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Abstract However, recent studies [2, 14–18] have shown that cur-
rent deepfake detectors are unfair: their detection accuracy

Despite the development of effective deepfake detectors is not consistent across gender, age, and ethnicity [15]. For
in recent years, recent studies have demonstrated that bi- example, several state-of-the-art detectors have higher de-
ases in the data used to train these detectors can lead tection accuracy for deepfakes with lighter skin tones than
to disparities in detection accuracy across different races deepfakes with darker skin tones [14, 19]. A key reason
and genders. This can result in different groups being un- for this disparity is that how often different demographic
fairly targeted or excluded from detection, allowing unde- groups appear in the training data is imbalanced [16]. Col-
tected deepfakes to manipulate public opinion and erode lecting a larger “balanced” dataset can be costly and labor-
trust in a deepfake detection model. While existing stud- intensive [20]. While conventional fairness methods can be
ies have focused on evaluating fairness of deepfake detec- applied (e.g., by adding a fairness regularization term to the
tors, to the best of our knowledge, no method has been overall loss function [21]), deepfake detection poses an addi-
developed to encourage fairness in deepfake detection at tional level of complexity. Specifically, we need to account
the algorithm level. In this work, we make the first at- for the imbalance in real vs training deepfake examples in
tempt to improve deepfake detection fairness by proposing addition to the usual imbalance in demographic groups.
novel loss functions that handle both the setting where demo- In this paper, we propose two Fair Deepfake Detection
graphic information (e.g., annotations of race and gender) (FDD) methods, both of which can be used to modify an
is available as well as the case where this information is existing deep-learning-based deepfake detector that does not
absent. Fundamentally, both approaches can be used to account for fairness into one that does:
convert many existing deepfake detectors into ones that en- 1. Our first method DAG-FDD (demographic-agnostic
courages fairness. Extensive experiments on four deepfake FDD) does not rely on demographic details (the user
datasets and five deepfake detectors demonstrate the effec- does not have to specify which attributes to treat as
tiveness and flexibility of our approach in improving deep- sensitive such as race and gender) and can be applied
fake detection fairness. Our code is available at https: when, for instance, these demographic details have not
//github.com/littlejuyan/DF_Fairness. been collected for the dataset. To use DAG-FDD, the

user needs to specify a probability threshold for a mi-
nority group without explicitly identifying all possible

1. Introduction groups. The goal is to ensure that all groups with at
least a specified occurrence probability have low error.

“Deepfakes” refer to realistic images and videos where a 2. The second method DAW-FDD (demographic-aware
person’s likeness has been replaced by that of another with FDD) leverages demographic information and employs
the help of deep learning technologies. Concerns have arisen an existing fairness risk measure [22]. At a high level,
regarding deepfakes being used for malicious purposes, such DAW-FDD aims to ensure that the losses achieved by
as in political propaganda or cyberattacks. For example, a different user-specified groups of interest (e.g., different
deepfake video can depict a world leader making statements races or genders) are similar to each other (so that the
or taking actions that never occurred in reality [1], which deepfake detector is not more accurate on one group vs
could deceive the public. To mitigate the impact of deep- another) and, moreover, that the losses across all groups
fakes, a variety of deepfake detectors have been developed are low. This approach requires a way to estimate the
with promising detection accuracy [2–13]. loss of each group, for which we use a ranking-based es-

*Equal contribution timator that addresses the imbalance in real vs deepfake
†Corresponding authors examples per group.
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From a technical viewpoint, both of our methods are based
on a distributionally robust optimization (DRO) technique
called Conditional Value-at-Risk (CVaR) [23–25]. Whereas
our first method DAG-FDD is a straightforward application
of CVaR to the fair deepfake detection problem (so that the
novelty is not in the method itself but in applying the method
to a problem that we do not believe has previously been
explored by DRO literature), our second method DAW-FDD
uses the CVaR in a hierarchical manner that, to the best of
our knowledge, is novel. Specifically, DAW-FDD uses a
CVAR loss function across groups (to address imbalance
in demographic groups) and, per group, DAW-FDD uses
another CVAR loss function (to address imbalance in real
vs deepfake training examples). We also show how several
existing fairness approaches are special cases of DAW-FDD.

Our main contributions are as follows:
1. We propose two methods for achieving fair deepfake

detection in ways that are either agnostic to or, sepa-
rately, aware of demographic factors. Both methods
convert an existing deep-learning-based deepfake detec-
tor that does not encourage fairness into one that does.
Moreover, both use training procedures that alternate
between minibatch gradient descent (to update neural
network model parameters) and solving specific convex
optimization problems related to data imbalance.

2. We demonstrate the effectiveness of our methods in im-
proving fairness of several state-of-the-art deepfake de-
tectors (while retaining strong detection performance)
on four large-scale datasets (FaceForensics++ [26],
Celeb-DF [27], DeepFakeDetection (DFD) [28], and
Deepfake Detection Challenge (DFDC) [29]).

To the best of our knowledge, our paper is the first to propose
novel algorithms for fair deepfake detection.

