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Abstract 

We assess the performance of three hospital merger simulation methods by means of a Monte 

Carlo experiment. We first specify a rich theoretical model of hospital markets and use it to 

generate “true” price effects of a large number of hospital mergers. We then use the theoretical 

model to generate the data that would be available in a real-world prospective merger analysis 

and apply the merger simulation methods to those data. Finally, we compare the predictions of 

the merger simulation methods to the true price effects. While there is some heterogeneity in 

performance, all three simulation methods perform reasonably well.1 
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1 Introduction 

In recent years, the economics literature has produced a number of methods for simulating the price 

effects of hospital mergers. These merger simulation methods have been used in internal analyses 

at the Federal Trade Commission (Farrell et al. (2011)). They have also been used by testifying 

economic experts in recent litigated hospital merger cases.2 

The main purpose of this paper is to make a contribution to evaluating the accuracy of three 

of these hospital merger simulation methods. Specifically, we evaluate a variant of the Willingness-

to-Pay (WTP) method originally exposited in Capps et al. (2003) (CDS), as well as an extension 

to the CDS method described in Brand (2013). We also evaluate what is known as the “Upward 

Pricing Pressure” (UPP) approach to predicting the price effects of hospital mergers. 

All of these simulation methods have the important advantage of being tractable (with the 

UPP method being very tractable), but this tractability is the result of important simplifying 

assumptions, the validity of which are uncertain. The simulation methods can be thought of as 

approximations to a richer and more realistic theoretical model, and the accuracy of the methods in 

predicting the price effects of mergers will depend, in part, on the closeness of those approximations. 

We present such a rich theoretical model that captures the key features of hospital markets in the 

United States. Among these are: (i) health insurers typically act as intermediaries between hospitals 

and consumers; and (ii) hospital prices are typically determined via bilateral bargaining between 

hospitals and insurers rather than being posted by hospitals. The primitives of the model are defined 

on hospital attributes (location, quality, cost, and system affiliation), consumer attributes (location 

and probability of using inpatient care), and consumer preferences over hospitals and insurers. We 

assume profit-maximizing behavior for both hospitals and insurers. The solution concept is standard 

“Nash-In-Nash,” meaning that the equilibrium vectors of hospital prices and insurance premiums 

simultaneously comprise: (i) a Nash Equilibrium of solutions to a set of Nash Bargaining equations 

that model the bargaining between hospitals and insurers; and (ii) a Nash Equilibrium in a Bertrand 

game played by insurers. 

2For example, merger simulation based on WTP was used in the ProMedica Health System mat-
ter (https://www.ftc.gov/sites/default/files/documents/cases/2012/06/120625promedicaopinion.pdf and 
https://www.ftc.gov/sites/default/files/documents/cases/2012/06/120328promedicaroschopinion.pdf). A ver-
sion of the UPP method was used in the Federal Trade Commission and State of Illinois vs. Advocate Health Care 
Network, Advocate Health and Hospitals Corporation, and North Shore University Health System matter (public 
trial transcript of Dr. Steven Tenn, April 11, 2016). 
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We perform a Monte Carlo experiment in which we generate simulated data to evaluate how 

closely the hospital merger price effects predicted by the simulation methods approximate the “true” 

price effects from the theoretical model. We emphasize that it is not obvious that the simulation 

methods must be a close approximation to the theoretical model. In Appendix A6, we detail the 

numerous important differences between our theoretical model and the simulation methods that we 

test. Therefore, if our Monte Carlo experiment shows that the simulation methods do in fact closely 

approximate the theoretical model, that would constitute meaningful evidence of their real-world 

efficacy insofar as the theoretical model is a reasonably accurate representation of the real world. 

Our experiment proceeds in three stages. First, we solve the theoretical model for a large number 

of simulated markets under a wide variety of model parameterizations, and, for each simulated 

market, we calculate the price effect of every possible merger between two hospital systems. That 

is, we calculate the equilibrium set of hospital prices before and after every possible pairwise merger. 

Comparing the pre- and post-merger prices generates what we refer to as the true price effect of each 

merger. Second, for each simulated market, we generate the types of data that would be available in 

a real-world prospective merger analysis: pre-merger prices and individual-level hospital discharge 

data. We then apply each of the three merger simulation methods to those data to generate a 

predicted price effect from each method for each merger. Third, we evaluate the performance of the 

merger simulation methods by comparing these predicted price effects to the true price effects. We 

also evaluate how that performance varies across model parameterizations.3 

We determine the set of possible values of the model parameters by calibrating our results 

against real-world metrics, including hospital prices and costs. However, we include a wider range 

of parameter values than this calibration would suggest because of uncertainty about which combi-

nations of model parameters correspond most closely to the real world, and also to cover real-world 

heterogeneity in these metrics across markets. 

We find that all three of the merger simulation methods generally perform quite well. The 

method based on CDS exhibits a tendency to modestly under-predict the true merger price effects, 

with a mean prediction error of around -15% of the true price effect. For example, if the mean 

3Our Monte Carlo experiment is similar to those performed by Miller et al. (2016) and Miller et al. (2017). In each of 
those papers, as in ours, the accuracy of a merger simulation method is evaluated by using simulated data to compare 
its predictions to the true results of a richer, more realistic model. The key difference is that those papers simulate 
mergers of differentiated products with posted prices, and ours simulates hospital mergers with negotiated prices. 
Another difference is that our theoretical model, while sharing some features with existing models, was developed 
specifically for this paper and represents a contribution to the theoretical literature in its own right. 
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true price effect is 5%, then the mean predicted price effect using that simulation method would 

be about 4.25%. The method based on Brand (2013) exhibits a tendency to modestly over-predict, 

with a mean prediction error of around 14% of the true price effect. Overall, UPP performs less 

well, and its performance varies much more by the magnitude of the true price effect. Its mean 

prediction error is 34.9% of the true price effect for mergers whose true price effect is between 4.5% 

and 5.5%, falling to 3.8% of the true price effect for mergers whose true price effect is between 

9.5% and 10.5%, and falling to -13.3% of the true price effect for mergers whose true price effect is 

between 14.5% and 15.5%. 

We also apply a performance measure based on the median absolute prediction error (MAPE), 

which captures the dispersion of the predicted price effects about the true price effects. The simu-

lation methods perform quite well by this measure. For the method based on CDS, the MAPE is 

typically about 20%-25% of the true price effect. The method based on Brand (2013) performs sig-

nificantly better, with the MAPE typically about 12%-14% of the true price effect. UPP performs 

less well, and its performance varies significantly with the magnitude of the true price effect. 

Based on these results, we conclude that all three of the simulation methods perform at least 

reasonably well in predicting the true price effects from our theoretical model. And while there 

is some variation in the methods’ performance across different parameterizations of the theoretical 

model, they generally perform reasonably well throughout the parameter space. This suggests that 

the methods are likely to be useful even if we do not know which parts of the parameter space in 

our simulations correspond most closely to the real world. 

For this paper to constitute a meaningful test of the simulation methods’ accuracy in predicting 

the effects of real-world mergers, the theoretical model must approximate the real world reasonably 

well. Beyond the familiar basic theoretical structure (hospital prices are determined via Nash Bar-

gaining between hospitals and insurers), our model has a number of additional features that appear 

to be realistic. First, it allows for consumers to switch insurers in response to the exclusion of a 

preferred hospital system from their insurer’s network. Second, the bargaining between hospitals 

and insurers that determines hospital prices takes place simultaneously with the Bertrand pricing 

game played by insurers in setting premiums. Third, our model allows an insurer to adjust its 

profit-maximizing premium in response to an exclusion of a given hospital system from its net-

work or from the network of a competing insurer, rather than imposing an assumption that those 

premiums are invariant to the composition of the insurers’ provider networks. (We also present 
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an alternative version of the model, discussed in Appendix A4, in which this adjustment is not 

possible). Fourth, the theoretical model includes buying groups in the insurance market: some 

consumers purchase insurance individually, while others get insurance as members of groups of 

varying sizes, where the group makes a single purchasing decision for all of its members. Fifth, the 

model can vary the competitive conditions in the insurance market from a monopoly insurer to a 

highly competitive nine-insurer market structure. Sixth, equilibrium hospital prices and insurance 

premiums are determined before uncertainty about which consumers will require inpatient hospital 

care is resolved. 

Some of these features are present in other recent models such as Gaynor and Town (2012), 

Gowrisankaran et al. (2015), Gaynor et al. (2015), and Ho and Lee (2017) though, as far as we 

know, the third item on the above list is unique to our model, and we believe it to be fairly 

important. No other model has the set of features that characterize our model, which we offer as a 

contribution in its own right. 

2 Background and Previous Literature 

We begin by discussing the theoretical basis of the merger simulation methods evaluated in this 

paper. The methods based on Capps et al. (2003) and Brand (2013) involve constructing a measure 

of hospital market power using individual-level inpatient discharge data. A key component of this 

market power measure was initially developed in Town and Vistnes (2001) and in CDS, the latter 

of which first applied the now commonly-used term “Willingness to Pay” (WTP). As the name 

suggests, WTP is intended to capture the incremental valuation that consumers place on having 

a particular hospital or hospital system in their insurer’s provider network. For closely related 

reasons, WTP can also be thought of as proportional to the amount by which an insurer’s gross 

profits (gross of payments to hospitals) would decline if that hospital or hospital system was excluded 

from its network. In the context of the bilateral bargaining framework in which hospital prices are 

determined, WTP can be thought of as a measure of the difference between the insurer’s gross 

payoff if an agreement is reached versus if it is not. 

CDS implement this intuition by regressing hospital system profits on WTP and then using the 

estimated relationship to predict the price effect of a merger. For reasons discussed in Farrell et al. 

(2011) and Section 5 below, it may be preferable to instead regress hospital system prices on WTP 
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divided by expected hospital system volume (WTP/Q) as well as some measure of hospital system 

cost. That is the approach we adopt here for the merger simulation methods based on CDS and 

Brand (2013). The UPP method applies a different approach. As described in Haas-Wilson and 

Garmon (2009) and Garmon (2017), it consists of a simple theory-based calculation of diversion 

ratios and hospital gross margins. 

A major conceptual virtue of all three simulation methods is that they reflect the fact that prices 

are set through bargaining between hospitals and insurers. The simulation methods have practical 

advantages as well. The simulation methods based on CDS and Brand (2013) are reasonably 

inexpensive to evaluate and the individual-level inpatient discharge or claims data that they require 

are often available in the context of antitrust investigations. The UPP method is simpler to evaluate, 

and the data requirements are lower. 

To our knowledge, three previous papers have attempted to assess the accuracy of the predictions 

of simulation methods based on WTP . Fournier and Gai (2007) find that the WTP -based merger 

simulation under-predicts the price effect estimated by a retrospective analysis. May and Noether 

(2014) perform a similar exercise for two hospital mergers and find that the merger with the larger 

predicted price effect had the smaller estimated retrospective price effect. 

The prior study that is most relevant to our paper is Garmon (2017). While the methodologies 

are different, the central objective of the two papers is the same. Both papers attempt to evaluate 

the performance of relatively modern methods for predicting hospital merger price effects. The 

present paper does this using a Monte Carlo simulation in which the predicted price effects from 

the simulation methods are compared to the true price effects generated by a theoretical model. In 

contrast, Garmon (2017) uses real-world data on twenty-eight consummated hospital mergers over 

the period 1997-2012 and compares the price effects predicted by the methods to retrospectively 

measured effects. In Section 7 below, we discuss the advantages and disadvantages of each approach. 

Here we simply note that, broadly speaking, the results are similar. Both papers find that the 

modern methods perform reasonably well, and perform much better than traditional methods based 

on market structure and concentration metrics.4 

4A more detailed comparison of the results can be found on pages 6-7 in the FTC Working Paper version of this 
paper, available at https://www.ftc.gov/reports/simulating-hospital-merger-simulations. 
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3 Theoretical Model 

In this section, we present our theoretical model, which explicitly incorporates the aforementioned 

important features of hospital markets. Consumers do not directly purchase inpatient hospital 

care but rather access such care by purchasing health insurance either as an individual or through 

a group. Consumers who utilize inpatient hospital care choose their most preferred hospital from 

among the hospitals in their insurer’s hospital network. Hospital prices and insurance premiums are 

determined simultaneously. Hospital prices are set via bilateral Nash bargaining between hospitals 

and insurers, and premiums are set via a Bertrand game among the insurers. The model can be 

solved for any given hospital market structure and then solved again for any alternative market 

structure in which two or more hospitals or hospital systems have merged. This generates the true 

price effects to which the price effects predicted by the simulation methods will be compared. 

Each simulated market consists of a set of insurers M and a set of hospitals J . The hospitals in 

J are randomly assigned into a set of systems S. Some hospital systems consist of a single hospital. 

We use m as a general index for insurers, j as a general index for hospitals, and s as a general index 

for hospital systems. When referring to a specific insurer, we use n; when referring to a specific 

hospital, we use k; and when referring to a specific hospital system, we use t. 

Each system bargains with insurers on an all-or-nothing basis. Each hospital j produces care 

at a constant cost cj per admission. An agreement between insurer m and hospital j consists of a 

linear per-admission price pjm. Each insurer m sells a single insurance product consisting of access 

to hospital network Jm and other attributes not related to inpatient care Zm at a premium πJm , 

which is uniform across the entire market. Insurers also incur a per event administrative cost τ . 

Each simulated market also includes a population of consumers indexed by i. 

Given each insurer’s network, its set of negotiated hospital prices, and the premiums set by 

competing insurers, insurers choose their profit-maximizing premiums via a Bertrand pricing game. 

Hospital prices affect the profits of the insurers both directly as costs and indirectly through the 

equilibrium insurance premium. Hence, hospital price increases (decreases) are, in part, passed on 

to consumers in the form of higher (lower) premiums. 

Consumers choose from among the #M insurers or go without insurance. At the time of the 

purchase decision, consumers face uncertainty over whether they will need inpatient care and in 

their preferences over hospitals. There is only one type of health condition that requires inpatient 

6 



care, and consumer i utilizes inpatient care with probability ρi ∼ F (ρ). Conditional on seeking 

care, consumers are treated at their most preferred hospital in the insurer’s network. Consumers 

face no difference in their out-of-pocket expenses across in-network hospitals. 

3.1 Consumer Preferences and the Insurance Market 

Consumer preferences over hospitals are defined as 

Uij = Vij + �ij , ∀j ∈ J, (1) 

where Vij and �ij denote systematic and idiosyncratic components, respectively. Consumers who 

receive a draw of ρi that causes them to utilize inpatient care choose the hospital that provides the 

greatest utility given the realization of {�ij }j∈J . However, the uncertainty about the draws of ρi 

and {�ij }j∈J are unresolved when individual consumers or groups choose their insurer. 

We randomly assign each consumer to one of a set of buying groups G. This captures that fact 

that in the United States most consumers obtain health insurance through a buying group, often 

their employer. We assume that each insurance buying group has a single decision maker. We 

define the systematic component of the decision maker’s preferences as the arithmetic mean of the 

systematic component of the preferences of the group’s individual members. Hence, we define the 

utility of the decision maker for buying group g, consisting of consumers denoted by the set Ig, for 

insurer n with a network consisting of some set of hospitals Jn as 

� �Xλ 
Ugn = Zn − θπJn + ρiE� max {Vij + �ij } + ζgn. (2)

#Ig j∈Jn 
i∈Ig 

Recall that πJn and Zn denote the premium and the non-inpatient care attributes of insurer n, 

respectively. #Ig denotes the cardinality of the set Ig. The term inside the summation represents 

the expected utility for consumer i from having access to insurer n’s hospital network. This is defined 

as the expected value of the utility from the ex-post most preferred hospital, times the probability 

of requiring inpatient care ρi. The parameter λ scales the expected utility that the decision maker 

gets from the insurer’s hospital network into the utility that they receive from choosing that insurer. 

Similarly, the parameter θ translates the insurer’s premium into the utility that they receive from 
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choosing that insurer. ζgn denotes a single idiosyncratic draw for the decision maker that is assumed 

to be unknown to all agents when the bargaining between hospitals and insurers takes place. 

Applying the closed form to the consumer’s expected utility, and assuming that ζgn is an Extreme 

Value draw, the probability that buying group g chooses the insurance product of insurer n is 

n oPλ exp Zn − θπJn + ρiEmaxiJn#Ig i∈Ig
) ≡ n (3)Λgn(πJn P P o , 

λ1 + m∈M exp Zm − θπJm + ρiEmaxiJm#Ig i∈Ig 

where, under the assumption that {�ij }j∈J are IID Type I Extreme Value draws, 

X 
EmaxiJm ≡ ln exp{Vij }. (4) 

j∈Jm 

We use Λgn(πJn ) to denote (3) when all hospital system-insurer combinations reach an agreement 

and Λgn(πJn =J\k) to denote (3) when all hospital system-insurer combinations other than (k, n) 

reach an agreement. 

Conditional on a vector of hospital prices, insurers play a Bertrand pricing game taking expec-

tations over the distribution of both idiosyncratic components ζgn and �ij , as well as over ρi. The 

expected profits for insurer n are 

⎛ ⎞ X X X 
ΠJ σJn ⎠

n ≡ Λgn(πJn ) ⎝#Ig(πJn − pz) − ρi ij (pjn + τ) , (5) 
g i∈Ig j∈Jn 

where σJn denotes the probability that, conditional on needing inpatient care, and given that the ij 

consumer’s choice set consists of Jn, consumer i would choose hospital j. We assume that no 
J\j

consumer uses an out-of-network hospital, i.e., σ = 0 ∀i, j. We assume that insurer n maximizesij 

(5) with respect to πJn . 

For reasons that will be made clear below, it is necessary to solve an analogous profit-maximization 

problem for the case in which insurer n and hospital k do not reach an agreement, but every insurer 

network besides n contains all of the hospitals in J , and insurer n reaches an agreement with every 

hospital in J\k. This is done for each insurer-hospital pair, so we must solve for profit-maximizing 

premiums for the case where all negotiations succeed (i.e., all hospitals in J are included in the 

network of every insurer in M), and also for each case where exactly one negotiation fails. We 
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use ΠJn to denote the value of the equilibrium profit for insurer n conditional on its network Jn,n 

assuming that all insurers other than n include all hospitals in J . 

3.2 Bargaining 

Equilibrium prices and network configurations are determined through a set of Nash Bargains. 

Each hospital system in S has a separate negotiation with each insurer in M . Negotiations proceed 

under standard Nash assumptions: (i) all negotiations occur simultaneously; (ii) no party to any 

negotiation observes or is affected by the outcome of any of the other negotiations; (iii) both parties 

to each negotiation believe that all other negotiations will be successful (i.e., all other hospitals will 

be included in all insurers’ networks), and these beliefs turn out to be correct in equilibrium; and 

(iv) both parties to each negotiation have beliefs, which also turn out to be correct in equilibrium, 

about the prices agreed to in all other negotiations. We also assume that all hospital systems and 

insurers have beliefs, that turn out to be correct in equilibrium, about the premiums, both with 

and without an agreement, that emerge from the Bertrand game played by insurers.5 

For ease of notation, we define the expected number of patients insured by insurer n treated by 

hospital k under the set of network configurations Jm = J, ∀m ∈ M (i.e., when all hospitals are in 

every insurer’s network) as 

X X 
qkn ≡ Λgn(πJn ) σJ 

ikρi. 
g i∈Ig 

Similarly, we define the expected number of patients insured by a different insurer m treated by 

hospital k under the set of network configurations Jm = J, ∀m ∈ M\n and Jn = J\k (i.e., when 

all hospitals are in every insurer’s network except that insurer n and hospital k fail to reach an 

agreement) as 

X X 
=J , πJn σJ qk(m\n) ≡ Λgm(πJm =J\k) ikρi. 

g i∈Ig 

5Note that when prices and premiums are determined, hospitals and insurers are taking expectations over three 
sources of uncertainty: which consumers will purchase insurance from insurer n (ζgn); which consumers will seek 
inpatient care (ρi); and which hospitals those consumers will choose (�ij ). 
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Let p~n denote the vector of prices negotiated by insurer n with the #J hospitals {p1n, ..., p#Jn}. 

Given this notation, the Nash bargaining objective function between hospital system t (which could 

be comprised of a single hospital) and insurer n is 

⎛ ⎞α !1−αXX X X 
NB tn ≡ ⎝ qkm (pkm − ck) − qk(m\n) (pkm − ck)⎠ ΠJ

n (p~n)−ΠJ
n 
\s (p~n) . (6) 

m k∈t m∈M\n k∈t 

The payoff of hospital system t if an agreement is reached with insurer n, given the outcomes of the P P 
other bargaining games with other insurers, is given by m k∈t qkm (pkm − ck). The disagreement P P 
payoff of hospital system t is given by m∈M\n k∈t qk(m\n) (pkm − ck). In the special case of a 

monopoly insurer, the disagreement payoff of hospital system t is zero. 

Note that if no agreement is reached, system t would expect to recapture some of the patients it 

would have treated under an agreement with insurer n because some consumers will switch insurers 

as a result of the exclusion. (qk(m\n) ≥ qkm must be true.) This highlights the important point 

discussed in Balan and Brand (2014), Peters (2014), and Ho and Lee (2017), that when a hospital 

fails to reach an agreement with a given insurer, it does not necessarily lose all of the patients that 

it was receiving from that insurer. The hospital only loses those patients who do not value it enough 

to switch insurers to retain access to it. 

We employ the standard Nash-in-Nash solution concept, meaning a Nash equilibrium of a set 

Nash Bargaining equations.6 Specifically, the equilibrium negotiated price for hospital k maximizes 

the weighted product of the increase in hospital k’s payoff (compared to no agreement) and the 

increase in the insurer’s payoff (compared to no agreement) if an agreement is reached. The weight-

ing is defined by the parameter α ∈ (0, 1), which denotes the share of joint surplus that is captured 

by hospitals. This parameter could capture, for example, different rates of time preference or the 

relative skill of the negotiators involved in the bargaining. 

