

sen1x·
THE ADVANCED
COMPUTING SYSTEMS
ASSOCIATION

Log: It’s Big, It’s Heavy, It’s Filled with Personal Data!
Measuring the Logging of Sensitive Information

in the Android Ecosystem
Allan Lyons, University of Calgary; Julien Gamba, IMDEA Networks Institute
and Universidad Carlos III de Madrid; Austin Shawaga, University of Calgary;

Joel Reardon, University of Calgary and AppCensus, Inc.; Juan Tapiador,
Universidad Carlos III de Madrid; Serge Egelman, ICSI and UC Berkeley

and AppCensus, Inc.; Narseo Vallina-Rodriguez, IMDEA Networks Institute
and AppCensus, Inc.

https://www.usenix.org/conference/usenixsecurity23/presentation/lyons

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

https://www.usenix.org/conference/usenixsecurity23/presentation/lyons

Log: It’s Big, It’s Heavy, It’s Filled with Personal Data!
Measuring the Logging of Sensitive Information in the Android Ecosystem

Allan Lyons Julien Gamba Austin Shawaga
University of Calgary IMDEA Networks Institute / University of Calgary

Universidad Carlos III de Madrid

Joel Reardon Juan Tapiador
University of Calgary / AppCensus, Inc. Universidad Carlos III de Madrid

Serge Egelman Narseo Vallina-Rodríguez
ICSI / UC Berkeley / AppCensus, Inc. IMDEA Networks Institute / AppCensus, Inc.

Abstract require CAP_SYSLOG and is now widely enabled. In deploying
this patch, Rosenberg noted both the futility of attempting

Android offers a shared system that multiplexes all logged to sanitize thousands of printk statements along with the
data from all system components, including both the operating resulting loss of functional utility of these sanitized logs [53].
system and the console output of apps that run on it. A security

Analogous to Linux, the Android platform also offers amechanism ensures that user-space apps can only read the
shared system log that collects all logging statements from log entries that they create, though many “privileged” apps
apps, system services, and drivers [9]. Developers can write to are exempt from this restriction. This includes preloaded
this log using a family of logging functions, differentiated by system apps provided by Google, the phone manufacturer, the
verbosity, that provide both a log tag and message. A single cellular carrier, as well as those sharing the same signature.
system log multiplexes the output of all the log statements that Consequently, Google advises developers to not log sensitive
occur along with metadata, which includes thread and process information to the system log.
identifers, a log level (“verbosity”), log tag, and timestamp. In this work, we examined the logging of sensitive data in

On Android, access to the logs has never been part of the the Android ecosystem. Using a feld study, we show that most
published Software Development Kit (SDK) [40], but early devices log some amount of user-identifying information. We
versions allowed full access based on requesting a permission show that the logging of “activity” names can inadvertently re-
(i.e., READ_LOGS). Without it, apps can only access theirveal information about users through their app usage. We also
own log messages (but not logs from other apps or operating tested whether different smartphones log personal identifers
system components); with the permission, apps have access to by default, examined preinstalled apps that access the system
all log data. Android 4.1 changed the READ_LOGS permissionlogs, and analyzed the privacy policies of manufacturers that
to become “privileged,” meaning that the permission itself is report collecting system logs.
only available to system apps and apps that come preinstalled
(e.g., by manufacturers, carriers, etc.) [14, 40, 41].

1 Introduction Many such privileged apps exist. Android is an open plat-
form that allows any manufacturer to create its own custom

Printing diagnostics and informative output messages is fun- version of the Operating System (OS) with preinstalled soft-
damental to software development [45]. Meaningful, verbose ware that they determine. This means that apps from the
logging allows one to monitor runtime behaviour and helps phone’s manufacturer (OEM) and other key actors in the sup-
to quickly fnd and diagnose bugs without needing to repli- ply chain, such as Mobile Network Operators (MNOs), OEM
cate the issue in a debugger. Continual logging of software in partners, and Google, are eligible for privileged access to the
production facilitates monitoring and remediation of runtime system log. Gamba et al. examined preinstalled software in
crashes. It is therefore typical that software systems log their the Android ecosystem [35] and found a vast supply chain
behaviour in some manner after deployment. with many privileged third parties able to access this data.

At the same time, logs often contain sensitive and per- They noted that many of these apps also included additional
sonal information, particularly when logs are unifed across SDKs, provided by ad networks, analytics services, or so-
a diverse collection of software components. To that point, cial networks, that inherit the permissions of the embedding
in 2010 Rosenberg introduced a Linux kernel patch to pro- app [34] (i.e., these third-party components can read the logs).
vide a build option to make access to the kernel ring buffer, The Android Feedback app (com.google.android.
i.e., the output of dmesg, effectively require root access feedback) is an example of a privileged, preinstalled app.
(CAP_SYS_ADMIN); this option was subsequently modifed to It can launch after another app crashes and gives the user the

USENIX Association 32nd USENIX Security Symposium 2115

03-11 12:27:48.110 1801 3775 I LockSettingsService: user logins, or launched Android Activities. Moreover, the sys-
Unlocking user 0 with secret only, length 32 tem log also prints routine diagnostics like invoking garbage

collection and—when an app throws an exception—the as-

Figure 1: A sample log line showing the available felds. The
entries include date, time, process ID (1801), thread ID (3775),
priority level (I for information), log tag (LockSettingsSer-
vice), and the log message (the rest of the line) [9].

option to upload their system logs to Google for analysis. This
includes all logging, even from apps that are not connected to
the crash event. These system logs can also contain arbitrary
and varying data: app developers use their own discretion in
determining what information to log, though they are given
specifc guidance by Google not to log private or sensitive in-
formation [20]. Some vendors openly disclose their collection
of unique identifers, crash reports, and log data from devices
in their privacy policies [38, 43, 54, 68]. Thus, questions re-
main about the types of sensitive data that are being logged,
by whom, and who has access to these logs.

In this work, we present a comprehensive end-to-end study
of Android’s logging behaviour in practice. The specifc con-
tributions of this work are the following:

• We test a variety of stock smartphone models to measure
the presence and variation of device and user identifers
that appear in the system log due to the operating system
or other preinstalled components.

• We perform a feld study to examine the presence of per-
sonally identifying information in logs across a variety
of users’ devices. We show examples of routine logging
in particular apps and third-party libraries that can reveal
sensitive information.

• We report OEMs who claim to collect and upload per-
sonal information and log data in their privacy poli-
cies. However, to empirically study how prevalent this
practice is across OEMs and device models, we audit
a dataset of privileged preinstalled apps gathered by
Gamba et al. [35] to quantify how many privileged apps
request the READ_LOGS permission and the organiza-
tions responsible for them. Then, we use static analysis
to study the context around when a system app collects
and leaks system logs.

2 Background and Motivation

Android provides app developers a logging system to test
and debug the runtime behaviour of their software [20]—a
sample log entry is shown in Figure 1. Developers can access
the logs in real time over USB or WiFi using Android Stu-
dio [15] or via the Android Debug Bridge (ADB) by using the
logcat command [9]. These tools allow developers to access
exception messages, crash logs, and even purpose-specifc
messages, such as the successful creation of network sockets,

sociated stack trace. Developers commonly log messages to
verify the correct operation of their software; however, some
developers additionally log much more, including sensitive
information (contrary to Google’s best practices [7]).

Although the device owner can read all log messages us-
ing these tools, normal apps only have access to their own
logs in order to protect the privacy of data logged by other
apps. Only privileged, preinstalled apps can hold the system
permission, READ_LOGS [14], that allows the app to read
the entire system log, including entries from other apps and
the operating system itself. Android’s offcial documentation
states that this permission is “not for use by third-party appli-
cations, because Log entries can contain the user’s private
information” [14]. The documentation, unfortunately, does
not provide a defnition of what a third-party application is.

This permission allows device manufacturers and Google
to obtain crash reports and other useful information so that
they can monitor and debug runtime behaviour. However, in-
correct use of the logging system through excessive logging
of sensitive information can cause privacy and security harm
to users as privileged, preinstalled apps can access any data
in the logs and potentially leak this information. For this rea-
son, Google recommends that app developers remove logging
statements and the android:debuggable attribute from the
manifest fle prior to releasing an app [17].

Our work is motivated by Reardon’s observation that An-
droid devices were logging detailed information from users
of the Google-Apple Exposure Notifcation (GAEN) frame-
work [47, 51], including “anonymous” identifers and diag-
noses, which could then appear alongside other identifable
information in the system log. We validated Reardon’s fnd-
ings using a custom COVID Alert app that used the GAEN
framework, provided by the Canadian Digital Service. This
allowed us to test the logging behaviours surrounding sen-
sitive events—such as reporting positive COVID-19 results
and uploading the exposure keys—without triggering alerts
on the real system. We found that inferential information was
logged to the system log as to whether a user tested positive
for COVID-19 and whether they opted to upload their diagno-
sis. This logging was performed by Google Mobile Services
(GMS), indicating that it likely occurred across all Android
devices running authorized GAEN apps (i.e., it was not unique
to a particular OEM or contact-tracing app). Figure 2 shows
an example of this logging.

Moreover, we observed that the Android Open Source
Project (AOSP) also logged inferential information regard-
ing the user’s COVID-19 status. In particular, AOSP’s
ActivityManager, which is responsible for starting and
running apps, would log the name of launched activi-
ties: user-interface elements, with developer-provided names
that may refect their purpose, within apps. In the con-

2116 32nd USENIX Security Symposium USENIX Association

W ExposureNotification: onClick, accepted: true
[CONTEXT service_id=236]

Figure 2: GMS log line indicating a user clicked the “accept”
button to share a COVID-19 diagnosis.

I ActivityTaskManager: START u0 {act=com.google.
android.gms.nearby.exposurenotification.settings.
SHOW_CONSENT_DIALOG kg=com.google.android.gms
cmp=com.google.android.gms/.nearby.
exposurenotification.settings.SettingsCheckerActivity
(has extras)} from uid 10144

Figure 3: A log line printed by AOSP itself indicating it is
about to show the SHOW_CONSENT_DIALOG activity to the user.

text of GMS’s implementation of GAEN, an activity called
SHOW_CONSENT_DIALOG would only be started after a user
entered a valid code received from a public health author-
ity after testing positive for COVID-19. Figure 3 shows an
example of this logging.

We disclosed our fndings to Google, who modifed the
implementation of GAEN to both stop the relevant logging
as well as modifed the app so that the logging of activities
would no longer reveal a positive diagnosis [26]. Preventing
logging of activity names across all Android devices, however,
is more challenging due to the diversity of Android variants
and versions that are deployed. Thus, the logging of activity
names still occurs; later in this work (§5.3) we present case
studies on unexpected privacy consequences that this logging
can have on users and give recommendations to developers.

3 Related Work

The security considerations of logging systems have long been
recognized, such as in RFC 3164, which frst documented
BSD syslog in 2001 [46]. Logging detailed information dur-
ing development may be helpful and perhaps even be essen-
tial to ensure that the software is behaving correctly, but, in
a production environment, this same information can be a
liability if exposed to attackers, since observed log messages
can provide hints to someone trying to compromise the sys-
tem [36]. The security risks of logging sensitive information
have been documented as a common software weakness in
CWE-532 [27], which describes ways in which inappropriate
logging can guide potential attackers or reveal user informa-
tion. This type of software defect has been observed in the
wild. For example, as described in CVE-2017-9615, Cognito
Software Moneyworks version 8.0.3 and earlier wrote the ad-
ministrator password to a world-readable fle due to verbose
logging [24]. This defect allowed attackers to gain adminis-
trator access to all data. This defect has also been observed in

software that had otherwise been designed for security pur-
poses. CVE-2018-1999036 describes the case where the SSH
key passphrase was logged in plain text by an SSH agent
plugin [25]. The risk of damage from exposed sensitive log
information can be particularly acute when logs can be corre-
lated across a diverse collection of software components, as
this correlation may reveal more information than each part
separately. Yet, completely anonymous and unlinkable data
can be functionally useless.