2. Related Work
2.1. The Categories of Fairness Approaches

Many approaches have been proposed to encourage fair-
ness in general machine learning settings. These methods
fall into two major categories: demographic-agnostic and
demographic-aware. Typically, there is a tradeoff between
encouraging fairness and achieving high prediction accuracy.
Demographic-agnostic. When demographic information
is inaccessible (e.g., either it was not collected, or we do
not have an exhaustive list of all groups that we want to
be “fair” across), there are methods that achieve fairness
without any prior knowledge of which attributes to treat as
sensitive. Examples of such approaches include distribution-
ally robust optimization (DRO) [30], adversarial learning
[31], using input features to find surrogate group information
[32], cluster-based balancing for input data [33], knowledge
distillation [34], and causal variational autoencoders [35].
Among these, our work builds on existing DRO literature.
Demographic-aware. A large number of fairness defini-

Fairness Require
Method Year #Detector #Dataset Solution Demographics

Trinh et al. [14] 2021 3 1 × -
Hazirbas et al. [19] 2021 5 1 × -

Pu et al. [44] 2022 1 1 × -
GBDF [16] 2022 5 4 Data-level ✓

Xu et al. [15] 2022 3 4 × -
DAG-FDD (ours) 2023 5 4 Algorithm-level ×
DAW-FDD (ours) 2023 5 4 Algorithm-level ✓

Table 1. Summary of previous studies and our work. ‘-’ means not
applicable.

tions have been proposed in the literature for generating
regularization terms to add to a training loss. There are two
key types of fairness measures using demographic informa-
tion that we highlight: group fairness [36] and intersectional
fairness [37]. Specifically, group fairness considers a model
fair across a user-specified set of groups if these different
groups satisfy a condition such as demographic parity [36]
or equalized odds [38]. Intersectional fairness accounts for
multiple sensitive attributes (e.g., intersections of race and
gender taking on specific combinations). More notions of
fairness can be found in [21, 39]. A drawback of these ap-
proaches is that precisely which notion of fairness and which
attributes to treat as sensitive (or an exhaustive list of groups
to encourage fairness across) must be specified as part of the
overall training loss function. If at a later time, we realize
that we want to use a different notion of fairness or we want
to account for different sensitive attributes or demographic
groups, then model re-training may be required. One of our
proposed approaches requires an exhaustive list of all groups
that we want similar accuracy for.

2.2. Fairness in Deepfake Detection
Despite considerable efforts [6, 40–43] dedicated to en-

hancing the generalization capability of deepfake detec-
tion to out-of-distribution (OOD) data, there is still limited
progress in addressing the biased performance during test-
ing within known domains. In contrast to previous studies,
our research uniquely prioritizes fairness as its primary goal.
Specifically, we address the issue of biased performance
among groups under in-domain testing, aiming to achieve
equal accuracy across user-specified demographic groups.

Extending the investigation of fairness that was originally
for face recognition [45–48], several recent studies have ex-
amined fairness concerns in deepfake detection, as shown
in Table 1. The work in [14] is the first to evaluate biases
in existing deepfake datasets and detection models across
protected groups. They examined three popular deepfake
detectors and observed large disparities in prediction accu-
racy across races, with up to 10.7% difference in error rate
between groups. Similar observations are found in [19]. Pu
et al. [44] evaluated the reliability of one popular deepfake
detection model (MesoInception-4) on FF++ and showed
that the MesoInception-4 model is generally more effec-
tive for female subjects. A more comprehensive analysis
of deepfake detection bias with regards to demographic and
non-demographic attributes is presented in [15]. The authors

4656



collected comprehensive annotations for 5 widely-used deep-
fake detection datasets to facilitate future research. The work
in [16] showed significant bias in both datasets and detection
models and they tried to reduce the performance bias across
genders by providing a gender-balanced dataset. This leads
to limited improvement at the cost of highly time-consuming
data annotation, which does not extend to other possible
non-gender attributes that we might want to treat as sensi-
tive. Developing more effective bias-mitigating deepfakes
detection solutions remains an open challenge [2].

3. Method
In this work, we propose two deep-learning-based deep-

fake detection methods that encourage fairness. The first
method, termed DAG-FDD, is applicable when we have
training data without demographic annotations. This ap-
proach works with most existing deepfake datasets. The
second method, termed DAW-FDD, works when the dataset
contains additional demographic annotations (specifically so
that we know which group each training point belongs to
among some user-specified exhaustive list of groups we aim
to ensure fairness over).

Both approaches are meant to modify an existing deep-
learning-based deepfake detector into one that encourages
fairness. To this end, in what follows, we assume that
S := {(Xi, Yi)}ni=1 is the training set that consists of
i.i.d. samples from a joint distribution P, where Xi is the
i-th data point’s raw features (e.g., an image or video) and
Yi ∈ {0, 1} is the i-th point’s label (0 means real, 1 means
deepfake). We assume that the underlying deepfake detector
aims to minimize a risk of the form

Ravg(θ) := E(X,Y )∼P[ℓ(θ;X,Y )] for θ ∈ Θ, (1)

where ℓ is the loss function (e.g., cross entropy loss) of the
deepfake detector model, which is assumed to have parame-
ters θ that belong to a set Θ; the loss function is evaluated
for a specific input X with target label Y . As is standard in
machine learning, instead of minimizing the true unknown
risk Ravg(θ), in practice we use some variant of minibatch
gradient descent to minimize the empirical risk given by the
loss function Lavg(θ) :=

1
n

∑n
i=1 ℓ(θ,Xi, Yi).