3.3 Hospital Mergers 

In the negotiation between a hospital (or hospital system) and an insurer, each side has some 

bargaining leverage. The leverage of the insurer comes from the fact that hospitals want access to 

that insurer’s enrollees, and is greater when the insurer has more enrollees. The leverage of the 

6See Collard-Wexler et al. (2017) for a discussion of the justification for using the Nash-in-Nash solution concept. 
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hospital comes from the fact that its absence from the insurer’s network makes that network less 

attractive to potential enrollees, which reduces the insurer’s gross profit. This leverage is greater 

when the hospital is strongly preferred by many enrollees. The effect of a merger between two 

hospitals will depend on how the merger changes the relative bargaining leverage of the two sides. 

If the merging hospitals are substitutes (i.e., the diversion ratios between them are positive, 

meaning that some patients have those two hospitals as their first and second choices), then the 

merger will increase the bargaining power of the hospitals relative to that of the insurer, resulting 

in higher prices. The reason is as follows. Before the merger, the unattractiveness of an insurance 

network that lacks one of the hospitals, and hence the damage to the insurer’s gross profits, is 

mitigated by the inclusion of the other. This mitigation is larger when the hospitals are closer 

substitutes and when non-merging hospitals are more distant substitutes; lacking one’s first-choice 

hospital is less undesirable the better the second-choice alternative. After the merger, failure to 

reach an agreement means losing both hospitals from the insurer’s network. Absent an agreement 

with the merged entity, patients who have the merging hospitals as their first and second choices 

will have to use their (less desirable) third choice hospital instead. The reduction to the insurer’s 

gross profits from losing the merged entity from its network will be greater than the sum of the 

pre-merger reductions from losing the hospitals individually. In contrast, the reductions in gross 

profit to the hospitals from failing to reach an agreement will be the same as before; the reduction 

in profit for the merged entity from not having access to that insurer’s patients is still equal to the 

sum of the reductions in profits for the hospitals individually. Since one effect is larger and the 

other is the same, the relative bargaining position has shifted in favor of the hospitals, and so the 

negotiated price will increase. 

This mechanism is the primary focus of hospital merger analysis. It is familiar from earlier work 

(CDS, Farrell et al. (2011), Gowrisankaran et al. (2015), among others) and is discussed in detail 

in Appendix A3. That appendix also discusses additional mechanisms by which hospital mergers 

can affect the prices negotiated between hospitals and insurers including: (i) mechanisms that arise 

from the fact that patients may switch insurers in response to a hospital or hospital system being 

excluded from their insurer’s network, and (ii) mechanisms that may be present even if the merging 

hospitals are not substitutes from the perspective of patients. 
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3.4 Simplifications 

We make two simplifying assumptions in our model that reduce computational expense. First, we 

assume that each hospital system negotiates a single price for all of its hospitals. This is in addition 

to our assumption discussed above that hospital systems negotiate on an all-or-nothing basis. 

Second, we assume symmetric competition in the health insurance market. We do so only 

because computing the equilibrium with an asymmetric M -firm oligopoly given the population 

size we use in our simulations is computationally expensive, and the symmetry assumption greatly 

reduces the burden. While this is a departure from what is commonly observed in the real world, 

we still capture the effect of differing levels of competition in the health insurance market on the 

Given these simplifications, we define the equilibrium price vector as the set of #S prices 

bargaining incentives of hospitals and insurers. As discussed below, we do this by varying the 

number of (symmetric) insurers in the market. 

∗ p~

that simultaneously solves the system of equations 

∂ ln NB1(p~) 
∂p1 

����� 
∗ 

����� = 0, ..., 
∂ ln NB#S (p~) 

∂p#S 

����� 
∗ 

= 0. (7) 
∂ ln NB2(p~)

= 0, 
∂p2 ∗ ~p~p~p 

This equilibrium price vector is common across all insurers because we assume symmetric com-

petition in the insurance market. Note that this definition conditions on the insurer’s (common) 

equilibrium profit maximizing premium π∗, and also on the off-equilibrium profit maximizing pre-

miums under hypothetical exclusions. There are #S such premiums if there is a monopoly insurer, 

one for each excluded hospital system. There are 2(#S) such premiums if there is an oligopoly 

in the insurer market, one for each excluded hospital system for the insurer that excludes, and 

another (common) premium for each of the other insurers, all of which do not exclude. All of these 

premiums, together with hospital prices, are solved for simultaneously. See Appendix A9 for details 

∗on computing the equilibrium price vector p~ and the equilibrium premium π∗ . 

4 Parameterization 

In this section, we provide a brief summary of our parameterization of the theoretical model. We 

provide additional detail in Appendix A1. 
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We create 9,000 simulated hospital markets. We chose this number of markets because it is large 

enough to generate a rich set of parameterizations while still being computationally feasible. Each 

market consists of 500,000 consumers, twelve hospitals, and specific values of the model parameters. 

Each of the 500,000 consumers is characterized by a randomly generated location, risk type ρi, and 

assignment into one of 60,000 insurance buying groups. Each of the twelve hospitals is characterized 

by a randomly generated location, and by a quality ηj and a marginal cost cj which are generated 

as discussed in Appendix A1. For each market, we randomly draw a number of hospital systems 

#S which we fix to be in the set {5, 6, ..., 10}, and we randomly assign each of the twelve hospitals 

into one of the #S systems. 

The parameters of the model include the Nash bargaining split parameter α from (6); the travel 

cost parameters (see equation (A2)); the parameters from (2) governing consumer preferences over 

insurers, namely θ, λ, and Zm; the insurers’ administrative cost τ from (5); the mean and variance 

of the hospital quality distribution; and the number of insurers. In each simulation, we randomly 

assign the value of each of these parameters from a set of three possible values, except for the 

number of insurers, which is drawn from the set {1,3,5,7,9}. 

The primary criterion used in selecting the range of values for these parameters is that they 

generate output that corresponds to real-world levels for important metrics. One such metric is the 

pseudo-R2 values from the estimation of the discrete choice model used to calculate diversion ratios 

and WTP. We select the travel cost parameters, the variances of the distributions determining the 

locations of consumers and hospitals, and the variance of the distribution of hospital quality so that 

the pseudo-R2 matches the values commonly found in real-world experience using hospital discharge 

data, which are typically in the range (0.40, 0.55). 

The other key metrics are hospital costs, prices, and gross margins. We set the values of 

the remaining parameters so that, on average, these match real-world data. We base our price 

and margin benchmarks on two sources. First, Health Care Cost Institute (2015) reports that the 

average hospital reimbursement for patients with employer sponsored health insurance in 2014 was 

$18,338. Second, Ramanarayanan (2014) reports that hospital contribution margins, which are 

analogous to our definition of gross margin, are typically around 50%. Given this information, we 

set the mean value of hospitals’ marginal cost cj to $8,000 and select values of the remaining model 

parameters to produce wide variation: (i) in hospital prices about a mean in the $18,000-$19,000 

range; and (ii) in hospital gross margins about a mean close to 50%. 
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While useful, these metrics provide only rough guidance for our choice of parameter values. 

There are several reasons for this. First, these metrics may not provide a sufficient basis to fully 

characterize hospital markets. Second, different combinations of parameter values can generate 

similar values in these metrics. Third, there may be significant heterogeneity in these metrics 

across real-world hospitals markets. 

For these reasons, we use a wider range of parameter values across our different simulations 

than closely adhering to these benchmarks would suggest. This causes many of our markets to have 

mean hospital gross margins that are well above or below 50%. Table 1 lists percentiles of the mean 

(within market) hospital gross margin across our 9,000 markets. The mean hospital gross margin 

across all simulated markets is 0.492. 

Table 1: Percentiles of Within-Market Mean Hospital Gross Margins 

10th 25th 50th 75th 90th 

0.260 0.362 0.499 0.624 0.710 

In our main results, we aggregate our performance across all of these parameterizations. We also 

provide results broken down by specific parameter values in Appendix A8.2 in order examine how 

the performance of the simulation methods varies across different values of the model parameters. 

Table 7 in Appendix A1 provides a list and description of each of the model parameters. 

5 The Merger Simulation Methods 

In this section, we describe the three merger simulation methods. Additional information regarding 

the properties of these methods is provided in Appendix A2. 

Two of the three merger simulation methods are based on least squares regressions in which 

Willingess-to-Pay (WTP), as described in CDS, is the key explanatory variable. As discussed in 

Appendix A2, WTP is a measure of the value-added of a hospital or hospital system to the provider 

network of an insurer. In the first method, we apply the regression model presented in Farrell et al. 

(2011), which is a modified version of the regression model presented in CDS. While CDS regress 

hospital profits on WTP, Farrell et al. (2011) suggests that a regression of prices on WTP on a 

per expected discharge basis and marginal cost may be more appropriate in some circumstances. 

Hence, the first simulation method we evaluate is based on the least squares regression model 
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∗ p = β0 + β1WTPt/qt + β2ct + νt, (8)t 

∗where WTPt denotes the WTP for system t as discussed in A2, p denotes the equilibrium price of t 

∗hospital system t (the tth element of p~ defined in (7)), and ct denotes volume-weighted marginal 

cost of system t, respectively. qt denotes the expected volume of system t, and νt denotes an 

∗econometric error. (pt , ct, and qt are data that would be observed by a real-world analyst.) β0, 

β1, and β2 are reduced-form coefficients to be estimated. We refer to this regression model as the 

WTP/Q simulation method. 

In the second method, we test a merger simulation method developed in Brand (2013) that 

extends the CDS WTP framework by incorporating additional components of theory. As shown in 

Appendix A2, the regression model in this simulation method is 

−−−−−→∗ p~ = Γ0 + Γ1D(a)
−1W T P/q + Γ2D(a)

−1 ~c + ~ν, (9) 

−−−−−→ 
where p~, W T P/q, and ~c denote #S vectors of system-level prices, WTP divided by expected 

1volume, and marginal cost, respectively. D(a) denotes a #S x #S matrix in which D(a)ss = , ∀s a 

and D(a)ts = −dts, ∀s 6= t. ~ν denotes a vector of errors; and Γ0, Γ1, and Γ2 denote coefficients to 

be estimated. 

We refer to this simulation method as the diversion-weighted WTP/Q method, or DWTP/Q. 

Note that changes in WTP or cost of any hospital system affects the prices of all hospital systems 

through the matrix D(a)−1 . This mechanism incorporates the intuition that since hospital prices are 

determined jointly in equilibrium, the price for each hospital system should reflect not just its own 

cost and WTP, but also the cost and WTP of each hospital with which it competes. For example, 

all else equal, a hospital that faces high priced rivals will have a higher equilibrium price than if 

it faced lower priced rivals, and vice versa. Relatedly, the DWTP/Q method captures feedback 

effects resulting from mergers between hospitals. That is, a price increase at the merging hospitals 

leads to price increases at competing third-party hospitals, which in turn creates additional upward 

pressure on the prices of the merging hospitals. Of the three simulation methods that we test, only 

the DWTP/Q method accounts for these effects. 

The bargaining weight parameter a is separately identified in the DWTP/Q method, although 

non-linear estimation methods are required. Our initial results suggested that the non-linear least 
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squares estimator of a is highly unreliable. Hence, rather than estimating a in (A9) using non-linear 

methods, we fix the value of a at 1 
2 , and then estimate Γ0, Γ1, and Γ2 using OLS. We maintain 

the assumption a = 1 
2 in (A9) irrespective of the true value of α in our theoretical model, which 

as discussed in A1, we allow to take on values of 0.4, 0.5, or 0.6. That is, we assume that the 

real-world analyst applying the simulation method may make an incorrect assumption regarding 

the value of this parameter. We assume a = 1 
2 because this would be the most natural assumption 

for a real-world analyst absent any direct information on the value of α. 

The third method is known as the Upward Pricing Pressure (UPP) method. This method is a 

simple theory-based calculation, the key inputs to which are diversion ratios between the merging 

hospitals and hospital gross margins. As described in Haas-Wilson and Garmon (2009) and Garmon 

(2017), the first-order price effect (i.e., excluding the feedback effects discussed above) of a merger 

between hospitals k and k0 can be derived from a Nash bargaining model. It is important to note 

that the UPP method is based on the assumption that each of the merged hospitals continues to 

bargain separately with insurers after the merger. This is in contrast to the assumption in our 

theoretical model that hospital systems bargain with insurers on an all-or-nothing basis. In the 

UPP method, the first-order effect of the merger on the equilibrium price of hospital k is given by 

(1 − a)dkk0 (pk0 − ck0 ), (10) 

where dkk0 denotes the diversion ratio from k to k0 . Similarly, the first-order effect of the merger on 

the equilibrium price of hospital k0 is given by 

(1 − a)dk0k(pk − ck). (11) 

As detailed below, we define the predicted price effect of a merger based on the UPP method as the 

volume-weighted mean of these two terms. As with DWTP/Q, we assume that the analyst cannot 

estimate the true bargaining parameter a. Hence, in evaluating UPP, we assume a = 1 
2 irrespective 

of the true value of α in our theoretical model. 

5.1 Predicted Price Effects of the Simulation Methods 

After computing the pre- and post-merger equilibria in our theoretical model, we generate the 

simulation methods’ predicted price effects of mergers for each simulated market. We proceed 
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as follows. First, we resolve the three sources of uncertainty in our theoretical model: (i) which 

consumers will purchase health insurance (ζg); (ii) which consumers will seek inpatient care (ρi); 

and (iii) which hospitals will treat those consumers (�ij ). This produces data on individual-level 

inpatient events that identifies the location of the patient and of the hospital that treated the 

patient. Such individual-level inpatient data, together with data on pre-merger hospital prices and 

marginal costs, comprise the data that would be available to a real-world analyst. 

Next, we use the individual-level inpatient data generated in the first step to estimate a condi-

tional logit model. This provides estimates of consumer preferences over hospitals. With the output 

of the conditional logit model, we construct WTP for each hospital system and the diversion ratios 

between all pairwise combinations of hospital systems. 

Finally, given the pre-merger prices and marginal costs from our theoretical model, and the 

values of WTP and diversion ratios, we estimate (A7) and (A9) for each of our simulated hospital 

markets. Using the output of these regression models, we apply the fitted relationship to the changes 

in WTP/Q and D (1/2)−1 W T P/Q for each possible pairwise merger to generate the predicted price 

effects of the WTP/Q and DWTP/Q methods, respectively. We calculate the predicted price effect 

for each possible pairwise merger of the UPP method using the estimated diversion ratios and the 

data on prices and marginal costs. 

For the three simulation methods WTP/Q, DWTP/Q, and UPP, the predicted price effect of a 

merger between hospital systems t and t0 is defined as follows. 

Predicted Price Effect of Simulation Method 1: WTP/Q 

WTPtt0 − WTPt − WTPt0[ bΔptt0 = β1 , (12) 
qt + qt0 

bwhere β1 denotes the estimated coefficient on WTP/Q in (A7). 

Predicted Price Effect of Simulation Method 2: DWTP/Q 

� 
(a)−1 (a)−1

�P#S−1 P#S 
s=1 Dpost(a)

−1 WTPs − s=1 Dpre ts + Dpre t0 WTPs(tt0)s s 
Δptt0[ = Γc1 , (13) 

qt + qt0 
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where Γc1 denotes the estimated coefficient on D(a)−1W T P/Q in (A9), D(a)−1 denotes the tth row t. 

of the diversion ratio matrix D(a)−1, and #S denotes the pre-merger number of hospital systems 

in the market. 

Note that in this expression, the diversion ratio matrix D(a) differs pre- versus post-merger. 

The rank of D(a) equals the number of hospital systems in the market and so is reduced from #S 

to #S −1 under a merger between two hospital systems. This implies that the off-diagonal elements 

of D(a) must be re-evaluated for each merger to compute the predicted price effect of that merger.7 

Predicted Price Effect of Simulation Method 3: UPP 

qtdtt0 (pt0 − ct0 ) + qt0 dt0t(pt − ct)[Δptt0 = , (14)
2(qt + qt0 ) 

where dtt0 denotes the diversion ratio from t to t0 . 

We make two assumptions about the information possessed by our hypothetical analyst. First, 

we assume that the analyst observes hospital prices and marginal costs without error.8 Second, we 

assume that the analyst knows the correct specification of the discrete choice model of consumer 

preferences over hospitals, though not the parameter values. 

6 Results 

We begin by setting notation. Let r index a merger between a particular pair of hospital systems in 

a particular simulated market. Let dr denote the volume-weighted mean diversion ratio between the 

merging hospital systems, and let pr denote the volume-weighted mean pre-merger price of these 

hospital systems. Let Δpr denote the price effect of merger r generated by our theoretical model, 

and let d denote the predicted price effect of the same merger r generated by any of the three Δpr 

simulation methods. These predicted price effects are defined in (12), (13), and (14). 

We present descriptive statistics of our simulated hospital markets for four categories of mergers 

grouped by the mean diversion ratio dr. These categories are [0%,5%), [5%,10%), [10%,20%), 
7Note that (12) and (13) omit any change in hospitals’ costs due to the merger. This is because we define the 

cost of the merged system to be equal to the volume-weighted mean of the pre-merger systems’ costs. That is, this 
definition assumes that there are no marginal cost efficiencies associated with any merger. 

8In practice, hospital prices are typically estimated using data sources such as claims-level data and adjusted to 
account for varying casemix distributions across hospitals. These data may be measured with error. In Appendix 
A8.3, we test the robustness of our results to measurement error in prices and costs. 
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[20%,30%), and [30%,100%]. We use the diversion ratio as our metric for categorizing mergers for 

two reasons. First, as discussed above, theory predicts that, all else equal, price effects of mergers 

are increasing in the diversion ratios between the merging hospitals, so categorizing mergers by 

diversion ratios is a rough way of categorizing them by degree of competitive concern. Second, 

diversion ratios are typically straightforward to estimate in real-world applications, as the necessary 

data are commonly available. 

Table 2 presents a summary of the merger price effects generated by our theoretical model 

expressed as a percentage of the pre-merger price Δp
p
r

r . We refer to this percentage change as the 

true price effect. These results are from our full set of 231,925 simulated mergers. The table includes 

the following summary statistics of the true price effect broken down by diversion ratio category: 

mean, standard deviation, and 10th, 25th, 50th, 75th, and 90th percentiles. The mean true price 

effect across all mergers is 1.7%, while the median true price effect is 0.4%. The 10th, 25th, 75th , 

and 90th percentiles are -0.1%, 0.1%, 1.8%, and 5.0%, respectively. 

As expected, the mean true price effect of mergers increases with dr. For mergers such that 

dr < 5%, which constitute 52.5% of the mergers in our analysis, the mean true price effect is just 

0.1% (median = 0.1%). The 10th, 25th, 75th, and 90th percentiles are -0.3%, 0.0%, 0.3%, and 0.5%, 

respectively. In contrast, for mergers such that dr ∈ [30%, 100%], which constitute 9.2% of the 

mergers in our analysis, the mean true price effect is 10.1% (median = 8.4%). The 10th, 25th, 75th , 

and 90th percentiles are 3.8%, 5.6%, 12.7%, and 18.5%, respectively. 

The distribution of true price effects in our simulations is a result of a number of assumptions. 

One is that we generate the true price effect for each possible pairwise merger between hospital 

systems. A different rule for determining the set of of hospital mergers would generate a different 

distribution of true price effects. Another assumption is the particular distribution of parameter 

values in our theoretical model. For example, we assume that key parameters, such as the travel cost 

parameters (γ1 and γ2), the insurance demand parameters (λ and θ), and the number of insurers 

(#M), are independently and uniformly distributed across markets. These assumptions are, of 

course, somewhat arbitrary. Hence, the distribution of true price effects in our simulations does not 

necessarily reflect the distribution of price effects resulting from real-world mergers. We present 
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these results to illustrate that our theoretical model produces the intuitive result that mergers 

between hospitals that are closer substitutes are likely to cause larger price effects.9 

We emphasize that this problem is less severe in the context of evaluating the performance of the 

simulation methods, which is the primary purpose of this paper. The reason is that this evaluation 

conditions on narrow categories of mergers defined by the true price effect (e.g., mergers in which 

the true price effect is between 4.5% and 5.5%). Changes in the distribution of parameter values 

may substantially affect the distribution of true price effects across these categories, but will likely 

have a smaller effect on the performance of the simulation methods within each category. 

Table 2: True Price Effects of Mergers Δpr from the Theoretical Model pr 

Mergers N Mean Stan Dev Percentiles 

s.t. dr ∈ 10th 25th 50th 75th 90th 

All 231,925 0.017 0.037 -0.001 0.001 0.004 0.018 0.050 

[0%,5%) 121,848 0.001 0.005 -0.003 0.000 0.001 0.003 0.005 

[5%,10%) 35,167 0.008 0.007 0.003 0.005 0.008 0.012 0.015 

[10%,20%) 35,091 0.019 0.013 0.007 0.012 0.018 0.026 0.034 

[20%,30%) 18,415 0.041 0.022 0.018 0.027 0.039 0.053 0.068 

[30%,100%] 21,404 0.101 0.070 0.038 0.056 0.084 0.127 0.185 

6.1 Bias of the Simulation Methods 

We begin our evaluation of the three simulation methods with an examination of the bias of each 

method. In this subsection, we present the bias results. In Appendix A4, we provide an examination 

of the mechanisms that generate these biases. 

Instead of grouping mergers by diversion ratio categories as in Table 2 above, we proceed by 

grouping our 231,925 mergers into 31 categories defined by one percentage point increments of the 

true price effect Δp
p
r

r (i.e., (≤ 0.5%), (0.5%, 1.5%), (1.5%, 2.5%), ..., (29.5%, 30.5%), (≥ 30.5%)). We 

then compare, within each of these categories, the mean of the true price effect Δpr with the mean pr d
of the predicted price effect Δp

p
r

r generated by WTP/Q, DWTP/Q, and UPP. 

9Note, however, that while these assumptions are somewhat arbitrary, they are not completely arbitrary. The 
reason is that any alternative distribution of model parameters (which would generate a different distribution of 
true price effects) would still need to yield the benchmark values of the metrics discussed in Section 4, namely the 
psuedo-R2 from the discrete choice model and hospital gross margins. 
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Figure 1: Mean True and Predicted Price Effects 
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Figure 1 contains a scatter plot of the results. The x-axis indicates the true price effect, and the 

y-axis indicates the predicted price effect. For each of the 31 categories, a perfect simulation method 

would generate a dot on the solid 45o line. The vertical distance between that line and the dots 

on the three colored curves represent the bias of the three simulation methods for that category. 