Zeng et al. previously studied logging practices in mo-
bile apps [69]. They conducted a case study of 1,444 open
source Android apps available for download from the F-Droid
repository [33] and found that while the majority of logging
statements were useful for debugging purposes, excessive
logging often still occurred in the release versions of apps,
resulting in measurable performance impacts. Additionally,
they discovered that developers often chose a logging level
inconsistent with the reason for the logging.

Zhou et al. explored the connection between logging and
privacy in Android apps [70]. They showed that log state-
ments are common in the release version of many apps and
that poor logging practices were connected to the leaking
of sensitive data. The leaked data included account names,
password information, location information, and device data,
such as the MAC address, International Mobile Equipment
Identity number (IMEI), and SIM serial number [70].

Despite the potential for introducing privacy and security
harm to end users, the research community has not yet per-
formed a systematic analysis of the connection between an
inappropriate use of the Android log system by Android
app developers—who log Personally Identifable Information
(PII) to system logs despite Google’s recommendations—and
the wide range of privileged system apps that can read and
collect these logs through the READ_LOGS permission.

4 Methodology

We present our research methods in four parts. First (§4.1),
we enumerated the types of identifers that we search for
along with the various encodings that we deem equivalent.
Second (§4.2), we dynamically executed thousands of apps
in an automated testbed to capture the log fles generated by
those apps, as well as the log fles from different stock devices
not running apps to capture baseline logging activity from OS
components, drivers, etc. Third (§4.3), we attributed different
log lines to the responsible entity, such as SDKs, apps, device
drivers, etc., by statically analyzing the apps and the AOSP
source code. Fourth (§4.4), we crowdsourced system logs
from different devices using a privacy-preserving method in
order to measure the prevalence of PII in the system logs
of a typical user. Fifth (§4.5), we conducted case studies of
inappropriate logging by manually examining app behaviour.

USENIX Association 32nd USENIX Security Symposium 2117

4.1 Personal and Device Identifers

We searched for the following identifers: (i) direct identi-
fers, which are e-mail addresses, phone numbers, and user
names; (ii) indirect identifers, which are Android IDs, device
MAC addresses, IMEI, and serial numbers; (iii) user location,
which are fne- and coarse-grain GPS coordinates—we con-
sider GPS coordinates to be present if both the latitude and
longitude are juxtaposed; we consider fne location to have
three decimals of accuracy (≈100 m) and coarse location to
have two decimals (≈1 km). We also use identifers relevant
for “assisted-GPS,” which are the MAC addresses of nearby
Bluetooth (BT) devices and the SSIDs and MAC addresses
of both connected and nearby WiFi routers. We note that BT
MAC addresses can be used to infer users’ social graphs,
whereas static BT devices can be used for inferring users’ ge-
olocation. Note that Android requires that apps hold a location
permission to access the MACs and SSIDs of nearby WiFi
devices [16] since scan results reveal user location [1, 55].

We also distinguish between a real and a randomized MAC
address. The real MAC address is the one that is provided by
the device manufacturer; the former three octets are a prefx
that indicate the manufacturer and the latter three indicate
the device itself. A randomized MAC address is instead a
random MAC-address-sized value that can be used to hide
the real MAC address when doing public connections, e.g.,
associating with an access point. Android uses a new random-
ized MAC address when frst associating over WiFi, but it is
only randomly generated when frst connecting to a particular
SSID. That is, once the MAC address is randomly selected, it
continues to be used for connecting to the same access point
going forward and so continues to serve both as an identifer
and as an indicator of location.

We search for identifers in log fles in a number of ways
by removing and altering relevant punctuation and applying
standard encodings appropriate to its type. For example, MAC
addresses are sought with and without colon separators and
with the colons replaced with hyphens. User names and SSIDs
are sought normally and with HTTP-safe encoding; strings
and hexadecimal sequences are examined without regard for
case. We also search for base64 encodings of the identifers, as
well as MD5, SHA1, and SHA256 hashes. While hashes are
normally one-way functions, the direct identifers and forms
of location all have small enough domains to make a brute-
force preimage search feasible; from a privacy standpoint, we
consider them to be the same as sending unhashed variants.

4.2 Dynamic Analysis

We ran a variety of stock unrooted smartphones and captured
their system logs. Next, we automated the execution of a
variety of apps and collected their system logs. The purpose
for both these analyses was to understand what sort of PII
may be present in system logs.

Stock Device Testing We gathered logs from real run-
ning devices using multiple means. First, we bought a variety
of stock devices from different manufacturers, booted them,
and performed initial setup, including connecting to WiFi,
turning on location and Bluetooth, and signing into a Google
account (required to use the Play Store). We then used the
system settings to enable developer options and therein en-
abled USB debugging. We plugged the device into a computer
via USB, authorized the computer to access the device, and
retrieved the logs with adb logcat.

We tested for the possibility that logging may only be trig-
gered on devices with developer options or USB debugging
enabled: were that the case, any resultant logging would af-
fect far fewer end users. To test this hypothesis, we found
that Samsung devices offered a secret dialer code that would
write the current system log to the SD card without needing
the device to be in developer mode. We used this code to
save the logs to a fle which we subsequently emailed to our-
selves. This allowed us to reject the hypothesis that developer
mode changed logging behaviour. Further conversations with
Google regarding our logging concerns gave us no reason to
believe that any relevant logging changes occur as a result of
developer options or USB debugging being enabled.

App Testing We ran 5,000 randomly-selected apps on an
automated testbed and extracted the system logs after each
test. The testbed installed each app from the Play Store and
used the Android exerciser monkey—a UI fuzzer—to interact
with the app for six minutes. After execution of each app, we
collected the resulting system logs and searched them for the
identifers listed in §4.1. This process was intended to be a
screening process to identify apps at scale that logged certain
identifers without any additional user confguration or inter-
action; we recognized that this process would yield a lower
bound. For example, if an app altered its behaviour based on
user confguration or specifc user data, this behaviour would
not be captured. We report the PII types and log tags found.

From this dataset, we examined in more detail any PII types
that appeared in more than 20 of these fles with the same log
tag. To control noise, no other user-installed apps were run
simultaneously on the testbed; however, AOSP components
also wrote to the logs. We attributed log entries associated
with AOSP components by fnding the corresponding tag and
message within the AOSP source code. Because our dynamic
testing was performed on rooted and instrumented devices,
for selected examples we replicated the relevant logging on a
stock, unrooted, Pixel 3a running Android 12 to ensure that a
normal user would encounter this logging by running one of
the test apps. (We report on these results in §5.)

4.3 Attributing Log Tags
We looked at fve sources of log entries: (i) core system ser-
vices and development libraries included with AOSP; (ii) de-
vice drivers necessary to run AOSP on specifc hardware;

2118 32nd USENIX Security Symposium USENIX Association

C □ =

D
t

D
I

(iii) development libraries and services provided by Google,
including GMS; (iv) other third-party SDKs and frameworks
used by app developers; and (v) the apps themselves.

Each log entry has a corresponding log tag that indicates
the source of the log entry. In order to attribute log entries to
specifc apps or to the system, we examined apps and AOSP
for tags that we observed occurring in the system log fles.

We analyzed the AOSP source code to identify log tags
used by the open source components of the operating system
and libraries. In most cases, the tags used for logging were de-
fned as constants in either the class or a particular source code
fle and were identifable by name (e.g., static fnal strings
named TAG or LOG_TAG). In other cases, they were defned
as constants with different names, but were still identifable
because they were used as a parameter for a call to a standard
logging function. Some tags, however, were constructed dy-
namically to attribute the entry to the caller of the function.
For some processes associated with AOSP, the log tag was
not explicitly defned and defaulted to the process name.

Analyzing a compiled app is more challenging. Apps may
have their own wrapper around Android’s logging API and
developers may use code obfuscation techniques. Our general
approach to extracting log tags from an app was to decode
the Android Package File (APK) using apktool [67]. We
then searched for logging-relevant code in the smali fles and
tracked where in the code these calls were made.

4.4 Measuring PII in the Wild
We gathered information from real phones using crowdsourc-
ing methods to determine if PII is typically found in device
log fles. Collecting results from a variety of devices is nec-
essary since different models may have different software
loaded by the manufacturer or carriers. In addition, due to
regional customization of devices, not all models are the same
in all markets around the world and crowdsourcing allows
us to collect data on a diversity of models that would not be
available to us otherwise. Finally, the choices of apps installed
by users will also impact the PII logged.

Using the WebUSB facility built into recent versions of
Google Chrome [39], we developed a website and accom-
panying app that analyzed the phones of volunteers for the
presence of PII in system logs. Figure 4 provides an overview.
Our IRB agreed with our assessment that this research did
not meet the defnition of “human subjects research,”1 and
therefore declined to review it. That is, while humans were
involved, we were not collecting data about human behaviour,
nor was human behaviour a focus of our study [52]; we were
using humans to crowdsource data from a diverse set of de-
vices and apps. (Even though the data could reveal details
about individuals, we did not use it for that purpose, and there-
fore the study does not meet the legal defnition of human
subjects research.) Nonetheless, we still applied the same

145 C.F.R. §46.102(e)(1).

apk wasm

analysis script

Mobile Device

3. pull existing logs

apk

wasm

analysis app

DB

results

Browser

Web Server

1. get APK and scripts

4. install analysis app

2. connect to device (webusb)

6. pull generated logs

and device identifiers

7. uninstall app8. analyze logs

for identifiers

5. trigger events

including cycling

WiFi and Bluetooth

in the log
identifiers were found

9. report whether

Figure 4: Diagram of our crowdsourced experiment. Volun-
teers ran the log analysis code on their own devices to detect
any PII that might be in the log fles. Only a summary of the
results were uploaded to our server.

protections that are used in human subjects research: we di-
rected prospective participants to a website that included an
overview of the procedure, a consent form, and a privacy pol-
icy that included examples of the data to be collected. We
thus received informed consent from all participants.

We took great care to not collect any identifable infor-
mation from the phones or information that could be used
to identify a specifc volunteer. This is why we spent many
months constructing an online environment using WebAssem-
bly and WebUSB so that raw logs would not leave participants’
browsers (i.e., it would have saved a lot of time and given
us better data if we had simply uploaded the raw logs).2 Log
fles on participants’ USB-connected phones were processed
by their web browsers, which then transmitted reports to us
listing the types of data found, rather than the logs themselves.

The Android Debug Bridge for Web Browsers library [23]
enabled the scripts on our website to use the ADB [12] pro-
tocol to access the phone, retrieve identifers, manage the
installation and removal of our analysis app, and access the
logs. Our scripts also used ADB commands to toggle the
Bluetooth and WiFi radios to exercise the logging that occurs
during regular operations, such as establishing network con-
nections. We separately analyzed the logs for PII before and
after this intentional exercise of code paths.

2While we took steps to not associate the collected metadata with other
identifers, it is certainly possible that unique combinations of app names
in conjunction with data from other sources could still identify participants,
which is why we are not releasing our data. We believe that all of the claims
that we make in this paper can be independently verifed without it.