3.1. Demographic-agnostic FDD (DAG-FDD)
We first present DAG-FDD, which is based on the distri-

butionally robust optimization (DRO) [30, 49]. Roughly, the
idea is that there are K unknown underlying groups of indi-
viduals. We assume that each group occurs with probability
at least α ∈ (0, 1). Then by a standard result of DRO, there
is a loss function that we can minimize that aims to ensure
that all K latent groups have low error despite us not explic-
itly knowing what these latent groups are. We formalize this
high level idea in the rest of this section.

The worst-case risk Rmax(θ). We assume that there are K
true unknown groups that comprise the joint distribution P.

In other words, P can be represented as a mixture of K
distributions P :=

∑K
m=1 πmPm, where the m-th group

occurs with probability πm ∈ (0, 1) and has distribution Pm,
and

∑K
m=1 πm = 1. Instead of minimizing the average

risk (1), we seek to minimize the following worst-case risk:
Rmax(θ) := max

m=1,...,K
E(X,Y )∼Pm

[ℓ(θ;X,Y )], (2)

where ℓ is a loss function for an individual data point used
by the original deepfake detector that we are modifying (i.e.,
ℓ is same function used in equation (1)). Directly minimiz-
ing Rmax is intractable since we do not know the K latent
groups; in fact, we assume that we do not know the value
of K either. However, it turns out that we can minimize an
empirical version of its upper bound.

Upper bound on Rmax(θ). We use the well-established risk
function called the Conditional Value-at-Risk (CVaR) [25]:

CVaRα(θ) := inf
λ∈R

{
λ+

1

α
E(X,Y )∼P

[
[ℓ(θ;X,Y )− λ]+

]}
,

(3)
where [a]+ = max{0, a} is the hinge function (also called
the ReLU function), and we assume that each of the K latent
groups occurs with probability at least α ∈ (0, 1). The
following result shows that the risk CVaRα(θ) is an upper
bound of Rmax(θ), so that by minimizing CVaRα(θ), we
are minimizing an upper bound on the worst-case risk (2).

Proposition 1. Suppose that α ≤ minm=1,...,K πm. Then
CVaRα(θ) ≥ Rmax(θ).

Note that this result is not new [50]. However, to the best
of our knowledge, we are the first to apply it to learning
fair deepfake detectors in a demographic-agnostic way. We
include the proof of Proposition 1 in Appendix A.1.

In practice, α is a user-specified hyperparameter that says
how rare of a group we want to ensure low risk for. As
α → 0, we are asking for low risk even for an extremely
rare group. In contrast, as α → 1 (i.e., the rarest group
occurs with probability 1), then for Proposition 1 to hold, it
means that we would have K = 1 and π1 = 1, in which case
the worst-case risk (2) would simply become the standard
average risk (1). By tuning α ∈ (0, 1), we effectively say
how “fine-grain” of groups we aim to encourage fairness
over, which naturally leads to a tradeoff between fairness
and population-level average accuracy.

DAG-FDD. In practice, we minimize an empirical version
of CVaRα(θ). This gives us the following optimization
problem, which we refer to as our first method DAG-FDD:

min
θ∈Θ,λ∈R

LDAG-FDD(θ, λ) :=λ+
1

αn

n∑
i=1

[ℓ(θ;Xi, Yi)− λ]+.

(4)
As a reminder, Θ is the set of possible model parameters of
the original deepfake detector (see equation (1)).

To provide some intuition for the loss function
LDAG-FDD(θ, λ), suppose for a moment that we have obtained
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Algorithm 1: DAG-FDD
Input: A training dataset S of size n, α, max iterations,

num batch, learning rate η
Output: A fair deepfake detection model with parameters θ∗

1 Initialization: θ0, l = 0
2 for e = 1 to max iterations do
3 for b = 1 to num batch do
4 Sample a mini-batch Sb from S
5 Compute ℓ(θl;Xi, Yi), ∀(Xi, Yi) ∈ Sb
6 Using binary search to find λ that minimizes (4) on Sb
7 Compute θl+1 with equation (5)
8 l← l + 1

9 end
10 end
11 return θ∗ ← θl

the optimal value of λ∗ in (4). Then the only training points
that contribute to the loss are the “hard” ones with a loss
value greater than λ∗. In other words, the loss function al-
ways focuses on “hard” training points with large enough
loss values whereas the “easy” training points with low loss
values are ignored. Which training points are “easy” vs
“hard” can vary as a function of model parameters θ ∈ Θ.

Solving the optimization problem in (4) can be done
through an iterative gradient descent approach [51–54]. In
practice, we first initialize model parameters θ and then
randomly select a mini-batch set Sb from the training set S,
performing the following two steps for each iteration on Sb

(see Algorithm 1):
• We fix θ and use binary search to find the global opti-

mum of λ since LDAG-FDD(θ, λ) is convex w.r.t. λ.
• We fix λ and update θ using (stochastic) gradient de-

scent with a user-specified learning rate η > 0:

θl+1 = θl−
η

α|Sb|
∑
i∈Sb

∂θℓ(θl;Xi, Yi)·1[ℓ(θl;Xi,Yi)>λ],

(5)
where 1[a] is an indicator function (that equals 1 if a is
true, and 0 otherwise), ∂θℓ represents the (sub)gradient
of ℓ w.r.t. θ, and η is the learning rate.