The figure indicates that WTP/Q exhibits a bias toward under-predicting the true price effects, 

while DWTP/Q exhibits a bias toward over-predicting. UPP exhibits a bias toward over-predicting 

when the mean true price effect is low, but an increasing bias toward under-predicting as the true 

price effect increases. For example, in the category of mergers for which the true price effect is in 

(4.5%,5.5%), the mean predicted price effect is 4.2% for WTP/Q, 5.8% for DWTP/Q, and 6.7% 

for UPP. In the category of mergers for which the true price effect is in (14.5%,15.5%), the mean 

predicted price effect is 12.8% for WTP/Q, 17.1% for DWTP/Q, and 13.0% for UPP. We view 

these differences as indicative of only a moderate amount of bias. That is, the simulation methods 

generate predicted price effects that are, on average, reasonably close to the true price effects. 

Using mean prediction errors in levels to measure the performance of the simulation methods, 

as we did above, ignores the fact that an acceptable magnitude for a prediction error may depend 

on the magnitude of the true price effect. For example, a 2% mean prediction error may be more 
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Figure 2: Relative Mean Prediction Error by True Price Effects 
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acceptable for a merger with a true price effect of 10% than for one with a true price effect of 

5%. For this reason, we next evaluate the mean prediction errors of the simulation methods as a 

percentage of the mean true price effect. We refer to this as the relative mean prediction error. 

Figure 2 plots the relative mean prediction errors for WTP/Q, DWTP/Q, and UPP within 

the same 31 merger categories used in Figure 1, namely grouping mergers by one percentage point 

increments of the true price effect. The results indicate that the relative mean prediction error for 

WTP/Q and DWTP/Q is quite stable across categories of mergers, particularly for categories in 

which the mean true price effect is at least 5%. The relative mean prediction error for WTP/Q is 

steady at around -15%, and the relative mean prediction error for DWTP/Q is steady at around 

14%. The relative mean prediction error for UPP does not stabilize and exhibits a consistent 

decline as the true price effect increases, crossing the horizontal axis (i.e., crossing from a positive 

to a negative mean prediction error) when the mean true price effect is about 12%. These results 

are broadly consistent with those in Figure 1. 

Table 3 gives the mean prediction error, the standard deviation of the prediction errors, and 

relative mean prediction error for each of five categories of mergers, namely those for which the 

true price effect is contained in the following increments: (0.5%,1.5%), (4.5%,5.5%), (9.5%,10.5%), 
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(14.5%,15.5%), and (19.5%,20.5%).10 Columns (1), (4), and (7) give the mean prediction error; 

columns (2), (5), and (8) give the standard deviation of the prediction errors; and columns (3), (6), 

and (9) give the relative mean prediction errors for WTP/Q, DWTP/Q, and UPP, respectively. 

Consistent with Figure 1, columns (1) and (4) of Table 3 indicate that the magnitude of the 

mean prediction error for WTP/Q and DWTP/Q increases with the true price effect. Across our 

five categories of mergers, the mean prediction error for WTP/Q increases in magnitude from -0.002 

in the (0.5%,1.5%) category to -0.033 in the (19.5%,20.5%) category. Similarly for DWTP/Q, the 

mean prediction error increases from 0.002 in the (0.5%,1.5%) category to 0.026 in the (19.5%,20.5%) 

category. Also consistent with Figure 1, column (7) of Table 3 indicates that UPP exhibits a different 

pattern. For UPP, the mean prediction error is 0.008 in the (0.5%,1.5%) category, rises to 0.017 in 

the (4.5%,5.5%) category, and then falls to -0.051 in the (19.5%,20.5%) category. 

Table 3: Descriptive Statistics of Prediction Errors dΔpr −ΔprPrediction Error Defined as a Percentage of Pre-Merger Price 
pr 

Mergers 
Δprs.t. ∈ pr 

N 

Met

(1) 

Mean 

hod 1: WTP/Q 

(2) 

St Dev 

(3) 

Relative 

Mean 

Meth

(4) 

Mean 

od 2: DWTP/Q 

(5) 

St Dev 

(6) 

Relative 

Mean 

M

(7) 

Mean 

ethod 3: UPP 

(8) 

St Dev 

(9) 

Relative 

Mean 

(0.5%,1.5%) 

(4.5%,5.5%) 

(9.5%,10.5%) 

(14.5%,15.5%) 

(19.5%,20.5%) 

45,907 

5,479 

1,581 

578 

239 

-0.002 

-0.008 

-0.015 

-0.022 

-0.033 

0.005 

0.016 

0.025 

0.041 

0.043 

-0.194 

-0.154 

-0.148 

-0.149 

-0.166 

0.002 

0.008 

0.015 

0.021 

0.026 

0.005 

0.014 

0.020 

0.029 

0.035 

0.268 

0.170 

0.148 

0.137 

0.130 

0.008 

0.017 

0.004 

-0.020 

-0.051 

0.010 

0.022 

0.028 

0.033 

0.036 

0.872 

0.349 

0.038 

-0.133 

-0.254 

Relative Mean Prediction Error: Mean Prediction Error/Mean True Price Effect 

Consistent with Figure 2, column (3) of Table 3 indicates that the relative mean prediction 

error for WTP/Q is largely unchanged for categories of mergers such that the mean true price 

effects exceeds 5%, ranging in magnitude from -0.148 in the (9.5%,10.5%) category to -0.166 in the 

(19.5%,20.5%) category. The relative mean prediction error for DWTP/Q (column (6)) exhibits a 

somewhat more meaningful improvement, declining from 0.170 in the (4.5%,5.5%) category to 0.130 

In what follows, it will prove convenient to break down mergers into categories fine enough that the true price 
effect of each merger is very close to the mean true effect of all of the mergers in its category. For this reason, we chose 
categories that are only one percentage point wide (e.g. 4.5% - 5.5%). Since presenting all 31 categories would be 
cumbersome and would not yield additional insight, we present only the five categories listed in the text. Appendix 
A7 contains the full set of results. 
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in the (19.5%,20.5%) category. UPP (column (9)) exhibits the greatest variation, declining from 

0.349 in the (4.5%,5.5%) category to 0.038 in the (9.5%,10.5%) category. However, it continues to 

decline to -0.254 in the (19.5%,20.5%) category. 

Overall, these results indicate only modest bias for WTP/Q and DWTP/Q, particularly for 

mergers with price effects large enough that they are likely to pose a significant antitrust concern. 

The former exhibits some tendency to under-predict the true price effect, while the latter exhibits 

some tendency to over-predict it. Overall, UPP performs less well. While the bias is similar or 

smaller in magnitude for the categories of mergers with true price effects between 8% and 15%, it 

is significantly greater for the categories of mergers in which the true price effect is outside that 

range. However, as discussed in Section 7 below, in real-world cases UPP may have some practical 

advantages over WTP/Q and DWTP/Q. 

6.2 Dispersion of the Predicted Price Effects 

Measures of bias alone are not sufficient to evaluate the performance of the simulation methods. 

Even if the prediction errors of a simulation method exhibit only a moderate amount of bias, the 

method can still be highly unreliable (i.e., may frequently be far away from the true price effect) if the 

d

prediction errors are large in magnitude but have opposing signs. For this reason, we follow Miller 

et al. (2016) by calculating the Median Absolute Prediction Error (MAPE). As the name suggests, 

the MAPE is calculated by taking the absolute value of the prediction error for each simulated 

merger, and then taking the median of those absolute values. A lower MAPE corresponds to better 

performance. The MAPE is our primary measure of the dispersion of the predicted price effects. 

We present additional analyses of dispersion in Appendix A5. The results are broadly similar. 

We evaluate the MAPE within each of the 31 merger categories defined above, and express it as 

a percentage of the mid-point of the true price effect category (e.g., a true price effect of 5% in the 

4.5%-5.5% category). We refer to this metric as the MAPE ratio. Defining the prediction error as a 

percentage of the pre-merger price pr, we evaluate the MAPE ratio for each of WTP/Q, DWTP/Q, 

and UPP as 

Δpr−Δpr 

��� o��� n
med ��� ���pr Δpr −x <0.005r: 

pr , for x ∈ {0.01, 0.02, ..., 0.30}. (15) 
x 
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For example, if a simulation method had a MAPE ratio of 0.2 for mergers in the 4.5%-5.5% category, 

that would mean that half of the predicted price effects generated by that method would be within 

one percentage point of the true effect, and half would be outside that range. 

The results are given in Table 4. For WTP/Q, the MAPE ratio decreases from 0.290 in the 

(0.5%,1.5%) category to 0.194 in the (19.5%,20.5%) category. The MAPE ratio for DWTP/Q is 

relatively constant, decreasing from 0.141 in the (0.5%,1.5%) category to 0.135 in the (19.5%,20.5%) 

category. Consistent with the bias patterns for UPP described above, the MAPE ratio for UPP 

decreases from 0.534 in the (0.5%,1.5%) category to 0.165 in the (9.5%,10.5%) category but then 

increases to 0.246 in the (19.5%,20.5%) category. 

Table 4: MAPE Ratios 

Mergers s.t. 
Δpr ∈ pr 

(0.5%,1.5%) 

(4.5%,5.5%) 

(9.5%,10.5%) 

(14.5%,15.5%) 

(19.5%,20.5%) 

Method 1: WTP/Q Method 2: DWTP/Q Method 3: UPP 

0.290 0.141 0.534 

0.246 0.144 0.278 

0.209 0.138 0.165 

0.212 0.127 0.197 

0.194 0.135 0.246 

We are not aware of any objective benchmark by which to evaluate whether these MAPE ratios 

indicate “good” or “poor” performance in predicting the true price effects. Our primary approach 

is to present the results in full detail, and leave it to the reader to form their own opinion. However, 

our own standard, which we apply in our characterization of our results, is as follows. A predictor 

with a MAPE ratio of less than 0.15 (e.g., half of predictions would be within 0.75 percentage points 

for mergers with a true price effect of 5%) is a highly reliable predictor of the true price effects. A 

predictor with a MAPE ratio in the (0.15,0.25) range is less reliable but still highly informative of 

the true price effects. A predictor with a MAPE ratio greater than 0.25 (e.g., half of predictions 

would be within 1.25 percentage points for mergers with a true price effect of 5%) is significantly less 

informative of the true price effects, but nevertheless may be worthy of consideration in analyzing a 

merger. A predictor with a MAPE ratio above 0.4 is likely to be of limited usefulness in predicting 

the price effects of mergers. Of course, these thresholds are arbitrary. For example, we do not view 

MAPE ratios of 0.148 and 0.152 as meaningfully different. 
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Two important conclusions can be drawn from the MAPE ratios. First, while the relative mean 

prediction error of WTP/Q changes very little for categories of mergers such that the mean true 

price effect exceeds 5%, the MAPE ratio of WTP/Q declines significantly as the mean true price 

effect increases. For example, the MAPE ratio results indicate that WTP/Q is a much more reliable 

predictor of the true price effects in the (19.5%,20.5%) category than in the (4.5%,5.5%) category 

(0.194 v. 0.246) even though the relative mean prediction error of WTP/Q is about the same 

(-0.166 v. -0.154). 

Second, DWTP/Q has a significantly lower MAPE ratio than does WTP/Q in each of the five 

categories of mergers. This indicates that DWTP/Q is the more reliable predictor of the true price 

effects even though the magnitude of its bias about the same as that of WTP/Q. This is consistent 

with the fact that, as illustrated in Table 3, the prediction errors for WTP/Q exhibit significantly 

greater variance than does DWTP/Q. For example, in the (4.5%,5.5%) and (19.5%,20.5%) cat-

egories, the standard deviation of the prediction errors of WTP/Q is larger than the standard 

deviation of the prediction errors of DWTP/Q (0.016 v. 0.014 and 0.043 v. 0.035, respectively). 

To summarize our main findings, WTP/Q and DWTP/Q exhibit a moderate amount of bias 

that is persistent in sign across all mergers. WTP/Q exhibits a tendency to under-predict the 

true merger price effects, while DWTP/Q exhibits a tendency to over-predict the true merger price 

effects. UPP exhibits a tendency to over-predict the true price effects when they are low but an 

increasing tendency to under-predict the true price effects when they are high. 

We also find that DWTP/Q performs very well in predicting the price effects of mergers in 

our simulations for all categories of mergers. The MAPE ratio for DWTP/Q is consistently below 

0.15, which we view as very good. WTP/Q performs well in predicting the true price effects 

in our simulations for mergers in the categories with the highest true price effects ((9.5%,10.5%) 

and greater). The MAPE ratio for WTP/Q in these categories of mergers is consistently around 

0.20, which we view as reasonably good. However, WTP/Q performs significantly less well in the 

(0.5%,1.5%) and (4.5%,5.5%) categories of mergers, in which the MAPE ratios are 0.290 and 0.246, 

respectively. UPP performs reasonably well in predicting the true price effects of mergers in our 

simulations for mergers in the (9.5%,10.5%) and (14.5%,15.5%) categories, with MAPE ratios of 

0.165 and 0.197, respectively. However, UPP performs significantly less well in the (4.5%,5.5%) and 

(19.5%,20.5%) categories of mergers, in which the MAPE ratios are 0.278 and 0.246, respectively. 
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As discussed in Section 4, we chose a broad range of parameterizations in order to increase 

the likelihood that the range includes the parameterizations that correspond most closely to the 

real world. However, a finding that the simulation methods perform well overall across this broad 

range does not necessarily imply that they perform well in the real world because we do not know 

which sets of parameter values correspond most closely to the real world. Good performance in a 

large number of irrelevant parameterizations may be masking poor performance in a small number 

of relevant ones. In addition, in the real world the correct parameterization is likely substantially 

different across different markets. 

To address these concerns, we perform a number of robustness analyses in which we evaluate 

the performance of the simulation methods throughout the parameter space. In Appendix A8.2 we 

break down our set of 231,925 mergers into numerous subsets and evaluate the performance of the 

simulation methods within each subset. Specifically, for each parameter of the theoretical model, we 

divide our set of mergers according to the values that the parameter can take on. For example, the 

Nash Bargaining split parameter α can take on one of three values (0.4, 0.5, and 0.6). We divide the 

set of mergers into three subsets conditional on these values, and evaluate the performance of the 

simulation methods within each subset. We do this separately for each parameter in the theoretical 

model. In Appendix A8.1, we do a similar exercise but divide our set of mergers according to 

different competitive conditions in the hospital and insurance markets. Specifically, we divide our 

set of mergers into subsets according to: (i) hospital pre-merger margins; and (ii) the number 

of (symmetric) insurers. Finally, in Appendix A8.3, we perform 17 additional robustness checks. 

Some of these involve changing the values of some model parameters from what they were under 

our baseline parameterizations. Others involve changing some of our baseline assumptions. For 

example, in one analysis we drop the assumption that prices and costs are measured without error. 

While the performance of the simulation methods varies across these different robustness checks, 

they perform reasonably well throughout. 

6.3 Application as Screen in Prospective Merger Analysis 

To this point, our results have been about how closely the predictions of the merger simulation 

methods correspond to the true price effects from the theoretical model. We now address a related 

question that may be of particular interest to antitrust practitioners, namely how effectively a 

screen that is based on the simulation methods (i.e., challenge a merger if the predicted price effect 
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is greater than some threshold) flags mergers with true effects above the threshold and avoids 

flagging mergers with true effects below the threshold. Following Miller et al. (2016), we adopt a 

threshold of 5% in this analysis.11,12 

We proceed by using the same 31 merger categories as before (i.e., one percentage point incre-

ments of the true price effect Δpr , such as (≤0.5%), (0.5%,1.5%), (1.5%,2.5%), etc. Within each of pr 

these categories, we calculate the frequency with which the predicted price effect exceeds 5%. 

The results are given in Figure 3. A hypothetical perfect predictor is represented by the dashed 

line. Such a predictor would flag 100% of mergers for which the true effect is greater than 5%, and 

0% of mergers for which the true price effect is less than 5%. For any imperfect predictor, when the 

true price effect is at least 5%, the absolute difference between this frequency and unity gives the 

rate of false negatives. Similarly, when the true price effect is less than 5%, the difference between 

this frequency and zero gives the rate of false positives. For example, among the mergers with true 

effects in the (6.5%,7.5%) category, WTP/Q predicts a price increase of at least 5% in 67.4% of 

mergers, giving a false negative error rate in that category of 32.6%. In contrast, DWTP/Q and 

UPP predict a price increase of at least 5% in 97.0% and 92.9% of mergers, respectively. This 

gives much lower false negative rates in this category of mergers for DWTP/Q (3.0%) and UPP 

(7.1%). As the true price effects become larger, the rate of false negatives goes to zero for each of 

the simulation methods. That is, the rate of very large false negatives (e.g., failing to flag a merger 

using a 5% screen when the true price effect is 10% or greater) is very small for all three methods. 

A similar comparison indicates that DWP/Q and UPP have higher false positive rates than does 

WTP/Q. For example, in the (3.5%,4.5%) categories of true price effects, WTP/Q, DWTP/Q, and 

UPP predict price increases of at least 5% in 8.4%, 26.6%, and 58.1% of mergers, respectively. As 

the true price effects become smaller, the rates of false positives go to zero for each of the simulation 

methods. The rate of very large false positives is very small for all three methods. 

These results are broadly consistent with our earlier results. For example, for mergers in the 

(4.5%,5.5%) category, WTP/Q tends to under-predict the true effects, and therefore has a relatively 

high rate of false negatives and a low rate of false positives. The reverse is true for DWTP/Q and 

UPP. See Figure 1. 

11Note that this choice of threshold does not mean that mergers that cause price increases of less than 5% are 
permissible. There are a number of reasons why a relatively high threshold might be chosen that are beyond the scope 
of this paper. We have performed a similar analysis using a 2% threshold. The results are broadly similar. 
12Even if such a screen were to be used in the real world, it would be only one element of the full array of theory 

and evidence, both quantitative and qualitative, on which decisions on whether to challenge a merger are based. 
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Figure 3: Error Rates for 5% Price Effect Threshold 
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The 2010 DOJ/FTC Horizontal Merger Guidelines lays out a screen based on market concen-

tration. A market is classified as “highly concentrated” if the Hirfindal-Hirschman Index (HHI) 

is at least 2,500.13 A merger is presumed likely to enhance market power if the post-merger HHI 

exceeds 2,500 and the change in the HHI is at least 200. We apply this screen in Figure 3 as well. 

In constructing the HHI in this analysis, we construct hospital system shares using the expected 

volume of each system in each simulated market. That is, we assume that all twelve hospitals in 

each market are included in the relevant antitrust market. 

We find that the HHI flag performs very poorly relative to the merger simulation methods. Using 

a 5% threshold, the HHI flag generally has higher rates of both false positives and false negatives. 

For all mergers in the (3.5%,4.5%) category and above, the HHI flag identifies mergers as likely to 

enhance market power with a frequency of about 60%. Hence, the HHI flag has a false negative 

rate of about 40% irrespective of the true price effect. It also has much higher false positive rates: 

about 58.2% in the (3.5%,4.5%) category and 42.5% in the (0.5%,1.5%) category.14 

13In our simulations, the mean market-level HHI is 2,996. This is somewhat lower than the mean MSA-level HHI 
of 3,261 in the United States for 2006, as reported in Gaynor et al. (2015). 
14Note that in Figure 3 the screen for the three simulation methods is based on whether that method generated a 

predicted merger effect of greater than 5%. The screen for the HHI method is very different; it is based on whether 
the merger results in an HHI greater than 2500 and a change in HHI greater than 200. 
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Table 5 summarizes these results in a manner similar to that in Table 4 of Garmon (2017). In 

columns 1 through 5, Table 5 contains the number of flagged mergers (using a 5% screen), correct 

positives, correct negatives, false positives, and false negatives for each simulation method and for 

the HHI flag. Column 6 contains the mean true price effect of the flagged mergers. Columns 7, 

8, and 9 give the results of performance metrics that are commonly applied in machine learning 

algorithms. Markedness (column 7) measures how frequently the predictions (positive and negative) 

are correct.15 Informedness (column 8) measures how frequently the true outcomes (positive and 

negative) are correctly predicted by the prediction method.16 Markedness and Informedness are 

scaled from -1 to 1, with 1 indicating perfectly correct predictions, -1 indicating perfectly incorrect 

predictions, and 0 indicating that the predictions are random. The Matthews Correlation Coefficient 

(column 9) is the geometric mean of Markedness and Informedness and is a summary measure 

of overall performance. Consistent with the earlier results, DWTP/Q has the highest Matthews 

Correlation Coefficient while the HHI flag has by far the lowest. 

Table 5: Correct and False Predictions Based on a 5% Price Effect Threshold 

Method 

WTP/Q 19,248 17,326 206,801 1,922 5,876 0.110 0.873 0.738 0.802 

DWTP/Q 27,943 22,702 203,482 5,241 500 0.093 0.810 0.953 0.879 

UPP 35,530 22,233 195,426 13,297 969 0.078 0.621 0.895 0.745 

HHI Flag 53,895 13,882 168,710 40,013 9,320 0.038 0.205 0.407 0.289 

Mean True 

Price Effect Matthews 

Flagged Correct Correct False False for Flagged Mark- Inform- Corr 

Mergers Positive Negative Positive Negative Mergers edness edness Coeff 

There are 231,925 mergers in our analysis, 23,202 of which result in a true price effect of at least 5%. 

7 Discussion 

We now address the question of what inferences can be validly drawn from our results. The question 

of interest is whether the simulation methods predict real-world price effects well. More specifically, 

it is whether they predict real-world price effects well enough to merit receiving substantial weight in 

15Specifically, Markedness is defined as the ratio of correct positive predictions to all positive predictions plus the 
ratio of correct negative predictions to all negative predictions minus 1. 
16Specifically, Informedness is defined as the ratio of correct positive predictions to all true positive outcomes plus 

the ratio of correct negative predictions to all true negative outcomes minus 1. 
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real-world merger analysis. There are two possible reasons why they might not. First, the methods 

might not accurately predict the price effects from the theoretical model. Second, the methods 

might accurately predict the theoretical model, but the model might not closely correspond to the 

real world. Our experiment can be thought of as a test of the first reason. In Bayesian terms, a 

negative result from that test (i.e., a finding that the simulation methods are poor predictors of 

the true effects from the theoretical model) would lead to a very low posterior probability that the 

simulation methods predict real-world price effects well, regardless of the prior probability. However, 

if the test is passed, that may justify a meaningful positive updating of the probability that the 

simulation methods do predict real-world price effects well. See Appendix A6 for a discussion of 

the factors that influence the magnitude of the Bayesian update. 