USENIX Association 32nd USENIX Security Symposium 2119

We wrote an Android app that was used by our website
scripts to gather identifers available to user-installed apps, in
addition to the ones available with ADB. Depending on the
version of Android, some identifers can neither be accessed
through ADB nor through our app. In particular, the IMEI is
unavailable in Android 10 and up, the phone number is un-
available for version 11 and up, and only the randomized WiFi
MAC is available in versions 11 and up, while the true MAC
is completely unavailable [13]. While we could have asked
our volunteers to provide such identifers by navigating lay-
ers of settings manually, we opted to minimize participation
friction and excluded those identifers in our analysis.

Logs were processed to determine if any of the gathered
identifers were stored in any log messages. In order to pre-
serve volunteers’ privacy, the phone logs were never uploaded
to our website. Rather, logs were analyzed by JavaScript and
WebAssembly programs run within each user’s browser. If PII
was detected in a log line, then the programs reported the log
tag associated it, the name of the process matching the Process
Identifer (PID) stored in that line, and the PII type. Impor-
tantly, the specifc PII never left participants’ browsers and
we disabled our logging of the PII to the JavaScript console
before deploying our production build.

Upon completion, this data along with generic data, such
as model, manufacturer, etc., about the phone were submit-
ted to our server. We then instructed participants to disable
developer mode and USB debugging.

We fltered the crowdsourced data to exclude incomplete
reports, as well as reports from devices with build variants [8]
or signatures [19] that indicated development devices. We
excluded development devices because they may have addi-
tional, non-standard logging enabled. Beyond these fltering
steps, we neither attempted to identify nor excluded counter-
feit devices, nor ones that might be rooted. The goal of this
part of the study was to identify whether PII is typically found
in log fles of devices that are being used by users in the feld,
not necessarily to tie a specifc device to a specifc manufac-
turer. Since we did not collect a complete list of the apps that
were installed on the devices, we cannot be completely sure
what entity was responsible for any given log entry.

4.5 Manual App Inspection

We selectively analyzed apps by executing them manually
and then inspected the logs for any potential PII that could
be attributed to the app. This approach allowed us to execute
apps in a more realistic manner than afforded by the Android
exercise monkey, at a cost of not being fully automated and
consequently less scalable. However, it did allow us to inspect
the logs more creatively and to search for types of PII that
might be missed by our automated testbed.

We examined the logging behaviour of 230 Android appli-
cations taken from the Google Play Store’s top app charts.
Given that Android logs the names of “activities” as an app

executes, we also examined the list of activities declared in
the application manifest to assess whether private information
about the user, the device, or their actions may be revealed
simply through normal interaction with the application.

5 Results: PII in the Logs

In this section, we present our analysis of the kinds of PII
present in Android system logs by both system and user-
installed apps using the approaches described in §§4.2 to 4.4.
First, we examined a variety of stock, unrooted mobile phones
from different manufacturers to dynamically see what PII was
logged by default by system components; we then looked
more deeply into AOSP to fnd the logging that was enabled
by default. Second, we performed a crowdsourcing experi-
ment to determine what PII was logged in the wild by both
user-installed and preloaded apps. Finally, we present spe-
cifc results from a set of case studies into particular apps and
SDKs using manual analysis of the apps while collecting the
logs. Our results show that a large variety of PII is typically
logged and logs are capable of identifying the user of the
device and providing location information.

5.1 Analysis of Default Logging
Between March and June of 2021, we purchased new Android
smartphones from Amazon and carrier stores, corresponding
to a variety of brands and models (our goal was to optimize
for a diversity of devices). We examined each phone in a con-
trolled environment to observe what information they wrote
to the system logs; Table 1 gives the results of this experi-
ment. Motivated by the fndings of GAEN-related data in the
logs, we searched for either emitted or received payloads of
Bluetooth Low Energy (BLE) messages in addition to the PII
types described in §4.1.

Overall, we found that email addresses were consistently
logged across devices (e.g., due to Google Play Services),
as well as information about the currently-connected WiFi
hotspots. This WiFi information is considered location
data [57, 61–63], and it has been shown that location traces
are highly unique between individuals [28]. Databases exist
to precisely map the locations of WiFi hotspots for enabling
network-based geolocation [66]; consequently, Android re-
quires a location permission simply to access information
about nearby WiFi routers. Precise GPS coordinates were
logged by a majority of devices that we examined. Two de-
vices, the Blu Studio Mini and Nokia 3.4, logged the MAC
addresses of nearby BLE devices; the latter also logged the
full Bluetooth beacon payload of broadcast messages sent by
nearby BLE devices. We shared several of these fndings with
a subset of the manufacturers in 2021.

We prioritized purchasing inexpensive devices, so that we
could acquire a broader sample. However, as a result, many of
these devices arrived with older versions of Android (e.g., the

2120 32nd USENIX Security Symposium USENIX Association

Phone Identifer Proximate Data

Manufacturer Model R
E

A
D_

L
O

G
S

B
T

 Payloads

N
earby B

T
 M

A
C

s

N
earby B

SSID
s

N
earby SSID

s

E
m

ail A
ddress

Phone #

A
A

ID

Serial

IM
E

I

W
iFi M

A
C

B
T

 M
A

C

B
SSID

SSID

G
PS

A
ndroid Version

Blackberry Priv 6 D D D D D D D D D
D D D D D

1

5D D
D

Blu Studio Mini 9

Cubot Note 7 10

Google Pixel 3a 9

D D D D D
D

D 4

DD DD D
D DD D D D

D D
12

6
6

D DHuawei Nova 5T 9

LG K51 10

58

4

D D
D D DD D

D
D DD DDD D

D
12

Motorola G Play 10

Motorola moto g7 plus 10

Motorola One 5G Ace 10

58

34D D D
D D D

D D D D
D D

D
D
D

35

D D D DD D D D
D D D DD D D D D

34
11 N/A* 29

5D D D D DD D D D
DD

DDD
D

D
D

D D DD D D
D D

Nokia 3.4 10
12 22

D D DSamsung Galaxy A12 10 14

Samsung Galaxy A21S 10 D D D 83
12 D D D 95

Sony Xperia F3113 7 D D D D D 59

uleFone Note 11P 11 D D D D 34

ZTE Blade A5 2020 9 D D D D D D D 4

Table 1: The various devices we tested from March-June of 2021, including the versions of Android preinstalled and whether they
were observed logging various identifers and proximate data. The last column indicates the number of preinstalled apps that had
been granted the READ_LOGS permission. Five phones supported major OS upgrades when we retested them in February 2023,
the results of which are depicted on subsequent rows; three devices could not be located for retesting (Huawei Nova 9, Samsung
A12, and ZTE Blade A5 2020). (*)This phone was carrier locked and a compatible SIM card could not be found for retesting.

Blackberry Priv with Android 6). By policy, Android OEMs
must provide at least one major OS update, which tend to
be released annually [22]. Thus, in addition to examining a
baseline by examining the sensitive information logged by
the phones with the shipped software, we decided in February
of 2023 to examine which, if any, of these phones could be
updated to new major versions of Android and whether those
updates changed the amount of sensitive information logged
(especially since we had alerted a few of these manufacturers
to these issues almost two years prior).

While two of the phones in Table 1 could not be located
for retesting (Samsung A12 and ZTE Blade A5 2020), of
the remaining 13, only 5 had major OS upgrades available.
Worse, the logging of sensitive information did not appear to

decrease in subsequent Android versions:

• Google Pixel 3a: while we did not observe the IMEI or
WiFi MAC continue to be logged after upgrading from
Android 9 to 12, we observed the additional logging of
nearby WiFi networks (SSIDs and BSSIDs) in 12.

• LG K51: GPS coordinates were no longer observed in
the logs when upgrading from Android 10 to 12, how-
ever, we observed the WiFi MAC address, which was
not observed previously.

• Motorola One 5G Ace: we did not observe the IMEI
or WiFi MAC continue to be logged when upgrading
from Android 10 to 11, however, the upgrade resulted in
observations of nearby SSIDs, BSSIDs, and Bluetooth
MAC addresses, which were not previously observed.

USENIX Association 32nd USENIX Security Symposium 2121

• Nokia 3.4: we did not observe the IMEI continue to be
logged when upgrading from Android 10 to 12, however,
the upgrade resulted in observations of the serial number
and Bluetooth MAC address in the logs.

• Samsung Galaxy A21S: we observed no changes in the
sensitive information logged when upgrading from An-
droid 10 to 12.

Given that a cursory examination of Android devices
demonstrated that sensitive information is prevalent in system
logs, we decided to look more closely at AOSP logging in
general to identify precisely where some of this logging oc-
curred. The open-source nature of AOSP allows us to confrm
our fndings by attributing the observed logging to the specifc
line in the source code.

We found many different components that periodically log
PII. Two recurring patterns are (i) the presence of a static
boolean variable called DBG that would prevent logging were
it false, but is instead set to true, and (ii) classes whose
toString method includes PII in their output—Java implic-
itly invokes this function when a class instance is concate-
nated with a string, e.g., when including a logging statement.
We describe and discuss relevant cases next:

wpa_supplicant This is used to connect to WiFi net-
works. In the periodic group rekeying operation, it logs the
MAC address of the WiFi router. It also logs the device’s
own MAC address during initialization of the driver. Dur-
ing initial connection to a WiFi network, it logs the router’s
SSID when trying to associate and logs the router’s MAC
multiple times after associating, thus linking the MAC and
SSID. The wpa_supplicant driver also logs both the router
MAC address and the router SSID in the same line for all
nearby routers during an initial scan. This logging is done by
default but can be suppressed by setting the compile-time fag
CONFIG_NO_STDOUT_DEBUG, which disables the debug mes-
sages or CONFIG_NO_WPA_MSG, which additionally disables
the informational messages. It should be noted that one phone
in our collection, a Xiaomi Redmi Note 9 running Android 11,
did not log wpa_supplicant messages, which suggests that
its production code was built with these options set.
DHCP client This is used to lease IP addresses from a

DHCP server. The implementation has a boolean DBG variable
that is set by default to true, and which guards logging in the
class. When logging happens, the received packets are logged
using their toString method whose implementation logs the
randomized MAC address of the mobile device.
WifiService This is used to manage the device’s WiFi

connections, and has multiple log lines that include PII. One
is an information message about default gateways that in-
cludes the router’s MAC address. Another is a log line written
when MAC address randomization occurs, which includes
both the old and the new MAC address along with the con-
nected router’s SSID. Given that the purpose of MAC address
randomization is to have a device’s MAC addresses be un-

linkable, the fact that both the old and new values are logged
together undermines that objective.

BluetoothManagerService This is used to manage the
device’s BT connections. It logs the device’s real BT MAC
address in a few places, as well as the device’s “name.” This
name is freely changeable by the device owner, but in many in-
stances has a default value with a structure like “John Smith’s
phone.” A lower-layer component in the hardware project also
logs the real BT MAC address in its get_local_address
function call. Due to nature of assigning MAC addresses dur-
ing manufacturing, the device’s real Bluetooth address and
its real WiFi address are often similar; all the phones that
we checked differed only in the two lowest-order bits of the
last octet. The implementation uses a boolean DBG feld set to
true, but were it false the logging would stop.

WifiScoreReport This manages network performance
measurements. If it is not able to start scoring, which hap-
pened periodically in our tests and on our stock device, it logs
warning messages containing the connected router’s SSID
and MAC address along with the randomized MAC address
of the device.

GnssNetworkConnectivityHandler This helps imple-
ment “assisted GPS” which users router MAC addresses and
SSIDs to help with geolocation [64]. It has a method called
updateNetworkState that is periodically invoked. When it
does so, it logs the SSID of the connected router.

ConnectivityService This manages network connec-
tivity on the device. It has a handleNetworkUnvalidated
method that is periodically invoked, at which point it logs
a NetworkAgentInfo object. This includes the connected
router’s SSID and MAC address along with the MAC address
of the device. This logging is controlled with a class static
DBG boolean confgured to true. It also has a makeDefault
method that logs both the router’s SSID and its MAC address,
also controlled by the DBG fag.