We stop iterating after reaching some user-specified stopping
criteria (e.g., maximum number of iterations). Note that this
optimization process is similar to how one would train the
original deepfake detector being modified except that we
now have an additional binary search to update λ; thus the
training time complexity is comparable.

3.2. Demographic-aware FDD (DAW-FDD)
We now turn to the setting where within the training data,

we have demographic labels available so that we know for
each training point which group it belongs to among some
user-specified exhaustive listing of all possible groups that
we want to ensure fairness across. Specifically, we let G
denote the user-specified set of groups (e.g., if we aim to
encourage fairness across gender, then G would consist of
the different genders). Then for the i-th training point (with

raw features Xi and target label Yi) we assume that we also
know its group Gi ∈ G.

We first state the group-level risk that we aim to minimize
that encourages fairness across groups (i.e., this risk aims
to address imbalance in user-specified demographic groups
within the data). When it comes to empirically estimating
this risk, we then discuss how we account for imbalance in
real vs deepfake examples.
Group-level risk (addresses demographic imbalance).
Each group g ∈ G has a group-specific risk defined as
Rg(θ) := E(X,Y )|G=g[ℓ(θ;X,Y )], where random vari-
able G denotes the group corresponding to a generic data
point with raw features X and target Y . To treat the different
groups to be “equally weighted”, the risk we use intention-
ally views G to be sampled uniformly at random from G
(even if in the actual data, G may not be uniformly dis-
tributed so that different groups could occur with different
probabilities). Specifically, we use the “group CVaR” risk

CVaRG
α(θ) := inf

λ∈R

{
λ+

1

α
EG∼Uniform(G)

[
[RG(θ)−λ]+

]}
.

(6)
To provide some intuition for this risk, recall that the non-
group-level CVaR risk from earlier (equation (3)) focuses on
individual data points that have “large enough” loss values
(specifically, if λ∗ achieves the infimum value in equation (3),
then CVaRα(θ) only focuses on data points with loss values
above λ∗). In the group-level version of CVaR presented in
equation (6), we instead focus on groups that have “large
enough” risk values.
The group CVaR risk as a fairness risk measure. In fact,
the group CVaR risk can be directly interpreted as a fairness
risk measure, as shown by [22].
Proposition 2. (Equation (21) of [22]) Let α ∈ (0, 1),
min
θ∈Θ

CVaRG
α(θ)

= min
θ∈Θ

{
EG∼Uniform(G)[RG(θ)] + D({Rg(θ) : g ∈ G})

}
,

where D is a “deviation measure” that looks at how different
the different groups’ losses are (if they are all the same, then
the deviation measure would be 0). Specifically,

D({Rg(θ) : g ∈ G})

:= inf
λ∈R

{
λ+

1

α|G|
∑
g∈G

[Rg(θ)−R(θ)− λ]+

}
,

where R(θ) := 1
|G|
∑

g∈G Rg(θ).
This proposition states that minimizing the group-level
CVaR risk is equivalent to minimizing a risk that is the
sum of two terms: the first term EG∼Uniform(G)[RG(θ)] =
1
|G|
∑

g∈G Rg(θ) is the equally weighted average of
the different groups’ losses, and the second term
D({Rg(θ) : g ∈ G}) asks that the different groups’ losses
are close to each other (i.e., the deepfake detector learned
should not be more accurate for one group vs another).

4658



DAW-FDD (empirical estimation of group-level risk that
accounts for imbalance in real vs deepfake examples).
Recall that previously when we presented our demographic
agnostic approach DAG-FDD, we empirically estimate the
CVAR risk from equation (3) in a straightforward manner
with the loss function LDAG-FDD(θ, λ) from equation (4).
Now that we use a group-level CVAR risk instead (given in
equation (6)), we have to be more careful with empirically
estimating the risk. The issue is that we need an accurate esti-
mate of each group’s risk Rg(θ) = E(X,Y )|G=g[ℓ(θ;X,Y )].
A naive approach would take an equally weighted average
across examples belonging to group g. However, the imbal-
ance in the number of real vs deepfake examples in group g
could bias the estimate of Rg(θ).

To address this issue, we use the average top-k operator
[55] to estimate group risks instead of the average operator.
In more detail, denote the training points in group g ∈ G
as Ig := {i = 1, . . . , n : Gi = g}, the number of points
in group g as ng := |Ig|, and the set of individual losses in
group g as ℓg(θ) := {ℓ(θ;Xi, Xj) : i ∈ Ig}. We further
denote the j-th largest loss in ℓg(θ) as ℓg[j] (ties can be broken
in any consistent manner). Then we empirically estimate
group g’s risk Rg(θ) with the loss function

Lg(θ) :=
1

kg

kg∑
j=1

ℓg[j](θ), (7)

where kg ∈ {1, . . . , ng} is a user-specified integer. This
choice of empirical estimate can enhance the influence of the
minority class while reducing the influence of the majority
class in each group as samples with small loss values are
most likely from the majority class per group. Since kg
may vary across groups, we set kg = αgng, where αg ∈
[1/ng, 1]. In practice, we can set αg to be the same for all
groups and tune it on a predefined grid.

Finally, we solve the following optimization problem
which minimizes an empirical estimate of CVaRG

α(θ):

min
θ∈Θ,λ∈R

LDAW-FDD(θ, λ) := λ+
1

α|G|
∑
g∈G

[Lg(θ)− λ]+.

