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Abstract 
Recent advances in sensing and computing technologies have 
led to the rise of eye-tracking platforms. Ranging from mo-
biles to high-end mixed reality headsets, a wide spectrum 
of interactive systems now employs eye-tracking. However, 
eye gaze data is a rich source of sensitive information that 
can reveal an individual’s physiological and psychological 
traits. Prior approaches to protecting eye-tracking data suf-
fer from two major drawbacks: they are either incompatible 
with the current eye-tracking ecosystem or provide no formal 
privacy guarantee. In this paper, we propose Kaleido, an eye-
tracking data processing system that (1) provides a formal 
privacy guarantee, (2) integrates seamlessly with existing eye-
tracking ecosystems, and (3) operates in real-time. Kaleido 
acts as an intermediary protection layer in the software stack 
of eye-tracking systems. We conduct a comprehensive user 
study and trace-based analysis to evaluate Kaleido. Our user 
study shows that the users enjoy a satisfactory level of utility 
from Kaleido. Additionally, we present empirical evidence 
of Kaleido’s effectiveness in thwarting real-world attacks on 
eye-tracking data. 

1 Introduction 

Recent advances in sensing and computing technologies have 
facilitated the rapid adoption of eye tracking as a hands-free 
interface in augmented, virtual, and mixed reality settings. It 
offers users control over virtual components [84], events [51], 
and digital avatars [80], especially in settings where hand-
based control is either impractical or infeasible [89]. In-
teractive systems are now capable of performing continu-
ous eye tracking using off-the-shelf webcams [66], smart-
phones [61], tablets [32], desktops [62], wearable glasses [93], 
and mixed reality headsets such as the HTC VIVE and Mi-
crosoft HoloLens. 

From a stream of eye gaze positions in a scene, eye-tracking 
applications precisely estimate what the user is viewing to 
trigger events, prefetch scenes, or perform actions in the vir-

No privacy (ε=∞) Low privacy (ε=3) High privacy (ε=0.5) 
(a) Raw data (b) Noisy data from Kalεido 

Figure 1: Eye gaze heatmaps from an individual user with 
and without Kaleido’s noising effect on a web page. 

tual environment. One’s eye gaze streams, however, are vul-
nerable to potential privacy threats. Previous research has 
demonstrated that psychological and physiological factors 
direct the formation of unique patterns in the user’s eye gazes. 
For instance, researchers were able to infer insights about 
the user’s behavioral traits [49, 75, 77], diagnose Alzheimer’s 
disease and autism spectrum disorder [30, 41], understand 
the user’s familiarity of a scene [78], infer mental status dur-
ing social interaction [76], detect personality traits [10], and 
deliver personalized advertisements [16, 24, 92]. 

Third-party applications that use eye gaze streams can ex-
tract information beyond their intended core functionality, 
posing significant privacy threats to the users. For example, 
Figure 1(a) shows the heatmap of eye gazes on a web page 
from an individual user. While an application can help the 
user scroll up/down the web page, the aggregated eye gaze 
positions can reveal the user’s interest. Unfortunately, the 
eye-tracking platforms do not offer users the ability to con-
trol their privacy. They relay the raw eye gaze streams to the 
applications without much regard to the embedded sensitive 
information. 

Researchers have developed privacy-preserving mecha-
nisms for eye gaze streams [12, 13, 29, 53, 79] to alleviate 
these concerns. These mechanisms share a similar working 
principle: allowing access to only some high-level “features” 
of the eye gaze streams, possibly with some added noise, in-
stead of the raw gaze streams. While some of them provide 
formal privacy guarantees [12,53,79], they are mostly imprac-
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tical to deploy due to multiple limitations. First, they require 
modification of the eye-tracking application programming 
interfaces (APIs) since the applications expect to receive a 
sequence of raw eye gaze positions, not just features. Second, 
processing eye gaze streams to extract features does not hap-
pen in real-time, affecting the user experience. Third, they 
require the user to control a set of parameters that are hard to 
understand for most users. In short, the question of how to pro-
vide a backward-compatible, easy-to-use privacy-preserving 
system for real-time eye tracking is still an open one. 

In this paper, we design, implement, and evaluate Kaleido 
as an affirmative answer to the above question. Kaleido pro-
vides a formal privacy guarantee based on differential privacy 
(DP) [21], the de-facto standard for achieving data privacy. To 
the best of our knowledge, Kaleido is the first system to (1) 
provide a privacy guarantee on raw eye gazes, (2) seamlessly 
integrate with the existing eye-tracking ecosystem, and (3) 
operate in real-time. Kaleido offers the following advantages: 
• Formal privacy guarantee. Kaleido uses a differentially 
private algorithm to release noisy eye gaze streams to the 
applications, which protects the spatial distribution of a gaze 
trajectory that is formed within any window of a specific 
duration (as determined by the users). Kaleido achieves this 
objective by bringing the privacy semantics from two distinct 
contexts, absolute location data and streaming event data, 
into the domain of eye gaze data (Section 4.3.3). Figure 1(b) 
shows Kaleido’s privacy protection in action. 
• Seamless integration with the eye-tracking ecosystem. 
As Kaleido operates on raw eye gaze streams, it fits within 
the existing ecosystem of eye-tracking applications. It is also 
platform- and application-agnostic; it operates on popular 
eye-tracking platforms and requires no modification of the 
applications, making it more practical to deploy. 
• Ease of use. As the parameters of Kaleido’s privacy guar-
antee are a function of the visual feed semantics, it reduces 
the burden of complex privacy configuration on the user. 

We integrate Kaleido as a Unity [26] plugin; it acts as a pro-
tection layer between untrusted applications and trusted plat-
forms. Unity is the mainstream engine for gaming and mixed 
reality applications; it supports various peripherals such as 
eye-tracking sensors. Kaleido’s architecture comprises four 
major components: (1) context processing core, which extracts 
scene semantics from keyframes of dynamic visual feed; (2) 
configuration manager, which automatically configures the 
parameters of the DP guarantee based on scene semantics 
and user preferences; (3) noisy gaze generator which gener-
ates noisy gaze streams; and (4) noisy gaze processor, which 
performs local post-processing on the noisy gaze streams. 
The Kaleido plugin leverages off-the-shelf APIs and comput-
ing blocks, providing backward compatibility across a broad 
spectrum of applications and platforms. 

We conduct a user study and trace-based analysis to eval-
uate Kaleido. To understand perceived utility, we investigate 

Fixation 

Saccade 

ROI 

Figure 2: Example of fixations, saccades, and ROIs in a 
scene [52], where the blue dots represent individual gazes and 
purple (grey) dashed circles represent fixations (saccades). 

the user experience of a real-time eye-tracking game with 
Kaleido. The quantitative and qualitative feedback indicates 
a minor impact on users’ game performance and satisfac-
tion. The users show a high incentive to adopt Kaleido and 
its control knob for eye-tracking privacy. Furthermore, we 
validate that Kaleido can successfully thwart various adver-
sarial analytics, aiming to identify unique traits from users’ 
eye gazes. Even with modest privacy levels, Kaleido can drive 
the attacker’s accuracy close to random baselines. 

2 Background on Eye Tracking 

2.1 Properties of Eye Gaze 

Eye gaze data, commonly represented as a stream of gaze 
positions projected onto a visual scene, reflects how people 
explore and process the visual content. Typically, eye gaze 
data is abstracted as a scanpath, which captures the character-
istics of the user’s visual attention [68]. A scanpath is a time 
sequence of fixations that are separated by saccades [8, 82]. 
Fixations represent clusters of gazes concentrated around spe-
cific regions in the scene (such as an object). Saccades denote 
gazes traveling rapidly from one fixation to another. A re-
gion in the scene space that attracts human attention [58] is 
referred to as a region of interest (ROI). Figure 2 illustrates 
fixations, saccades, and ROIs in a scene. 

2.2 Eye-Tracking Platform 

Two of the most popular techniques for acquiring real-time 
eye gaze [56] are: vision-based tracking and infrared pupil-
corneal reflection tracking. The former estimates gaze posi-
tions from the captured images of the eyes; the latter projects 
infrared light onto the eyes and estimates the point of gaze 
from the pupil and corneal reflections. The raw measurement 
data is represented as a stream of tuples hx,y, ti, where x and 
y represent the 2D coordinates of its location on the visual 
scene (corresponding to a pixel of the image), and t is the 
associated timestamp [47, 83, 86]. 

Eye-tracking platforms [37, 45] incorporate eye-tracking 
with development engines, such as Unity. The platform ex-
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poses eye gaze streams to user applications through prede- 3 Related Work 
fined APIs. An application session is the duration of user 
interaction with the platform to perform a task, such as play-
ing a game or browsing a document. Each session is a series of 
scenes where the visual content remains relatively unchanged 
(e.g., part of the same panoramic view). 

Each application defines its interaction semantics based on 
the eye gaze streams. Examples include eye gaze-based input 
and selection [84], active event triggering by eye gaze ges-
tures [51], automatic scene switching during browsing [46], 
foveated rendering [6, 67], and virtual social interaction using 
digital avatars [80]. 