KeyguardUpdateMonitor This is a component in An-
droid’s telephony stack. It has a method that logs the
toString representation of telephony objects called Subscrip-
tionInfo. These include the user’s real phone number along
with other telephony-related values, such as the mobile net-
work code and mobile country code.

Logging in GMS Finally, we noticed that in many apps
the user’s email address associated with the phone was
logged with a number of different log tags that were not in
AOSP. These were SignInPerformer-X for some number X ,
Backup, and CheckAccountFragment. Using the fact that the
system log included the process IDs that caused the logging,
we were able to confrm that the relevant processes belong to
components of GMS.

2122 32nd USENIX Security Symposium USENIX Association

12

Region Count Percent

Europe 712 59%
North America 272 22%
Africa 145 12%
South America 39 3%
Oceania 28 2%
Asia 18 1%

Table 2: Participant distribution by continent.

5.2 PII in the Wild Experiment

Inspecting devices for logged PII at scale is challenging.
Purchasing every handset model from every manufacturer
is costly even without considering further regional variations
of devices like customizations set by MNOs and the specifc
apps that users install. Thus, we turned to crowdsourcing to
collect data from a variety of devices around the world to
measure whether PII is broadly found on phones.

We primarily recruited participants through the crowdsourc-
ing sites Prolifc and Amazon Mechanical Turk; we recruited
additional volunteers through our personal networks. Our data
collection period ran from March 2, 2022 through March 21,
2022. In total, 1,400 participants submitted reports for 1,405
unique devices comprising 571 model variants from 46 man-
ufacturers running 17 different releases of Android.

We identifed unique devices by taking the Android ID, or
serial number if the Android ID was unavailable, and used it as
the key in an HMAC function to generate the tag for a constant
string. Note that this method is how Android IDs are generated
as of Android 8, and so using this method ensures that we
use the same privacy-preserving approach for devices running
Android 7 or lower, or which do not have an Android ID
available. We identify model variants from the ro.product.
manufacturer property reported by the OS. Note that this is
a self-reported and not-attested value; it can be bogus, e.g.,
for a counterfeit device [5, 35, 48, 60].

Since manufacturers have regional customizations for their
phones, we also estimated the geographical dispersion of our
participants by geolocating the countries corresponding to
the IP addresses in our web server request logs to ensure
that crowdsourced submissions were not all from a particular
region. The results displayed in Table 2 show that just under
60% of our participants were from Europe, with the next most
represented regions being North America and Africa.

After fltering out incomplete reports and devices that ap-
peared to be used for development, our crowdsourced data
represents 529 model variants from 45 manufacturers. Table 3
shows the number of models and the number of devices run-
ning each OS version for the most common manufacturers.
The majority of the devices in our dataset were running An-
droid 11 or newer with the most represented manufacturers
being Samsung, Xiaomi, and Huawei. The top manufacturers
in our sample correlates with statistics available online [59].

Manufacturer Model Android Version

Name Count ≤ 7 8 9 10 11

Samsung 171 17 31 37 63 162 140
Xiaomi 62 2 2 14 63 134 26
Huawei 68 8 17 22 81
Motorola 42 5 10 14 19 36 1
OnePlus 30 3 12 65 3
Google 14 4 61
Sony 20 5 4 6 3 3 2
Nokia 16 5 4 10
Realme 11 1 15 1
LG Electronics 13 4 4 1 6 1
Oppo 12 1 1 12 1
ASUS 7 1 1 3 1 2
TCL/Alcatel 8 1 2 5
ZTE 8 4 3 1
Lenovo 5 3 1 1
Blackview 4 1 1 1 1
Hisense 4 1 1 2
Vivo 4 1 1 2
Tinno 2 1 2
Mobicel 2 2
Vodafone 2 1 1
Other (24) 24 6 3 2 9 4

Total (45) 529 58 78 114 270 459 235

Table 3: Manufacturers by Android Version. The manufac-
turer name is based on the ro.product.manufacturer sys-
tem property. The number of models observed for each manu-
facturer is a count of all of the unique values of ro.product.
model seen for that manufacturer and thus may include sev-
eral different variants that share a common marketing name.
The Android version is determined by the value of ro.build.
version.release as reported by the device.

Because the app and script used to analyze the device for
PII were intended to trigger logging, the script frst retrieved
the logs after frst connecting to the phone and then a second
time after attempting functions such as toggling the WiFi
connection, initiating a BT scan, and retrieving the location.
We believe it is reasonable to assume that users normally
take these actions. For example, toggling the WiFi triggers
a scan that will also happen when devices change locations.
Since older log entries are continuously replaced, an increase
in the amount of PII being detected the second time that
the logs are analyzed suggests that the processes triggered
by our script are what is responsible for the logging of that
PII. Table 4 shows an increase in the WiFi and BT scan
information reported, which suggests that the system itself is
logging that information as opposed to a user-installed app.

Table 4 summarizes the PII types we searched for in our
crowdsourced data and the prevalence with which they were
found from the perspective of devices, manufacturers, and
Android versions. The detection of some of the PII types also
depends on the environment of the device during the test. For
example, the BT scan results will only log information were
other BT devices broadcasting at the right time. Thus, our

USENIX Association 32nd USENIX Security Symposium 2123

PII type Devices Manufacturers Android Version

Initial Log Final Log Detected Prevalence Detected Prevalence ≤ 7 8 9 10 11 12

Android ID 50 82 92 8% 26 of 45 58% 29% 19% 11% 12% 3% 0%
Bluetooth MAC 85 123 136 11% 27 of 45 60% 44% 14% 21% 9% 10% 6%
Bluetooth Name 724 782 836 69% 40 of 45 89% 81% 55% 82% 64% 74% 61%
Bluetooth Scan MAC 5 26 26 2% 10 of 45 22% 13% 0% 1% 1% 1% 6%
Bluetooth Scan SSID 13 26 26 2% 7 of 45 16% 9% 3% 4% 1% 1% 3%
Coarse Location 246 245 292 24% 14 of 45 31% 15% 14% 25% 23% 19% 42%
Email Address 192 180 198 16% 4 of 45 9% 57% 23% 16% 11% 28% 0%
Fine Location 224 231 272 22% 14 of 45 31% 15% 12% 25% 20% 18% 40%
IMEI 14 10 16 6% 9 of 30 30% 27% 5% 4% - - -
Phone Number 11 12 14 3% 4 of 40 10% 5% 4% 3% 3% - -
Serial Number 43 40 49 4% 12 of 45 27% 26% 5% 4% 1% 4% 3%
WiFi Randomized MAC 242 532 539 78% 19 of 20 95% - - - - 71% 89%
WiFi Router MAC 500 795 814 67% 35 of 45 78% 54% 38% 55% 44% 76% 94%
WiFi Router SSID 597 808 829 68% 35 of 45 78% 60% 63% 61% 51% 75% 83%
WiFi Scan MAC 89 167 175 14% 19 of 45 42% 22% 15% 24% 7% 12% 23%
WiFi Scan SSID 364 462 475 39% 24 of 45 53% 26% 37% 27% 26% 37% 69%

Any PII Detected 998 1108 1142 94% 45 of 45 100% 97% 91% 95% 88% 95% 100%

Table 4: PII Count. The logs are retrieved twice: the former at the start of the script and the latter at the end. The counts in the
devices section indicate the number of devices with that PII type detected during each log sampling as well as a union of the two.
The prevalence is calculated based on the number of devices for which that PII type was sought (cf. §4.4). The manufacturers
section indicates the number of unique manufacturers that had at least one device with identifed PII in the set where we searched
for that PII type. Note that as shown in Table 3, a small number of manufacturers dominate the dataset. The fnal section is
similar but grouped by Android version.

results are a lower bound for what may occur. Note that the
primary goal of this part of the experiment was to understand
whether the system log personally identifes the owner.

Table 4 also demonstrates how PII logging changed among
versions of Android, with some types maintaining their preva-
lence while others changed. The detection of Android IDs
changed signifcantly for a couple of reasons. With older re-
leases of Android, the Android ID was generated when the
device was frst confgured, whereas as of Android 8, it is
scoped by signing key and user (i.e., apps signed by differ-
ent keys will see a different value for the Android ID) [18].
Furthermore, as of Android 10, access to non-resettable identi-
fers, such as MAC addresses, has also become restricted [13].

We broadly detected PII across the different manufactur-
ers with all manufacturers having at least one device with at
least one piece of PII detected in its logs. In Table 4, a man-
ufacturer is considered positive if one single device has PII
detected in its logs. As noted earlier, our dataset is dominated
by the major manufacturers that ship the most devices. Thus,
it is interesting to note the PII types that were detected by
a strong majority of manufacturers even though most were
represented by a small number of devices. The BT Name and
WiFi Randomized MAC address were detected on devices
by most manufacturers, suggesting that this information is
being logged by processes that are common across all AOSP
derivatives, such as by the common services discussed in §5.1
or by very popular apps. Logging of PII does not seem to be
restricted to devices produced by a small group of manufac-
turers, but seems to be common across the ecosystem.

Leveraging the information described in §5.1 and the
dataset of preinstalled apps gathered by Gamba et al. [35], we
attributed the source of the PII in the log to either being from
the OS, an app found to have been preinstalled previously,
or a normal app; we display the results in Table 5. Since we
did not collect a list of the apps that were installed on each
device—which could be uniquely identifying—we relied on
the reported log tags and process information available. If we
could match the process name to a package name in the above
dataset and that package had been observed to be preinstalled
in the past, then we counted it in the preinstalled category. If
the process information or log tag matched a known system
process, then we classifed it in the OS category. Note that
the division between these two groups is somewhat arbitrary
since many of the core apps that make the device usable are in
the preinstalled category. Normal apps and log entries that we
could not account for are grouped together in the last column.
Thus, these numbers should be taken as approximate at best.

Confrming our fndings in §5.1, we found that a majority
of devices logged location information either explicitly as
GPS coordinates or through surrogates, such as WiFi and BT
scan data. Our results show that 94.1% of devices had at least
one piece of PII detected in the logs that corresponds to 1,142
of 1,214 devices.

5.3 Case Studies in Logging
A manual analysis of select apps on our own devices allows
us to execute apps in a more realistic manner than is possible
under automated testing and to more exhaustively examine

2124 32nd USENIX Security Symposium USENIX Association

PII Type Attributed Code

OS Preinstalled App/Other

Android ID 44 47% 44 47% 5 5%
Bluetooth MAC 124 66% 64 34% 1 1%
Bluetooth Name 574 44% 649 49% 91 7%
Bluetooth Scan MAC 2 7% 26 93% 0 0%
Bluetooth Scan SSID 7 21% 25 76% 1 3%
Coarse Location 14 4% 273 85% 33 10%
Email Address 140 46% 157 52% 7 2%
Fine Location 12 4% 255 87% 26 9%
IMEI 1 6% 14 82% 2 12%
Phone Number 2 13% 12 75% 2 13%
Serial Number 35 64% 19 35% 1 2%
WiFi Randomized MAC 506 44% 139 12% 508 44%
WiFi Router MAC 791 60% 339 26% 193 15%
WiFi Router SSID 807 61% 407 31% 110 8%
WiFi Scan MAC 154 81% 29 15% 6 3%
WiFi Scan SSID 445 56% 257 32% 90 11%

Any PII Detected 1075 40% 871 32% 747 28%

Table 5: Number of devices with each PII type detected. Some
types are only searched for on some versions (cf. §4.4).

logging behaviour. Recall that our feld study did not collect
any logs from users’ devices for privacy reasons. We therefore
augment this with case studies of particular apps in the pop-
ular lists of categories on the Google Play Store to examine
possible privacy risks.