(8)
As it turns out, the group specific loss function Lg(θ) in
equation (7) can itself be written as a CVaR loss, as we
establish in the following theorem.
Theorem 1. For a set of real numbers ℓ = {ℓ1, ..., ℓq},
let ℓ[k] denote the k-th largest value in ℓ for k ∈ {1, . . . q}.
Then we have 1

k

∑k
i=1 ℓ[i] = minλ∈R{λ+ 1

k

∑q
i=1[ℓi−λ]+}.

Using this result, optimization problem (8) is equivalent to

min
θ∈Θ,λ∈R

LDAW-FDD(θ, λ) :=λ+
1

α|G|
∑
g∈G

[Lg(θ)− λ]+, (9a)

s.t. Lg(θ)=min
λg∈R

Lg(θ, λg) :=λg+
1

αgng

∑
i∈Ig

[ℓ(θ;Xi, Yi)− λg]+.

(9b)

We defer the proof to Appendix A.2. Theorem 1 tells us that
optimization problem (8) is equivalent to a optimization prob-
lem with a hierarchical structure: across the demographic
groups, we have a group-level CVaR loss (equation (9a)).
To compute this group-level CVaR loss, we compute each
group’s loss function Lg(θ) (equation (9b)), which in turn
is of the form of a CVaR loss (i.e., the top-k operator can
be written as a CVaR loss). This CVaR loss per group is
specifically meant for addressing the imbalance in real vs
deepfake examples. We call this approach DAW-FDD.

To optimize (9), the iterative procedure in Algorithm 1
can still be applied except where each iteration now consists
of three steps: updating {λg : g ∈ G}, λ, and θ. The pseu-
docode is shown in Algorithm 2 in Appendix B. Note that the
explicit form of ∂θLDAW-FDD(θl, λ) (i.e., the (sub) gradient
of LDAW-FDD(θ, λ) w.r.t. θ) can be found in Appendix C.

Remark 1. For our method DAW-FDD, by choosing values
of α and αg in specific ways, we recover several existing
fairness methods. For example, if α → 1 and αg → 1, we
minimize the average of group risks, which aligns with the
impartial observer principle [56]. If α → 0 and αg → 1, we
instead minimize the largest group risk (2) [30, 57], which
aligns with the maximin principle [58]. If αg → 1 (i.e.,
we replace the top-k operator with a simple average), our
approach is just the empirical version of CVaRG

α(θ) [22].

4. Experiment
This section evaluates the effectiveness of the proposed

methods in terms of fairness performance and deepfake de-
tection performance. We present the most significant in-
formation and results of our experiments. More detailed
information and additional results are provided in Appendix
D and E, respectively.

4.1. Experimental Settings
Datasets. Our experiments are based on four popular
large-scale benchmark deepfake datasets, namely Face-
Forensics++ (FF++) [26], Celeb-DF [27], DeepFakeDe-
tection (DFD) [28], and Deepfake Detection Challenge
Dataset (DFDC) [29]. Since all the original datasets do not
have the demographic information of each video or image,
we use the annotations from [15] which provides annotated
demographic information for these four datasets, including
Gender (Male and Female) and Race (Asian, White, Black,
and Others) attributes. We also double-check the annota-
tions for each dataset. In addition to the single attribute
fairness, we also consider the combined attributes (Inter-
section) group, including Male-Asian (M-A), Male-White
(M-W), Male-Black (M-B), Male-Others (M-O), Female-
Asian (F-A), Female-White (F-W), Female-Black (F-B), and
Female-Others (F-O). We use Dlib [61] for face extraction
and alignment, and the cropped faces are resized to 380×380
for training and testing. Following the previous study [15],
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Methods
Require
Demo-

graphics

Fairness Metrics (%) ↓ Detection Metrics (%)
Gender Race Intersection Overall

GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC ↑ FPR ↓ TPR ↑ ACC ↑
Original − 4.10 4.10 9.06 13.09 17.28 21.00 17.93 31.59 53.95 92.76 22.06 94.43 91.49

DROχ2 [30] × 2.68 2.68 6.75 8.32 8.97 20.40 8.73 22.97 55.54 97.18 6.32 90.25 90.86
DAG-FDD (Ours) 1.63 1.63 6.21 8.23 9.53 11.49 9.65 21.21 48.10 97.13 9.54 94.32 93.63

Naive [16]

✓

11.98 11.98 18.20 16.57 22.01 25.97 28.90 72.19 93.59 83.17 50.77 92.62 84.87
FRM [22] 1.33 1.33 5.88 9.24 12.75 20.13 10.39 25.57 60.90 97.81 4.76 90.85 91.63

Group DRO [59] 8.20 8.20 12.87 14.37 20.97 23.79 21.86 44.98 65.24 91.13 27.83 95.15 91.04
Cons. EFPR [60] 4.24 4.24 7.91 7.09 7.49 12.41 14.95 27.80 46.62 94.30 22.61 94.94 91.80
Cons. EO [60] 1.77 1.77 4.79 10.92 12.61 16.50 17.25 26.95 44.68 95.74 16.28 95.89 93.72