Our approach has a number of important limitations, both conceptual and practical. The most 

obvious conceptual limitation is that our experiment is not based on real-world data. So even if 

our theoretical model is a good representation of the real world, we cannot be certain that it is 

calibrated correctly, though we can partially address this by using some sources of real-world data 

to guide our parameterizations. 

Another conceptual limitation is that while that our theoretical model appears to capture im-

portant features of reality, that is far from constituting a proof that it close enough to reality to 

generate reliable results. The model does not incorporate some other factors in real-world bar-

gaining between hospitals and insurers that may be important. For example, the model assumes 

simultaneous bargaining between hospital and insurers and symmetric competition in the insurance 

market, neither of which is certain to obtain in the real world. In addition, our model is set up 

so that all model hospital-insurer combinations reach an agreement in equilibrium. It does not ac-

count for the possibility of equilibrium network exclusions. It also does not allow for tiering or other 

steering arrangements, or “most-favored nation” clauses, or co-insurance (as opposed to co-pays), 

which have the effect of making patients pay different out-of-pocket prices for different hospitals in 

their insurer’s network. We leave an examination of these factors for future research. 

Our theoretical model also assumes that consumers can experience only one type of health con-

dition that requires inpatient treatment. In the real world, of course, there are many types of health 

conditions that result in inpatient events. This is important because consumers’ valuation of an 

insurer’s network, governed by the parameter λ in our theoretical model, may vary considerably 

across health conditions. Since our theoretical model allows only one type of health condition, it 
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cannot capture such variation. CDS and Gowrisankaran et al. (2015) make an equivalent assump-

tion. Specifically, they assume that there is no variation in consumers’ valuation of an insurer’s 

network across health conditions in their empirical models. If such variation is important in the 

real world, it would likely be a significant source of prediction error and one that our analysis does 

not address. We view this as a potentially important area for future research. 

Finally, we assume that the division of the joint bargaining surplus between hospital systems 

and insurers, governed by the parameter α in our theoretical model, is the same for each hospital 

system-insurer combination. Meaningful variation in the value of α across hospital system-insurer 

combinations would likely be another source of prediction error that our analysis does not address. 

In addition to these conceptual issues, our approach makes a practical assumption that is un-

likely to obtain in the real world. Specifically, we assume that the hypothetical analyst knows the 

correct model of consumer preferences over hospitals, including the distribution of the idiosyncratic 

component �ij . Under this assumption, the hypothetical analyst needs only two pieces of data: 

the distances between each patient and each hospital (which the analyst is assumed to know), and 

the quality of each hospital (which the analyst can infer by estimating hospital fixed effects in the 

discrete choice model). A real-world analyst would not have these advantages, and any errors in 

modeling consumer preferences or data limitations will introduce error into the coefficient estimates 

of the discrete choice model that underlies the diversion ratios and WTP. 

There can be an additional practical limitation to applying the WTP/Q and DWTP/Q methods. 

As described in Brand and Garmon (2014) and Farrell et al. (2011), in a given hospital market, 

there may be only a small number of observations or insufficient variation in the data (i.e., many of 

the hospital systems in the analysis may have similar values of WTP/Q or DWTP/Q). In this case, 

the relationship between price and WTP/Q or DWTP/Q cannot be reliably estimated. Under these 

circumstances, UPP may be the more reliable method. The severity of this problem, and hence the 

appropriateness of applying WTP/Q or DWTP/Q, or the weight that the results should be given 

if the simulation methods are applied, is likely to depend on case-specific circumstances. 

In sum, we find evidence that the simulation methods do a good job of predicting the true price 

effects of our theoretical model. This result, combined with some reason to believe that the model 

is a reasonable approximation of the real world, is sufficient to justify a positive updating of the 

prior probability that the simulation methods predict real-world price effects well enough for them 

to receive substantial weight in real-world merger analysis. 
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Given this generally positive result, it remains to discuss the relative merits of the three sim-

ulation methods that we analyze: WTP/Q, DWTP/Q, and UPP. In our simulations, DWTP/Q 

generally outperforms WTP/Q. This is not surprising given the fact that DWTP/Q incorporates 

additional components of our theoretical model.17 

Both WTP/Q and DWTP/Q substantially outperform UPP in our simulations. However, UPP 

has some important practical advantages. It is much easier to calculate and apply, and it is free from 

at least some of the practical problems associated with WTP/Q and DWTP/Q. For example, unlike 

WTP/Q and DWTP/Q, UPP does not require price and cost data for third party hospital systems. 

In addition, since UPP is not based on a regression model, the potential problems discussed above 

(namely having only small number of observations or insufficient variation in the data) are not 

relevant. The more severe these practical problems prove to be in a particular case, the stronger the 

justification for using UPP, and vice-versa. In addition, as discussed in Appendix A8.3, our results 

suggest that UPP may be less sensitive to measurement error in prices compared to WTP/Q and 

DWTP/Q. For this reason, there may be good justification for using UPP in merger analysis. 

We close by contrasting our approach to evaluating the accuracy of these simulation methods to 

an alternative event study-based approach. Under this approach, the price effect of mergers is esti-

mated by performing retrospective difference-in-differences analyses of a number of hospital mergers, 

applying the merger simulation methods to pre-merger data from those mergers, and comparing 

the predictions of the simulation methods to the estimates from the retrospective analyses.18 

While clearly valuable, this approach comes with several difficulties. First and perhaps the most 

important of these is the limited power of the test. Each retrospective analysis and each merger 

simulation analysis is a formidable undertaking, and it is costly to perform enough of them to gener-

ate sufficient power. Second, the retrospective analyses may measure price effects with considerable 

error, in part because of the difficulty in defining valid control groups for the difference-in-differences 

analyses. Third, the timing of contract renewals is important for accurately measuring price effects, 

17However, our finding that DWTP/Q generally outperforms WTP/Q in our simulations does not necessarily 
imply that this will be true in other contexts. As discussed in Appendix A8.3, measurement error in hospital prices 
significantly narrows the performance gap between DWTP/Q and WTP/Q. When hospital costs are measured with 
error, WTP/Q outperforms DWTP/Q. This suggests that WTP/Q should receive some weight in practice. There 
may also be other real-world factors that constitute a reason to give positive weight to WTP/Q. 
18This is the general approach taken by Fournier and Gai (2007), May and Noether (2014), and Garmon (2017) 

in the hospital industry, and by Peters (2006), Ashenfelter and Hosken (2010), Weinberg (2011), and Weinberg and 
Hosken (2013) in other industries. 
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and this information is generally not available to the researcher.19 Fourth, mergers may cause 

changes in equilibrium prices for reasons other than the loss of horizontal competition. Retrospec-

tive analyses typically cannot disentangle price changes due to the elimination of competition or 

merger-specific efficiencies from other changes that may be caused by a merger.20 Our approach 

does not suffer from these difficulties. 

8 Conclusion 

In recent years, researchers have developed new methods for predicting the price effects of hospital 

mergers. A natural question to ask is how well these methods work. The purpose of this paper 

is to make a contribution to answering this question. We do this by means of a Monte Carlo 

experiment. Specifically, we lay out a rich theoretical model of hospital competition and solve that 

model under a variety of assumed ownership configurations. This generates “true” price effects for a 

large number of simulated mergers. We then compare these true price effects to the effects predicted 

by each of three merger simulation methods. While the performance varies somewhat, both across 

the simulation methods and across different parameterizations of the model, for the most part the 

simulation methods perform reasonably well. 

19This point is important; the effect of a merger on hospital-insurer bargaining is only registered at the next contract 
negotiation. Until then, there may be no price effect, or there may be an effect that arises if the acquiring hospital 
has a higher price than the acquired one, and the acquiring hospital is allowed to fold the acquired hospital into its 
existing contracts until the next negotiation. 
20By construction, the merger simulation methods can only predict price effects through the elimination of compe-

tition or merger-specific efficiencies. Therefore, the methods might predict these effects accurately even if they do not 
predict total price effects accurately. 
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Appendices 

A1 Parameterization 

In this appendix, we provide a complete discussion of our parameterizations of the theoretical 

model. As discussed in Section 4, most of the model parameters for each simulation take on one 

of three possible values, which are randomly assigned with equal probability. We determine the set 

of possible values by benchmarking the pseudo-R2 values from the conditional logit model (used to 

construct WTP and diversion ratios) to real-world values as well as hospital prices, costs, and gross 

margins, against real-world values.21 

The parameters that determine the pseudo-R2 values from the conditional logit model can be 

benchmarked without reference to hospital gross margins. These include the parameters governing 

the distributions of consumer and hospital locations and the variance of hospital quality, as well as 

the parameters governing the preferences of consumers over hospitals as defined in (1). Hence, we 

first determine the sets of values for these parameters and then determine the sets of values for the 

remaining parameters by benchmarking against hospital prices, costs, and gross margins. 

A1.1 Hospital and Consumer Attributes 

jEach hospital j is characterized by a location draw (xj , yj ) ∼ Fxy, a quality draw ηj ∼ Fη, a 

constant marginal cost cj (that is common to all hospitals), and a system affiliation. Each patient 

i is characterized by a location draw (xi, yi) ∼ F i and a draw defining the probability of needing xy 

inpatient care ρi ∼ Fρ. 

For each simulation, every hospital and every consumer has a randomly assigned location. These 
jlocations are characterized by their position relative to the origin. The variance of Fxy (dispersion 

of hospital locations) is set to be somewhat less than that of F i (dispersion of consumer locations). xy 

This is in order to make it unlikely that a hospital will be located at the edge of the population of 

consumers. 
jEach simulation is randomly assigned one of two distributions for Fxy and F i : Normal, to xy

replicate a densely populated city center with thinly populated surrounding areas; and Uniform, to 

21We also evaluate the gross margins and market shares of insurers, as well as pass-through rates of changes in 
hospital prices through insurance premiums in determining the set of possible model parameters. 
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replicate a large suburban area where the population is evenly distributed. We use the following 

Normal and Uniform distributions for the locations of consumers and hospitals: 

�� � � �	 
(F i , F j ) ∈ N(0, 9)2, N(0, 8)2 , U [−16, 16]2, U [−14, 14]2 . (A1)xy xy

For a draw of hospital locations in a given simulated market, we center the hospital locations at the 

origin. 

We assume a normal distribution for Fη. To benchmark the standard deviation of Fη, we 

examined the distribution of hospital fixed-effects estimated in previous analyses using real-world 

patient-level discharge data. Hospital fixed-effects are often used to control for unobserved attributes 

such as quality, so variation in real-world fixed effects estimates provides a rough proxy for the 

variation in hospital quality. In examining the output of several previous analyses, we found that 

the standard deviation of the estimated hospital fixed-effects typically lies in the interval [1.4, 1.8].22 

Therefore, for each simulation we draw a value of the standard deviation of Fη from the set {1.4, 

1.6, 1.8}. For a draw of {ηj }j∈J in a given simulated market, we do not rescale the draws to ensure 

that the sample standard deviation equals the population analog. Hence, given the small number 

of hospitals in our model, the variation in quality across hospitals varies significantly across our 

simulated markets. We discuss the mean of Fη below. 

We assume that hospital marginal cost cj is perfectly correlated with hospital quality ηj . Hence, 

quality variation is the only source of cost variation in our simulations. Specifically, we assume 

cj = c + 0.2(ηj − E[ηj ]), 

where c denotes the expected hospital marginal cost. In our simulations, this specification generates 

somewhat less within-market variation in hospital marginal cost as there is within-market variation 

in WTP/Q and somewhat more within-market variation in hospital marginal cost as there is within-

market variation in DWTP/Q. 23 

Quality, which is perfectly correlated with cost, is also positively correlated with both WTP 

and hospital volume Q. Quality is also positively correlated WTP/Q because Q in linear in the 

22For example, the standard deviation of the hospital fixed-effects reported in Gowrisankaran et al. (2015) is 1.75. 
23The median (across simulated markets) standard deviations of hospital marginal cost, WTP/Q, and DWTP/Q are 

0.285, 0.400, and 0.179, respectively. We have explored different marginal cost scalings such as cj = c+0.5(ηj −E[ηj ]). 
The results are very similar to our baseline results. 
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probability that a given consumer will choose that hospital, but WTP is convex in the probability 

that a given consumer will choose that hospital. This correlation can introduce collinearity such 

that the effects of WTP/Q on price are confounded with the effects of cost. This collinearity tends 

to degrade the performance of the two WTP -based simulation methods, but as discussed in Section 

6 the methods generally perform well despite this. In the real world, the correlation between cost 

and quality is less than unity, so the collinearity problem is likely to be smaller. That is, the 

assumption of perfect correlation between hospital cost and quality is conservative in that it tends 

to decrease the performance of the simulation methods in our Monte Carlo experiment. 

This collinearity problem can result in a negative estimated relationship between price and 

WTP/Q (and between price and DWTP/Q). But the estimated value of β1 is negative in only 

six of our 9,000 simulated hospital markets, and in only three of those six markets (and in no 

others) is the estimated value of Γ1 also negative. However, even in these six markets, the raw 

correlation between price and WTP/Q (and between price and DWTP/Q) is always positive, so 

the negative coefficient is likely the result of collinearity. That is, a negative estimated relationship 

between price and WTP/Q is extremely rare in our simulations even given an assumption (perfect 

correlation between cost and quality) that would tend to make it more likely. 

A1.2 Consumer Preferences over Hospitals 

We specify the utility of consumer i for hospital j in (1) as 

Uij = −γ1distij − γ2distij 
2 + ηj + �ij , (A2) 

where distij denotes the straight-line distance from consumer i to hospital j, γ1 and γ2 measure the 

effect of distance on utility, and �ij is an IID Type I Extreme Value draw.24 

Given the variation in ηj , �ij , and the location distributions, we select parameter values for the 

utility cost of travel, (γ1, γ2), so that the resulting pseudo-R2 values from our discrete choice model 

estimation are similar to those found in practice, which are usually in the range of (0.40, 0.55). For 

each simulated market, we randomly assign values of (γ1, γ2) from the set {(0.1,0.001),(0.3,0.003), 

(0.5,0.005)}. 
24In practice, driving distances or average drive-times would be used instead of straight-line distances. 
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Table 6 gives percentiles of the distribution of the pseudo-R2 values across our simulated markets. 

The range 0.40-0.55, which is most consistent with real-world experience, is roughly covered by the 

25th and 50th percentiles. For reasons discussed in Section 6, we include parameterizations that 

generate pseudo-R2 values that go well beyond this range. This is conservative in the sense that the 

simulation methods tend to perform less well in simulated markets with higher pseudo-R2 values; the 

pseudo-R2 values greater than 0.55 generally occur when travel costs are high, (γ1, γ2) = (0.5, 0.005), 

and, as discussed in Appendix A8.2, our results show that the simulation methods generally perform 

less well when travel costs are high. 

Table 6: Percentiles of Pseudo-R2 Values 

10th 25th 50th 75th 90th 

0.296 0.422 0.558 0.652 0.698 

A1.3 Bargaining Game 

The bargaining parameter α defines that share of the joint surplus that is captured by hospitals. 

Hence, it is a key parameter in determining hospital gross margins and the price effects of mergers. 

We assume that hospitals and insurers either split the joint surplus 50-50 or that there is a modest 

deviation from an even split in either direction. Specifically, for each simulated market, we randomly 

assign the value of α from the set {0.4, 0.5, 0.6}. 

A1.4 Insurance Market Parameters 

There are several parameters that govern preferences over insurers. These are defined in (2), and 

include λ, θ, Z, and the parameters of Fη. Given the set of values for the parameters governing 

the consumer and hospital attributes, consumer preferences over hospitals, and the split of the 

joint surplus in the bargaining game, and for the reasons discussed in Section 6, we choose these 

parameters so that equilibrium hospital gross margins cover a wide distribution centered at 0.50. 

The parameter λ plays a particularly important role in the model. It scales the consumer’s 

expected utility of the insurer’s hospital network (i.e., it governs how much consumers care about 

the exclusion of a hospital from an insurer’s network, and hence how likely they are to switch to a 

competing insurer if a particular hospital is excluded from their insurer), and so it plays a key role 
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in determining how much market power hospitals have. Higher values of λ imply lower disagreement 

payoffs of insurers but, importantly, do not affect the disagreement payoffs of hospitals. Since higher 

λ means less insurer bargaining leverage, it causes higher hospital margins and larger price effects. 

One objective in choosing values of λ is to generate meaningful variation in the curvature of the 

demand faced by insurer with respect to consumers’ expected utility of its hospital network, 

X X1 
ρi ln exp{Vij }. 

#Ig 
i∈Ig j∈Jm 

As defined in (3), the probability that a consumer will choose to buy insurance from a given insurer 

is a non-linear function of this expected utility. 

It is important to choose parameter values such that this function exhibits meaningful departures 

from linearity. The reason is that, as can be observed from (A5), (A7), and (A9), the merger 

simulation methods assume that hospital prices are linear in the differences, under hypothetical 

exclusions, in consumers’ expected utility of the insurer’s hospital network (in the case of W T P/Q), 

or linear in a linear combination of these differences (in the case of DW T P/Q). This represents a 

meaningful difference between the theoretical model and the simulation methods, and it is important 

to test the performance of those methods when that difference is substantial in magnitude. For each 

simulated market, we randomly assign a value of λ from the set {2, 5, 8}. 

In our theoretical model, the probability that a given consumer will purchase insurance from 

a given insurer will exhibit greater curvature in the consumer’s expected utility of the insurer’s 

hospital network for larger values of λ. Hence, a priori, it seems likely that the merger simulation 

methods will perform less well under parameterizations with larger values of λ. But as seen in 

Appendix A8.2, the methods perform quite well even under relatively high values of λ. 

Like λ, the parameter θ, which measures the sensitivity of consumers to insurance premiums, 

plays a key role in determining how much market power hospitals have. Under lower values of 

θ, consumers are less sensitive to changes in insurance premiums, and, therefore, are less likely 

to switch to the outside option (no insurance) under a premium increase. Lower values of θ also 

imply lower disagreement payoffs for insurers because it is more difficult for insurers to compensate 

consumers for a hypothetical network exclusion by offering a lower premium. Therefore, hospital 

gross margins and merger price effects are generally decreasing in θ. For each simulated market, we 

randomly assign the value of θ from the set {0.5, 0.8, 1.1}. 
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We set the value of the mean of the hospital quality distribution, Fη, so that the value of P 
ln exp{Vij } (i.e., the value of the insurance network) is positive for almost all consumers. j∈Jn 

This is to ensure that consumers with a higher value of ρi (i.e., sicker consumers) are more likely to 

buy health insurance than are those with a lower value, ceteris paribus. Given the aforementioned 

parameter values of the location distributions and travel costs, we draw values of mean hospital 

quality from the set {14, 16, 18}. 

The parameter Z measures consumers’ valuation of non-inpatient healthcare services covered 

by the insurer. Ideally, values of Z should be selected to reflect how consumer’s weigh the rel-

ative values of expected inpatient and non-inpatient healthcare services in their health insurance 

purchasing decisions. Since we do not have empirical evidence on which to base this evaluation, 

we choose values of Z so that in some simulated markets, consumers value expected inpatient and 

non-inpatient healthcare roughly equally, on average, and in other simulated markets, consumers 

systematically place greater weight on one or the other. By happenstance, we find that the distri-

bution of consumers’ expected utility of the insurer’s hospital network is usually centered around 

one. For each simulated market, we randomly assign the value of Z from the same set as λ, namely 

{2, 5, 8}. 

Our theoretical model contains two additional insurer cost parameters: pz, which denotes health-

care expenditures for non-inpatient services, and τ , which denotes a per inpatient event adminis-

trative cost. We set the value of pz by again referring to Health Care Cost Institute (2015), which 

notes that 2014 per capita non-inpatient expenditures in the commercial sector were $3,969, with 

per capita out-of-pockets expenditures of $759. Given this information, we set the value of pz to 

$3,200. To set the value of τ , we select values that, based on average hospital prices, represent a 

small, but not trivial, added cost for the insurer to administer inpatient claims. For each simulated 

market, we randomly assign the value of τ from the set {$500, $750, $1000}. 

Finally, we randomly assign the number of insurers in each simulated market. As discussed 

above, variation in the number of competing insurers has a significant effect on the disagreement 

payoffs of both insurers and hospitals, and, therefore, may have a significant effect on pre-merger 

margins and on the price effects of mergers. This represents an important difference between the 

theoretical model and the simulation methods, as the methods ignore the effect of insurer compe-

tition in determining the equilibrium of the bargaining game. Specifically, the simulation methods 

assume that hospitals cannot recapture patients through competing insurers under a hypothetical 
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network exclusion with a given insurer. This makes the simulation methods more similar to markets 

with a single (or a dominant) insurer than to markets with numerous insurers. Hence, a priori, 

it seems likely that the merger simulation methods will perform less well in markets with a large 

number of insurers. To cover a reasonable range in the extent of insurer competition, we randomly 

assign the number of insurers in each market from the set {1, 3, 5, 7, 9}. As discussed in Section 

A8.1 and illustrated in Table 12, this expected pattern of worse performance as the number of 

insurers increases is exhibited only by DWTP/Q, though it performs quite well even in markets 

with nine insurers. 

Table 7 summarizes the parameters of our theoretical model. 