Logging Activity Names by the OS As described in §2,
the Android OS logs the names of UI-based Android app com-
ponents, called activities, whenever one is launched. Develop-
ers, who may be unaware of this logging, often use developer-
friendly names for these activities, such as “CheckoutActivity,”
“OrderSummaryActivity,” “ResetPasswordActivity,” etc. This
can result in a user’s actions within an app being revealed in
the log by virtue of this logging.

From May–June 2022, we tested 230 Android apps primar-
ily from the popular lists of every Google Play Store category.
We examined the manifest fles, which declare a list of ac-
tivities, to assess whether the activity names could reveal
sensitive information about a user or their interactions. When
revealing activity names were encountered, we ran the app
manually on a stock Google Pixel 3a running the latest version
of Android 12 to see if the activity name was logged while us-
ing the app. We uncovered several examples of apps that had
activity names that potentially revealed sensitive information
about a user or their actions within an app.

Clue Period Tracker (com.clue.android, version 2937)
is an ovulation and pregnancy tool that helps users who are
menstruating, pregnant, or postpartum to track information
about their health. We found that certain app activities are only
visited when a user indicates that they are pregnant and so
the presence of PregnancyHomeActivity in the logs reveals
that the user had indicated to the app that they are pregnant.
Furthermore, the transition out of the pregnancy mode uses a
different activity depending on the reason for the transition

provided by the user. A different activity is launched when a
user moves directly into the postpartum mode versus when
a user clicks “No Longer Pregnant”— the latter selection
prompts users to select options such as abortion and miscar-
riage, along with a few variations of successful childbirth.
Note that the selection made in the “No Longer Pregnant”
pathway does not cause specifc activities to be launched, but
the differentiation between the standard postpartum exit and
the alternative is clearly defned. Similarly, Xiaomi Health
(com.xiaomi.hm.health, version 50581) has several health
activities related to menstruation and pregnancy.

Apps with a calling feature, such as Discord (com.discord,
version 126012) or Microsoft Teams (com.microsoft.teams,
version 2022304413), also feature sensitive activity names
that reveal the timing of activities. With both apps, we were
able to identify when a call occurred due to their aptly named
in-call activities. Microsoft Teams also had activities related
to leaving a call, so the duration of a call can be calcu-
lated from the log. When Discord shows an incoming call,
WidgetVoiceCallIncoming is logged revealing that the call
was incoming as opposed to outgoing.

We also found several other apps with sensitive activ-
ity names. Discount (com.ideomobile.discount, version
2375), an Israeli banking app, has several activity names
that expose various banking information, such as creating
a foreign account, applying for a new loan, repaying a loan
early, ordering a credit card, examining a mortgage loan, ex-
amining a pension, and freezing a credit card. Norton 360:
Mobile Security (com.symantec.mobilesecurity, version
220520002) has an activity titled “MalwareFoundActivity”
that static analysis showed launches when the app detects
the presence of malware on a device. Twitter (com.twitter.
android, version 29440001) has a “ToxicTweetNudgeActiv-
ity” referring to a reminder it uses to prompt users to review
and revise potentially harmful or offensive replies. Dynamic
testing showed that when a user drafts a message that Twitter
considers potentially toxic, it launches this activity to prompt
the poster to reconsider. Finally, 20 applications had at least
one activity related to resetting or changing a password.

Apps that log PII Several of the applications that we
examined log potentially sensitive data during their normal
usage. Google Calendar (com.google.android.calendar,
version 2017077928) is one of the preinstalled apps on many
Google-certifed Android smartphones. We tested the app on
both a Samsung Galaxy S22 and a Google Pixel 3a and found
that the email address of the calendar event creator—not
necessarily the owner of the device—was logged whenever
an event or task on that calendar was triggered.

The preinstalled Contacts app of the Google Pixel (com.
google.android.contacts, version 2826706), logs meta-
data during the process of sharing a contact. When a contact
is shared, the name of the created VCF fle encodes the con-
tact’s real name, e.g., “John Smith” results in a fle named
“John%20Smith.vcf,” and that flename is then logged.

USENIX Association 32nd USENIX Security Symposium 2125

public class MainApp extends Application {

@Override
public void on Create(){

super .onCreate();
MobileCore.setAppl ication(this);

MobileCore.set l og l evel(LoggingMode.DEBUG);

We investigated the Clock app (com.google.android.
deskclock, version 72004798) that is preinstalled on the
Pixel 3a and found several lines in the logs that occurred only
when an alarm was triggered. The message “AlarmClock:
Adjusting state from [. . .] to FIRING” is logged whenever
an alarm begins to ring. A similar message is also logged
when the user dismisses the alarm by changing its state to
DISMISSED by ending the alarm or to SNOOZED by snoozing
the alarm. A line is also logged by “ConditionProviders.SCP”
when the alarm is triggered that expresses the current time
and the next alarm time, or the UNIX epoch, if there is no
currently-scheduled future alarm.

Logging by SDKs We examined apps from CVS (com.
cvs.launchers.cvs, version 778) and Shopper’s Drug
Mart (com.loblaw.shoppersdrugmart, version 706)—two
prominent pharmacies in the U.S. and Canada, respectively.
Both apps featured multiple pharmacy-related functionality
along with an online store and COVID-related features. We
found logs tagged with AdobeExperienceSDK detailing a
user’s actions within each app, and statically and dynami-
cally attributed this logging to Adobe Analytics [2]. Once we
saw this tag repeatedly, we more carefully looked at the apps
described in §4.2 to identify others with this same log tag.

The CVS app logged the categories used to flter the store;
various categories of the store page exist and when a user
selects a category to refne their search, this information is
present within the logs. We were able to discern from the
log messages when someone navigated multiple categories to
view emergency contraceptives (e.g., Plan B). The Shopper’s
Drug Mart app logs when a user views a product in addition to
when they add it to their shopping cart. The specifc product
along with other user information—including the SHA-256
hash of their login email and whether they are connected to a
specifc local pharmacy—is included in the log messages.

We investigated this logging and discovered through net-
work analysis that the log messages occur at the same time
that this analytics information is submitted to Adobe’s servers.
Our investigation further revealed that the logging is con-
trolled by a developer-set LoggingMode confguration option
for the SDK and that setting it to a lower level disabled the re-
sulting log messages. We examined 76 apps that used Adobe
Analytics and found that 95% of them set the logging level
to the DEBUG level or higher, resulting in these apps’ ana-
lytics network traffc getting written to the logs. Moreover,
we found that AdobeExperienceSDK was the log tag used for
logging the Advertising ID, Android ID, router SSID, and
precise GPS coordinates. Note that, according to the SDK
documentation, the default log level for this library is ERROR,
which is reserved for the most serious errors (i.e., 95% of the
apps we found using the Adobe Analytics SDK had changed
the default logging level). Furthermore, the documentation
clearly warns that “using DEBUG or VERBOSE log levels may
cause performance or security concerns” [3]. Yet, Adobe’s
“Getting Started Guide” features an example in which the log

Figure 5: The Adobe “Getting Started Guide” [4] features a
code snippet in which the log level is changed to DEBUG.

level is set to DEBUG (Figure 5) [4]. (We hypothesize that
most developers using this SDK are copying and pasting from
the documentation, while ignoring the advice to change the
log level in production.) This suggests that at least some of the
logging done by embedded SDKs is a result of the app devel-
oper misusing the SDK and not confguring it appropriately
when releasing the production version of an app.

6 Results: Where Do Logs Go?

In this section we consider who has access to the informa-
tion in the system log fles. Using a taint analysis tool, we
identifed several instances of preloaded system apps that
access and leak system logs to the cloud or write them to
the shared storage, potentially exposing system logs and any
PII contained in them to any user-installed app with the
READ_EXTERNAL_STORAGE permission. Next, we exam-
ined OEM privacy policies to identify actors explicitly ac-
knowledging the collection of log data.

6.1 Accessing and Leaking System Logs
Using static analysis methods, we analyzed the preinstalled
apps dataset gathered by Gamba et al. [35] using crowdsourc-
ing mechanisms [44] to assess the prevalence of log collection
on Android and which parties may access those logs. As of
October 8, 2022, this dataset contained 1,395,271 apps from
36,061 device models from 1,069 vendors.

In total, we identifed 149,622 apps (1,915 unique package
names) requesting the READ_LOGS permission in their mani-
fest fle. We note that the READ_LOGS logs permission has a
protection level of signature|privileged, meaning that it
can only be acquired by system apps either signed with the
same certifcate as the system or explicitly listed by the device
manufacturer [10]. The majority of the apps found reading
logs are indeed OEM-developed apps signed with OEM cer-
tifcates. Unfortunately, in contrast to apps available on app
markets, preinstalled apps lack metadata that could be used to
categorize them by their purpose or functionality, and the use
of self-signed certifcates impedes the accurate identifcation
of the developer [35, 42]. To overcome this limitation, we

2126 32nd USENIX Security Symposium USENIX Association

Package # OEMs

com.google.android.gsf 745
com.google.android.feedback 705
com.google.android.gsf.login 658
com.google.android.gms 584
com.mediatek.mtklogger 253
com.baidu.map.location 99
com.google.android.googlequicksearchbox 85
com.adups.fota 64
com.kingroot.kinguser 63
com.mediatek.duraspeed 42
com.debug.loggerui 41
com.google.android.projection.gearhead 34
com.gangyun.beautysnap 30
com.qualcomm.qti.perfdump 27
com.mediatek.mobilelog 21
com.redstone.ota.ui 20
com.UCMobile.intl 20
com.qualcomm.qti.RIDL 19
com.wsandroid.suite 19
com.cleanmaster.mguard 19
com.mediatek.engineermode 18
com.rock.gota 17
com.sprd.runtime 16
com.lookout 15
com.softwinner.freplayer 15
com.speedymovil.wire 15
com.huaqin.runtime 14
com.evernote 14
com.qualcomm.logkit 13
com.sprint.ms.smf.services 12
com.amazon.mp3 12
com.gionee.systemmanager 12
com.google.android.apps.turbo 12
com.verizon.obdm 12
com.amazon.venezia 11
com.baidu.browser.inter 11
com.bbm 11
com.gionee.amisystem 11
com.gionee.softmanager 11
com.ifytek.speechsuite 11
com.tmobile.pr.adapt 11

Table 6: Preloaded apps requesting the READ_LOGS permis-
sion found on devices from at least 10 different OEMs.

relied on the package name and certifcate of the app to infer
the developer and nature of the app. This allows us to not
only fnd instances of critical Android components accessing
logs, but also non-OEM related apps present on devices from
a large variety of vendors and brands.

Table 6 lists a subset of preinstalled apps requesting access
to system logs found across more than 10 different OEMs.
The most common ones were from Google (e.g., Google
Play and GMS), and are present on every Google-certifed de-
vice. For clarity, we exclude core Android components such
as com.android.contacts. The data suggests that OEMs
may customize the open-source version of these core com-
ponents to add their own functionality, including collecting
system logs. This is the case, for example, for the package
com.android.ActivityNetwork that is present on certain
Lenovo, Motorola, TCT, Alps, and Acer mobile phones.