DAW-FDD (Ours) 0.32 0.32 3.99 2.49 3.88 6.29 6.61 14.06 33.84 97.46 11.46 95.40 94.17
Table 2. Comparison results with different fairness solutions using Xception detector on FF++ testing set across Gender, Race, and
Intersection groups. The best results are shown in Bold. ↑ means higher is better and ↓ means lower is better. Gray highlights mean our
methods outperform the baselines in the group (i.e., DAG-FDD vs. Original/DROχ2 , DAW-FDD vs. Original/Naive/FRM/Group DRO/Cons.
EFPR/Cons. EO).

we split the annotated datasets into training/validation/test
sets with a ratio of approximately 60%/20%/20%, without
identity overlapping. In particular, the validation set is used
for hyperparameter tuning. More details of the datasets, in-
cluding attribute groups and number of training samples are
provided in Tables E.5 and E.6 of the Appendix E.7.
Evaluation metrics. Fairness measures are selected con-
sidering the practical use of deepfake detection systems in
social media. Given that real cases outnumber (deep)fake
ones, we prioritized metrics related to False Positives (mis-
classifying real as fake) to prevent potential consequences
such as suspicion, distrust, legal, or social repercussions,
especially for users from specific ethnic groups. Three fair-
ness metrics are used to report the fairness performance of
methods. Specifically, we report the maximum differences
in False Positive Rate (FPR) Gap (GFPR) for Gender, Race,
and Intersection groups. We also consider the Equal False
Positive Rate (FFPR) and Equal Odds (FEO) metrics as used
in [60]. These metrics are defined as follows (for ease of
notation, we write this for the training data but it is of course
evaluated on test data):
GFPR := max

g,g′∈G

∣∣FPRg−FPRg′
∣∣,

FFPR :=
∑
g∈G

∣∣∣∣∣
∑n

i=1 1[Ŷi=1,Gi=g,Yi=0]∑n
i=1 1[Gi=g,Yi=0]

−
∑n

i=1 1[Ŷi=1,Yi=0]∑n
i=1 1[Yi=0]

∣∣∣∣∣,
FEO :=

∑
g∈G

1∑
q=0

∣∣∣∣∣
∑n

i=1 1[Ŷi=1,Gi=g,Yi=q]∑n
i=1 1[Gi=g,Yi=q]

−
∑n

i=1 1[Ŷi=1,Yi=q]∑n
i=1 1[Yi=q]

∣∣∣∣∣,
(10)

where FPRg represents the FPR scores of group g. Yi and
Ŷi respectively represent the true and predicted labels of the
sample Xi. Their values are binary, where 0 means real and
1 means fake. For all fairness metrics here, lower is better.

Since there is usually a trade-off between fairness and
detection performance [21, 39], we also include detection
metrics to assess the balance between fairness and detection
performance. Four widely-used deepfake detection metrics
are reported: 1) the area under the curve (AUC), 2) FPR,
which is essential in real-world use as it indicates the count
of incorrect fake classifications, 3) True Positive Rate (TPR),

Methods
Fairness Metrics (%) ↓ Detection Metrics (%) Training Time

(mins)/Epoch
Binary Search

Time (mins)/EpochIntersection Overall
GFPR FFPR FEO AUC ↑ FPR ↓ TPR ↑ ACC ↑

Original 24.00 45.50 63.24 95.00 19.28 95.94 93.29 2.6 N/A(9.00) (16.39) (12.96) (2.96) (7.14) (1.41) (1.60)
DAG-FDD

(Ours)
13.83 24.38 48.52 96.81 13.43 95.33 93.81 3.0 0.59(11.86) (17.04) (15.37) (1.68) (7.00) (1.40) (1.13)

DAW-FDD
(Ours)

11.53 26.55 47.50 97.40 12.21 95.45 94.11 3.0 0.66(3.43) (7.97) (10.99) (0.30) (4.05) (1.37) (0.66)

Table 3. Detection mean and standard deviation (in parentheses)
of Xception detector on FF++ testing set across 5 experimental
repeats, in the same format as Table 2. Training time and binary
search time per epoch for each method are also reported.

which measures the number of correct fake classification,
and 4) Accuracy (ACC). We calculate the FPR, TPR, and
ACC with a fixed threshold of 0.5 [62, 63].

Baseline methods. We apply our proposed methods DAG-
FDD and DAW-FDD in Section 3 to popular deepfake de-
tectors to show their effectiveness. Five deepfake detection
models are considered, including three widely-used CNN
architectures in deepfake detection [16, 27, 64] (i.e., Xcep-
tion [26], ResNet-50 [65], and EfficientNet-B3 [66]) and
two well-designed deepfake detectors with outstanding per-
formance, namely DSP-FWA [27] and RECCE [67]. We
denote the detectors with their original loss functions (e.g.,
binary cross-entropy) as “Original”.