Table 7: List of Parameters 
Parameter Description Set of Values 

α Hospitals’ Share of Joint Surplus in Nash Bargaining Objective Function 0.4, 0.5, 0.6 

γ1, γ2 Travel Cost Parameters in Consumer Preferences over Hospitals (0.1,0.001), (0.3,0.003), (0.5,0.005) 

θ Price Sensitivity in Consumer Preferences over Insurers 0.5, 0.8, 1.1 

λ Hospital Network Sensitivity in Consumer Preferences over Insurers 2, 5, 8 

#S The Number of Hospital Systems 6, 7, 8, 9, 10 

#M The Number of Insurers 1, 3, 5, 7, 9 

Z Value of Non-inpatient Attributes in Consumer Preferences over Insurers 2, 5, 8 

E[ηj ] Expected Hospital Quality 14, 15, 16 

sd[ηj ] Population Standard Deviation of Hospital Quality 1.4, 1.6, 1.8 

c Expected Hospital Per Inpatient Event Cost $8,000 

pz Insurer Per Enrollee Expenses on Non-Inpatient Services $3,200 

τ Insurer Administrative Cost per Inpatient Event $500, $750, $1000 

Distribution of Consumer and Hospital Locations, Normal N(0,9), N(0,8) 

Distribution of Consumer and Hospital Locations, Uniform U[-16,16], U[-14,14] 

A1.5 Insurance Buying Groups 

We randomly assign the 500,000 consumers into 60,000 insurance buying groups. Specifically, we 

assign consumers into buying groups by drawing ug ∼ U [0, 1] for each group g and sequentially 

evaluating 

( )
g−1� X 

6#Ig = min bexp 0.75 + 6u c, 440, 000 + g − #Ik .g 
k=1 

That is, we assign the first #I1 consumers to buying group 1, the next #I2 to buying group 2, and 

so forth. Under this parameterization, roughly 9% of the consumers in our model buy insurance as 
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individuals. Of those assigned to a buying group, the mean group size is typically around 30 and 

the maximum group size is typically around 850. 

The number of consumers in each buying group ranges from one to more than 800. This raises the 

question of how to scale the insurance choice problem by the number of consumers in the insurance 

buying group. We assume that the insurance choice is made by a single decision maker on behalf 

of the group, so that equation (2) has the same scale irrespective of the number of consumers in 

the group. We further assume that the decision maker weighs the preferences of each consumer in 

the buying group equally. (Each consumer in the group receives Zn utils from the non-inpatient 

care attributes of insurer n and −θπJn utils from insurer n’s premium. Since every consumer has 

the same value of Zn and of θπJn , these have the same effect regardless of the decision maker’s 

weighting across consumers. In contrast, there is heterogeniety across consumers in the value of 

the hospital network ρiE� [maxj∈Jn {Vij + �ij }], so it is for this term that the assumption that the 

decision maker values each consumer in the group equally is significant.) The fact that (2) has 

the same scale for every buying group regardless of the group’s size means that the idiosyncratic 

term ζgn has the same distribution irrespective of the number of consumers in the insurance buying 

group. We do not assume that ζgn for an insurance buying group is an aggregation (e.g., a mean) 

of IID idiosyncratic draws for each individual consumer in the group. A mathematically equivalent 

approach would be to multiply the right-hand side of (2) (including ζgn) through by #Ig, so that the 

utility of group g for insurer n would be the sum of the individual utilities of the group members. 

A1.6 Deriving the Distribution of Risk Types, F (ρ) 

As discussed in Section 3, each consumer is randomly assigned a risk type, which captures their 

probability of needing inpatient hospital care, drawn from a parametric distribution, Fρ. To bench-

mark the parameters of this distribution, we fit the density function to an empirical density defined 

on the frequency of inpatient events within discrete categories of consumers. We use the 2012 NHIS 

Public Use data to create the empirical distribution. We limit the NHIS sample to consumers cov-

ered by private insurance,25 and use the phospyr2 field as an indicator of whether the consumer 

had an inpatient event during that year, dropping any observation for which phospyr2 > 2 (don’t 

know or refused). We aggregate the remaining data into 36 bins defined on gender and 5-year age 

categories, and use the frequency of phospyr2 = 1 to define the type, i.e., the probability of an 

25Specifically, we drop any observation for which the private field is greater than two. 
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inpatient event, for that bin. We define the empirical distribution of types by the distribution of 

NHIS data across the 36 bins. 

We fit a logistic distribution by searching for location and scale parameters, a and b, respectively, 

to minimize the distance between moments and percentiles of the logistic and empirical distribution. 

Specifically, we minimize the distance between the means, standard deviations, and the 25th, 50th, 

and 75th percentiles. Based on the observed probabilities in the empirical distribution, we truncate 

the logistic distribution at 0.01 and 0.30. Given values of a and b, ρi is drawn as 

!� � � �−11 1 1 
ρi = a − b ln ui − + − 1 (A3)−R −L −L1 + e 1 + e 1 + e

0.30−a 0.01−awhere R ≡ , L ≡ , and ui ∼ U [0, 1]. Our minimum distance estimator produced the b b 

estimates ba = 0.01115 and bb = 0.04096. Figure 4 plots the empirical distribution of types from the 

NHIS and a kernel density of F (ρ). Table 8 gives descriptive statistics. 

Figure 4: F (ρ) and the Empirical Distribution of Risk Types using NHIS 2012 
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Table 8: Descriptive Statistics of Type Distributions 

NHIS, 2012 F (ρ) 

Mean 0.0643 0.0669 

Standard Deviation 0.0450 0.0468 

25th Percentile 0.0234 0.0312 

50th Percentile 0.0613 0.0556 

75th Percentile 0.0919 0.0904 

A2 Derivation of the Merger Simulation Methods 

In this appendix, we detail the merger simulation methods. We begin with Willingness-to-Pay 

(WTP) as described in CDS.26 WTP is a measure of the value-added of a hospital or hospital 

system to the provider network of an insurer. It is straightforward to compute using standard 

methods developed in the discrete choice literature. To understand the intuition, consider again the 

general model of consumer preferences over hospitals in (1). As noted above, WTP measures the 

difference in expected utility of consumers, prior to the realization of {�ij }j∈J , between the provider 

network of the consumer’s insurer and that same network but excluding one hospital system. Given 

the assumptions that: (i) the consumer chooses the hospital from among their insurer’s provider 

network that provides the greatest utility given the realization of {�ij }j∈J ; and (ii) {�ij }j∈J are IID 

draws from the Extreme Value distribution, the expected utility of consumer i for provider network 

Jn has the familiar closed form 

� � X 
E� max {Vij + �ij } = κ + ln exp {Vij } , 

j∈Jn 
j∈Jn 

where κ denotes Euler’s constant. Given this definition, the value-added of hospital system t for 

consumer i, assuming that insurer n has each of the other hospital systems in its provider network, 

is 
26Although CDS were the first to apply the term WTP in this context, the measure developed by Town and Vistnes 

(2001) is very similar. The differences between the two models are irrelevant for our study. Here, we focus on the 
CDS exposition. 
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� � � � 
WTPit = E� max {Vij + �ij } − E� max {Vij + �ij }

j∈J j∈J\t � � 
1 

= ln , (A4)
1 − σit P P 

where σit ≡ exp {Vij } / j∈J exp {Vij }. This defines the probability that consumer i willj∈t 

choose one of the hospitals in system t. 

As defined in CDS, the total WTP for hospital system s is evaluated by integrating WTPit over 

the joint distribution of consumer characteristics (demographic and clinical) and multiplying by the 

sample size. This may be approximated by summing (A4) across individuals. Hence, the WTP for 

hospital system t is 

� �X 1 
WTPt = ln . (A5) 

i 
1 − σit 

CDS define the change in WTP due to a merger as the difference between the WTP of the 

merged entity and the sum the pre-merger values of WTP. Hence, for a merger between hospital 

systems t and t0, the change in WTP is 

� � � � � � ��X 1 1 1 
ΔWTPt+t0 = ln − ln − ln . (A6) 

i 
1 − σit − σit0 1 − σit 1 − σit0 

This has the property that the change in market power due to the merger is close to zero if consumers 

do not view t and t0 as substitutes. Specifically, (A6) can be made arbitrarily small if, ∀i, either σit 

or σit0 is sufficiently small. This implies that changes in WTP are increasing in the extent to which 

consumers view the merging hospital systems as substitutes, and that changes in WTP necessarily 

approach zero as this substitutability approaches zero. 

We test two merger simulation methods based on least squares regressions in which WTP is the 

key explanatory variable. First, we apply the regression model presented in Farrell et al. (2011), 

which is a modified version of the regression model presented in CDS. Based on intuition derived 

from the Nash bargaining framework, CDS hypothesize that the WTP of a hospital or system is 

proportional to the incremental gross profit (gross of payments to hospitals) of the insurer under the 
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agreement with the hospital or system. Given this, CDS regress hospital profits on WTP. However, 

a regression framework that uses price, as opposed to hospital profits, as the dependent variable may 

be preferable under some circumstances.27 As summarized in Farrell et al. (2011), an appropriate 

modification of the CDS regression model in this circumstance would be to regress prices on WTP 

per expected discharge and on marginal cost. Hence, the first simulation method that we evaluate 

is based on the least squares regression model 

∗ p = β0 + β1WTPt/qt + β2ct + νt, (A7)t 

∗ ∗where p denotes the equilibrium price of hospital system t (the tth element of p~ defined in (7)),t 

and ct denotes volume-weighted marginal cost of system t, respectively. qt denotes the expected 

∗volume of system t, and νt denotes an econometric error. pt , ct, and qt are data that would be 

observed by a real-world analyst. β0, β1, and β2 are reduced-form coefficients to be estimated. We 

refer to this regression model as the WTP/Q simulation method. 

Second, we test a merger simulation method developed in Brand (2013) that extends the CDS 

WTP framework by incorporating additional components of theory. Among other things, this 

alternative approach predicts the change in equilibrium prices due to a merger accounting for 

feedback effects between the merging hospitals and through third party hospitals. Specifically, it 

incorporates the intuition that since hospital prices are determined jointly in equilibrium, the price 

for each hospital system should reflect not just its own cost and WTP, but also the cost and WTP 

of each hospital with which it competes. For example, all else equal, a hospital that faces high 

priced rivals will have a higher equilibrium price and larger merger price effects than if it faced 

lower priced rivals, and vice versa. In principle, the empirical model derived from this approach 

should provide a better approximation to (6) compared to the WTP/Q simulation method. 

We develop this method by considering a simplified bargaining framework following the assump-

tions in CDS. In that paper, insurers are not modeled as profit maximizers. Rather, the payoff for 

each insurer in bargaining with hospitals is simply proportional to WTP minus payments to hos-

pitals. Also as assumed in the CDS framework (and in contrast to our theoretical model), each 

27For example, the analyst may have access to insurer claims data, which can be used to generate reliable measures 
of price. However, the available financial data may be insufficient to generate a measure of incremental profit for 
specific hospital/insurer combinations. Moreover, while credible direct measures of the incremental cost of patient 
care may be very difficult to obtain, other variables that reliably proxy for cost may be available. In such a case, 
prices, as opposed to incremental profits, may be the preferable dependent variable. 
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insurer’s enrollees are “captured” in the sense that if an insurer fails to reach an agreement with 

a given hospital, its enrollees cannot switch to a competing insurer. This assumption implies that 

the disagreement payoff for each hospital system is zero. The key distinction between this alterna-

tive approach and the CDS WTP framework is that this approach accounts for the fact that if an 

insurer fails to reach an agreement with a given hospital, its enrollees will be diverted to competing 

hospitals. We write this simplified bargaining problem between insurer n and hospital system t as 

⎡ ⎤" # 1−a a X X ⎦qnt (pnt − ct) − 0 ⎣Γ1WTPnt − qnspns + qns(t)pns , 
s∈S s∈S\t 

where Γ1 denotes the constant transformation from utils (as measured by WTP) into dollars for 

the insurer, and qns(t) denotes the expected volume at system s from insurer n if n fails to reach 

an agreement with t. The parameter a denotes the division of the joint surplus in this simplified 

bargaining problem.28 Maximizing with respect to pnt yields ⎡ ⎤ Xa Γ1WTPnt 
pnt − ct = ⎣ − pnt + dntspns ⎦ ,

1 − a qnt 
s∈S\t 

where dnts denotes the diversion ratio from system t to system s for insurer n. 29 (Since we assume 

symmetric competition in the insurance market, dnts is the same across all insurers.) Stacking these 

equations across all hospital systems for a given insurer and solving for the price vector yields the 

system of equations 

� � 
~p = D(a)−1 −−−−−→ 

Γ1W T P/q + 
1 − a 

~c , (A8) 
a 

−−−−−→ 
where ~p, W T P/q, and ~c denote vectors (of length #S) of system-level prices, W T P divided by 

expected volume, and marginal cost, respectively. D(a) denotes a #S x #S matrix in which 

1D(a)ss = , ∀s and D(a)ts = −dts, ∀s =6 t. a 

28We use a here to avoid confusion with the parameter α which denotes the division of the joint surplus in our 
theoretical model. See equation (6). 
29All else equal, price effects are larger when the merging firms’ products are closer substitutes. Diversion ratios 

are an important and widely-used measure of the closeness of substitution. See, for example, the 2010 DOJ/FTC 
Horizontal Merger Guidelines (p. 21). The diversion ratio from hospital system t to hospital system s is the fraction 
of t’s patients from a particular insurer that would choose s if t were excluded from that insurer’s network. Hence, 

qns(t)−qns
dnts ≡ 

qnt 
. 
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Of course, the price vector on the left hand side of (A8) is not equivalent to the equilibrium 

∗price vector ~p from the theoretical model defined in (7). Therefore, the right hand side of (A8) will 

∗fit p~ with some error. This motivates the least squares regression of our second simulation method 

−−−−−→∗ p~ = Γ0 + Γ1D(a)
−1W T P/q + Γ2D(a)

−1 ~c + ~ν, (A9) 

where ~ν denotes a vector of errors, and Γ0, Γ1, and Γ2 denote coefficients to be estimated. 

We refer to this simulation method as the diversion-weighted WTP/Q method, or DWTP/Q. 

Note that changes in WTP or cost of any hospital system affects the prices of all hospital systems 

through the matrix D(a)−1 . That is, unlike the WTP/Q method or the regression model applied 

in CDS, the DWTP/Q method captures feedback effects resulting from mergers between hospitals. 

In addition, the pre-merger prices of the merging hospitals and the magnitude of the price effect of 

the merger are influenced by the distribution of pre-merger prices across all hospital systems. Of 

the three simulation methods, only the DWTP/Q method can account for these effects. Note that 

the WTP/Q method can be recovered from the DWTP/Q method under the assumption that the 

off-diagonal elements of D(a)−1 are zero. 

The bargaining weight parameter a is separately identified in the DWTP/Q method, although 

non-linear estimation methods are required. However, our initial results suggested that the non-

linear least squares estimator of a is highly unreliable. Hence, rather than estimating a in (A9) 

1using non-linear methods, we fix the value of a at 2 , and then estimate Γ0, Γ1, and Γ2 using OLS. 

1We assume a = 2 because it seems to be a reasonable assumption absent any direct evidence about 

the true value of α. We maintain the assumption a = 1 in (A9) irrespective of the true value of 2 

α in our theoretical model, which as discussed in A1, we allow to take on values of 0.4, 0.5, or 

0.6. That is, we assume that the real-world analyst applying the simulation method may make an 

incorrect assumption regarding the value of this parameter. We do this because this may be the 

most plausible assumption for the real-world analyst given the information available. 

Finally, we turn to UPP. As described in Haas-Wilson and Garmon (2009) and Garmon (2017), 

the first-order price effect of a merger between hospitals k and k0 can be derived from a Nash 

bargaining model under the assumption that the merging hospitals do not bargain with insurers 

on an all-or-nothing basis post-merger, but rather each of the merged hospitals bargains separately 
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with insurers. Then the first-order effect of the merger on the equilibrium price of hospital k is 

given by 

(1 − a)dkk0 (pk0 − ck0 ), (A10) 

where dkk0 denotes the diversion ratio from k to k0 . Similarly, the first-order effect of the merger on 

the equilibrium price of hospital k0 is given by 

(1 − a)dk0k(pk − ck). (A11) 

As detailed below, we define the predicted price effect of merger based on the UPP method as the 

volume-weighted mean of these two terms. As with DWTP/Q, we assume that the analyst cannot 

1estimate the true bargaining parameter α. Hence, in evaluating UPP, we assume a = 2 irrespective 

of the true value of α in our simulations. 

While the focus of our analysis is on the predicted price effects generated by the simulation 

methods, here we briefly summarize the estimation results from the regression models underlying 

WTP/Q (see (A7)) and DWTP/Q (see (A9)). (Recall that UPP is not based on such a regression 

model.) For both methods, we find considerable variation across simulated markets in the regression 

coefficient of interest. For WTP/Q, the mean estimated value of β1 is 2.54 and the standard 

deviation is 1.75. The 25th, 50th, and 75th percentiles are 1.22, 2.14, and 3.45. For DWTP/Q, the 

mean estimated value of Γ1 is 5.87 and the standard deviation is 3.66. The 25th, 50th, and 75th 

percentiles are 3.11, 4.97, and 7.83. As we would expect, we find that the estimated values of β1 

and Γ1 are higher when the value of α is higher, the value of λ is higher, or the value of θ is lower. 

A2.1 Comparison to HHI in Prospective Merger Analysis 

In Section 6.3, we evaluated the performance of each of the three merger simulation methods as 

screens for identifying problematic mergers. We also included in that analysis the very different 

screening mechanism articulated in 2010 DOJ/FTC Horizontal Merger Guidelines based on the 

well-known market concentration metric HHI. 

As noted in Section 6.3, for the HHI analysis, each of our 9,000 markets is assumed to be 

a “market” for the purposes of calculating the HHIs, which means that each market contains 

twelve hospitals. Consistent with previous work by Miller et al. (2016) and Garmon (2017), we 
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do not perform a market definition exercise using the Hypothetical Monopolist Test as described 

in the DOJ/FTC Horizontal Merger Guidelines (https://www.justice.gov/atr/horizontal-merger-

guidelines-08192010). Had we done so, the HHI-based simulation might have performed better 

in flagging problematic mergers. On the other hand, performing this type of market definition 

might require using one of the simulation methods to determine whether a hypothetical monopolist 

could profitably increase price. Moreover, market definition has the well-known problem that it 

treats every hospital as either completely in the market or completely outside, rather than allowing 

hospitals to vary in their degree of competitive significance. In contrast, none of the three simulation 

methods evaluated in this paper requires a market definition, which is an important advantage. 

A3 Merger Effects 

In this appendix, we lay out a more complete discussion than that contained in Section 3.3 of the 

mechanisms by which mergers between hospitals (or hospital systems) affect equilibrium prices. To 

make the intuition as clear as possible, we begin by discussing a merger between two independent 

hospitals k and k0 . However, everything in this discussion applies generally to mergers between hos-

pital systems. We begin our discussion with a stylized intuitive explanation of the basic mechanism 

by which hospital mergers affect prices. We follow this with a discussion of some additional effects. 

Assume that the merged entity bargains on an all-or-nothing basis, meaning that the insurer 

either will have both of the merged entity’s hospitals in its network or will have neither of them.30 

In the negotiation between a hospital and an insurer, each side has some bargaining leverage. By 

leverage, we refer to how much each side will lose if an agreement is not reached, which is measured 

by the difference between its equilibrium payoff and its disagreement payoff.31 The leverage of the 

insurer comes from the fact that hospitals want access to that insurer’s enrollees, and is greater 

30As discussed in Farrell et al. (2011), Balan and Brand (2014), and Gowrisankaran et al. (2015), hospital mergers 
may increase prices if hospitals within systems bargain separately, and the circumstances under which any particular 
merger is likely increase prices (e.g., high diversion ratios and high pre-merger hospital gross margins) are similar 
under either bargaining mode. Under separate bargaining, the source of the price effect is the familiar recapture of lost 
profits concept. After the merger, each hospital takes into account the fact that its merger partner will recapture some 
of its lost patients, and the associated profits, if it fails to reach an agreement. Balan and Brand (2014) show that the 
effect of a merger under separate bargaining can be larger or smaller than the effect under all-or-nothing bargaining. 
We assume all-or-nothing bargaining here because it appears to be the more commonly adopted bargaining mode in 
the real world. 
31The notion of “leverage” discussed here is distinct from the division of the joint surplus from an agreement, which 

is governed by the parameter α in our theoretical model. Throughout, we assume that mergers have no effect on this 
parameter. The possibility that mergers may have an effect on this parameter is examined in Lewis and Pflum (2017) 
and Lewis and Pflum (2015). 
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when the insurer has more enrollees. The leverage of the hospital comes from the fact that its 

absence from the insurer’s network makes that network less attractive to potential enrollees, which 

reduces the insurer’s gross profit. This leverage is greater when the hospital is strongly preferred 

by many enrollees. The effect of a merger between two hospitals k and k0 will depend on how the 

merger changes the relative bargaining leverage of the two sides. 

First suppose that k and k0 are not substitutes at all (i.e., the diversion ratios between them are 

zero). After the merger, failure to reach a deal is more damaging to the insurer than it was before, 

as it means losing both hospitals from its network instead of one. Failure to reach a deal is also 

more damaging to the hospitals than it was before, as it means that they both will lose access to 

that insurer’s subscribers instead of just one of them. But when the hospitals are not substitutes, 

this increase in damage is symmetric. The stakes have increased by the same proportion for both 

sides, so the relative bargaining leverage, and hence the negotiated prices, are unchanged. 

Now suppose instead that k and k0 are substitutes (i.e., the diversion ratios between them are 

positive). In this case, some patients whose first choice is k will have k0 as their second choice, and 

vice-versa. This means that, before the merger, the unattractiveness of an insurance network that 

lacks one of the hospitals, and hence the damage to the insurer’s gross profits, is mitigated by the 

inclusion of the other. This mitigation is larger when the hospitals are closer substitutes and when 

non-merging hospitals are more distant substitutes. 