2.3 Privacy Threats 

Eye gaze patterns inherently reflect human traits and carry 
sensitive information about the user. While the applications 
would primarily process eye gaze streams for user interaction 
purposes, accumulating the data over multiple sessions can 
result in privacy threats. Below, we discuss some examples of 
possible psychological and physiological inferences that can 
be drawn from eye gaze streams. 

Absolute gaze distribution on a scene. The spatial distri-
bution of absolute gaze positions on a scene can reveal in-
sights about the individual’s cognitive process of exploring 
specific visual content. Fixations and saccades within and 
between ROIs reflect how an individual’s attention moves 
within a scene – revealing cues about one’s interest. For ex-
ample, gaze patterns on merchandise can enable precision 
marketing and personalized recommendations in consumer 
research [16, 24,92]. Other researchers have attributed indi-
viduals’ fixation patterns to their psychological state, such 
as lying about recognizing a face [60, 78]. Further, individ-
uals with different physiological and cultural backgrounds 
demonstrate distinguishing characteristics depending on the 
ROI features such as color, texture, and semantics [3, 70]. 

Aggregate statistics on gaze distribution over time. The 
statistical characteristics or features of scanpaths computed 
over a period of time, such as fixation duration/rate and 
saccade speed/acceleration, can reveal sensitive informa-
tion about an individual. For example, the length of sac-
cades can help in categorizing fixations into different func-
tional groups, including “locating,” “guiding,” “directing,” 
and “checking,” which reveal one’s behavioral traits while 
performing daily tasks, such as interpersonal communica-
tion [49, 75, 77]. Diseases such as autism spectrum disor-
der [30] and Alzheimer’s [41] can also be diagnosed from 
fixation features. Additionally, fixation and saccade features 
can be utilized as biometrics for user identification and authen-
tication [23, 33] because of their uniqueness to individuals. 
These features can also reveal information about a user’s phys-
iological conditions, such as vision correction conditions [63]. 

In this section, we provide a summary of the related work. 
One line of work proposes “recognizer” systems that process 
a sensor stream, such as a video, to “recognize” predefined 
objects or features [38,69,73]. The principle underlying these 
systems is to send only abstract features from the data stream 
(possibly after obfuscation) to the untrusted applications in 
place of the raw stream. However, this approach suffers from 
a set of shortcomings when applied in the context of real-time 
eye tracking. First, APIs of current user applications expect, 
as inputs, raw eye gaze streams directly or basic gaze events 
such as fixations. Second, this approach does not provide a 
formal privacy guarantee and cannot defend against attacks 
that consume only coarse-grained measurements (that can 
be computed from the features) [53]. Last, such systems 
introduce complications for permission control for both users 
and application developers. 

Another line of work uses adversarial machine learning-
based approaches to protect the raw eye gaze data [29]. How-
ever, such techniques operate on predetermined data streams 
and require training. Hence, these solutions are not practi-
cally feasible for real-time interactions. Additionally, they 
do not offer any formal privacy guarantee. In another work, 
Bozkir et al. [13] use randomized encoding to privately train 
an SVR model for gaze estimation. However, this method 
would require significant changes, such as communication 
with a third-party server, to existing eye-tracking ecosystems. 

Differential privacy has been proposed in the context of eye 
tracking [12, 53, 79]. However, the major problem with the 
existing works is that they release noisy high-level features, 
such as heatmap [53] and ratio of saccades [12,79]. Moreover, 
their workflow involves collecting the dataset of eye gaze 
streams from a group of users and then performing noisy fea-
ture extraction from it – the data release cannot be performed 
in real-time. Also, the computation of the sensitivity [21] of 
the features in two of the works [12, 79] is dependent on the 
dataset, leading to additional privacy leakage [64]. Further, 
Bozkir et al. [12] adopt the central differential privacy set-
ting that requires the presence of a trusted data aggregator, an 
infeasible proposition for most eye-tracking applications. 

Thus, the solutions above are not directly comparable to 
Kaleido, aiming to provide a formal privacy guarantee for raw 
gaze streams in real-time interactions. 

4 Privacy Model 

As discussed in Section 2.3, we observe that the privacy 
threats to eye-tracking data arise either from the analysis of 
the absolute spatial distribution or the aggregate statistics of 
gaze positions over time. Thus, the spatial information of the 
gaze positions is the primary source of sensitive information. 
Hence, in Kaleido, we choose to provide our formal guaran-
tee (Definition 4.5) on the spatial information of the gaze 
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positions. In what follows, we start with some background 
on differential privacy, followed by the privacy definition for 
Kaleido and its implications. 

4.1 Differential Privacy Preliminaries 

For Kaleido’s formal privacy guarantee, we leverage two 
variants of differential privacy: geo-indistinguishability [5] 
and w-event differential privacy [42]. 

Geo-indistinguishability. Geo-indistinguishability is a spe-
cialization of differential privacy that provides privacy guaran-
tees for geographical information in 2D space. It is formally 
defined as follows: 

Definition 4.1 ((e, r)-geo-indistinguishability). A mecha-
nism M : X 7! Z is defined to be (e,r) - geo-indistinguishable 
iff for all pairs of inputs (x,x0) 2 X ⇥ X such that d(x, x0) r, 

8S ⇢ Z,Pr[M (x) 2 S] eePr[M (x0) 2 S] (1) 

where d(·, ·) denotes the Euclidean metric. 

We refer to the pair (x,x0) in the above definition as the 
r-Euclidean neighboring. Intuitively, the above definition 
protects all pairs of r-Euclidean neighbors1. 

w-event differential privacy. As discussed above, eye gaze 
data in real-world interaction interfaces is obtained in the 
form of streaming data. Hence, we also use a variant of the w-
event differential privacy guarantee [42], which is defined in 
the context streaming data. In this context, the user’s behavior 
breaks into a set of “events,” corresponding to data updates 
in the stream due to user actions. Intuitively, this privacy 
guarantee protects all event sequences of length w in a stream. 

Let S be a stream of an infinite tuple S = (D1,D2, · · ·) 
where every data point Di at time stamp i is a database with 
d columns and arbitrary rows (each row corresponds to an 
unique user). Let St denote a stream prefix of S up till time 
stamp t, St = (D1,D2, · · · ,Dt ), and St [i], i 2 [t] denote the i-th 
element of St , Di. 

Definition 4.2 (w-Neighboring Stream Prefixes [42]). Two 
stream prefixes St ,St 

0 are defined to be w-neighboring, if 
• for each St [i],St 

0 [i] such that i 2 [t] and Di = St [i] =6 St 
0[i] =  

D0 
i it holds that, D0 

i can be obtained from Di by adding or 
removing a single row, and 

• for each St [i1],St [i2],St 
0[i1],St 

0[i2] with i1 < i2,St [i1] =6 
St 
0[i1] and St [i2] =6 St 

0[i2], it holds that i2 i1 +1  w. 

Using the above definition, w-event differential privacy is 
defined formally as follows: 

1We introduce some notational change from the original work [5]. Our 
privacy parameter e is equivalent to the term e · d(x, x0) from the original 
definition (see Section 4.3.3 for details). We adopt this change to improve 
readability, which does not affect the semantics of the definition. 

Definition 4.3 (w-Event Differential Privacy [42]). A mech-
anism M : S 7! C , where S is the domain of all stream pre-
fixes, satisfies w-event differential privacy if for all pairs of 
w-neighboring stream prefixes {St ,St 

0 } 2 S ⇥ S , we have 

8O ✓ C ,8t,Pr[M (St ) = O] eePr[M (St 
0) = O] (2) 

Note that w refers to the count of distinct “events” in a 
stream in the above definition. In our definition, w refers to 
the duration of the event window (as in Definition 4.5). 

4.2 Privacy Definitions in Kaleido 

We now discuss how the aforementioned privacy definitions 
are used for protecting eye gaze streams. We observe that 
in a 2D scene, the eye gaze data is analogous to geograph-
ical information as modeled in the geo-indistinguishability 
framework [5]. Specifically, we can use the Euclidean dis-
tance as a metric for gaze data points. Keeping this in mind, 
we model the eye gaze time series as a stream of an infi-
nite tuple Sg = (hg1, t1i,hg2, t2i, · · ·), where each data point 
gi = hxi,yii gives the corresponding 2D gaze position, and ti 
is the associated timestamp. Let Sk

g denote a stream prefix of 
Sg of length k, i.e., Sk

g = (hg1, t1i, hg2, t2i, · · · ,hgk, tki). Using 
this model of eye gaze positions, we present our notion of 
(w,r)-neighboring for gaze stream prefixes. 