In terms of comparison in fairness detection, we consider
the method [16] based on balancing the number of training
samples in each group for deepfake fairness improvement;
we take this method as a baseline for comparison denoted
as “Naive”. Specifically, we use an intersectional group with
the smallest number of training samples and then randomly
select the same number of training samples from the other
groups to create such a balanced training dataset. Moreover,
we compare our two loss functions with the χ2-divergence
based DRO (DROχ2 ) [30], the fairness risk measure (FRM)
[22], and a popular Group DRO method [59] in fairness
research although they have not been applied to deepfake de-
tection. Besides, we modify FFPR and FEO as regularization
terms [60], and incorporate them with binary cross-entropy
loss as baselines: Cons. EFPR and Cons. EO.
Implementation details. All experiments are conducted
on the PyTorch platform [68] using 4 NVIDIA RTX A6000
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Fairness Metrics (%) ↓ Detection Metrics (%)
Datasets Methods Gender Race Intersection Overall

GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC ↑ FPR ↓ TPR ↑ ACC ↑
Original 4.93 4.93 22.04 3.31 4.77 26.06 11.81 15.66 39.95 97.17 13.01 95.83 94.05

--
Celeb-DF

-f-
DAG-FDD (Ours) 2.02 2.02 16.77 1.20 1.22 28.56 2.54 3.09 30.43 98.00 2.42 87.40 89.44
DAW-FDD (Ours) 3.81 3.81 18.93 3.14 3.34 33.91 3.80 4.91 35.48 98.03 2.10 84.53 87.21

Original 2.95 2.95 5.52 7.35 7.35 7.72 8.67 15.81 24.31 92.94 25.00 96.01 89.09
DFD DAG-FDD (Ours) 2.92 2.92 4.79 6.08 6.08 7.05 8.30 13.52 19.57 93.40 28.07 96.31 88.28

DAW-FDD (Ours) 1.40 1.40 3.14 2.36 2.36 3.35 7.20 8.74 14.70 93.17 27.75 95.95 88.14
Original 1.64 1.64 4.36 4.02 5.85 38.84 20.17 38.68 119.71 92.40 7.28 76.32 86.87

DFDC DAG-FDD (Ours) 1.30 1.30 5.38 4.50 5.78 46.56 14.65 33.79 113.93 92.69 6.61 74.41 86.61
DAW-FDD (Ours) 1.73 1.73 3.39 3.48 4.14 42.87 11.19 23.63 115.15 94.88 4.27 75.10 88.37

Table 4. Results of Xception detector on Celeb-DF, DFD, and DFDC testing sets, in the same format as Table 2.
Fairness Metrics (%) ↓ Detection Metrics (%)

Models Methods Gender Race Intersection Overall
GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC ↑ FPR ↓ TPR ↑ ACC ↑

Original 2.58 2.58 6.64 12.80 15.45 17.62 20.06 43.18 60.66 94.32 25.96 96.36 92.37
ResNet-50 DAG-FDD (Ours) 2.21 2.21 6.37 6.44 11.42 14.17 16.68 37.50 52.79 94.51 22.52 95.34 92.15

DAW-FDD (Ours) 3.78 3.78 10.21 7.01 8.27 13.09 13.28 35.08 60.07 93.70 23.56 93.65 90.58
Original 1.97 1.97 4.15 9.05 10.86 14.12 13.38 22.65 40.13 95.91 20.25 97.21 94.09

EfficientNet-B3
-f-

DAG-FDD (Ours) 0.47 0.47 5.36 9.48 9.58 13.50 10.87 19.34 46.08 97.20 8.40 92.87 92.65
DAW-FDD (Ours) 0.04 0.04 5.53 3.79 4.67 12.63 6.43 12.57 43.72 96.30 8.22 91.43 91.49

Original 5.90 5.90 11.81 11.07 14.58 21.98 21.38 48.20 75.91 91.79 31.64 93.17 88.74
DSP-FWA DAG-FDD (Ours) 4.64 4.64 9.77 12.52 18.04 25.03 15.61 40.57 74.54 91.47 32.35 93.70 89.05

DAW-FDD (Ours) 3.02 3.02 11.30 5.75 10.52 19.34 12.84 36.05 75.73 90.84 30.43 91.97 87.97
Original 0.87 0.87 3.14 18.81 27.65 30.07 30.26 67.38 80.34 98.05 21.20 98.21 94.74

RECCE DAG-FDD (Ours) 0.55 0.55 3.71 12.68 17.41 20.33 15.40 36.17 54.24 98.33 12.01 96.80 95.23
DAW-FDD (Ours) 0.25 0.25 4.75 6.99 7.96 11.95 13.54 23.44 52.95 98.35 8.15 94.59 94.10

Table 5. Results of ResNet-50, EfficientNet-B3, DSP-FWA, and RECCE detectors on FF++ testing set, in the same format as Table 2.

GPU cards. We train all methods by using a (mini-batch) is benefited from the tighter upper bound (see Proposition
stochastic gradient descent optimizer with batch size 640, 1) on the risk Rmax(θ) in our DAG-FDD method than the
epochs 200, and learning rate as 5 × 10−4. We build our DROχ2 method as mentioned in [50].
loss functions on the binary cross-entropy loss for the binary With demographic information, we see that the Naive
deepfake classification task. Since the DAW-FDD method method trained on a balanced dataset does not guarantee an
needs to pre-define a set of groups, we use the Intersection improvement in fairness metrics on test data. For example,
group in experiments and also report the performance on on the intersectional groups, all fairness scores of the Naive
single attributes. The hyperparameters α and αg are tuned method (e.g., FFPR: 72.19%) are worse than the Original
on the grid {0.1, 0.3, 0.5, 0.7, 0.9}. Following [69], the method (e.g., FFPR: 31.59%). This can be attributed to the
final hyperparameter setting per dataset and per method is fact that a naive balancing strategy will reduce the number of
determined based on a preset rule that allows up to a 5% available training samples, resulting in a significant decrease
degradation of overall AUC in the validation set from the in detection performance. The same trends can be found
corresponding “Original” method while minimizing the in- in AUC scores, which decrease from 92.76% (Original) to
tersectional FFPR. More details and the evaluation of the 83.17% (Naive), and in FPR scores, which increase from
influence of different parameter settings on detection perfor- 22.06% (Original) to 50.77% (Naive). Thus, a poorly trained
mance are provided in Appendix D.1, E.2. model on balanced data could result in worse fairness scores.