After the merger, failure to reach an agreement means losing both hospitals from the insurer’s 

network. Absent an agreement with the merged entity, patients whose first and second choices are 

k and k0 will have to use their (less desirable) third choice hospital instead. The reduction to the 

insurer’s gross profits from losing the merged entity from its network will be greater than the sum of 

the pre-merger reductions from losing the hospitals individually. In contrast, the reductions in gross 

profit to the hospitals from failing to reach an agreement will be the same as before; the reduction 

in profit for the merged entity from not having access to that insurer’s patients is still equal to 

the sum of the reductions in profits for the hospitals individually. Since one effect is larger and 

the other is the same, the relative bargaining position has shifted in favor of the hospitals, and so 

the negotiated price will increase. This intuition is reflected in the post-merger bargaining problem 

between insurer n and the merged entity {k, k0}, which is analogous to the pre-merger bargaining 

problem in (6) 
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 ⎡⎛ ⎛ ⎞⎞ ⎤α !1−αX X 
max ⎣⎝ ⎝qjn (pjn − cj ) − (qj(m\n) − qjm) (pjm − cj )⎠⎠ ΠJ − Πn

J\k,k0 ⎦ .n {pkn,pk0n} 
j∈{k,k0} m∈M\n 

(A12) 

As noted above, the effect of the merger on the equilibrium values of {pkn, pk0n} is manifested in 

changes in the disagreement payoff of the insurer. Specifically, the sign of the merger’s effect on 

price will be the same as the sign of the difference between the reduction in profit to the insurer 

from failing to reach an agreement with {k, k0} versus the sum of the reductions in profits from 

failing to reach an agreement with k0 and k0 individually, 

� � � � 
ΠJ − ΠJ\k,k0 ΠJ − ΠJ\k ΠJ − ΠJ\k0 − − . (A13)n n n n n n 

Rearranging terms, we see that the condition for a price increase resulting from the merger is 

− ΠJ\k < ΠJ\k0 − ΠJ\k,k0 ΠJ . (A14)n n n n 

This expression defines a concavity condition, which captures the above intuition that losing two 

substitute hospitals reduces the insurer’s profits by more than the sum of the individual reductions. 

Put another way, the presence of k0 in the network of insurer n reduces the value-added of k to 

the network of n and vice-versa. Hence, an agreement between k0 and insurer n creates a negative 

externality in the bargaining between k and insurer n. A merger between k and k0 eliminates that 

externality and, therefore, will cause a price increase. 

The above discussion was simplified in order to articulate the basic mechanism by which a 

merger of competing hospitals causes equilibrium negotiated prices to increase. However, there are 

a number of additional effects, to which we now turn. 

The discussion above implicitly assumed that each insurer has a fixed pool of subscribers, and 

that the exclusion of a hospital from that insurer’s network would deprive that hospital of all of 

those enrollees. But it is possible that failure to reach an agreement with a particular hospital will 

cause some subscribers to switch to an insurer that does have that hospital in its network, so some 

of the patients that the hospital loses from failing to reach an agreement with that insurer will be 

recaptured via another insurer. This affects the bargaining between hospitals and insurers, as now 
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failure to reach a deal with an insurer does not deprive that hospital of access to all of that insurer’s 

patients, but only to those patients who will not switch insurers in order to retain access to it. 

The possibility of switching insurers can introduce additional merger effects. As discussed in 

Peters (2014), when insurer switching is possible, a merger can affect the hospital payoffs as well as 

the insurer payoffs. Specifically, if some patients switch insurers in response to a hospital exclusion, 

then the hospital will recapture some of the patients that it would otherwise have lost. Peters 

(2014) shows that, all else equal, a merger tends to increase the number of recaptured patients, 

which amplifies the price effect of the merger.32 

The possibility of switching insurers can also introduce a complements effect that works in the 

opposite direction. This effect dampens the price effects of mergers, and can even make them 

negative, even when the merging hospitals are substitutes for individual patients. (Note though, 

that in our model, a merger that reduced prices would also reduce the profits of the merging hospital 

systems.) Peters (2014) shows that in the context of Nash Bargaining, this effect arises from the 

presence of enrollees who will switch insurers if either of the merging hospitals is excluded from 

that insurer’s network. While we cannot decompose the true price effects into the price-increasing 

substitutes effect and the price-decreasing complements effect, the complements effect is seldom 

the dominant one as long as the merging hospitals are at least moderately close substitutes. For 

example, of mergers with a weighted mean diversion ratio that exceeds 10%, only 2.2% result in 

a price decrease. Of these, the price effect is less than 1% in magnitude in 86% of the cases. For 

substantially higher diversion ratios, the percentage of mergers with a negative price effect becomes 

extremely small. 

There are other theoretically possible mechanisms through which complements effects could 

occur. One is the mechanism discussed in Katz (2011), namely that losing one hospital from the 

first-choice insurer’s network may cause some enrollees to drop insurance altogether rather than 

switching to another insurer. This imposes a negative externality on substitute hospitals, because 

those lost enrollees had some positive probability of using the substitute hospital had they remained 

insured. The merger eliminates this externality, which tends to reduce prices. This effect is present 

in our model, but is minimal in our simulated markets for anything other than the monopoly insurer 

case, as in our simulated markets very few people are uninsured when there is more than one insurer. 

32Note that all else will generally not be equal. Forces that tend to increase insurance switching, such as greater 
insurer competition, also affect the insurer payoffs. In our simulations, the net effect of greater insurance competition 
on price effects is generally negative, not positive. 
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Another possible mechanism is if the exclusion of both merging hospitals, but not either of them 

alone, would drive an insurer out of business. If that were the case, then losing both hospitals from 

the insurer’s network would reduce the insurer’s gross profits by less than the sum of the individual 

losses. This outcome does not occur in any of our simulated markets, as all insurers have positive 

margins even when the most valuable system is excluded. 

Vistnes and Sarafidis (2013) and Dafny et al. (2017) point out that group purchasers of insurance 

and/or common insurers across many purchasers of insurance can may cause the negative externality 

defined in (A14) to be greater than what direct substitution at the patient level would suggest. If 

so, this would tend to amplify price effects and also to allow for the possibility of a positive price 

effect even for a merger of hospitals that are not substitutes for any individual patient (i.e., with 

diversion ratios of zero between the merging hospitals). 

While we do not focus our analysis on these additional effects, some of the key features discussed 

in this literature (e.g., recapture through switching insurers and the group purchase of insurance) 

are included in our theoretical model. It would be possible to modify our theoretical model to 

further explore these effects. We did not make these modifications, since that is not the purpose of 

this paper. 

We assume a non-linear parametric function (specifically Logit) for insurance demand, which 

must have a convex and a concave region. Since insurance demand is derived by summing, across 

each purchaser of insurance, the relationship between the utility derived from the insurer’s network 

and the probability of purchasing from that insurer, these relationships must each have a convex 

and a concave region as well. Several of the effects discussed above operate by influencing the 

sizes and shapes of these regions, making some portions more or less convex or concave. Moreover, 

the functional form restriction itself can magnify or dampen these effects. For example, an effect 

that makes the relationship more concave in one region may mechanically make it more convex in 

another, and this can tend to dampen or amplify the effects discussed above. 

A4 Sources of the Biases Exhibited by the Simulation Methods 

In this appendix, we provide an examination of the mechanisms underlying the bias exhibited by 

the simulation methods described in Section 6.1. As illustrated in Figure 1, WTP/Q exhibits a 

tendency to under-predict the true price effects, DWTP/Q exhibits a tendency to over-predict the 
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true price effects, and UPP exhibits a tendency to over-predict the true price effects when the true 

price effects are low, but exhibits an increasing tendency to under-predict the true price effects as 

the true price effects increase. 

To explain these patterns, we make the following observations. First, the true price effects are 

convex in the diversion ratios between the merging hospitals. Similarly, changes in WTP are convex 

in the diversion ratios between the merging hospitals. In contrast, the predicted price effects of UPP 

are linear in the diversion ratios between the merging hospitals. Hence, it seems reasonable that 

UPP should be increasingly likely to under-predict the true price effects as the true price effects 

increase, while WTP/Q and DWTP/Q would not necessarily exhibit this pattern. This is consistent 

with the finding that UPP follows a curved path in Figure 1, while WTP/Q and DWTP/Q follow 

linear paths. That is, the biases of WTP/Q and DWTP/Q are roughly constant fractions of the 

true price effect, but the bias of UPP becomes less positive or more negative as the true price effect 

increases. 

Second, we note that a key distinction among the simulation methods is that only DWTP/Q 

accounts for second order, or “feedback”, effects through competing (non-merging) hospitals in 

estimating the post-merger price equilibrium. That is, only DWTP/Q takes into account the fact 

that the first-order price increase for the merging hospitals will increase the prices of competing 

hospitals not involved in the merger, which in turn will feed back into additional (second order) 

pricing pressure for the merging hospitals.33 This likely explains why the predicted price effects of 

DWTP/Q are systematically higher than those of WTP/Q. It is also a source of negative bias for 

WTP/Q and UPP ; the theoretical model incorporates these feedback effects, while WTP/Q and 

UPP do not. 

Third, one notable feature of our theoretical model that is not accounted for by any of the 

simulation methods is that, in our theoretical model, insurers can adjust the profit maximizing 

premium under hypothetical exclusions of hospital systems. Specifically, the insurer’s premiums 

are not constrained to be the same in the equilibrium payoff ΠJ and the #S payoffs under which n 

the insurer fails to reach an agreement with one of the #S hospital systems ΠJ
n 
\s 
. This ability 

to re-optimize the premium under an off-the-equilibrium-path exclusion of a given hospital system 

tends to reduce the system’s bargaining leverage, both before and after the merger, because it allows 

33A price increase at the merging hospitals will reduce the disagreement payoff for the insurer in bargaining with 
any competing (non-merging) hospital. This leads to an increase in the equilibrium price for competing (non-merging) 
hospitals. 
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insurers to mitigate the damage from exclusions. It also tends to reduce the price effects of mergers. 

Since none of the simulation methods account for this mechanism, it seems reasonable that the bias 

of all three simulation methods would be less positive or more negative if insurers were not able to 

re-optimize premiums under hypothetical exclusions. 

To demonstrate that this is a key source of bias, we computed the pre- and post-merger price 

equilibria for all 231,925 mergers in our 9,000 markets under the assumption that the insurers 

cannot re-optimize premiums under hypothetical exclusions. That is to say, we adopt an equilibrium 

concept under which π∗ = π∗ = ... = π∗ Figure 5 gives the analog of Figure 1 under this J J\1 J\#S . 

restricted equilibrium concept. The figure shows that, as predicted, the paths of all three simulation 

methods are rotated toward the horizontal axis, indicating that the bias is lower (less positive or 

more negative). Moreover, the upward bias exhibited by DWTP/Q in our baseline equilibrium 

concept is eliminated under this restricted equilibrium concept suggesting that this is the principal 

source of upward bias. 

Figure 5: Mean True and Predicted Price Effects 
(Assuming Insurers cannot Re-Optimize Premiums under Hypothetical Exclusions) 
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A5 Dispersion 

Measures of bias alone are not sufficient to evaluate the performance of the simulation methods. 

Even if the prediction errors of a simulation method exhibit only a moderate amount of bias, the 

method can still be highly unreliable (i.e., may frequently be far away from the true price effect) 

if the prediction errors are large in magnitude but have opposing signs. Our main measure of 

dispersion is the MAPE ratio, which is discussed in section 6.2. Here we discuss an additional 

measure of performance that evaluates the dispersion of the predicted price effects of the simulation 

methods about the true price effects. 

Specifically, we calculate the frequency with which the predicted price effects are within a given 

proportion of the true price effects. We calculate the following for each of the three simulation 

methods: (i) the frequency with which predicted price effect is less than 50% of the true price 

effect; (ii) the frequency with which predicted price effect is within 50% (in magnitude) of the true 

price effect; and (iii) the frequency with which predicted price effect is greater than 150% of the 

true price effect. The results are given in Table 9 for the five categories of mergers described above. 

See Appendix A7 for a full set of results. 

Table 9 indicates that, at least for the categories of mergers such that the mean true price 

effects exceeds 5%, WTP/Q and DWTP/Q perform quite well, and their performance improves 

as the true price effects increase. DWTP/Q performs better than does WTP/Q, with predicted 

price effects that are within 50% (in magnitude) of the true price effects for 93.3% of mergers in 

the (4.5%,5.5%) category and 97.1% of mergers in the (19.5%,20.5%) category. WTP/Q performs 

somewhat less well, with predicted price effects that are within 50% (in magnitude) of the true price 

effects for 89.8% of mergers in the (4.5%,5.5%) category and 95.4% of mergers in the (19.5%,20.5%) 

category. UPP performs meaningfully less well, with predicted price effects that are within 50% (in 

magnitude) of the true price effects for 73.7% of mergers in the (4.5%,5.5%) category and 92.1% 

of mergers in the (19.5%,20.5%) category. Table 9 is consistent with the results in Table 3 in that 

WTP/Q is more likely to under-predict the true price effects by more than 50% than to over-predict 

by more than 50%, while the opposite is true for DWTP/Q. Also consistent with the results in Table 

3 is that UPP is more likely to over-predict when the true price effects are relatively small and more 

likely to under-predict when the true price effects are relatively large. 
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Table 9: Dispersion of Predicted Price Effects dΔpr −ΔprPrediction Error Defined as a Percentage of Pre-Merger Price, 
pr 

Mergers s.t. 
Δpr ∈ pr 

Me

(1) 
Δpr 
pr 

≤ Δpr 
2pr 

d
thod 1: WTP/Q 

(2) 
Δpr −Δpr| |pr 

Δpr< 2pr 

d (3) 
Δpr 
pr 

≥ 3Δpr 
2pr 

d
Met

(4) 
Δpr 
pr 

≤ Δpr 
2pr 

d
hod 2: DWTP/Q 

(5) 
Δpr −Δpr| |pr 

Δpr< 2pr 

d (6) 
Δpr 
pr 

≥ 3Δpr 
2pr 

d
M

(7) dΔpr 
pr 
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2pr 

d
ethod 3: UP

(8) 
Δpr −Δpr| |pr 

Δpr< 2pr 

d
P 

(9) 
Δpr 
pr 

≥ 3Δpr 
2pr 

(0.5%,1.5%) 

(4.5%,5.5%) 

(9.5%,10.5%) 

(14.5%,15.5%) 

(19.5%,20.5%) 

0.180 

0.065 

0.046 

0.043 

0.033 

0.760 

0.898 

0.937 

0.941 

0.954 

0.059 

0.037 

0.017 

0.016 

0.013 

0.001 

0.001 

0.000 

0.002 

0.000 

0.844 

0.933 

0.956 

0.962 

0.971 

0.155 

0.066 

0.044 

0.036 

0.029 

0.016 

0.001 

0.009 

0.024 

0.079 

0.398 

0.737 

0.936 

0.964 

0.921 

0.586 

0.262 

0.054 

0.012 

0.000 

Figure 6 depicts the kernel densities of the predicted price effects of the three simulation methods 

for mergers in the (4.5%,5.5%) category (i.e., when the true price effect is in that range). The figure 

illustrates: (i) the positive bias exhibited by DWTP/Q and UPP and the negative bias exhibited 

by WTP/Q detailed in Table 3; and (ii) the relatively low (high) dispersion exhibited by DWTP/Q 

(UPP) detailed in Table 9. 

Figure 6: Kernel Densities of Predicted Price Effects for Mergers r : Δpr 
pr 
∈ (4.5%, 5.5%) 
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A6 Bayesian Inference 

As discussed in Section 7, there are two possible ways that the merger simulation methods might 

fail to accurately predict real-world merger effects. The first is if the methods do not accurately 

predict the results of our theoretical model.34 The second is if the theoretical model does not match 

the real world. The main purpose of this paper is to test the first one, and as discussed in Section 

6 we find that the methods generally perform well. 

The extent to which this finding increases the posterior probability that the simulation methods 

accurately predict real-world merger effects can be expressed in Bayesian terms as follows. Define 

A as “simulation methods predict theoretical model merger effects well,” B as “theoretical model 

closely matches the real world,” and C as “simulation methods predict real-world price effects 

well.” Since each of these is binary (Y=Yes, N=No), there are eight possible combinations of 

ABC. Of these, only four have non-trivial probability of occurring (YYY YNN NYN NNN), so 

for convenience we set the other four probabilities to zero. By a straightforward application of 

Bayes’ Rule, the prior probability P(C) = P(YYY)/( P(YYY)+P(YNN)+P(NYN)+P(NNN)), and 

the posterior probability P(C|A)=P(YYY)/(P(YYY)+P(YNN)). That is, a finding that A has 

occurred transfers probability mass from NYN and NNN to YYY and YNN. 

It is easy to see that the posterior probability P(C|A), and the magnitude of the updating 

(P(C|A)- P(C)), both depend on the relative magnitudes of P(YYY) and P(YNN). P(C|A) can be 

anywhere from zero to unity depending on these relative magnitudes. That is, how much it matters 

that A occurred depends crucially on the probability of B. 

While there is no decisive proof, there is reason to believe that our model is at least a reasonable 

approximation of reality (i.e., that B occurs with fairly high probability), justifying a relatively large 

updating and posterior probability conditional on the simulation methods accurately predicting the 

theoretical model. As noted above, our model, like other recent models, contains a number of 

features that are designed to capture the structure of real-world hospital markets in the United 

States. All of these models make the common and intuitive assumptions that insurance premiums 

and hospitals prices are simultaneously set in a differentiated Bertrand premium-setting game played 

by the insurers and via Nash-in-Nash Bargaining between hospitals and insurers. In addition, the 

parameterizations are set, to the extent possible, to match real-world metrics. 

34It is possible that the simulation methods would accurately predict real-world effect even if they predicted the 
effects of the theoretical model poorly, but there is no reason to believe that this would be the case. 
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The posterior probability P(C|A) and the magnitude of the updating (P(C|A)- P(C)) also depend 

on the magnitude of P(NNN)+P(NYN). That is, the effect of a result that the simulation methods 

accurately predict real-world price effects depends on the prior probability that the simulation 

methods would accurately predict the theoretical model. If the model and the methods were so 

similar that this result was nearly guaranteed (i.e., if P(NNN)+P(NYN) was very small), then the 

magnitude of the update would be very small. For example, suppose that P(NNN)+P(NYN)=0.1. 

In that case, the update would be from P(YYY) to P(YYY)/.9=1.11P(Y), so a finding that A 

has occurred cause an update of only 11.1% relative to the prior probability. In contrast, suppose 

that P(NNN)+P(NYN)=0.9. In that case, the update would be from P(YYY) to P(YYY)/.1, so a 

finding that A has occurred would cause an update of 1000% relative to the (initially very small) 

prior probability. As discussed above, the simulation methods can be thought of as an approximation 

to the theoretical model. If the simulation methods were constructed so that this approximation was 

necessarily a very close one (i.e., if it was constructed so that P(NNN)+P(NYN) was very small), 

then it would be no surprise that they predicted the model’s merger effects well, and then passing 

our test would generate a posterior probability that the simulation methods predict real-world price 

effects well that is only slightly higher than the prior probability. However, this is not the case. 

Though both our theoretical model and the simulation methods derive their basic intuition from 

bilateral bargaining theory (compare Section 3 and Section 5), they are dissimilar enough that the 

closeness of the approximation is not obvious, and therefore a finding that the approximation is in 

fact close justifies a positive updating in favor of the simulation methods’ real-world usefulness. 

There are a number of important features that are included in the theoretical model, but are not 

directly accounted for by the simulation methods. The absence of these features from the simulation 

methods is precisely what makes them relatively easy (and in the case of UPP very easy) to apply 

in real-world cases. These differences are numerous and substantial enough that this result was not 

guaranteed, and so finding the result constitutes meaningful evidence on which to update. 

A list of the differences between the simulation methods and the theoretical model is as follows. 

• First and most important is the role of the insurer. Consumers decide whether to buy insurance 

and which insurer to buy it from. Consumers can switch insurers in response to the exclusion 

of a hospital or hospital system from an insurer’s network. 35 Insurers play a premium-setting 

35As discussed in Section 5, the predictions of the merger simulation methods are, in part, determined by the 
diversion ratios between the hospitals. We calculate diversion ratios the way they would be calculated in real-world 
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game, the outcome of which depends on the degree of insurer competition. These insurer-

related factors affect the bargaining incentives of both the insurers and the hospitals, and 

hence they affect equilibrium hospital prices. These factors are all included in our theoretical 

model, but they are not directly included in the merger simulation methods. This is a key 

difference between our theoretical model and the simulation methods, and it may be a source 

of prediction error. The magnitude of this prediction error may be a function of insurer 

market structure which, as discussed above, we allow to range from one insurer to nine in the 

theoretical model. One manifestation of this difference between the theoretical model and the 

simulation methods is that in the simulation methods, the predicted price effects of mergers 

necessarily go to zero as the diversion ratios between the merging hospitals approach zero, 

but this is not necessarily the case in the theoretical model. 

• Second, if the objective of insurers is to maximize profits (as is assumed in our theoretical 

model), then the regression model underlying the WTP -based simulation methods is mis-

specified, and so might not closely approximate the theoretical model. Formally, WTP/Q 

and DWTP/Q assume that, gross of payments to hospitals, the insurer’s payoff is simply 

proportional to the value consumers place on its provider network. The reasoning behind this 

is that a measure of the reduction in consumer valuation of an insurer’s provider network 

due to the exclusion of a given hospital system may be a good proxy for the reduction in the 

insurer’s gross profits, and hence effectively reflects the bargaining position of the insurer. We 

view this as a reasonable assumption, but the WTP metric is not guaranteed to be linearly 

related to the difference in insurer profits, as is assumed by the WTP/Q and DWTP/Q 

methods. 

• Third, the methods do not account for group purchases of health insurance. In the U.S., most 

private insurance is group insurance organized through an employer, and, therefore, reflects 

some aggregation of the preferences of the employees. The simulation methods, in contrast, 

implicitly assume individual health insurance choices are based on individual preferences. 

applications of those methods, using patient-level inpatient discharge data. Diversion ratios calculated in this way do 
not account for the possibility that some patients will switch insurers in order to retain access to Hospital A, or that 
they will drop their insurance entirely if Hospital A goes out of their preferred insurer’s network. That is, diversion 
ratios as they are calculated in this paper, and as they are calculated in real-world applications, reflect the properties 
of the simulation methods, not of our theoretical model. 
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• Fourth, the methods do not account for the role of non-inpatient healthcare services, and ex-

penditures on those services, in consumers choice of whether to purchase insurance and which 

insurer to choose. This non-inpatient care (captured in our theoretical by the parameters Z 

and pz) affects insurance demand and profits, which in turn affects equilibrium hospital prices. 