Definition 4.4 ((w, r)-neighboring gaze stream prefixes). 
Two gaze stream prefixes Sk

g = (hg1, t1i, · · · ,hgk, tki),Sg = k0 
(hg0 1, t1 

0 i, · · · ,hg0 k, tk 
0 i) are defined to be (w, r)-neighboring, if 

• the timestamps of their elements are pairwise identical: 
for i 2 [k], we have ti = ti 

0; 
• the gaze positions of their elements are r-Euclidean neigh-

boring: for each gi,g0 such that i 2 [k], it holds thati 
d(gi,g0 i) r; and 

• all of the neighboring gaze points can fit in a window 
of time duration at most w: for each gi1 , gi2 ,g0 ,g0 , withi1 i2 
i1 < i2,gi1 6= g0 and gi2 6= g0 , it holds that ti2 ti1  w.i1 i2 

Leveraging the notion of neighboring gaze stream prefixes, 
we present our formal privacy definition as follows. This 
definition is a variant of the w-event differential privacy guar-
antee [42]. 

Definition 4.5 ((e, w, r)-differential privacy for gaze 
stream prefixes). A mechanism M : S g 7! C g, where S g is 
the domain of all stream prefixes, satisfies (e, w,r)-differential 
privacy if for all pairs of (w,r)-neighboring gaze stream pre-
fixes {Sk

g,Sk
g0 } 2 S g ⇥ S g, we have 

e8O 2 C g,8k, Pr[M (Sk
g) = O] e ·Pr[M (Sk

g0 ) = O] (3) 
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Based on this definition, we present a result that enables a 
(e,w,r)-differentially private mechanism to allocate a privacy 
budget of e for any sliding window of duration w in a given 
stream prefix. 

Theorem 1. Let M : S g 7! C g be a mechanism that takes 
as input a gaze stream prefix Sg

k = (hg1, t1i, · · · ,hgk, tki) and 
outputs a transcript O = (o1, · · · ,ok) 2 C . Additionally, let 
M be decomposed into k mechanisms M1, · · ·  , Mk such that 
Mi(gi) = oi, and each Mi generates independent randomness 
while achieving (ei,r)-geo-indistinguishability. Let l 2 [1, i 
1] represent an index such that (ti tl ) = w. Then, M satisfies 
(e,w,r)-differential privacy if 

i 
8i 2 [k], Â e j  e (4) 

j=l 

The proof of Theorem 1 follows directly from the proof of 
Theorem 3 in Kellaris et al. [42]. 
Discussion of privacy semantics. The idea behind (e0 ,r)-
geo-indistinguishability (Definition 4.1), in the context of eye-
tracking data, is that given a gaze position g, all points within a 
circle of radius r centered at g (i.e., all r-neighbors of g) would 
be “indistinguishable” to an adversary who has access to the 
corresponding “noisy” location. Thus, this privacy guarantee 
provides a cloaking region of radius r around g. (e,w,r)-
differential privacy (Definition 4.5) extends this guarantee 
to gaze stream prefixes. Specifically, an adversary cannot 
distinguish2 between any two gaze stream prefixes, which 
(1) differ in gaze positions that are within a distance of r 
from each other, and (2) all such differing pairs occur within 
a window of duration w. 

Additionally, from Theorem 1, we observe that a (e,w,r)-
differentially private mechanism can achieve two goals: for 
every subsequence of duration w in the gaze stream Sk

g, it (1) 
allocates up to e privacy budget, and (2) takes budget allo-
cation decisions considering the entirety of the subsequence. 
Thus, this privacy definition protects the spatial distribution 
of any gaze trajectory that is formed over any window of a 
duration w. 

Further, we define and prove another result, which shows 
that the privacy guarantee degrades gracefully if the r-
Euclidean neighbors in both stream prefixes are separated 
by more than w duration. The proof of the following theorem 
is in Appendix A.1. 

Theorem 2 (Composition over multiple windows theo-
rem). Let M : S g 7! C g be a mechanism that takes as in-
put a gaze stream prefix Sk

g = (hg1, t1i, · · · ,hgk, tki), and out-
puts a transcript O = (o1, · · · ,ok) 2 C . Additionally, let M 
be decomposed into k mechanisms M1, · · · ,Mk such that 
Mi(gi) = oi, and each Mi generates independent random-
ness while achieving (ei, r)-geo-indistinguishability. Then for 

two stream prefixes Sg
k and Sk

g0 , such that: 
2with probability higher than what is allowed by the privacy parameter e 

• for all i 2 [k], ti = ti 
0; 

• for each gi, g0 i such that i 2 [k] and gi 6= gi 
0 it holds that 

d(gi,g0 i)  r, i.e., (gi,gi0 ) are r-Euclidean neighboring; 
and 

• for each gi1 ,gi2 ,g0 ,g0 , with i1 < i2,gi1 =6 g0 and gi2 =6 g0 ,i1 i2 i1 i2 
it holds that ti2 ti1  m ·w,m 2 N; 

we have 

m·e8O 2 C g,8k, Pr[M (Sk
g) = O] e ·Pr[M (Sk

g0 ) = O]. (5) 

Another important result for differential privacy is that any 
post-processing computation performed on the noisy output 
does not cause any privacy loss. Thus, once Kaleido releases 
the noisy gaze streams, all subsequent analyses by the adver-
sary enjoy the same privacy guarantee. 

Theorem 3 (Post-processing). Let the randomized mech-
anism M : S g 7! Cg satisfy (e,w, r)-differentially privacy. 
Let f : Cg 7! R be an arbitrary randomized mapping. Then 
f M : S g 7! R is (e,w,r)- differential private. 

4.3 Privacy Implications of Kaleido 

In the following, we discuss the implications of the formal 
privacy guarantee of Kaleido (Definition 4.5). 

4.3.1 Choice of Parameters 

The aforementioned privacy guarantee involves three parame-
ters – the privacy budget, the window length, and the radius 
of location indistinguishability: 
Privacy budget e. e captures the privacy requirements of the 
user which can be set at the user’s discretion [2, 35, 50]. 
Window length w. As explained above, the proposed privacy 
definition protects the spatial distribution of a gaze trajectory 
that is formed within any window of duration w. In a typ-
ical eye-tracking setting, gaze trajectories are formed over 
individual visual scenes. Thus, a good choice for w could 
be average scene lengths in a visual feed. Over the whole 
session, which spans multiple windows, the resulting privacy 
guarantee degrades gracefully (by Theorem 2). 
Radius of location indistinguishability r. Recall that eye 
gaze streams be abstracted to a series of fixations and saccades 
within and between ROIs. Hence, we propose the following 
two choices for the value of parameter r: 
• Intra-region radius riinnntttrrraa. This measure captures the 

radius of a single ROI (approximated by a circular area) 
and is catered to protect gaze data positions corresponding 
to fixations. 

• Inter-region radius riinnnttteeerr. This measures the distance 
between a pair of ROIs (approximated by circular areas) 
and protects gaze positions corresponding to inter-ROI 
saccades. 

USENIX Association 30th USENIX Security Symposium 1797 



Inter-region radius 

Intra-region radius 
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Figure 3: Illustration of the two choices for the radius of 
location indistinguishability parameter [52]. 

The two radii are illustrated in Figure 3. As a general rule, the 
larger the value of r greater is the privacy enjoyed (at the cost 
of lower utility). Note that we assume that the visual feeds 
are publicly available (see Section 5.1). 

Thus, in a nutshell, Kaleido’s privacy guarantee ensures that 
an adversary cannot learn about the distinguishing features 
of a user’s spatial distribution. Specifically, if r is chosen 
as rintra, then an adversary cannot distinguish3 between two 
users gazing at the same ROI, within any window of length 
w. Similarly, if r is chosen as rinter, then the adversary cannot 
distinguish two users such that (1) user 1’s gaze moves from 
ROI1 to ROI2, and (2) user 2’s gaze moves from ROI1 to 
ROI3, within any window of length w. 

4.3.2 Discussion on Temporal Information of Eye Gaze 

Kaleido’s formal privacy guarantee focuses solely on the loca-
tion information of eye gaze streams. However, as discussed 
in Section 2.3, some privacy attacks utilize both location and 
temporal information (aggregate statistics) of gaze streams. 
In these cases, the location information contained in the ag-
gregate statistics constructed over noisy gaze positions (Defi-
nition 4.5) will also be noisy (Theorem 3) – thereby reducing 
the efficacy of the attacks. Our evaluation results in Section 
7.3 provide empirical evidence for the above: Kaleido is able 
to protect against analyses that exploit such spatio-temporal 
statistics. Additionally, a formal guarantee on the temporal in-
formation would require interfering with the timeliness of the 
release of gaze data points (noisy or otherwise), which might 
adversely affect the utility [27]. Nevertheless, Section 8 dis-
cusses a possible extension of Kaleido for providing a formal 
guarantee on the temporal information of eye gaze streams. 

4.3.3 Contributions of Kaleido’s Privacy Definition 

Here, we discuss the contributions of Kaleido’s formal privacy 
definition (Definition 4.5). 

First, this definition combines the privacy semantics from 
two distinct contexts: absolute location data and the streaming 
of event data. Specifically, Definition 4.5 provides (e,r)-geo-
indistinguishability guarantee for every gaze position within 
a window of duration w in a gaze stream. 