Our DAW-FDD method outperforms all methods on the
4.2. Results most fairness metrics (as shown in Bold). The reason is that
Performance on FF++ dataset. We first report results of DAW-FDD uses the additional demographic information
our methods compared with several baselines on the FF++ to guide training to achieve fairness without reducing the
dataset using the Xception deepfake detector in Table 2. dataset size. In particular, the DAW-FDD method achieves
These results show that in the cases where demographic the best fairness performance on all metrics in the Inter-
information is unavailable from the training data, our DAG- section group thanks to the guidance of intersection group
FDD method achieves superior fairness performance to the information in the design of DAW-FDD. The superiority of
Original method across most metrics for all three sensitive DAW-FDD over Group DRO is evident. Specifically, Group
attribute groups, as shown in gray highlights. For example, DRO does not show any improvement, possibly because it
we enhance the GFPR of Gender, FEO of Race, and FFPR places greater emphasis on improving the worst-group gen-
of Intersection by 2.47%, 9.51%, and 10.38%, respectively, eralization performance and less on ensuring overall fairness.
compared to the Original. These results indicate our method Furthermore, in our comparison between the DAW-FDD
has strong applicability in scenarios where demographic data and FRM methods, we have found our method outperforms
is unavailable. In addition, it is clear that our method out- FRM. This result clearly demonstrates the effectiveness of
performs the DROχ2 method on most fairness metrics. This our learning strategy that considers two types of imbalance
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Figure 1. Comparison of Xception detector on Intersection group of four datasets: (a) FF++, (b) DFDC, (c) DFD, and (d) DFDC.
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igure 2. FPR comparison of Xception detector on intersectional groups of (a) FF++ and (b) DFDC dataset. Orange and dark cyan
ars show the groups with the highest and lowest FPR, respectively, while the double arrow indicates their gap (smaller is better).

F
b

(demographic groups and, separately, real vs deepfake). ure 2. Our methods evidently narrow the disparity between
groups and lower the FPR of each group.Most importantly, our DAG-FDD and DAW-FDD meth-
Performance on various detection models. We furtherods not only enhance fairness performance but also improve
evaluate the effectiveness of our methods on four popularthe detection performance of the detector. For example,
deepfake detection models on the FF++ dataset. The resultswe see improvements of approximately 4.7% in AUC and
are presented in Table 5. It is clear that our methods can12.52% in FPR when compared with the Original method.
improve the fairness performance of the detectors withoutTo show the stability of our methods, we run experimental
significantly decreasing the detection performance. Theserepeats with 5 random seeds as shown in Table 3. It is clear
results indicate that our methods exhibit high scalability andthat our methods robustly improve fairness. We also show
can be seamlessly integrated with different backbones andthe training time per epoch costs during training Xception
deepfake detection models.on FF++ dataset in Table 3. Based on the presented table

results, our methods show a slightly higher time requirement 5. Conclusion
compared to the original method. However, the difference is In this work, we propose two methods, DAG-FDD and
minimal, mainly due to the incorporation of a binary search DAW-FDD, for training fair deepfake detection models in
in the calculation of model training loss. ways that are agnostic to or, separately, aware of demo-
Performance on different datasets. Table 4 shows the eval- graphic factors. Extensive experiments on four large-scale
uation performance of the Xception detector on three popular deepfake datasets and five deepfake detectors show the effec-
deepfake datasets. It is clear that our proposed DAG-FDD tiveness of our methods in improving the fairness of existing
and DAW-FDD methods outperform the Original method on deepfake detectors.
all three datasets across all groups and most fairness metrics, A limitation of our methods is that they rely on the as-
especially on the Intersection group (also as shown in Figure sumption that loss functions can be decomposed into individ-
1). Moreover, our methods achieve similar or better scores ual terms and that each instance is independent. Therefore,
on most detection metrics. Note that our methods on the integrating our methods into graph learning-based detectors
Celeb-DF dataset lead to a decrease in TPR. One possible may not be straightforward.
reason is that our methods involve hyperparameter tuning In future work, we aim to extend this work in the fol-
based on FFPR, as mentioned in experimental settings. To lowing areas. First, we will examine the fairness general-
evaluate the effectiveness of our method on other metrics, ization abilities of cross-dataset deepfake detection. Sec-
we employ FEO as an index to tune the hyperparameter and ond, we will investigate fairness methods for managing non-
report the results in Appendix E.1. The results illustrate that decomposable loss-based detectors.
optimizing hyperparameters using FEO can improve TPR Acknowledgement. This work was supported in part by the
and FEO. This demonstrates the good flexibility and appli- US Defense Advanced Research Projects Agency (DARPA)
cability of our methods to different metrics and datasets. Semantic Forensic (SemaFor) program, under Contract
We further show the FPR comparison results on FF++ and No. HR001120C0123. G. H. Chen is supported by NSF
DFDC datasets with detailed performance in groups in Fig- CAREER award #2047981.
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