We observed third-party non-OEM preinstalled apps re-
quest access to READ_LOGS. Examples included apps devel-
oped and signed by MNOs like Verizon, AT&T, Vodafone,
Telefonica, MetroPCS, or Sprint; large companies like Ama-
zon, Baidu, Microsoft, Yahoo!, Qihoo360, Tencent, and Ev-
ernote; browsers already known for implementing privacy-
intrusive behaviours (e.g., versions of UC Mobile and Baidu
Browser); utility apps such as device cleaners (e.g., Clean-
Master’s MGuard), parental control apps (e.g., Kidoz), and
anti-virus software (e.g., Lookout and McAfee); Viber’s VoIP
client; and even preinstalled malware on low-end Android
devices (e.g., com.rock.gota) [56]. In addition, apps from
companies offering Firmware Over-the-Air (FOTA) compo-
nents like Redstone and Adups, which are known for distribut-
ing and installing malware [21], also request access to the
logs. While some of these package names are available on
Google Play, the versions found on preinstalled devices differ.

Although we cannot confdently conclude how these apps
were installed on the system partition, it is possible that some
of these apps may abuse the lack of control over privileged
FOTA components to gain access [21]. In fact, only when
these apps are installed on the system partition can they ef-
fectively access the logs. Therefore, if Android’s policies are
interpreted strictly [14], these apps would be considered as
third-party apps and consequently barred from accessing the
READ_LOGS permission because “log entries can contain the
user’s private information.”

Do these apps leak logs data? Dynamically testing
whether system apps requesting the READ_LOGS permission
upload logs to servers is not trivial. Preinstalled apps may
use features such as the shared user ID [11]3 and have na-
tive dependencies that may cause errors when installed in
a testing environment. To overcome these limitations and
scale-up the analysis, we built a static taint analyzer on top of
Androguard [6] to identify which preinstalled (i.e., system)
applications read the system logs and then leak it to different
sinks such as network sockets or to fles on the SD card which
consequently leaks this data to any application with access to
the storage permission. Our tool enriches the analysis object
created by Androguard [6] to add extra cross-references to
account for asynchronous communications such as intents.
Unfortunately, static analysis tools are not effective at identify-
ing hidden behaviours that rely on native code, dynamic DEX
code loading, or refection, and may also render false positives
due to legacy or dead code that is never executed [35].

To focus our analysis and contextualize it with the results
presented in the previous section, we cross-referenced the
build fngerprints of the devices observed in our crowdsourc-
ing campaign (§5.2) with the database of preinstalled apps
collected using Firmware Scanner [44]. Of the 772 unique
build fngerprints, 315 were also present in the Firmware Scan-

3If an app declares a shared user ID that is already in use by another app
on the system, then the installation will fail.

USENIX Association 32nd USENIX Security Symposium 2127

https://com.redstone.ota.ui

ner database and were associated with 1,319 apps requesting
the READ_LOGS permission on those devices. When grouped
by their package name and signing certifcate to identify the
developer or the party responsible for the app, we found 237
groups of apps. For each of these groups, we manually in-
spected the code of the most recent version and found 63
apps that run logcat as a shell command. We found that 7 of
the 63 flter the logs after retrieving them, but the rest retain
the entire log. For example, some apps search for a specifc
pattern, such as a package name or PID, or are triggered upon
specifc events, like an app crash. Surprisingly, 15 of these
apps implemented code to save the raw logs directly to the
SD card. This may allow actors that request the storage per-
mission to read and subsequently upload such logs fles from
public storage and thus bypass the READ_LOGS permission
entirely. More worrying, we found 9 apps that post raw logs
to the Internet. In one case, the logs are sent to a Firebase
instance—a third-party service operated by Google. In total,
4,598 users in the preinstalled dataset had at least one app in
the system partition either saving the raw logs to the SD card
or uploading them to the cloud.

Case studies Log leaks can be triggered by specifc
events, such as app crashes. This is the case with the Google
Feedback app (com.android.feedback), which allows the
user to attach the system logs to the bug report submitted to
Google. We confrmed that the entire system log is sent in an
HTTP POST request to www.google.com/tools/feedback/
android/__submit, by crashing an app and triggering this
feedback operation while monitoring the network traffc. Not
only were the logs from the crashing app sent, but also the
logs from the operating system and the logs of all other user-
space apps running on the phone—including those unrelated
to the crash event. In other cases, log collection and leakage
may be triggered by the reception of an intent with a specifc
action, which hints at the existence of one or more additional
apps that must have the logic to trigger said behaviour. As pre-
viously described, the majority of these preinstalled apps were
signed by the manufacturer of the device. However, some of
these apps were signed by third-party companies (e.g., Voda-
fone). We also found other cases where the signing certifcate
did not give useful information about the identity of the com-
pany behind it (e.g., by using names such as C=IL, ST=il,
L=TLV, O=Central antivirus, OU=antivirus, CN=Dror
Shalev or by using debug certifcates). This confrms the lack
of control over the software supply chain and highlights the
attribution challenges for preinstalled apps, as has already
been pointed out in prior work [35].

One interesting case is the set of apps developed by Mobile
Posse [29], an advertising company bought by Digital Turbine
in February 2020 [30]. We found 8 such apps scattered across
68 unique devices from well-known manufacturers. Manual
code inspection showed that all of these apps have the same
code to access the logs. First, the code explicitly checks if
the app was granted the READ_LOGS permissions and, if so,

runs logcat with the -d option4 and saves the output. It ap-
pears that the logs are then converted into a JSON-formatted
string and sent as an HTTP POST request to the cloud. While
we were not able to confrm with complete certainty the des-
tination of this request, we found strong indications in the
code that the logs are sent to a machine hosted on AWS.
The app also contains a JSON-formatted string called “sched-
ule” that appears to contain data collection instructions, in-
cluding which components are to be collected and at what
frequency. The schedule contains, among other things, the
collect_system_log_schedule operation, which gives the
logcat command to run: “logcat -v time -d *:e.” The
other operations seem to instruct the apps to collect sensitive
information, such as the list of installed apps, app usage, vis-
ited URLs, geographic and cell location, call history, signal
strength, network info, connection speed (with links to test
upload and download speed), boot time, SMS usage, battery
status, and memory usage. This information would then be
sent alongside the logs to the aforementioned domain.

6.2 Privacy Policy Analysis
As described earlier, under the current Android security model
it is not possible for an app to obtain the required READ_LOGS
permission that allows it to read the entire system log unless
it is preinstalled—this can only be done by the OEM or an-
other supply chain actor that partners with the OEM. Thus,
it is informative to examine the privacy policies of major
manufactures to reveal what claims are made about the log
information that they say that they collect, since any app with
the READ_LOGS permission can only have been included on
the device by their action or consent.

We manually examined the published privacy policies of
some of the OEMs with the largest market share and took
note about what log information they claimed to collect. A
summary of the log information automatically collected is
listed in Table 7. The privacy policies of some of the largest
OEMs include language that covers their collection of device
identifers, log data, and crash reports—which are expected
to include log data. The privacy policies published by Oppo
and OnePlus—which share much of the same text for their
policies (both of them are manufactured by BBK electronics)—
go further than most and clearly show that phone vendors
understand what information can end up in the system log:

Log information: [Log data] may sometimes in-
clude your personal data, such as phone number,
email address, Google account or Facebook account.
However, we have implemented security measures
to ensure that this information is used only for error
log analysis and not for personal identifcation or
other purposes. [49, 50]

4The -d option makes logcat dump the entire log buffer and exit after-
wards instead of waiting for more entries to arrive.

2128 32nd USENIX Security Symposium USENIX Association

www.google.com/tools/feedback

Manufacturer Log Data Collected

Google [38] “includes things like your device type and carrier
name, crash reports”

Huawei [43] “event information (such as errors, crashes, restarts,
and updates)”

OnePlus [49] “error or crash log will contain information col-
lected at the time of the event”

Oppo [50] “error or crash log will contain information col-
lected at the time of the event”

Samsung [54] “diagnostic, technical, error, and usage informa-
tion”

Sony [58] “error related data and confguration, functionality,
and performance data”

Vivo [65] “product interactions, crash records, and diagnostic
data”

Xiaomi [68] “temporary message history, standard system logs,
crash information, log information generated by
using the service”

ZTE [71] “device data, software data, and service log data”

Table 7: Types of log information collected according to the
privacy policies of several device manufacturers.

Furthermore, device manufacturers, MNOs, and other OEM
partners may preinstall third-party software in addition to their
own. As noted in §1, Gamba et al. described a complex supply
chain of providers whose software is often preinstalled for
various business reasons [35]. Included analytics services,
such as Mobile Posse [29], which was acquired by Digital
Turbine [30], have privacy policies that indicate that they may
collect log information [32]. Furthermore, in their notice that
is required under California law [31], they note that their
mobile delivery platform may be installed by default. As
described in §6.1, they follow through with this collection.

7 Conclusions

Logging remains an effective and effcient way to debug
software throughout the development cycle. As the trend of
“debugging in deployment” continues, so will the collection
and transmission of system logs. Thoughtful logging allows
developers to quickly reconstruct errors that occur without
the burden of replicating issues in a debugger. The logging
model on Android, however, is more complicated. Any app
can conveniently use the built-in logging framework, and the
absence of a console, the Android system log functions as
a form of standard output, thus amplifying concerns about
third-party collection of these logs after deployment. Indeed,
the fag that controls wpa_supplicant’s debug logging was
called CONFIG_NO_STDOUT_DEBUG. This situation is akin to
both a personal computer manufacturer and the owner’s Inter-
net provider having access to the system logs of the computer
and any routine logging from any programs that run on it.

Our results, both in the lab and in the wild, show that log-
ging sensitive data, including identifers, location and proxi-
mate data, is prevalent across phone models. This behaviour

can be traced back not only to user-installed apps, but also to
system components and preinstalled apps. Thus, it is impor-
tant that developers, including those of Android itself, take
Google’s admonishment to developers that they not log pri-
vate data. It is more important, however, that access to these
logs is put in the control of the device owner, not the agglomer-
ation of corporate interests that play some role in the phone’s
manufacturing or connectivity. Ideally, the platform is stable
enough so that the manufacturer does not need to continue
being the device administrator once it is in the hands of a con-
sumer. As observed by Rosenberg [53], it is futile to sanitize
thousands of logging lines and it ultimately reduces the utility
of that logging. This futility is amplifed by app developers
who freely log arbitrary information or misconfgure SDKs.

Another issue is that of crash reporting frameworks, such
as Crashlytics. Such SDKs are prevalent in apps and provide
a valuable service to developers. Instead of addressing soft-
ware issues in development, app makers can quickly release
buggy code to real users and debug in deployment by hav-
ing logs sent to a third party for analytics. In earlier times,
users of such developmental code were called “beta testers.”
Developers who enlist all their users as beta testers are more
agile with deploying features and fxing issues than those
who do not, meaning that developers who respect users’ pri-
vacy have a harder time competing. We need to foster the
understanding—either among developers or lawmakers—that
it is unreasonable to expect that writing a piece of software
entitles you to indefnitely access detailed information regard-
ing precisely how it is used. Our advice for developers is to
(i) disable logging when preparing a release build; (ii) assess
what information activity names can reveal, assuming that
they are logged; and (iii) inspect the logging output while
running a release candidate to ensure that any included SDKs
are correctly confgured as it pertains to their logging.

We responsibly disclosed our fndings to Google. We have
engaged with them in conversations about improving the log-
ging framework. In response to our disclosure, Google intro-
duced a new control in Android 13 and above to help users
manage access to device logs, with the goal of preventing
entities from surreptitiously collecting user logs as a matter
of routine [37]. (We also disclosed our results to a few OEMs,
who denied collecting any logging data or ignored us.)

Acknowledgements

We are deeply grateful to our feld study participants who
provided us with valuable data. We thank our anonymous
reviewers and shepherd for their constructive feedback, the
Canadian Digital Service for deploying a custom version of
the COVID-19 alert app for testing, and our contacts at Google
who clarifed some of our questions. We also thank Vinuri
Bandara (IMDEA Networks) and Eduardo Blazquez (UC3M)
for their help in the analysis of preinstalled applications.