3with probability higher than what is allowed by privacy parameter e 

Second, there are certain semantical differences in the 
use of location perturbation techniques (such as (e, r)-geo-
indistinguishability guarantee) in the contexts of geographical 
information and eye gaze data. Typically, ROIs (also known as 
points of interest) for geographical information include physi-
cal units such as restaurants, shopping malls, or schools. On 
the other hand, ROIs in the eye-tracking context are charac-
terized by visual stimuli such as the scene’s color and texture. 
Consider a case where only a single ROI is located within 
a circle of radius r centered at the true user location (or eye 
gaze position). In the case of geographical information, the 
adversary can conclude that the user is visiting the particular 
ROI. Thus, this completely violates the user’s location pri-
vacy. However, the above-described scenario corresponds to 
a fixation event (rintra) in the context of eye-tracking, and eye 
movements, even within a single ROI are a rich source of 
sensitive information [70] (as discussed in Section 2.3). Thus, 
even if the adversary learns the ROI’s identity, the perturba-
tion still provides meaningful privacy protection. 

Additionally, for the standard geo-indistinguishability guar-
antee [5], the privacy guarantee enjoyed is parameterized by 
the multiplicative term e · d(x, x0), i.e., the privacy guarantee 
degrades with the distance between the pair of points {x,x0}. 
This makes the task of choosing the value of e tricky for ge-
ographical data [65]. The reason behind this is that, for any 
given value of e, if the distance d(x, x0) becomes too large, 
then the subsequent privacy guarantee provided ceases to 
be semantically useful. Hence, deciding on the size of the 
cloaking region (d(x,x0)), such that any two points within the 
region are sufficiently protected, is difficult for geographical 
data in practice. However, in the context of eye gaze data, 
sensitive information is captured in the form of fixations and 
saccades. Thus here, we are primarily concerned about pro-
tecting pairs of gaze positions that are bounded by a specific 
distance (rintra and rinter as discussed in Section 4.3.1). Hence, 
our formulation (Definition 4.1) explicitly parameterizes the 
size of the cloaking region, r, and its privacy parameter, e, 
is equivalent to the term e · d(x,x0) (equivalently, e · r where 
d(x,x0)  r) from the original definition. This ensures that all 
pairs of gaze positions within a distance of r from each other 
enjoy a privacy guarantee of at least e, thereby mitigating the 
aforementioned problem. 

5 Kaleido System Design 

We introduce the system design of Kaleido, starting with the 
threat model followed by design goals. Next, we present the 
architectural overview followed by detailed descriptions. 

5.1 Threat Model 
The software stack of real-time eye tracking comprises two 
major parties: the eye-tracking platform and the third-party 
application (Section 2.2). In our threat model, we assume the 
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Figure 4: Architectural overview of Kaleido. 

eye-tracking platform to be trusted (a common assumption in 
prior works [38, 73]) and consider the untrusted third-party 
application to be the adversary. The application can perform 
analysis on the gaze streams to learn sensitive information 
about the user (as described in Section 2.3). Additionally, we 
assume that the visual feeds (image or video scenes users 
look at) are publicly available. This assumption holds in most 
practical eye-tracking applications such as movies and VR 
games. Thus, attackers (untrusted third-party applications) 
can access visual feeds and noisy gazes (output of Kaleido), 
but not raw gazes. 

5.2 Kaleido Design Principles 

Kaleido relies on the following three design principles. 
• Seamless integration with existing eye-tracking inter-

faces. Kaleido seamlessly integrates with the current eye-
tracking ecosystem. Specifically, it interacts with the dif-
ferent components of the eye-tracking framework using 
their existing interfaces. 

• Real-time system. Kaleido is capable of generating noisy 
gaze streams (satisfying Definition 4.5) in real-time that 
is suitable for interactive eye-tracking interfaces. 

• Automatic privacy parameter configuration. Kaleido 
automatically configures the privacy parameters, namely 
w and r, based on the properties of the visual feed. 

5.3 Architectural Overview 

Figure 4 depicts the high-level architecture of the eye-tracking 
framework with Kaleido. It comprises three layers: the eye-
tracking platform, Kaleido, and the applications. Kaleido is an 
intermediary layer in this stack that defines the trust boundary. 
Eye-tracking platform. The eye-tracking platform includes 
a display, the eye-tracking camera, the eye-tracking core, and 
potentially a scene camera. Users consume the visual feed via 
the platform-specific display, generated either entirely digi-
tally (VR platforms) or from the scene camera (augmented 

reality platforms). The eye-tracking camera captures eye im-
age frames, from which the eye-tracking core generates raw 
gaze streams. 
Kaleido. Kaleido processes the raw gaze stream obtained 
from the eye-tracking platform in a privacy-preserving man-
ner. Based on the information from the visual feed and user-
specified guidelines, it automatically configures the param-
eters required for the privacy guarantee of Definition 4.5. It 
then perturbs the raw gaze stream, sanitizes it, and feeds it to 
the applications. Section 5.4 elaborates the design of Kaleido. 
Applications. The applications use eye gaze streams for their 
functionalities. They receive gaze streams (albeit noisy) from 
Kaleido using the original APIs. Therefore, they need not be 
modified in any way to be compatible with Kaleido. 

5.4 Kaleido System Modules 

Kaleido views user interaction with the eye-tracking platform 
as a set of sessions with dynamic scenes. We elaborate on 
Kaleido’s modules and how it achieves its privacy guarantee. 

5.4.1 Context Processing Core 

The context processing module extracts the size and locations 
of the ROIs from individual frames (still images of a scene) of 
the visual feed. Kaleido adopts off-the-shelf region and object 
detectors [54,90] for ROI extraction. However, these detectors 
are computationally heavy, and continuously running them 
results in a high computational overhead that might hinder 
real-time operation. Kaleido solves this challenge by incorpo-
rating a threshold-based keyframe detector. As frames remain 
relatively consistent over short periods, Kaleido invokes the 
object detector only at the instances of a scene change. 

5.4.2 Configuration Manager 

The configuration manager module automatically configures 
the privacy parameters to satisfy the privacy guarantee of 
Definition 4.5. It accepts as inputs the processed scene infor-
mation from the context processing core and the user’s privacy 
preferences, and configures the parameters as follows: 
Privacy budget e. For setting the value of e, Kaleido pro-
vides the users with a privacy scale ranging from no privacy 
(releases raw gaze streams) to high privacy (releases noisy 
gaze streams). Users can adjust this knob during an active 
session through the configuration manager’s UI, and Kaleido 
interpolates the corresponding value of e in the background. 
Window length w. As discussed in Section 4.2, w is set ac-
cording to scene lengths. Each scene corresponds to a period 
during which the visual content, e.g., a video, remains rel-
atively static as defined in Section 2.2. The configuration 
manager can compute this value either on the fly from the 
context processing core’s scene detectors or offline profiling 
and video metadata. Small values of w (of the order of a few 
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seconds) usually work well as most real-world interactive 
scenes are rapidly changing and spatially heterogeneous. 
Radius of location indistinguishability r. The configuration 
manager module sets the value of r based on either rintra or 
rinter according to the user’s preference. It uses the set of 
detected ROIs for each scene to compute r as follows. Let 
{ROIi}, i 2 [N], denote the set of ROIs for a given scene where 
N is the total number of ROIs. Let a tuple hxi, yi,di

w , di
hi repre-

sent the output of the object (or region) detector, where (xi,yi) 
is the position of a reference point (for example, the centroid) 
of the bounding box of ROIi, and (di

w ,di
h) is its width and 

height, respectively. Thus, ROIi can be approximated by a 
circular area centered at (xi, yi) and its radius that is computed 
from the diagonal of the bounding box: 

q 
2i 2r = 0.5 ⇥ dw +dh (6)intra i i 

For any pair of regions of interest (approximated by circular 
areas) ROIi and ROI j i, j 2 [N], i 6= j, we have 

q 
ri, j = (xi x j)2 +(yi y j)2 (7)inter 

After computing the radii of all ROIs, the configuration man-
ager has two default modes for r: rsmall , which is the median 
of {ri i, j 

intra}, and rlarge, which is the median of {rinter}. 

5.4.3 Noisy Gaze Generator 

The noisy gaze generator module perturbs the raw gaze 
streams generated by the eye-tracking core. This perturba-
tion entails allocating a privacy budget for each gaze position 
and then generating its corresponding noisy position in a 
(e,w,r)-differential private manner (Definition 4.5). 

The raw measurement frequency is very high (⇠ 120 Hz), 
especially for interactive settings. Even for low values of w, 
the number of individual gaze positions could be relatively 
high. Therefore, naive budget allocation strategies such as 
uniform allocation or fixed-rate sampling are likely to provide 
poor utility [42]. To this end, we use an adaptive budget allo-
cation strategy that considers the dynamics of the human eye 
gaze. We observe that the human gaze is relatively localized 
during fixations. Based on this observation, we identify two 
optimizations for the budget allocation strategy. Let g0 denote 
the last published noisy gaze position. 
• Gaze data points generated in quick succession of g0 can 

be skipped over. 
• The last released g0 can be used as a proxy for data points 

that lie in its spatial proximity. 
These optimizations are akin to (1) performing a simple fixa-
tion detection (in a privacy-preserving manner) based on the 
spatio-temporal gaze data points, and (2) publishing a noisy 
gaze position only when a new fixation is detected. This re-
quires the privacy budget to be distributed between two tasks: 

testing the proximity of the gaze positions and the publication 
of noisy gaze positions. The temporal check (for skipping 
data points) consumes no privacy budget since our formal 
guarantee (Definition 4.5) applies to spatial information only. 