• Fifth, the WTP/Q method and UPP do not account for the fact that the price responses of 

non-merging firms, and hence the post-merger equilibrium prices of the merging firms, will 

differ across markets, even holding constant the diversion ratios and gross margins between 

the merging firms. The DWTP/Q method does account for this. This matters because such 

price responses tend to increase the predicted price effects in DWTP/Q and, as discussed 

above, because DWTP/Q takes into account the fact that hospitals that have higher priced 

rivals will themselves have higher prices, all else equal. 

• Sixth, in our theoretical model, hospital prices are determined under three sources of uncer-

tainty: (i) which consumers will buy insurance; (ii) which of the consumers who buy insurance 

will require inpatient care; and (iii) which hospital those patients will choose. In contrast, the 

simulation methods are applied to ex-post data on observed hospital discharges, which repre-

sents one realization of these uncertainties. If that realization happens to be unrepresentative, 

then the predictions of the simulation methods would not closely approximate the true price 

effects generated in the theoretical model. 

• Seventh, the methods do not account for the possibility that, as discussed in Section 3.3, a 

merger between two hospitals has a complements effect as well as a substitutes effect, which 

in the theoretical model tends to push price effects downwards. However, the fact that few 

mergers in our analysis have true price effects that are negative, and that almost all of those 

that do have negative price effects also have extremely low diversion ratios, suggests that the 

complements effect is generally small, so this factor is likely not very important. 

• Eighth, as discussed in Section 5, the predictions of the merger simulation methods are, in 

part, determined by the diversion ratios between the hospitals. We calculate diversion ratios 

the way they would be calculated in real-world applications of those methods, using patient-

level inpatient discharge data. Note that diversion ratios calculated in this way do not account 

for the possibility that some patients will switch insurers in order to retain access to Hospital 

62 



A, or that they will drop their insurance entirely if Hospital A goes out of their preferred 

insurer’s network. Our theoretical model does account for these possibilities, which is one 

important reason why the simulation methods are not a priori certain to closely approximate 

the theoretical model 

Given that it is not obvious a priori that our test must be passed, the fact that it was passed 

may justify a substantial updating of the probability that the simulation methods predict real-world 

price effects well enough to be considered in merger analysis. As noted above, the magnitude of this 

updating will also depend on one’s priors regarding the probability that the model closely matches 

the real world. If one has strong priors that the model does not capture the real world well, or 

alternatively that our parameterizations of the model are highly inaccurate, then the magnitude of 

the updating will be small, and vice-versa. 

A7 Full Dispersion Results 

In this appendix, we give the full set of results on the dispersion of the predicted price effects of the 

simulation methods. As discussed in Section 6.1, we group our 231,925 mergers into 31 categories de-

fined by one percentage point increments of the true price effect Δpr (i.e., ≤ 0.5%, (0.5%, 1.5%), (1.5%, 2.5%),pr 

..., (29.5%, 30.5%)). Following Table 9, we calculate the frequency in each category with which the 

merger simulation methods under- and over-predict the true price effect by more than 50% of the 

true price effect. Following Table 4, we give the MAPE ratio in each category for each of the merger 

simulation methods. 

The results are given in Table 10. Columns (1), (4), and (7) give the frequency with which the 

merger simulation methods under-predict the true price effect by more than 50% of the true price 

effect. Columns (2), (5), and (8) give the frequency with which the merger simulation methods 

over-predict the true price effect by more than 50% of the true price effect. Columns (3), (6), 

and (9) give the MAPE rations. We find that each of the simulation methods perform poorly in 

the < 0.5% category, but the performance of all three improves rapidly as the true price effects 

increase. DWTP/Q performs the best. It’s MAPE ratio is consistently in the 10%-15% range for 

all categories of mergers above the < 0.5% category. The predicted price effects of DWTP/Q are 

within 50% of the true price effect for 84.4% of the mergers in the (0.5%, 1.5%) category, and this 

percentage increases to about 95% for mergers in the (6.5%, 7.5%) category and above. WTP/Q also 
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performs reasonably well. It’s MAPE ratio gradually declines from about 0.29 in the (0.5%, 1.5%) 

category, stabilizing in the 0.17-0.20 range for mergers in the (9.5%, 10.5%) category and above. 

The predicted price effects of the WTP/Q are within 50% of the true price effect for 76.0% of the 

mergers in the (0.5%, 1.5%) category, and this percentage increases to about 90%-95% for mergers 

in the (4.5%, 5.5%) category and above. UPP performs less well overall and exhibits the pattern of 

significant upward bias when the true price effects are low and significant downward bias when the 

true price effects are high. The MAPE ratio of UPP declines from about 0.534 in the (0.5%, 1.5%) 

category to 0.156 in the (11.5%, 12.5%) category and above, and then increases to about 0.40 for 

mergers in the (26.5%, 27.5%) category and above. The predicted price effects of the UPP are 

within 50% of the true price effect for only 39.8% of mergers in the (0.5%, 1.5%) category. This 

percentage increases to 97.1% in the (15.5%, 16.5%) category but then decreases to 70.0% in the 

(29.5%, 30.5%) category. Consistent with results in Figure 2 on relative bias, UPP is far more likely 

to over-predict than under-predict the true price effects when the true price effects are low and vice 

versa when the true price effects are high. 
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Table 10: Dispersion of Prediction Price Effects and MAPE Ratios 

Δpr 
pr 

∈ 

WTP/Q 

(1) (2) (3) 
Δpr Δpr 
pr pr 

≤ Δpr ≥ 3Δpr MAPE2pr 2pr 

dd
DWTP/Q 

(4) (5) (6) 
Δpr Δpr 
pr pr 

≤ Δpr ≥ 3Δpr MAPE2pr 2pr 

dd
UPP 

d(7) (8) (9) 
Δpr Δpr 
pr pr 

d
≤ Δpr ≥ 3Δpr MAPE2pr 2pr 

< 0.5% 0.196 0.402 0.873 0.011 0.524 0.652 0.034 0.775 1.647 

(0.5%,1.5%) 0.180 0.059 0.290 0.001 0.155 0.141 0.016 0.586 0.534 

(1.5%,2.5%) 0.113 0.050 0.282 0.001 0.110 0.151 0.005 0.497 0.483 

(2.5%,3.5%) 0.093 0.042 0.267 0.001 0.088 0.148 0.001 0.409 0.404 

(3.5%,4.5%) 0.075 0.039 0.252 0.001 0.074 0.146 0.002 0.331 0.327 

(4.5%,5.5%) 0.065 0.037 0.246 0.001 0.066 0.144 0.001 0.262 0.278 

(5.5%,6.5%) 0.062 0.030 0.233 0.000 0.061 0.139 0.001 0.207 0.235 

(6.5%,7.5%) 0.060 0.028 0.230 0.001 0.056 0.140 0.002 0.163 0.213 

(7.5%,8.5%) 0.050 0.029 0.230 0.000 0.051 0.135 0.004 0.125 0.188 

(8.5%,9.5%) 0.058 0.019 0.215 0.001 0.040 0.139 0.008 0.088 0.181 

(9.5%,10.5%) 0.046 0.017 0.209 0.000 0.044 0.138 0.009 0.054 0.165 

(10.5%,11.5%) 0.055 0.025 0.219 0.001 0.048 0.128 0.015 0.055 0.165 

(11.5%,12.5%) 0.065 0.011 0.207 0.001 0.032 0.122 0.011 0.026 0.156 

(12.5%,13.5%) 0.049 0.009 0.207 0.002 0.038 0.123 0.029 0.026 0.181 

(13.5%,14.5%) 0.039 0.016 0.203 0.000 0.040 0.135 0.018 0.012 0.173 

(14.5%,15.5%) 0.043 0.016 0.212 0.002 0.036 0.127 0.024 0.012 0.197 

(15.5%,16.5%) 0.050 0.010 0.200 0.000 0.033 0.135 0.025 0.004 0.197 

(16.5%,17.5%) 0.048 0.020 0.204 0.004 0.046 0.128 0.029 0.002 0.200 

(17.5%,18.5%) 0.029 0.013 0.200 0.000 0.051 0.123 0.051 0.003 0.210 

(18.5%,19.5%) 0.051 0.010 0.195 0.000 0.048 0.125 0.065 0.000 0.259 

(19.5%,20.5%) 0.033 0.013 0.194 0.000 0.029 0.135 0.079 0.000 0.246 

(20.5%,21.5%) 0.017 0.013 0.169 0.004 0.030 0.113 0.051 0.000 0.303 

(21.5%,22.5%) 0.049 0.000 0.172 0.000 0.032 0.132 0.135 0.000 0.300 

(22.5%,23.5%) 0.027 0.014 0.176 0.000 0.041 0.110 0.082 0.000 0.311 

(23.5%,24.5%) 0.031 0.000 0.196 0.000 0.016 0.106 0.116 0.000 0.325 

(24.5%,25.5%) 0.079 0.000 0.206 0.009 0.035 0.121 0.132 0.000 0.360 

(25.5%,26.5%) 0.052 0.013 0.203 0.000 0.052 0.110 0.156 0.000 0.339 

(26.5%,27.5%) 0.029 0.010 0.143 0.000 0.029 0.134 0.216 0.000 0.407 

(27.5%,28.5%) 0.048 0.000 0.175 0.012 0.024 0.117 0.214 0.000 0.373 

(28.5%,29.5%) 0.016 0.000 0.173 0.000 0.048 0.120 0.194 0.000 0.413 

(29.5%,30.5%) 0.030 0.015 0.171 0.000 0.045 0.125 0.303 0.000 0.405 
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A8 Robustness of the Results 

A natural question is whether the performance of the simulation methods varies by competitive 

conditions in the hospital and insurance markets. In Appendix A8.1, we examine the sensitivity 

of our baseline results to such variation. To explore variation in hospital competition, we evaluate 

the MAPE ratios within categories of hospital mergers based on the pre-merger gross margin of 

the hospitals. To explore variation in insurer competition, we evaluate the MAPE ratios within 

categories of hospital mergers based on the number of insurers in the market. The results indicate 

that the merger simulation methods generally perform modestly less well under parameterizations 

in which hospitals have higher gross margins and when there is greater competition in the insurance 

market. 

As noted above, the results presented in Section 6 are highly aggregated across the thousands 

of possible parameterizations discussed in Section 4. We chose those parameterizations in order 

to replicate the real world in some key metrics, including mean hospital gross margins and prices. 

At the same time, we included some parameterizations that may be considered too extreme to be 

plausible, in order to create a high probability that the parameters that correspond most closely 

to the real world would be included among them and to assess the performance of the simulation 

methods under what may be implausible parameterizations.36 

A finding that the simulation methods perform well across most of this broad range of param-

eterizations does not imply that they perform well in the real world because, among other things, 

we do not know which sets of parameter values correspond most closely to the real world. Good 

performance in a large number of irrelevant parameterizations may be masking poor performance in 

a small number of relevant ones. To address this, in Appendix A8.2 we report more refined MAPE 

ratio results broken down by: (i) each possible value for each parameter in our model; and (ii) each 

of the categories of mergers based on the true price effects discussed in Table 3. 

Overall, these refined results are very similar to the aggregate ones. In Appendix A8.2 we do 

not find that, conditional on any specific parameter value, the simulation methods perform poorly 

other than for mergers for which the true price effects is in the (0.5%,1.5%) category. That said, we 

do find some sensitivity of the results based on variation in some of the key model parameters, most 

notably, the insurance demand parameter λ. Consistent with our results by hospital gross margin 

36For example, as noted above, many of our parameterizations result in within-market mean hospital gross margins 
in excess of 0.7, which is likely to be unrealistically high. 
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quartiles, we find that the simulation methods, particularly DWTP/Q, perform less well when λ is 

high. So exactly how well the simulation methods perform does depend somewhat on where the 

real world lies in parameter space. But, other than for mergers for which the true price effects is in 

(0.5%,1.5%), the simulation methods do not perform poorly conditional on any specific parameter 

value. 

To further test the robustness of our results, we present in Appendix A8.3 seventeen additional 

sets of results under various modifications to our baseline parameterizations and assumptions. These 

include the alternative equilibrium concept discussed in Section A4, alternative values for the insur-

ance demand parameters θ and λ, alternative assumptions on how consumers are aggregated into 

insurance buying groups, fewer hospitals and hospital systems, and measurement error in hospital 

system prices and costs. Broadly speaking, we find that our results are robust to these modifi-

cations. One noteworthy result is that while measurement error in prices modestly degrades the 

performance (as measured by the MAPE ratio) of WTP/Q and DWTP/Q, it does not degrade the 

performance of UPP. 

A8.1 Performance by Level of Hospital and Insurer Competition 

In this appendix, we examine the sensitivity of our baseline results to such variation. To explore 

variation in hospital competition, we evaluate the MAPE ratios within categories of hospital mergers 

based on the level of pre-merger market power of the hospitals. To explore variation in insurer 

competition, we evaluate the MAPE ratios within categories of hospital mergers based on the 

number of insurers in the market. 

Turning first to variation in pre-merger competitive conditions in the hospital market, we group 

mergers into the same five categories as above and divide each category into quartiles based on the 

volume-weighted pre-merger gross margins of the hospitals. We evaluate the MAPE ratio for each 

true price effect category-gross margin quartile combination. 

The results are given in Table 11. The results indicate that the merger simulation methods 

generally perform less well under parameterizations in which hospitals have greater market power, 

though this is not uniformly the case. This pattern is most clearly exhibited by DWTP/Q. In the 

(0.5%, 1.5%) category, the MAPE ratio of DWTP/Q increases from 0.105 in the bottom quartile 

to 0.209 in the top quartile. This pattern is replicated in the (4.5%, 5.5%), (9.5%, 10.5%), and 
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(14.5%, 15.5%) categories, though the increases are more modest. This pattern is not replicated in 

the (19.5%, 20.5%) category. 

The MAPE ratio of WTP/Q is less sensitive to variation in the gross margins of hospitals than 

is the MAPE ratio of DWTP/Q. The pattern of higher MAPE ratios when gross margins are higher 

is exhibited in the (0.5%, 1.5%) category (increasing from 0.273 in the lowest quartile to 0.355 in the 

highest quartile), and in the (4.5%, 5.5%) category (from 0.227 in the lowest to 0.297 in the highest), 

but there is little systematic relationship between the MAPE ratio of WTP/Q and hospital gross 

margins in the higher true price effect categories. 

UPP exhibits a pattern of increasing MAPE as hospital gross margins increase when the true 

price effects are relatively low but decreasing MAPE as hospital gross margins increase when the true 

price effects are relatively high. For example, in the (4.5%, 5.5%) category, the MAPE ratio of UPP 

increases from 0.137 in the bottom quartile to 0.515 in the top quartile. But in the (14.5%, 15.5%) 

category, the MAPE ratio of UPP decreases from 0.417 in the bottom quartile to 0.138 in the top 

quartile. As shown in Figure 2, UPP exhibits a negative bias when the true price effects are less 

than approximately 11% and a positive bias when the true price effects are greater than that. Table 

11 shows that in the category of mergers in which UPP is closest to being unbiased (the 9.5%-

10.5% category), the MAPE ratio of UPP is much less sensitive to variation in the gross margins 

of hospitals than it is in the other categories. 

We note that the mean hospital gross margin in the top quartile is greater than 0.7, which 

seems very high. Therefore, it is likely that many of the parameterizations in this quartile are not 

representative of the real world. 

The most likely reason why the simulation methods perform less well when hospital gross margins 

are higher lies in variation of the parameter λ. As discussed above, higher values of λ imply a greater 

loss in value for consumers from an exclusion of a given hospital system, and hence greater market 

power for hospitals, which is reflected in higher gross margins. Larger values of λ also increase 

the curvature in insurance demand (see equation (3)) with respect to the EMAX terms that define 

the util value of the provider network. (See equation (4).) Since price is assumed to be linear in 

these EMAX terms in both WTP/Q and DWTP/Q, greater curvature in insurance demand (3) 

with respect to the EMAX term in the theoretical model should increase the prediction errors. (We 

note, however, that the reduction in performance as hospital gross margins increase is even greater 
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Table 11: MAPE Ratios by Hospital Gross Margin Quartiles 

Mergers s.t. Mean Hosp 
Δ
p
p
r

r ∈ Quartile N Gr Margin 

(0.5%,1.5%) 

(4.5%,5.5%) 

(9.5%,10.5%) 

(14.5%,15.5%) 

(19.5%,20.5%) 

1st 12,888 0.266 

2nd 12,686 0.432 

3rd 10,975 0.560 

4th 9,358 0.700 

1st 947 0.289 

2nd 1,436 0.441 

3rd 1,577 0.566 

4th 1,519 0.706 

1st 155 0.295 

2nd 385 0.442 

3rd 496 0.566 

4th 545 0.706 

1st 45 0.308 

2nd 115 0.441 

3rd 194 0.565 

4th 224 0.706 

1st 12 0.322 

2nd 45 0.450 

3rd 77 0.574 

4th 105 0.714 

WTP/Q DWTP/Q UPP 

0.273 0.105 0.357 

0.273 0.132 0.486 

0.294 0.174 0.653 

0.355 0.209 0.940 

0.227 0.129 0.137 

0.231 0.141 0.216 

0.236 0.142 0.323 

0.297 0.161 0.515 

0.208 0.105 0.263 

0.193 0.141 0.134 

0.211 0.130 0.133 

0.217 0.153 0.206 

0.220 0.117 0.417 

0.190 0.117 0.253 

0.199 0.126 0.184 

0.247 0.148 0.138 

0.258 0.113 0.456 

0.154 0.152 0.409 

0.204 0.138 0.255 

0.229 0.123 0.177 

for UPP, which does not directly rely on the EMAX terms.) See Appendix A8.2 for results broken 

down by value of λ. 

To test the sensitivity of our results to variation in competitive conditions in the insurance 

market, we evaluate the MAPE ratios in the five categories of mergers defined above and by the 

number of insurers in the market. One may expect our results to be sensitive to the number of 

insurers. This is because the theoretical model allows for consumers to switch insurers in response 

to the exclusion of a hospital system from an insurer’s provider network, but the simulation methods 

do not. While this is generally a potential source of prediction error, the problem may be greater 

when there are more insurers. This is because more choices means that each consumer likely has a 

smaller gap between the first v. second choice insurer, and so has a higher probability of switching 
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insurers in response to an exclusion of a hospital system. On the other hand, the effect of variation 

in the level of competition in the insurance market may be captured by the simulation methods 

indirectly, e.g., through the gross margins of hospitals. So we have no clear prediction regarding 

how performance of the simulation methods will vary with the number of insurers. And as discussed 

below, the results were mixed in this regard. 

The results are given in Table 12. For DWTP/Q, the MAPE ratio increases in the number of 

insurers within each of the five merger categories. For example, within the 4.5%-5.5% category, the 

MAPE increases from 0.094 for a single insurer to 0.168 for nine insurers. Even given this variation, 

the MAPE ratio for DWTP/Q is quite low across all categories of mergers. 

In contrast, WTP/Q does not exhibit a pattern of performing relatively less well when the 

number of insurers is large. Overall, the MAPE ratio of WTP/Q exhibits somewhat less sensitivity 

to the number of insurers (compared to DWTP/Q) and typically decreases in the number of insurers. 

For example, in the (4.5%, 5.5%) category, the MAPE ratio of WTP/Q decreases from 0.280 when 

there is one insurer to 0.241 when there are nine. 

UPP exhibits the pattern of performing less well when the number of insurers is large in the 

(0.5%, 1.5%) and (4.5%, 5.5%) categories, and to a lesser extent in the (9.5%, 10.5%) category. But 

we find little evidence of a systematic relationship between the MAPE ratio of UPP and the number 

of insurers in the (14.5%, 15.5%) and (19.5%, 20.5%) categories of mergers. 
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Table 12: MAPE Ratios by Number of Insurers 

Mergers s.t. # Mean Hosp 
Δ
p
p
r

r ∈ Insurers N Gr Margin 

1 

3 

(0.5%,1.5%) 5 

7 

9 

1 

3 

(4.5%,5.5%) 5 

7 

9 

1 

3 

(9.5%,10.5%) 5 

7 

9 

1 

3 

(14.5%,15.5%) 5 

7 

9 

1 

3 

(19.5%,20.5%) 5 

7 

9 

10,675 0.495 0.326 0.105 0.461 

9,157 0.457 0.268 0.147 0.491 

9,195 0.468 0.283 0.155 0.574 

8,394 0.464 0.284 0.168 0.606 

8,486 0.463 0.284 0.162 0.618 

1,246 0.550 0.280 0.094 0.248 

1,083 0.512 0.238 0.151 0.249 

1,066 0.521 0.228 0.165 0.293 

982 0.519 0.245 0.171 0.307 

1,102 0.514 0.241 0.168 0.319 

372 0.577 0.231 0.085 0.146 

305 0.540 0.196 0.130 0.151 

328 0.566 0.207 0.163 0.179 

304 0.545 0.203 0.183 0.171 

272 0.551 0.194 0.176 0.180 

138 0.575 0.251 0.095 0.203 

116 0.586 0.198 0.119 0.202 

120 0.576 0.194 0.142 0.178 

108 0.576 0.241 0.150 0.211 

96 0.560 0.192 0.167 0.198 

67 0.627 0.252 0.086 0.222 

47 0.569 0.216 0.135 0.323 

48 0.597 0.187 0.156 0.281 

35 0.604 0.173 0.152 0.211 

42 0.588 0.153 0.166 0.254 

WTP/Q DWTP/Q UPP 
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A8.2 Relative Bias and MAPE Ratios by Parameter Values 

In this appendix, we give the relative bias and MAPE ratio results conditional on specific values of 

the parameters in our theoretical model. We provide these results for the five categories of mergers 

discussed in Section 6.1. Table 13 gives the results for the category of mergers such that the true 

price effects lies in (0.5%, 1.5%). Tables 14 through 17 give comparable results for mergers in the 

(4.5%, 5.5%), (9.5%, 10.5%), (14.5%, 15.5%) and (19/5%, 20.5%) categories, respectively. Through-

out, we use the MAPE ratio, which measures the dispersion of the predicted price effects about the 

true price effects (or equivalently, the dispersion of the prediction errors about zero), as the main 

metric of performance. 