USENIX Association 32nd USENIX Security Symposium 2129

This research was supported by the Spanish Govern-
ment grant ODIO (PID2019-111429RB-C21 and PID2019-
111429RBC22); the Region of Madrid, co-fnanced by Eu-
ropean Structural Funds ESF and FEDER Funds, grant
CYNAMON-CM (P2018/TCS-4566); and by the EU H2020
grant TRUST aWARE (101021377). Joel Reardon was sup-
ported by the Cisco University Research Program Fund and an
NSERC Discovery Grant. Narseo Vallina-Rodriguez was sup-
ported by the project REACT-CONTACT-CM-23479, funded
by Comunidad de Madrid and the European Regional Devel-
opment Fund, and by a Ramon y Cajal Fellowship (RYC2020-
030316-I). Serge Egelman was supported by the U.S. Na-
tional Science Foundation (CNS-1817248) and the National
Security Agency (H98230-18-D-0006).

The opinions, fndings, and conclusions, or recommenda-
tions expressed are those of the authors and do not necessarily
refect the views of any of the funding bodies.

References

[1] Jagdish Prasad Achara, Mathieu Cunche, Vincent Roca,
and Aurélien Francillon. Short paper: WifLeaks: Under-
estimated privacy implications of the access_wif_state
android permission. In Proceedings of the 2014 ACM
Conference on Security and Privacy in Wireless & Mo-
bile Networks - WiSec ’14, pages 231–236, Oxford,
United Kingdom, 2014. ACM Press.

[2] Adobe. Adobe analytics: Web analytics for better busi-
ness intelligence. https://business.adobe.com/p
roducts/analytics/adobe-analytics.html. Ac-
cessed 2022-Oct-11.

[3] Adobe. Debugging & lifecycle metrics. https://de
veloper.adobe.com/client-sdks/documentation/
getting-started/enable-debug-logging/, 2023.

[4] Adobe. Get the Experience Platform SDK. https:
//web.archive.org/web/20230127083605/https:
//developer.adobe.com/client-sdks/docume
ntation/getting-started/get-the-sdk/, 2023.
Accessed: February 28, 2023.

[5] Jaber Al Nahian. How to easily change or fake your
android device model and brand name. TechGainer, July
14 2014. https://www.techgainer.com/change-f
ake-android-device-model-number-and-brand-n
ame/.

[6] Androguard Team. Androguard. https://github.com
/androguard/androguard/. Accessed 2022-Sep-29.

[7] Android Open Source Project. Security tips. https:
//developer.android.com/training/articles/
security-tips.

[8] Android Open Source Project. Adding a new device.
https://source.android.com/setup/develop/n
ew-device#build-variants, 2021.

[9] Android Open Source Project. Logcat command-line
tool. https://developer.android.com/studio/c
ommand-line/logcat, 2021.

[10] Android Open Source Project. Privileged permission
allowlisting. https://source.android.com/devic
es/tech/config/perms-allowlist, 2021.

[11] Android Open Source Project. <manifest>. https:
//developer.android.com/guide/topics/manif
est/manifest-element, 2021.

[12] Android Open Source Project. Android debug bridge
(adb). https://developer.android.com/studio/c
ommand-line/adb, 2022.

[13] Android Open Source Project. Best practices for unique
identifers. https://developer.android.com/trai
ning/articles/user-data-ids, 2022.

[14] Android Open Source Project. Manifest.permission.
https://developer.android.com/reference/an
droid/Manifest.permission#READ_LOGS, 2022.

[15] Android Open Source Project. Meet android studio.
https://developer.android.com/studio/intro,
2022. Accessed 2022-Oct-04.

[16] Android Open Source Project. Privacy changes in an-
droid 10. https://developer.android.com/about/
versions/10/privacy/changes#location-telep
hony-bluetooth-wifi, 2022. Accessed 2022-Sep-22.

[17] Android Open Source Project. Publish your app. https:
//developer.android.com/studio/publish, 2022.
Accessed 2022-Oct-03.

[18] Android Open Source Project. Settings.secure. https:
//developer.android.com/reference/android/pr
ovider/Settings.Secure, 2022. Accessed 2022-Sep-
22.

[19] Android Open Source Project. Signing builds for release.
https://source.android.com/devices/tech/ota/
sign_builds, 2022.

[20] Android Open Source Project. Understanding logging.
https://source.android.com/devices/tech/de
bug/understanding-logging, 2022.

[21] Eduardo Blazquez, Sergio Pastrana, Alvaro Feal, Julien
Gamba, Platon Kotzias, Narseo Vallina-Rodriguez, and
Juan Tapiador. Trouble over-the-air: An analysis of
FOTA apps in the android ecosystem. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 1606–
1622, San Francisco, CA, USA, May 2021. IEEE.

2130 32nd USENIX Security Symposium USENIX Association

https://business.adobe.com/products/analytics/adobe-analytics.html
https://business.adobe.com/products/analytics/adobe-analytics.html
https://developer.adobe.com/client-sdks/documentation/getting-started/enable-debug-logging/
https://developer.adobe.com/client-sdks/documentation/getting-started/enable-debug-logging/
https://developer.adobe.com/client-sdks/documentation/getting-started/enable-debug-logging/
https://web.archive.org/web/20230127083605/https://developer.adobe.com/client-sdks/documentation/getting-started/get-the-sdk/
https://web.archive.org/web/20230127083605/https://developer.adobe.com/client-sdks/documentation/getting-started/get-the-sdk/
https://web.archive.org/web/20230127083605/https://developer.adobe.com/client-sdks/documentation/getting-started/get-the-sdk/
https://web.archive.org/web/20230127083605/https://developer.adobe.com/client-sdks/documentation/getting-started/get-the-sdk/
https://www.techgainer.com/change-fake-android-device-model-number-and-brand-name/
https://www.techgainer.com/change-fake-android-device-model-number-and-brand-name/
https://www.techgainer.com/change-fake-android-device-model-number-and-brand-name/
https://github.com/androguard/androguard/
https://github.com/androguard/androguard/
https://developer.android.com/training/articles/security-tips
https://developer.android.com/training/articles/security-tips
https://developer.android.com/training/articles/security-tips
https://source.android.com/setup/develop/new-device#build-variants
https://source.android.com/setup/develop/new-device#build-variants
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat
https://source.android.com/devices/tech/config/perms-allowlist
https://source.android.com/devices/tech/config/perms-allowlist
https://developer.android.com/guide/topics/manifest/manifest-element
https://developer.android.com/guide/topics/manifest/manifest-element
https://developer.android.com/guide/topics/manifest/manifest-element
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/reference/android/Manifest.permission#READ_LOGS
https://developer.android.com/reference/android/Manifest.permission#READ_LOGS
https://developer.android.com/studio/intro
https://developer.android.com/about/versions/10/privacy/changes#location-telephony-bluetooth-wifi
https://developer.android.com/about/versions/10/privacy/changes#location-telephony-bluetooth-wifi
https://developer.android.com/about/versions/10/privacy/changes#location-telephony-bluetooth-wifi
https://developer.android.com/studio/publish
https://developer.android.com/studio/publish
https://developer.android.com/reference/android/provider/Settings.Secure
https://developer.android.com/reference/android/provider/Settings.Secure
https://developer.android.com/reference/android/provider/Settings.Secure
https://source.android.com/devices/tech/ota/sign_builds
https://source.android.com/devices/tech/ota/sign_builds
https://source.android.com/devices/tech/debug/understanding-logging
https://source.android.com/devices/tech/debug/understanding-logging

[22] C. Scott Brown. Here are the phone update policies
from every major android manufacturer. https://ww
w.androidauthority.com/phone-update-policie
s-1658633/, July 2 2022. Accessed 2023-Feb-16.

[23] Simon Chan. Android debug bridge (ADB) for web
browsers. https://github.com/yume-chan/ya-web
adb, 2022.

[24] CVE-2017-9615. https://www.cve.org/CVERecor
d?id=CVE-2017-9615, June 2017.

[25] CVE-2018-1999036. https://www.cve.org/CVERec
ord?id=CVE-2018-1999036, July 2018.

[26] CVE-2021-31815. https://www.cve.org/CVERecor
d?id=CVE-2021-31815, April 2021.

[27] CWE-532: Insertion of sensitive information into log
fle. https://cwe.mitre.org/data/definitions/5
32.html, July 2006.

[28] Yves-Alexandre de Montjoye, César A. Hidalgo, Michel
Verleysen, and Vincent D. Blondel. Unique in the crowd:
The privacy bounds of human mobility. Scientifc Re-
ports, 3(1):1376, December 2013.

[29] Digital Turbine – Mobile Posse. https://mobileposs
e.com/. Accessed 2022-Jun-07.

[30] Mobile Posse acquired by Digital Turbine. https://
www.crunchbase.com/acquisition/mandalay-dig
ital-group-acquires-mobile-posse--1e380e32.
Accessed 2022-Jun-07.

[31] Digital Turbine. California privacy policy. https://
www.digitalturbine.com/california-privacy/,
2020. Accessed 2022-Sep-08.

[32] Digital Turbine. Privacy policy. https://www.digi
talturbine.com/privacy-policy/, 2022. Accessed
2022-Sep-08.

[33] F-Droid Limited and Contributors. F-Droid - free and
open source android app repository. https://f-droid
.org/. Accessed 2022-Sep-08.

[34] Alvaro Feal, Julien Gamba, Juan Tapiador, Primal Wi-
jesekera, Joel Reardon, Serge Egelman, and Narseo
Vallina-Rodriguez. Don’t accept candy from strangers:
An analysis of third-party mobile SDKs. In Data Pro-
tection and Privacy: Data Protection and Artifcial In-
telligence, volume 13 of Computers, Privacy, and Data
Protection, page 1. Gordonsville, 2021.

[35] Julien Gamba, Mohammed Rashed, Abbas Razagh-
panah, Juan Tapiador, and Narseo Vallina-Rodriguez.
An analysis of pre-installed android software. IEEE
Symposium on Security and Privacy (SP), 2020.

[36] R. Gerhards. The syslog protocol. Technical Report
RFC 5424, RFC Editor, March 2009. https://doi.or
g/10.17487/rfc5424.

[37] Google. Manage your device logs on android. https://
support.google.com/android/answer/12986432.

[38] Google Inc. Privacy policy – privacy & terms – Google.
https://policies.google.com/privacy, 2022.
Accessed 2022-May-26.

[39] Reilly Grant, Ken Rockot, and Ovidio Ruiz-Henríquez.
WebUSB API. https://wicg.github.io/webusb/,
2022.

[40] Dianne Hackborn. READ_LOGS permission is not
granted to 3rd party applications in jelly bean (api 16).
https://groups.google.com/g/android-develop
ers/c/6U4A5irWang/m/AvZsrTdfICIJ, Jul 2012.

[41] Dianne Hackborn. READ_LOGS permission is not
granted to 3rd party applications in jelly bean (api 16).
https://groups.google.com/g/android-develop
ers/c/6U4A5irWang/m/dEsqi0dyPkkJ, Jul 2012.

[42] Kaspar Hageman, Álvaro Feal, Julien Gamba, Aniketh
Girish, Jakob Bleier, Martina Lindorfer, Juan Tapiador,
and Narseo Vallina-Rodriguez. Mixed signals: Ana-
lyzing software attribution challenges in the android
ecosystem. IEEE Transactions on Software Engineer-
ing, pages 1–16, 2023.

[43] Huawei Technologies Co. Ltd. Privacy statement -
HUAWEI Global. https://consumer.huawei.co
m/en/privacy/privacy-policy/, 2019. Accessed
2022-May-26.