Kaleido uses an adaptive budget allocation strategy that 
(1) starts with a total privacy budget e for every window of 
duration w, (2) allocates no budget for the gaze data points 
to be skipped over, (3) allocates a fixed budget for testing 
all other data points, (4) distributes publication budget in an 
exponentially decreasing manner to the data points which 
have been decided to publish, and (5) recycles the budget 
spent in timestamps falling outside the active window. Algo-
rithm 1, based on the BD algorithm [42], outlines the above 
method; similar ideas have also been presented in the context 
of location sequences [18]. 
Adaptive budget allocation. The algorithm proceeds in three 
stages. In the first stage (Steps 1–4), every gaze position that 
is generated up to duration tskip after itest is skipped, where 
itest denotes the timestamp of the last tested gaze position. A 
good choice for tskip can be the minimum duration of fixations 
⇡ 50 ms [48]. Thus, this stage reuses the last published noisy 
gaze (g0 ) and consumes no privacy budget (Step 3).ipub 

The second stage (Steps 5–11) is the testing phase, where 
all the “not-skipped” gaze positions are tested for their prox-
imity to g0 . Specifically, it checks whether the current gazeipub
position gi (not-skipped) is within a certain noisy threshold 
(lthresh +h)4 from g0 (Steps 6–8). In case this is satisfied,ipub 

the algorithm again reuses g0 . The total privacy budget al-ipub 

located for testing for any window duration of w is e/h. Each 
individual test consumes a budget etest = e/(h · ntest ), where 
ntest is the number of gaze positions to be tested per window, 
and h is a parameter with a value greater than 2. The first 
two stages of the algorithm can be interpreted as a simple 
(e/h,w,r)-differentially private fixation detection scheme. 

Finally, in the third stage (Steps 12–16), the algorithm pub-
lishes a noisy gaze position corresponding to gi only if it 
is sufficiently distant from g0 . For this, it computes theipub 

remaining budget for the active window (Step 13) as follows 

i 1 
puberem = e e/h e|{z} Â k|{z} k=i nraw+1Total privacy Budget consumed | {z }

budget for for testing in Budget consumedeach window the active window for noisy publication in 
the active window 

Next, the algorithm assigns half of it (erem/2) for the noisy 
publication (Step 14). Thus, the publication budget is allo-
cated in an exponentially decreasing manner. The rationale 
behind this is that investing a high budget (i.e., injecting low 
noise) in the current measurement g0 i would result in better 
approximation (test and reuse) for the future ones. Addition-
ally, note that erem considers the budget consumed only in the 

4The value of lthresh impacts utility and is chosen empirically depending 
on r. 
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Algorithm 1 Adaptive Budget Allocation 

Parameters: w - Time duration of a single window in seconds (s), e - Total privacy budget per window of size w 
praw - Rate of raw gaze data generation in samples/s, lthresh - Threshold for distance 
tskip - Time duration for skipping after every gaze data point testing, r - Radius of indistinguishability 
h - Ratio of privacy budget used for testing 

Initialization: 
nraw = w · praw B Number of raw gaze data points generated in a single window 
ntest = dw/tskipe B Number of raw gaze data points tested in a single window 
etest = e/(h ·ntest ) B Privacy budget allocated for every test in a single window 
itest =? B Timestamp of the last tested gaze position 
ipub =? B Timestamp of the last published noisy gaze position 
Input: gi - True gaze position for timestamp i 

g0 - Output for the last timestamp, initialized to ? when ipub =?ipub 
pub pub{e · · · ,e - Privacy budget consumed for publication in last nraw timestamps, initialized to 0 if i < nraw i nraw+1, i 1} 

Output: g0 - Noisy gaze position released for timestamp ii 
pube - Privacy budget consumed in publications i 

Stage I: Check whether to skip or test the gaze data point B Fixation detection based on timestamp of data 
1: if (itest 6=? and time(i) time(itest )< tskip) then 
2: g0 = g0 B Reuse last published gaze position i ipub 

pub3: e = 0i 
4: Return {g0 i, ei} 

Stage II: Test whether current gaze data point should be published B Fixation detection based on location of data 
5: itest = i 
6: ldis = d(gi,g0 ) B Euclidean distance between last published gaze position and current gaze position with d(·, ?) =?ipub 

7: h ⇠ Lap(1/etest ) B Lap(·) denotes the Laplace distribution 
8: if (ldis =6 ? and ldis  lthresh +h) then B Test whether current gaze position is in the proximity of the last published gaze position 
9: g0 = g0 i ipub 

pub10: e = 0i 
11: Return {g0 i, e

pub}i 
Stage III: Publish noisy gaze point 

12: ipub = i 
1 pub13: erem = e e/h Âi B Remaining privacy budget for the active window k=i nraw+1 ek 

pub14: e = erem/2i 
015: gi = PlanarLap(gi,ei/r) B PlanarLap(·) is a geo-indistinguishable mechanism from [5] 

16: Return {g0 i,e
pub}i 

active window [i nraw +1, i]. Thus, the publication budget 
of older timestamps (preceding the active window) is recycled 
for future usage. The generation of the noisy gaze position is 
done via the PlanarLap() mechanism (Step 15), which satisfies 
geo-indistinguishability [5] (with the notational difference of 

pubusing e /r as the privacy budget). i 

ample of Algorithm 1. Here we consider nraw = 4, ntest = 2 
and h = 2. Hence, the budget for testing per gaze position 
is e/4. For the first window (timestamps 1-4), the algo-
rithm publishes at timestamps 1 and 3 and skips at times-
tamps 2 and 4. Hence, timestamps 1 and 3 consume budget 
e/4 each for testing. Additionally, the publication budgets 
are e1 = (e/2 0)/2 = e/4, e3 = (e/2 e/4)/2 = e/8 and 

! ! 7/ 7/ ¥ ¥5 ¥5 3 
2 2 8 8 8 8 4 e2 = e4 = 0. Thus, the total privacy budget consumed in this Total budget for active window 

5�8 

5

f
8 

Published 
Tested only

Skipped 
Raw 1 2 3 4 5 6 7 

Noisy eye gaze 
w 

w 
Raw eye gaze 

¾
4 
¾
4

¾
4

¾
4 

¾
4 
¾
4 

Current publication budget 0 0 0 0 window is e/2 (budget for testing) + e/4 + e/8 = 7e/8  e. 
For the second window (timestamps 2-5), the algorithmCurrent testing budget 0 0 0 

t reuses g0 3 at timestamp 5. Hence, its total privacy budget is 
e/2+e/8 = 5e/8  e. For the third window (timestamps 3-6), 

t 
the algorithm skips the gaze position at timestamp 6 and the 
total privacy budget is e/2 + e/8 = 5e/8  e. A noisy gaze Figure 5: Illustrative example of Kaleido’s budget allocation 

(nraw = 4, ntest = 2, h = 2). 

Illustrative example. Figure 5 presents an illustrative ex-

USENIX Association 

position is published at timestamp 7 in the fourth window 
(timestamp 4-7) with e7 = (e/2 0)/2 = e/4. Thus, the total 
privacy budget for this window is e/2 + e/4 = 3e/4  e. 
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Figure 6: Basic template of Kaleido’s user interface. 

Theorem 4. Algorithm 1 satisfies (e,r,w)-differential pri-
vacy. 

Proof. First, note that Stage I (Steps 1–4, Algorithm 1) do not 
consume any privacy budget. Next, from Fact I in [18], Stage 
II consumes privacy budget etest for every test. Specifically, 
the output of the test mechanism (Step 8) is a binary decision 
and hence, its sensitivity is 1. Finally, Stage III consumes bud-

pub 1 pubget ei = 1/2(e e/h Âk
i 
=i nraw+1 ek ) if it publishes, and 

0 otherwise. Next, we prove that the total budget consumed in 
every window is at most e. For this note that the total budget 
consumed for testing is e/h. Hence, it suffices to show that 

1 pub0  Âi
k=i nraw+1 ek  e e/h which follows directly from 

the proof of Theorem 4 in Kellaris et al. [42]. 

5.4.4 Noisy Gaze Processor 

The noisy gaze processor takes as input the noisy gaze streams 
generated in real-time and performs post-processing opera-
tions on it before releasing it to the applications. This module 
is identical to any local post-processing unit existing in cur-
rent eye-tracking systems, except for noisy inputs. Examples 
of such post-processing include data sanitization, such as 
bounding of off-screen points and data smoothing. Moreover, 
Kaleido’s noisy gaze processor can support local feature ex-
traction similar to that in the “recognizer” framework [38] 
(Section 3). Kaleido is thus compatible with applications 
with APIs expecting specific features as input, such as fix-
ation/saccade statistics. By Theorem 3, this step does not 
impact the privacy guarantee of Kaleido. 

