the best of our knowledge, it internally uses end-to-end 
deep learning classifers to annotate purposes at text-segment 
level [21], which is different from PoliCheck’s sentence-level 
NLP technique. Since Polisis is not open-sourced, we know 
very little about how Polisis segments and processes text in-
ternally. 

We developed a translation layer to associate OVRSEEN 
data fows with purposes from Polisis. The translation layer 
emulates PoliCheck’s text processing on Polisis text segments 
to break them into sentences. Next, it compares binary bag-of-
words representation to match sentences from PoliCheck with 
sentences from Polisis. Two sentences from both sides match 
if one sentence contains all the words in the other sentence. 
A successful match yields data type and destination from 
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PoliCheck, and purpose from Polisis. Although we made the 
sentence matching very tolerant, it still failed to fnd some 
matches due to edge cases caused by the very different text 
processing pipelines of PoliCheck and Polisis. 

Polisis validation. We evaluated the performance of Polisis 
by manually annotating text segments with purposes. The 
evaluation process is described in Section 4.2 and the com-
plete results are shown in the upper part of Table 9. 

E Responses from Developers 

We sent courtesy notifcation emails to inform Oculus and the 
developers of the 140 apps about our fndings on September 
13 and 14, 2021. We provide a summary of responses from 
these developers in Section 5.2. Within a period of two weeks, 
we received 24 responses from these developers: three devel-
opers of Oculus free apps, six developers of Oculus paid apps, 
and 15 developers of SideQuest apps. Most of these develop-
ers (21/24) responded positively and thanked us for sharing 
our fndings about their apps; others responded simply that 
they have received the message (e.g., through an automated 
reply), or said that the email address we sent our message 
to was the wrong one. Five of 19 developers reiterated their 
position about their data collection practices and/or referred 
us back to their privacy policy. Notably, 12 of 19 developers 
inquired further about our fndings: they discussed with us to 
gain deeper insights from our fndings, promised to improve 
their privacy policy, and asked for our advice on how they can 
write better privacy policies. In particular, some developers ex-
pressed the need for training on privacy policy writing and the 
diffculty in ensuring consistent disclosures—this implicates 
the need for tools, such as OVRSEEN. 
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