[44] Internet Analytics Group - IMDEA Networks. Firmware
Scanner. https://play.google.com/store/apps/d
etails?id=org.imdea.networks.iag.preinstal
leduploader, 2020. Accessed 2022-Sep-29.

[45] Brian W. Kernighan and Rob Pike. The Practice of Pro-
gramming. Addison-Wesley Professional Computing
Series. Addison-Wesley, Reading, MA, 1999.

[46] C. Lonvick. The BSD syslog protocol. Technical Report
RFC 3164, RFC Editor, August 2001. https://doi.
org/10.17487/rfc3164.

[47] Alfred Ng. Google promised its contact tracing app
was completely private—but it wasn’t. https://th
emarkup.org/privacy/2021/04/27/google-promi
sed-its-contact-tracing-app-was-completel
y-private-but-it-wasnt, April 27 2021. Accessed
2023-Feb-16.

USENIX Association 32nd USENIX Security Symposium 2131

https://www.androidauthority.com/phone-update-policies-1658633/
https://www.androidauthority.com/phone-update-policies-1658633/
https://www.androidauthority.com/phone-update-policies-1658633/
https://github.com/yume-chan/ya-webadb
https://github.com/yume-chan/ya-webadb
https://www.cve.org/CVERecord?id=CVE-2017-9615
https://www.cve.org/CVERecord?id=CVE-2017-9615
https://www.cve.org/CVERecord?id=CVE-2018-1999036
https://www.cve.org/CVERecord?id=CVE-2018-1999036
https://www.cve.org/CVERecord?id=CVE-2021-31815
https://www.cve.org/CVERecord?id=CVE-2021-31815
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/532.html
https://mobileposse.com/
https://mobileposse.com/
https://www.crunchbase.com/acquisition/mandalay-digital-group-acquires-mobile-posse--1e380e32
https://www.crunchbase.com/acquisition/mandalay-digital-group-acquires-mobile-posse--1e380e32
https://www.crunchbase.com/acquisition/mandalay-digital-group-acquires-mobile-posse--1e380e32
https://www.digitalturbine.com/california-privacy/
https://www.digitalturbine.com/california-privacy/
https://www.digitalturbine.com/privacy-policy/
https://www.digitalturbine.com/privacy-policy/
https://f-droid.org/
https://f-droid.org/
https://doi.org/10.17487/rfc5424
https://doi.org/10.17487/rfc5424
https://support.google.com/android/answer/12986432
https://support.google.com/android/answer/12986432
https://policies.google.com/privacy
https://wicg.github.io/webusb/
https://groups.google.com/g/android-developers/c/6U4A5irWang/m/AvZsrTdfICIJ
https://groups.google.com/g/android-developers/c/6U4A5irWang/m/AvZsrTdfICIJ
https://groups.google.com/g/android-developers/c/6U4A5irWang/m/dEsqi0dyPkkJ
https://groups.google.com/g/android-developers/c/6U4A5irWang/m/dEsqi0dyPkkJ
https://consumer.huawei.com/en/privacy/privacy-policy/
https://consumer.huawei.com/en/privacy/privacy-policy/
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://play.google.com/store/apps/details?id=org.imdea.networks.iag.preinstalleduploader
https://doi.org/10.17487/rfc3164
https://doi.org/10.17487/rfc3164
https://themarkup.org/privacy/2021/04/27/google-promised-its-contact-tracing-app-was-completely-private-but-it-wasnt
https://themarkup.org/privacy/2021/04/27/google-promised-its-contact-tracing-app-was-completely-private-but-it-wasnt
https://themarkup.org/privacy/2021/04/27/google-promised-its-contact-tracing-app-was-completely-private-but-it-wasnt
https://themarkup.org/privacy/2021/04/27/google-promised-its-contact-tracing-app-was-completely-private-but-it-wasnt

[48] John O’Brien and Kimmo Lehtonen. Counterfeit mo-
bile devices - the duck test. In 2015 10th International
Conference on Malicious and Unwanted Software (MAL-
WARE), pages 144–151, Fajardo, October 2015. IEEE.

[49] OnePlus. Privacy policy - OnePlus (Global). https://
www.oneplus.com/global/legal/privacy-policy,
2021. Accessed 2022-Sep-12.

[50] OPPO. Privacy policy. https://www.oppo.com/en/
privacy/, 2021. Accessed 2022-Sep-12.

[51] Joel Reardon. Why google should stop logging contact-
tracing data. https://blog.appcensus.io/2021/0
4/27/why-google-should-stop-logging-contact
-tracing-data/, 2021.

[52] Regents of the University of California. What needs
CPHS/OPHS review. https://cphs.berkeley.edu/
review.html, 2023. Accessed 2023-Jan-30.

[53] Dan Rosenberg. [patch v3] restrict unprivileged access
to kernel syslog. https://lwn.net/Articles/41481
3/, Nov 2010.

[54] Samsung Electronics Co., Ltd. Samsung privacy policy.
https://privacy.samsung.com/policy/samsung,
2020. Accessed 2022-May-26.

[55] Piotr Sapiezynski, Arkadiusz Stopczynski, Radu Gatej,
and Sune Lehmann. Tracking human mobility using
WiFi signals. PLOS ONE, 10(7):e0130824, July 2015.

[56] Secure-D Lab. com.rock.gota. https://lab.secure
-d.io/com-rock-gota/, 2018.

[57] Ashkan Soltani. Privacy trade-offs in retail tracking.
https://www.ftc.gov/policy/advocacy-researc
h/tech-at-ftc/2015/04/privacy-trade-offs-r
etail-tracking, Apr 2015. Accessed 2022-Aug-23.

[58] Sony of Canada Ltd. Privacy code. https://corpor
ate.sony.ca/view/privacy.htm, 2020. Accessed
2022-May-26.

[59] Statista. Global smartphone market share from 4th quar-
ter 2009 to 2nd quarter 2022. https://www.statista
.com/statistics/271496/global-market-share
-held-by-smartphone-vendors-since-4th-quart
er-2009/, July 2022. Accessed 2022-Sep-22.

[60] Robert Triggs. How to identify a fake or counterfeit
smartphone. https://www.androidauthority.com
/spot-fake-phone-882017/, June 2022. Accessed
2022-Oct-11.

[61] U.S. Federal Trade Commission. Mobile advertising
network InMobi settles FTC charges it tracked hundreds
of millions of consumers’ locations without permission.

https://www.ftc.gov/news-events/news/press
-releases/2016/06/mobile-advertising-netwo
rk-inmobi-settles-ftc-charges-it-tracked-h
undreds-millions-consumers, Jun 2016. Accessed
2022-Aug-23.

[62] U.S. Federal Trade Commission. Advertising platform
OpenX will pay $2 million for collecting personal infor-
mation from children in violation of children’s privacy
law. https://www.ftc.gov/news-events/news/p
ress-releases/2021/12/advertising-platfor
m-openx-will-pay-2-million-collecting-perso
nal-information-children-violation, Dec 2021.
Accessed 2022-Aug-23.

[63] U.S. Federal Trade Commission. USA v. OpenX
Technologies, Inc., a Delaware corporation. https:
//www.ftc.gov/system/files/documents/cases
/ecf_3-1_-_stipulated_order.pdf, 2021.

[64] Narseo Vallina-Rodriguez, Jon Crowcroft, Alessandro
Finamore, Yan Grunenberger, and Konstantina Papagian-
naki. When assistance becomes dependence: charac-
terizing the costs and ineffciencies of A-GPS. ACM
SIGMOBILE Mobile Computing and Communications
Review, 17(4):3–14, 2013.

[65] vivo Mobile Communication Co., Ltd. Privacy policy.
https://www.vivo.com/en/about-vivo/privac
y-policy, 2022. Accessed 2022-Sep-12.

[66] WiGLE.net. WiGLE: Wireless network mapping. http
s://wigle.net/. Accessed 2022-Sep-29.

[67] Ryszard Wiśniewski and Connor Tumbleson. Apktool–
a tool for reverse engineering android apk fles. https:
//ibotpeaches.github.io/Apktool/. Accessed
2022-Jun-02.

[68] Xiaomi Singapore Pte. Ltd. Xiaomi Privacy Policy.
https://privacy.mi.com/all/en_US/, 2021. Ac-
cessed 2022-May-26.

[69] Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun (Peter)
Chen. Studying the characteristics of logging practices
in mobile apps: A case study on F-Droid. Empirical Soft-
ware Engineering, 24(6):3394–3434, December 2019.

[70] Rui Zhou, Mohammad Hamdaqa, Haipeng Cai, and Ab-
delwahab Hamou-Lhadj. MobiLogLeak: A preliminary
study on data leakage caused by poor logging practices.
In 2020 IEEE 27th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
pages 577–581, London, ON, Canada, February 2020.
IEEE.

[71] ZTE Corporation. Privacy policy. https://www.zte.
com.cn/global/Privacy-Policy, 2022. Accessed
2022-Sep-12.

2132 32nd USENIX Security Symposium USENIX Association

https://www.oneplus.com/global/legal/privacy-policy
https://www.oneplus.com/global/legal/privacy-policy
https://www.oppo.com/en/privacy/
https://www.oppo.com/en/privacy/
https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://blog.appcensus.io/2021/04/27/why-google-should-stop-logging-contact-tracing-data/
https://cphs.berkeley.edu/review.html
https://cphs.berkeley.edu/review.html
https://lwn.net/Articles/414813/
https://lwn.net/Articles/414813/
https://privacy.samsung.com/policy/samsung
https://lab.secure-d.io/com-rock-gota/
https://lab.secure-d.io/com-rock-gota/
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2015/04/privacy-trade-offs-retail-tracking
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2015/04/privacy-trade-offs-retail-tracking
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2015/04/privacy-trade-offs-retail-tracking
https://corporate.sony.ca/view/privacy.htm
https://corporate.sony.ca/view/privacy.htm
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
https://www.androidauthority.com/spot-fake-phone-882017/
https://www.androidauthority.com/spot-fake-phone-882017/
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2021/12/advertising-platform-openx-will-pay-2-million-collecting-personal-information-children-violation
https://www.ftc.gov/news-events/news/press-releases/2021/12/advertising-platform-openx-will-pay-2-million-collecting-personal-information-children-violation
https://www.ftc.gov/news-events/news/press-releases/2021/12/advertising-platform-openx-will-pay-2-million-collecting-personal-information-children-violation
https://www.ftc.gov/news-events/news/press-releases/2021/12/advertising-platform-openx-will-pay-2-million-collecting-personal-information-children-violation
https://www.ftc.gov/system/files/documents/cases/ecf_3-1_-_stipulated_order.pdf
https://www.ftc.gov/system/files/documents/cases/ecf_3-1_-_stipulated_order.pdf
https://www.ftc.gov/system/files/documents/cases/ecf_3-1_-_stipulated_order.pdf
https://www.vivo.com/en/about-vivo/privacy-policy
https://www.vivo.com/en/about-vivo/privacy-policy
https://wigle.net/
https://wigle.net/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://privacy.mi.com/all/en_US/
https://www.zte.com.cn/global/Privacy-Policy
https://www.zte.com.cn/global/Privacy-Policy
https://WiGLE.net

	Introduction
	Background and Motivation
	Related Work
	Methodology
	Personal and Device Identifiers
	Dynamic Analysis
	Attributing Log Tags
	Measuring PII in the Wild
	Manual App Inspection

	Results: PII in the Logs
	Analysis of Default Logging
	PII in the Wild Experiment
	Case Studies in Logging

	Results: Where Do Logs Go?
	Accessing and Leaking System Logs
	Privacy Policy Analysis

	Conclusions