6 Implementation 

We implement Kaleido as a C# plugin in Unity [26], a cross-
platform engine for developing interactive applications, such 
as games and mixed reality content. Unity allows developers 
to integrate plugins that generate visual content and commu-
nicate with peripherals, including eye trackers. In our imple-
mentation, Kaleido acts as an intermediate protection layer 
between applications and the platform. 
Stream acquisition. Kaleido acquires real-time eye gaze 
streams from the eye-tracking core and forwards them to 
the noisy gaze generator. To synchronize these gaze streams, 
we implement the eye gaze receiver using the TCP/IP pro-
tocol, which is the most common communication channel 

Configuration control 
panel (e.g., keyboard) 

Table 1: Properties of eye gaze traces, with a video dataset 
highlighted. 

Dataset Num. 
of stimuli 

Num. 
of users 

Sampling 
rate (Hz) 

Avg. 
duration (s) 

Natural [91] 
Web page [91] 

Human [39] 
VR video [4] 

10 
10 
10 
12 

19 
22 
60 
13 

100 
100 
100 
120 

6.0 
16.8 

3.7 
64.9 

for off-the-shelf eye-tracking cores, such as Tobii [83], Gaze-
Pointer [25], and PupilLab [47]. 
ROI extraction. Kaleido identifies the instances of scene 
change and extracts the ROIs from each scene. For determin-
istic visual content (such as movies), Kaleido acquires the 
timing of keyframes (instances of scene changes) from either 
the video decoding process or keyframe properties obtained 
from Unity’s Animation feature or content providers [88]. As 
for online content, Kaleido identifies the keyframes using an 
on-the-fly scene change detector [94]. In particular, we im-
plement a threshold-based real-time keyframe detector using 
the mean absolute frame difference method. First, Kaleido 
fetches the current frame from Unity’s rendering process. 
Next, it takes the pixel-wise difference between the current 
frame and the last keyframe. Kaleido detects a new keyframe 
by comparing the pixel values of the binarized difference 
matrix against a pre-calibrated threshold. We set the default 
update interval of keyframe detection to 500 ms, which is the 
typical response latency of human attention to visual stim-
uli [14]. 

Kaleido identifies the spatial information of ROIs for dig-
itally rendered frames using Unity’s GameObject API. For 
all other types of frames, Kaleido uses YOLOv3-tiny [71], a 
light-weight neural network. To study the impact of YOLO 
on real-time performance, we make an exception and use it 
for digitally rendered frames as well in our user study. 
User Interface. Kaleido offers the users with an interface to 
adjust their privacy-utility trade-off. Users can control the pri-
vacy budget e on-the-fly through pre-defined triggers, such as 
keypress, as illustrated in Figure 6. We chose a basic interface 
for our prototype implementation since UI design is not the 
focus of this work. 

7 Evaluation 

We evaluate three aspects of Kaleido: (1) user-perceived util-
ity, (2) real-time performance, and (3) effectiveness against 
spatio-temporal attacks. We perform a trace-based evaluation 
to measure the effectiveness of Kaleido against attackers using 
four popular eye-tracking datasets. These datasets, described 
in Table 1, include the scenarios of natural environment, web 
pages, human, and virtual reality (VR) videos. In particular, 
our evaluation answers these questions: 
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Figure 7: A scene of the “Survival Shooter” game with the 
player’s avatar, target, and gaze-controlled ray annotated. 

Q1: How do users perceive the utility of real-time interac-
tions with Kaleido? 
We conduct a remote user study with 11 participants to 
assess the user-perceived utility while playing a real-time 
PC game with Kaleido. 

Q2: How much latency overhead does Kaleido incur? 
We measure the latency overhead of the main modules of 
Kaleido to assess its real-time performance. 

Q3: Can Kaleido thwart attacks that rely on spatio-temporal 
analysis of eye gaze streams? 
We perform a trace-based evaluation of Kaleido on popu-
lar eye-tracking datasets. We investigate the effectiveness 
of Kaleido’s formal privacy guarantee against real-world 
adversarial analytics. 

7.1 User Perception in Real-Time Interaction 

We conducted a user study to evaluate Kaleido’s impact on 
utility, as perceived by the users, while playing a real-time PC 
game. Our objective is to understand the impact of Kaleido 
on user experience at different settings of privacy. To this end, 
we adapted the game “Survival Shooter” [87] from Unity to 
be eye-tracking compatible. Participants shot targets (Zom-
bie Bunnies) by gazing at the target position on a computer 
screen, as shown in Figure 7. They used the keyboard to move 
their digital avatar in the game. We used this PC game be-
cause of the requirement to perform the study remotely at 
the users’ places. An in-person lab session with state-of-art 
eye-tracking or virtual/augmented reality was not possible 
during the study5. 
Setup. To accommodate a commodity PC setup, we utilize 
the webcam-based eye-tracking core, GazePointer [25], for 
detecting the participant’s gaze on the screen. The remote 
user study design was approved by the Institutional Review 
Board (IRB) of our institution. We recruited 11 individu-

5We conducted this study during the state of Wisconsin’s Safer at Home 
order due to the COVID-19 pandemic. 

als from the mailing list of our department. The recruitment 
email provided no details about the study’s privacy objectives 
and mentioned only user experience with eye-tracking games. 
Each remote session took 35 minutes on average, and we pro-
vided each participant with $15 worth of supplies as a token 
of appreciation for participating. 
Limitations. We acknowledge the following limitations in 
our study setup resulting from the imposed lockdown. First, 
the demographic diversity of the participants, as well as the 
number of participants, might be limited. Hence, one caveat 
is that the confidence interval of the quantitative analysis 
is relatively large. Thus, we treat our presented results as a 
preliminary study. Second, an in-person study using state-of-
the-art eye-tracking devices was not possible, which hindered 
our ability to study diverse scenarios, such as foveated ren-
dering in VR and video watching. We carefully designed our 
study protocol to reduce the impact of the low accuracy of 
the webcam-based eye-tracking core; its accuracy is sensitive 
to posture and lighting conditions. Before starting every new 
session, the participants were instructed to calibrate the eye 
tracking using GazePointer’s panel. Finally, the constraints 
of a remote user study also hindered us from conducting a 
qualitative study via in-person interviews and behavioral ob-
servation. An additional caveat is that we did not perform 
coded analysis for the qualitative study of user responses (via 
techniques such as open or axial coding [81]) of the free text. 
Design. Each study session consisted of five tasks (conducted 
over a video call using a separate device). The first is a pre-
study survey to collect the participant’s demographic informa-
tion using a Qualtrics survey. The second is the calibration 
of the webcam-based eye-tracker to map the eye gazes to the 
computer screen using GazePointer’s calibration interface. 
The participants were asked to familiarize themselves with 
the game by practicing eye gaze-based shooting until they 
felt confident. The third covers the within-subject evaluation 
sessions. The fourth task tests the privacy control knob. The 
last task is the post-session survey. 

To reduce individual differences in gaming behavior and 
perception, we conducted the within-subject study [17] to  
test four game settings: (1) No privacy (NOPV) — Kaleido 
layer disabled; (2) Low privacy-high utility (LPHU) — e = 3, 
w = 0.5 s, rsmall ; (3) Medium privacy-medium utility (MPMU) 
— e = 1.5, w = 1.5 s, rsmall ; and (4) High privacy-low utility 

6(HPLU) — e = 0.5, w = 2 s, rlarge . Each setting lasted for 
90 s7, and we randomized their order for every participant. 
Additionally, the participants had no knowledge about the 
setting to which they were exposed. After the completion of 
each setting, we recorded: the subjective game enjoyment [57] 

6These values were chosen based on a parameter sweep to represent 
different points along the privacy-utility spectrum (Appendix A.2.1). In the 
trace-based analysis of offline datasets, the root mean square error (RMSE) 
serves as a proxy for measuring application-specific utility loss. 

7The interval value was chosen during calibration to balance the validity 
of the session and user fatigue. 
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Figure 8: Scores obtained in different conditions. 

as a 7-item Likert scale, the game score, and the qualitative 
feedback. 

After the four randomized settings, the objective of Kaleido 
was revealed, and the participants were offered an adjustable 
knob to control the tradeoff between privacy and utility. We 
asked each participant to interact with the control knob; we 
observed how frequently they adjusted the knob and solicited 
qualitative feedback about their experience. This part of the 
study follows a technology-probe-based approach [36]. Our 
objective is to probe the participants to elicit their opinion 
about the missing design elements that need to be introduced. 
Results. We asked the participants to report their subjective 
experience to evaluate the validity of our game’s adaptation. 
To this end, we asked each participant to report their level 
of agreement (or disagreement) with this statement: “You en-
joyed the game in this session.” on a 7-item Likert scale with 
1 being “Strongly Agree” and 7 being “Strongly Disagree”. 
Figure 8(a) shows that for all of the game settings, the partici-
pants enjoyed their experience – at least 82% of them reported 
a score of 3 or lower. 

Next, we study the effect of the privacy level on the partic-
ipants’ game scores. Figure 8(b) shows these scores for the 
different settings. We observe that the game scores decrease 
with a stronger privacy guarantee. However, the decrease in 
the score is not significant from the no privacy (NOPV) set-
ting to the low privacy (LPHU) setting (only 3.2%). Even the 
decrease from the NOPV setting to the high privacy (HPLU) 
setting is modest (12.0%). These results show that Kaleido’s 
noise does not adversely affect users’ utility in this scenario. 

The qualitative feedback that we obtained from the users 
aligned with our quantitative observations. Some participants 
were unable to distinguish between the LPHU and NOPV 
settings – (P8: “The second (NOPV) and third (LPHU) configurations 

are almost the same for me.”) The majority of the participants 
found the highest privacy (HPLU) setting to be the hardest to 
control. Some participants had a surprisingly different view. 
For example, P7 enjoyed the conditions with higher noise 
because it was more challenging to play. 

Finally, we performed a preliminary analysis of the privacy 
control knob (setting: CNTL). In the last task of the study, 
we introduced the control knob to the participants and asked 
them to control the privacy level as per their desired level of 
utility. Figure 8(b) shows that the adjustment of the control 

Figure 9: Performance breakdown and trend. ROI detection 
is the most expensive operation. The frame rate remains rela-
tively steady even for a high context update rate of 8 Hz. 

knob does not affect the game scores. However, we find a 
large variation in the frequency of knob adjustment and the 
privacy level (e) across the participants. 

The qualitative feedback also indicated that while such a 
knob might be useful, they had some suggestions for improve-
ment. For example, P8 and P11 proposed adding flexibility for 
an offline calibration of the privacy level for each application. 
Other participants commented that frequently adjusting the 
knob during intense gameplay is suboptimal. 

7.2 System Performance 

We evaluate Kaleido’s real-time performance and measure its 
processing delay on a commodity PC with an Intel i7-7700 
CPU and Nvidia GTX 1080 GPU. Figure 9 shows the latency 
overheads incurred by the three main operations of Kaleido: 
noisy gaze generation (noising), keyframe detection, and ROI 
detection. We run 100 trials for each of the operations and 
report the average running time. The latency of the noising 
operation is only 8 µs, and thus, has no discernible impact on 
the user’s real-time experience. 

ROI detection takes 80 ms on average, but it only runs when 
a new keyframe is detected. Based on our offline game cali-
bration, a new keyframe is detected only every 2.3 s (similar 
to the timing from the VR videos dataset). Thus, the overall 
impact of ROI detection in Kaleido is not significant. 

Keyframe detection takes 33 ms on average. The frequency 
of keyframe detection (context update rate) is comparatively 
higher (2 Hz in our implementation). Figure 9(b) shows its 
performance impact on effective frame rates of the game used 
in the study. We observe that, even with a high context update 
rate of 8 Hz, the frame rate degrades only slightly to 25 Hz. 

In this paper, we evaluate a research prototype of Kaleido, 
which shows its real-world potential. Nevertheless, to deploy 
in scale, Kaleido can leverage various performance optimiza-
tions, such as GPU offloading, model compression, and re-
source sharing. These optimizations would enable fast context 
processing even on resource-constrained platforms. 
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7.3 Effectiveness Against Attacks 

Recall that post-processing operations on the outputs of a DP
algorithm do not result in additional privacy loss (Theorem
3). Thus, Kaleido’s formal DP guarantee for the spatial in
formation of gaze streams holds for every attacker (even for
one with full knowledge of Kaleido’s protocols). However
Kaleido does not provide a formal guarantee on the tempo
ral information of gaze streams (Section 4.3.2). Hence, we
perform a trace-based evaluation to study the effectiveness
of Kaleido against spatio-temporal attacks using the datasets
in Table 1. These attacks exploit the spatio-temporal features
of gaze streams, such as fixation durations and saccade ve
locity [31, 74]. We select two representative analyses of gaze
streams: (1) similarity and outlier analysis of a scanpath for
an individual, and (2) biometric inferences. We use (1) Multi
Match [20] for computing the scanpath similarity scores, and
(2) F1 score, which considers both precision and recall, to
measure attackers’ classification accuracy. 

Note that the attackers considered in this section are knowl
edgeable; they have complete knowledge of the target visual
scenes and Kaleido’s noise generation protocols. Further, they
use a noise-robust fixation detection [31]. Additionally, all
the classifiers used in this section are trained on noisy gaze
streams from Kaleido (for the same privacy configurations). 

 
 

(b
) r

(a
) r

-
 
, 
-
 
 
 
 
-
 
 
-
 
 

-
 
 
 
 

7.3.1       

Given a dataset of gaze streams for single scenes, this attack 
constructs a feature vector of the scanpath for each individ-
ual in the dataset. Since the visual stimulus is the same, the 
hypothesis is that the differences in the scanpath features 
arise from distinguishing psychophysiological traits. Thus, 
this type of analysis aims at distinguishing individuals based 
on their scanpath features [9]. 
Setup. We use the image datasets (the first three rows of 
Table 1: natural, web page, and human) to evaluate the distin-
guishability of the scanpath features on static image frames. 
This evaluation assesses the accuracy of the analysis of raw 
and noisy gaze streams. For each stream, we extract the scan-
paths using an offline algorithm [31]. Next, we perform simi-
larity analysis and outlier identification as follows. 

Similarity analysis. The adversary here has a priori knowl-
edge of a user’s scanpath on a certain image. It attempts to 
re-identify the user by measuring the similarity between this 
scanpath and a newly observed one formed on the same image. 
For each dataset, we compute the similarity between the scan-
paths of the same user, before and after adding noise. We use 
the standardized similarity metric, MultiMatch [20], which 
ranges from 0 to 1. This score measures scanpath similarity 
by considering features about the shape (the length, shape, 
and direction of saccade vectors) and the spatial distribution 
(position and duration of aligned fixations) of gaze data. 

Outlier identification. In this attack, the adversary tries to 
identify the outlier users whose scanpath features are signif-

Similarity and Outlier Analysis of Scanpath

Figure 10: Similarity scores between noisy and raw scan-
paths. Kaleido reduces the similarity scores to be close to 
the inter-subject threshold (black lines) even at low privacy 
configurations (rsmall ). The scores are reduced further to be 
close to the random scanpath baseline (red dash lines) at high 
privacy configurations (e = 0.5, rlarge, and w = 2 s). 

icantly different from that of the rest. This attack utilizes a 
density-based clustering model DBSCAN [28], where inter-
scanpath distances are computed via dynamic time warping 
(DTW) over the scanpaths on a single image. We use the 
F1 score to report the attacker’s success in identifying the 
outlier users from the dataset containing noisy gaze streams. 
We show the F1 scores of outlier identification compared to 
random guessing as a baseline (“Random guess”). 
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Figure  F1 scores of outlier identification among scan-
paths. At high privacy configurations (low values of e, rlarge, 
and w = 2 s), Kaleido thwarts outlier identification attacks 
in all three datasets by reducing F1 scores to be close to the 
random guess baseline (red dash lines). 

Results. Similarity analysis. In Figure 10, we compare 
the measured similarity with two thresholds: (1) mean inter-
subject similarity score (“Inter-subject”) in each dataset, and 
(2) the similarity of two randomly synthesized scanpaths pre-
sented in [20] (“Random scanpath”). Figure 10 shows a con-
sistent trend in all three image datasets: the scanpath similarity 
decreases with higher privacy level (i.e., smaller e, larger w, 
and larger r). Kaleido degrades the similarity score below the 
inter-subject threshold, even though it perturbs the spatial data 
only; at e = 0.5, Kaleido brings the similarity score close to 
the random scanpath baseline. 

Outlier identification. As observed from Figure 11, 
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Kaleido degrades the effectiveness of outlier identification 
for all of the privacy settings. For the natural and human im-
age datasets, Kaleido reduces the attacker’s F1 scores to the 
random guess using rlarge with e as high as 3. Although the 
attacker’s F1 score remains relatively high in the web page 
dataset, it is reduced significantly for e = 0.5. 

7.3.2 Biometric Inferences 

Setup. We construct attacks that attempt to predict (1) users’ 
identities and (2) whether the users wore contact lenses for 
vision correction (use of contact lenses leads to distinguishing 
eye gaze patterns [63]). 

For this experiment, we use the VR video dataset (last row 
in Table 1). The associated classification labels are provided 
in the dataset. This attack uses aggregate statistics of fixa-
tion/saccade features over several VR video sessions as train-
ing data and predicts users’ identities and vision conditions 
for an unseen session. Specifically, each video session uses a 
different VR context for the same user. Hence, the evaluation 
of biometric inferences here assesses Kaleido’s effectiveness 
against linkability attacks across different contexts (this has 
been exploited in prior work [22]). We adopt the features 
suggested by the Cluster Fix toolbox [44], which are then used 
to train a discriminant analysis classifier [19]. This evaluation 
includes 11 users from the VR video dataset who comfortably 
completed all 12 video sessions. Additionally, the training 
and test sets correspond to the same privacy configuration, 
i.e., either raw gaze streams or noisy gaze streams. We report 
the F1 scores for leave-one-out cross-validation. 

close to the random baseline even for low privacy configura-
tions (high values of e or rsmall ). 

8 Discussion 

Kaleido is a first step toward designing real-time eye-tracking 
systems that provide a formal privacy guarantee. Here, we 
discuss several possible avenues for future research: 
Support for more data formats and types. An eye-tracking 
platform may offer eye-tracking data in various formats 
such as 2D gaze positions and 3D gaze positions. Currently, 
Kaleido is designed for 2D gaze streams and supports head-
and-eye gaze streams as well (discussed in Appendix A.2.2). 
Extension to 3D gaze streams is possible and would involve 
extending the PlanarLap mechanism (Algorithm 1 to 3D po-
sitions. Additionally, some eye-tracking cores collect data 
including blink timing and pupil dilation. Kaleido’s scope of 
privacy can be further broadened to address these data types. 
Privacy guarantee for temporal information. Kaleido can 
be extended to protect the temporal information of eye gaze 
streams by interfering with the timeliness of gaze releases. 
For example, for fixation duration (a popular aggregate statis-
tic), Kaleido can decide on a predefined threshold T based 
on standard human gaze fixations [34]. Next, stage I and II 
from Algorithm 1 can be replaced by a sophisticated fixation 
detection approach such as online differentially private clus-
tering [43, 55], which (1) releases a single noisy position in 
the first T duration of a fixation and (2) stops any further data 
release for the given fixation. This ensures that the duration 
for all fixation events in the noisy gaze stream is fixed to T . 
Optimization for long scenes. Although visual content in an 
eye-tracking application is typically dynamic, it might remain 
relatively static for long periods in some cases. Such long 
scenes that span multiple windows may lead to a large pri-
vacy budget consumption. Techniques including noisy data 
caching can be used to help address this issue. Specifically, 
Kaleido can check online if the current ROI has been visited 
previously, and it can reuse the corresponding noisy gazes 
from recent history. Additionally, for applications where inter-
actions are sporadic, Kaleido can skip releasing new gazes for 
scenes when the user is inactive to save the privacy budget. 
Optimizations for context processing. One interesting fu-
ture direction can be optimizing Kaleido’s context processing 
core. The overhead of Kaleido’s context processing can be re-
duced by sharing the detection module with other applications. 
Kaleido can leverage other models for ROI detection, includ-
ing Selective Search [85] and Faster R-CNN [72], which 
may be implemented by the platform already. For instance, 
eye-tracking platforms, such as Hololens [59], provide certain 
context information that Kaleido can use directly for perfor-

Figure 12: F1 scores of predicting user identity and vision 
correction. Kaleido reduces the F1 scores of biometric infer-
ences to be close to random guess baselines (red dash lines) 
even for low privacy configurations (high values of e or rsmall ). 

Results. Figure 12 shows the F1 scores obtained from both 
the raw and noisy gaze streams. For both classifiers (identity 
and vision correction), the raw gaze streams enable accurate 
classification – the F1 score is close to 1 (“Raw data” in Fig-
ure 12) and is much higher than that of random guess. This 
indicates that the attacker can successfully predict users’ iden-
tities and vision correction conditions, even across different 
contexts. On the other hand, we observe that Kaleido signif-
icantly degrades the attacker’s classification accuracy to be 

mance optimization. Additionally, smart calibration of the 
frequency of key frame detection can also reduce the over-
head of context processing. 
Optimizations for privacy budget allocation. In this paper, 
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the presented composition theorem (Theorem 2) is based 
on the simple k-fold composition of the DP guarantee [21]. 
However, a tighter analysis might be possible via advanced 
composition [21] and moment-based accounting [1]. 
Evaluation of other utility metrics. In this paper, we pri-
marily focus on qualitatively evaluating Kaleido’s utility for 
the use case of a real-time game (as demonstrated in Section 
7). However, as mentioned in Section 2.2, eye-tracking data 
is used for diverse purposes. Hence, an important future direc-
tion is to investigate user perception for other online applica-
tions and quantitatively evaluate Kaleido’s utility for offline 
gaze data analysis (Kaleido’s impact on fixation saliency maps 
is presented in Appendix A.2.3). Another direction could be 
exploring application-specific utility optimizations. For in-
stance, data-smoothing techniques can be used to improve the 
accuracy of the noisy gaze streams. 

9 Conclusion 

We have designed and implemented Kaleido, an eye gaze pro-
cessing system that (1) provides a formal privacy guarantee on 
the spatial distribution of raw gaze positions, (2) seamlessly 
integrates with existing eye-tracking ecosystems, and (3) is 
capable of operating in real-time. Kaleido acts as an interme-
diary protection layer between the eye-tracking platform and 
the applications. Our evaluation results show that users enjoy 
a satisfactory level of utility while deploying Kaleido for an 
interactive eye-tracking game. Additionally, it is successful in 
thwarting real-world spatio-temporal attacks on gaze streams. 
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A Appendix 

A.1 Proof of Theorem 2 

Theorem 2 (Composition over multiple windows theo-
rem). Let M : S g 7! C g be a mechanism that takes as in-
put a gaze stream prefix Sk

g = (hg1, t1i, · · · ,hgk, tki), and out-
puts a transcript O = (o1, · · · ,ok) 2 C . Additionally, let M 
be decomposed into k mechanisms M1, · · · ,Mk such that 
Mi(gi) = oi, and each Mi generates independent random-
ness while achieving (ei, r)-geo-indistinguishability. Then for 

two stream prefixes Sg
k and Sg0 such that k 

• for all i 2 [k], ti = t 0 i 
• for each gi, g0 i such that i 2 [k] and gi 6= gi 

0 it holds that 
d(gi,g0 i)  r, i.e., (gi,gi0 ) are r-Euclidean neighboring, 
and 
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Figure 13: Privacy-accuracy trade-off of Kaleido. 
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Figure 15: Kaleido’s impact on saliency map at varying pri-

3 
and-eye gaze data. 

• for each gi1 ,gi2 ,g0     < i1 
,g0i2 

, with i1 i2,g 0 and g =  
i1 = gi i1 2 gi

0
2 
,

it holds that ti2 � ti1  m ·w,m 2 N 

 
8O 2 C g, , m e 0

 8k Pr g[M (Sg
k) = O] e · ·Pr[M (Sk ) = O] (8) 

Proof. Let m = 2 and i1 be the least index such that gi1 = 
g0 and i  

i 2 1
be the highest index such that gi2 =  

g0 . i2 
Addi-

tionally, let i⇤ 2 [i1, i2] such that time(i⇤) � time(i1) = w. 
Let Sg 

i = (⇤ hg g 
1, t1i · · ·hgi , ti i),Sk  = (hgi +1, ti +1i · · ·hgk, tki)⇤ ⇤ ⇤ ⇤ ⇤

and O =O1||O2, |O1|= |Sg
i |, |O2|= |Sg |, k  O ⇤ 2 C g. Now using ⇤

the independence of noise generation for each gaze position, 

Pr[M (Sg  
k O] = Pr g g) = [M (Si ) = O1] ·Pr[M (Sk  ) = O⇤ 2]⇤

 ee ·Pr M Sg0  e[ ( i ) = O1] · e ·Pr[M (Sg0 
k  ) = O2]⇤ ⇤

2e = e ·Pr[M (Sg0 
k ) = O] 

The rest of the proof follows trivially using induction using 
the above case as the base. 

6 6

6
6

A.2    

A.2.1 Privacy-Accuracy Trade-off 

In Figure 13, we study the privacy-accuracy trade-off for vary-
ing configurations of Kaleido. The utility is measured by the 
root mean square error (RMSE) in pixel. We vary the param-
eters as follows: e 2 {0.5,1,1.5,2,2.5,3}, w 2 {0.5,1,1.5,2} 
and r 2 {rsmall ,rlarge . We generate 100 random trials for 
each  

}
combination and report the mean observation. In all the 

Additional Experimental Results

vacy configurations. 

datasets, we observe a clear trend of accuracy improvement 
(lower RMSE) with increasing privacy budget e or decreasing 
window duration w. At the same value of e and w, using rlarge 

gives lower accuracy than rsmall . 

A.2.2 Kaleido’s Effect on Head-and-Eye Gaze Data 

We show the privacy-accuracy trade-off for Kaleido for head-
and-eye gaze data for the VR video dataset in Figure 14. The 
observations are consistent with Figure 13 of just eye gazes. 

A.2.3 Kaleido’s Effect on Fixation Saliency Map 

In some cases, the application utility might require extracting 
the saliency maps [7, 40] from users’ fixations. Figure 15 
shows Kaleido’s impact on the saliency maps. We compute 
the correlation coefficient, a standard metric for saliency map 
similarity [15], between each user’s clean and noisy maps.
For all the datasets, Kaleido’s accuracy (higher correlation 
coefficient) [11] increases with increase in the privacy budget 
e or decrease in window duration w. At the same value of 
e and w, using rlarge gives lower accuracy than rsmall . These 
results are consistent was ’s premise: it attempts to 

 

Kaleido
hide the spatial patterns of the user’s fixations. A lower value 
of e would result in less accurate extraction of the saliency 
maps. 
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