With respect to the travel cost parameters (γ1, γ2), we find little variation in the performance 

of DWTP/Q based on variation in these parameters for mergers in the (4.5%, 5.5%) category and 

higher. For mergers in the (0.5%, 1.5%) category, DWTP/Q does perform less well in markets 

in which (γ1, γ2) are higher. WTP/Q exhibits the opposite pattern in that it’s performance is 

not monotonically related to the values of (γ1, γ2) for mergers in the (0.5%, 1.5%) category, but 

WTP/Q performs better when (γ1, γ2) take on their higher values in the (4.5%, 5.5%) category and 

higher. UPP performs worse when (γ1, γ2) take on their higher values in the (14.5%, 15.5%) and 

(14.5%, 15.5%) categories only. 

We find little variation in the performance of all three simulation methods based on variation in 

the value of the price sensitivity parameter θ. We view this result as significant because, in practice, 

little is known about the price sensitivity of consumers in the insurance market. 

As discussed in Section A8.1, intuition suggests that the simulation methods should perform 

less well in markets in which the value of λ is high. However, the results indicate that this pattern 

is consistently manifested in DWTP/Q only. In contrast, the performance of WTP/Q is largely 

invariant to variation in the value of λ. The performance of UPP exhibits the curious pattern of 

performing less well when λ is high and the true price effects are relatively low (see Tables 13 and 

14), but performing better when λ is high and the true price effects are relatively high (see Tables 

16 and 17). 

We find the WTP/Q and DWTP/Q perform better as the number of hospital systems in the 

market increases, but the performance of UPP is largely invariant to the number of hospital systems. 

This could be explained by the fact that an additional hospital system adds another degree of 
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freedom in the regression models underlying WTP/Q and DWTP/Q. Ceteris paribus, this additional 

observation would increase the precision of the predicted price effects of WTP/Q and DWTP/Q 

but is irrelevant for UPP. However, it seems unlikely that this consideration is the only meaningful 

explanation since the magnitudes of the bias of WTP/Q and DWTP/Q also decrease as the number 

of hospital systems increase. While additional degrees of freedom should increase the precision of 

the predicted price effects, it is unclear why additional degrees of freedom would affect bias. 

We discuss the results based on variation in the number of insurers in Section A8.1. 

We find little variation in the performance of all three simulation methods based on variation 

in the value of non-inpatient care attributes of insurance Z. We view this result as significant 

because, in practice, little is known about the relative value consumers place on inpatient care 

versus non-inpatient care attributes in their insurance choices. 

Finally, we find little variation in the performance of all three simulation methods based on 

variation in the values of: the mean of the hospital quality distribution E[ηj ], the standard deviation 

of the hospital quality distribution sd[ηj ], the type of location distribution (Uniform or Normal), 

and the administrative cost incurred by insurers τ . 
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Table 13: Relative Bias and MAPE Ratios by Parameter Values 
Mergers s.t. Δpr ∈ (0.5%, 1.5%)pr 

N 

Mean Hosp 

Gr Margin 

WTP

Rel. Bias 

/Q 

MAPE 

DWT

Rel. Bias 

P/Q 

MAPE 

UPP 

Rel. Bias MAPE 

0.4 16,399 0.393 -0.183 0.243 0.248 0.168 0.392 0.300 

α 0.5 15,137 0.473 -0.169 0.292 0.253 0.110 0.770 0.578 

0.6 14,371 0.557 -0.176 0.359 0.229 0.136 1.275 0.930 

0.1,0.001 19,767 0.441 -0.298 0.291 0.082 0.099 0.753 0.540 

γ1, γ2 0.3,0.003 14,675 0.472 -0.115 0.263 0.297 0.172 0.793 0.515 

0.5,0.005 11,465 0.519 -0.044 0.331 0.454 0.259 0.861 0.549 

0.5 15,664 0.567 -0.184 0.298 0.245 0.140 0.838 0.558 

θ 0.8 15,398 0.456 -0.177 0.286 0.244 0.138 0.776 0.523 

1.1 14,845 0.384 -0.168 0.287 0.241 0.145 0.764 0.522 

2 15,891 0.313 -0.261 0.301 0.103 0.102 0.526 0.426 

λ 5 15,757 0.506 -0.169 0.281 0.258 0.150 0.813 0.576 

8 14,259 0.606 -0.089 0.287 0.385 0.194 1.068 0.656 

5 3,003 0.470 -0.247 0.403 0.342 0.172 0.894 0.496 

6 4,437 0.469 -0.217 0.358 0.315 0.166 0.832 0.507 

# Hospital 7 6,420 0.467 -0.201 0.320 0.257 0.146 0.819 0.515 

Systems 8 8,857 0.468 -0.176 0.292 0.240 0.142 0.766 0.525 

9 10,661 0.480 -0.162 0.274 0.218 0.132 0.802 0.562 

10 12,529 0.467 -0.144 0.249 0.213 0.131 0.754 0.541 

1 10,675 0.495 -0.304 0.326 0.066 0.105 0.504 0.461 

3 9,157 0.457 -0.172 0.268 0.248 0.147 0.703 0.491 

# Insurers 5 9,195 0.468 -0.146 0.283 0.291 0.155 0.877 0.574 

7 8,394 0.464 -0.118 0.284 0.321 0.168 0.952 0.606 

9 8,486 0.463 -0.110 0.284 0.335 0.162 1.006 0.618 

2 14,845 0.477 -0.144 0.283 0.283 0.158 0.883 0.608 

Z 5 15,506 0.467 -0.187 0.292 0.231 0.135 0.767 0.511 

8 15,556 0.467 -0.196 0.295 0.218 0.133 0.733 0.492 

14 14,924 0.470 -0.180 0.286 0.241 0.144 0.797 0.539 

E[ηj ] 15 15,280 0.473 -0.179 0.291 0.243 0.140 0.791 0.541 

16 15,703 0.468 -0.170 0.293 0.246 0.139 0.791 0.525 

1.4 16,110 0.466 -0.177 0.278 0.226 0.138 0.789 0.544 

sd[ηj ] 1.6 15,571 0.471 -0.171 0.289 0.243 0.138 0.803 0.545 

1.8 14,226 0.476 -0.180 0.306 0.264 0.149 0.786 0.509 

Location Uniform 22,153 0.471 -0.198 0.300 0.233 0.138 0.791 0.533 

Distribution Normal 23,754 0.470 -0.155 0.282 0.253 0.144 0.795 0.536 

0.50 15,320 0.467 -0.180 0.290 0.243 0.141 0.767 0.529 

τ 0.75 15,584 0.473 -0.177 0.287 0.242 0.140 0.803 0.539 

1.00 15,003 0.471 -0.171 0.293 0.246 0.142 0.809 0.536 
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Table 14: Relative Bias and MAPE Ratios by Parameter Value 
Mergers s.t. Δpr ∈ (4.5%, 5.5%)pr 

N 

Mean Hosp 

Gr Margin 

WTP

Rel. Bias 

/Q 

MAPE 

DWT

Rel. Bias 

P/Q 

MAPE 

UPP 

Rel. Bias MAPE 

0.4 1,963 0.450 -0.137 0.191 0.194 0.180 0.085 0.142 

α 0.5 1,805 0.533 -0.151 0.255 0.173 0.118 0.347 0.306 

0.6 1,711 0.600 -0.175 0.333 0.137 0.115 0.651 0.533 

0.1,0.001 1,284 0.496 -0.294 0.296 0.096 0.136 0.461 0.362 

γ1, γ2 0.3,0.003 1,972 0.512 -0.161 0.225 0.161 0.143 0.301 0.245 

0.5,0.005 2,223 0.550 -0.066 0.231 0.219 0.153 0.324 0.260 

0.5 2,149 0.600 -0.158 0.248 0.163 0.139 0.408 0.318 

θ 0.8 1,725 0.503 -0.157 0.246 0.168 0.142 0.330 0.261 

1.1 1,605 0.444 -0.144 0.241 0.179 0.152 0.287 0.252 

2 1,414 0.357 -0.219 0.259 0.078 0.100 0.126 0.194 

λ 5 2,072 0.538 -0.154 0.241 0.164 0.147 0.367 0.297 

8 1,993 0.628 -0.107 0.243 0.240 0.182 0.486 0.354 

5 666 0.523 -0.237 0.352 0.205 0.165 0.400 0.262 

6 804 0.518 -0.180 0.287 0.215 0.174 0.369 0.288 

# Hospital 7 884 0.524 -0.166 0.260 0.179 0.151 0.367 0.272 

Systems 8 969 0.511 -0.141 0.232 0.158 0.140 0.307 0.271 

9 1,024 0.534 -0.127 0.225 0.146 0.125 0.359 0.304 

10 1,132 0.529 -0.112 0.198 0.138 0.125 0.312 0.274 

1 1,246 0.550 -0.240 0.280 0.051 0.094 0.255 0.248 

3 1,083 0.512 -0.168 0.238 0.161 0.151 0.288 0.249 

# Insurers 5 1,066 0.521 -0.127 0.228 0.205 0.165 0.377 0.293 

7 982 0.519 -0.103 0.245 0.228 0.171 0.418 0.307 

9 1,102 0.514 -0.113 0.241 0.224 0.168 0.422 0.319 

2 1,781 0.531 -0.133 0.238 0.189 0.158 0.384 0.309 

Z 5 1,797 0.525 -0.160 0.248 0.161 0.136 0.350 0.275 

8 1,901 0.517 -0.168 0.252 0.159 0.139 0.313 0.255 

14 1,806 0.523 -0.158 0.250 0.167 0.140 0.361 0.288 

E[ηj ] 15 1,786 0.528 -0.147 0.243 0.173 0.145 0.353 0.281 

16 1,887 0.522 -0.157 0.247 0.168 0.146 0.331 0.267 

1.4 1,932 0.523 -0.159 0.243 0.156 0.140 0.338 0.277 

sd[ηj ] 1.6 1,871 0.524 -0.149 0.241 0.172 0.145 0.345 0.277 

1.8 1,676 0.526 -0.153 0.263 0.182 0.149 0.362 0.281 

Location Uniform 2,664 0.525 -0.172 0.264 0.159 0.138 0.351 0.280 

Distribution Normal 2,815 0.523 -0.136 0.234 0.179 0.149 0.346 0.276 

0.50 1,921 0.523 -0.158 0.248 0.168 0.140 0.345 0.268 

τ 0.75 1,809 0.525 -0.159 0.240 0.165 0.146 0.338 0.277 

1.00 1,749 0.524 -0.144 0.250 0.176 0.145 0.362 0.289 
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Table 15: Relative Bias and MAPE Ratios by Parameter Value 
Mergers s.t. Δpr ∈ (9.5%, 10.5%)pr 

N 

Mean Hosp 

Gr Margin 

WTP

Rel. Bias 

/Q 

MAPE 

DWT

Rel. Bias 

P/Q 

MAPE 

UPP 

Rel. Bias MAPE 

0.4 544 0.495 -0.125 0.171 0.184 0.180 -0.121 0.152 

α 0.5 548 0.558 -0.138 0.214 0.153 0.115 0.045 0.147 

0.6 489 0.626 -0.182 0.288 0.101 0.109 0.208 0.204 

0.1,0.001 210 0.511 -0.289 0.301 0.090 0.146 0.182 0.155 

γ1, γ2 0.3,0.003 552 0.553 -0.158 0.199 0.153 0.135 0.040 0.162 

0.5,0.005 819 0.572 -0.104 0.190 0.159 0.133 0.001 0.172 

0.5 648 0.621 -0.146 0.207 0.131 0.130 0.083 0.156 

θ 0.8 516 0.540 -0.153 0.228 0.151 0.135 0.026 0.174 

1.1 417 0.480 -0.142 0.190 0.168 0.147 -0.015 0.163 

2 332 0.391 -0.213 0.240 0.059 0.081 -0.146 0.182 

λ 5 605 0.562 -0.154 0.205 0.141 0.139 0.052 0.150 

8 644 0.638 -0.107 0.189 0.199 0.176 0.120 0.171 

5 243 0.549 -0.189 0.258 0.208 0.220 0.063 0.197 

6 249 0.556 -0.191 0.240 0.177 0.171 0.042 0.157 

# Hospital 7 256 0.549 -0.151 0.223 0.155 0.140 0.015 0.169 

Systems 8 279 0.556 -0.144 0.204 0.131 0.133 0.013 0.151 

9 283 0.565 -0.136 0.179 0.108 0.103 0.038 0.156 

10 271 0.568 -0.081 0.162 0.117 0.111 0.061 0.172 

1 372 0.577 -0.208 0.231 0.038 0.085 0.011 0.146 

3 305 0.540 -0.175 0.196 0.140 0.130 0.015 0.151 

# Insurers 5 328 0.566 -0.125 0.207 0.190 0.163 0.055 0.179 

7 304 0.545 -0.123 0.203 0.184 0.183 0.058 0.171 

9 272 0.551 -0.087 0.194 0.214 0.176 0.060 0.180 

2 512 0.564 -0.132 0.219 0.166 0.149 0.071 0.156 

Z 5 515 0.567 -0.151 0.202 0.134 0.130 0.040 0.163 

8 554 0.541 -0.158 0.206 0.143 0.134 0.007 0.172 

14 493 0.554 -0.156 0.211 0.147 0.133 0.045 0.157 

E[ηj ] 15 548 0.560 -0.150 0.203 0.144 0.136 0.032 0.175 

16 540 0.556 -0.136 0.210 0.151 0.141 0.038 0.162 

1.4 520 0.565 -0.131 0.178 0.147 0.134 0.038 0.165 

sd[ηj ] 1.6 526 0.557 -0.152 0.217 0.145 0.130 0.043 0.174 

1.8 535 0.550 -0.158 0.222 0.151 0.141 0.034 0.156 

Location Uniform 814 0.553 -0.177 0.228 0.126 0.125 0.027 0.159 

Distribution Normal 767 0.562 -0.116 0.187 0.170 0.153 0.050 0.171 

0.50 529 0.560 -0.158 0.220 0.145 0.130 0.028 0.159 

τ 0.75 529 0.552 -0.137 0.207 0.157 0.155 0.035 0.177 

1.00 523 0.559 -0.146 0.202 0.141 0.127 0.052 0.157 
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Table 16: Relative Bias and MAPE Ratios by Parameter Value 
Mergers s.t. Δpr ∈ (14.5%, 15.5%)pr 

N 

Mean Hosp 

Gr Margin 

WTP

Rel. Bias 

/Q 

MAPE 

DWT

Rel. Bias 

P/Q 

MAPE 

UPP 

Rel. Bias MAPE 

0.4 216 0.517 -0.114 0.157 0.170 0.152 -0.250 0.256 

α 0.5 210 0.582 -0.163 0.218 0.147 0.116 -0.118 0.177 

0.6 152 0.649 -0.180 0.304 0.077 0.103 0.012 0.124 

0.1,0.001 63 0.562 -0.313 0.329 0.108 0.136 0.047 0.142 

γ1, γ2 0.3,0.003 173 0.566 -0.169 0.200 0.151 0.156 -0.164 0.208 

0.5,0.005 342 0.582 -0.109 0.190 0.136 0.113 -0.150 0.210 

0.5 277 0.627 -0.153 0.224 0.141 0.133 -0.073 0.162 

θ 0.8 182 0.545 -0.164 0.219 0.130 0.128 -0.168 0.211 

1.1 119 0.501 -0.118 0.205 0.139 0.120 -0.219 0.235 

2 102 0.397 -0.195 0.275 0.071 0.086 -0.274 0.300 

λ 5 238 0.576 -0.167 0.204 0.133 0.126 -0.138 0.192 

8 238 0.650 -0.111 0.220 0.169 0.161 -0.067 0.162 

5 116 0.565 -0.195 0.289 0.193 0.187 -0.080 0.199 

6 97 0.574 -0.193 0.248 0.156 0.146 -0.142 0.211 

# Hospital 7 89 0.572 -0.167 0.190 0.134 0.120 -0.152 0.239 

Systems 8 91 0.574 -0.142 0.201 0.127 0.112 -0.153 0.208 

9 87 0.586 -0.088 0.189 0.098 0.116 -0.128 0.169 

10 98 0.581 -0.098 0.162 0.099 0.087 -0.157 0.155 

1 138 0.575 -0.219 0.251 0.043 0.095 -0.157 0.203 

3 116 0.586 -0.134 0.198 0.137 0.119 -0.142 0.202 

# Insurers 5 120 0.576 -0.117 0.194 0.184 0.142 -0.104 0.178 

7 108 0.576 -0.145 0.241 0.175 0.150 -0.125 0.211 

9 96 0.560 -0.112 0.192 0.172 0.167 -0.133 0.198 

2 183 0.582 -0.148 0.206 0.143 0.138 -0.100 0.167 

Z 5 190 0.567 -0.143 0.208 0.132 0.127 -0.155 0.208 

8 205 0.577 -0.157 0.242 0.137 0.126 -0.142 0.215 

14 173 0.573 -0.153 0.228 0.124 0.121 -0.125 0.214 

E[ηj ] 15 209 0.565 -0.152 0.220 0.141 0.140 -0.156 0.202 

16 196 0.588 -0.143 0.208 0.145 0.127 -0.116 0.166 

1.4 196 0.576 -0.134 0.204 0.128 0.116 -0.134 0.187 

sd[ηj ] 1.6 168 0.573 -0.162 0.221 0.123 0.127 -0.160 0.207 

1.8 214 0.576 -0.154 0.219 0.156 0.137 -0.112 0.198 

Location Uniform 310 0.577 -0.174 0.222 0.122 0.125 -0.144 0.202 

Distribution Normal 268 0.573 -0.121 0.205 0.154 0.128 -0.121 0.183 

0.50 190 0.570 -0.147 0.199 0.152 0.142 -0.137 0.204 

τ 0.75 208 0.568 -0.136 0.215 0.133 0.113 -0.139 0.196 

1.00 180 0.588 -0.167 0.244 0.127 0.132 -0.122 0.194 
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Table 17: Relative Bias and MAPE Ratios by Parameter Value 
Mergers s.t. Δpr ∈ (19.5%, 20.5%)pr 

N 

Mean Hosp 

Gr Margin 

WTP

Rel. Bias 

/Q 

MAPE 

DWT

Rel. Bias 

P/Q 

MAPE 

UPP 

Rel. Bias MAPE 

0.4 69 0.514 -0.104 0.144 0.183 0.162 -0.380 0.386 

α 0.5 100 0.599 -0.164 0.206 0.146 0.128 -0.261 0.250 

0.6 70 0.684 -0.231 0.277 0.053 0.112 -0.121 0.159 

0.1,0.001 15 0.550 -0.298 0.344 0.087 0.146 -0.117 0.139 

γ1, γ2 0.3,0.003 74 0.578 -0.209 0.230 0.112 0.138 -0.248 0.265 

0.5,0.005 150 0.615 -0.132 0.173 0.142 0.132 -0.271 0.240 

0.5 106 0.641 -0.171 0.190 0.101 0.130 -0.223 0.221 

θ 0.8 82 0.578 -0.184 0.210 0.149 0.145 -0.278 0.271 

1.1 51 0.547 -0.126 0.220 0.156 0.131 -0.280 0.288 

2 31 0.413 -0.233 0.232 0.078 0.094 -0.385 0.409 

λ 5 100 0.573 -0.153 0.179 0.142 0.147 -0.290 0.267 

8 108 0.677 -0.159 0.206 0.132 0.130 -0.183 0.200 

5 57 0.570 -0.196 0.249 0.198 0.186 -0.259 0.265 

6 46 0.614 -0.233 0.276 0.122 0.140 -0.278 0.241 

# Hospital 7 28 0.589 -0.115 0.122 0.162 0.190 -0.237 0.271 

Systems 8 40 0.617 -0.138 0.189 0.098 0.104 -0.229 0.184 

9 37 0.601 -0.113 0.133 0.084 0.107 -0.279 0.292 

10 31 0.615 -0.158 0.164 0.080 0.082 -0.229 0.217 

1 67 0.627 -0.243 0.252 0.038 0.086 -0.235 0.222 

3 47 0.569 -0.183 0.216 0.132 0.135 -0.298 0.323 

# Insurers 5 48 0.597 -0.123 0.187 0.180 0.156 -0.255 0.281 

7 35 0.604 -0.107 0.173 0.183 0.152 -0.204 0.211 

9 42 0.588 -0.123 0.153 0.169 0.166 -0.277 0.254 

2 76 0.617 -0.163 0.226 0.118 0.132 -0.229 0.221 

Z 5 87 0.584 -0.125 0.170 0.159 0.143 -0.257 0.251 

8 76 0.599 -0.217 0.232 0.108 0.126 -0.276 0.272 

14 88 0.595 -0.164 0.191 0.131 0.146 -0.257 0.241 

E[ηj ] 15 80 0.602 -0.161 0.194 0.132 0.125 -0.269 0.276 

16 71 0.602 -0.174 0.203 0.124 0.137 -0.234 0.221 

1.4 62 0.604 -0.177 0.181 0.100 0.113 -0.254 0.219 

sd[ηj ] 1.6 81 0.600 -0.194 0.196 0.108 0.137 -0.231 0.248 

1.8 96 0.596 -0.136 0.203 0.166 0.144 -0.274 0.251 

Location Uniform 134 0.591 -0.164 0.201 0.130 0.122 -0.273 0.265 

Distribution Normal 105 0.610 -0.169 0.183 0.129 0.155 -0.231 0.222 

0.50 77 0.581 -0.150 0.172 0.147 0.147 -0.298 0.274 

τ 0.75 81 0.612 -0.177 0.232 0.121 0.113 -0.231 0.215 

1.00 81 0.604 -0.170 0.201 0.121 0.138 -0.236 0.237 
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A8.3 Modifications to Baseline Parameterizations and Assumptions 

In this appendix, we present relative bias and MAPE results under seventeen modifications to 

our baseline parameterizations and assumptions. For each modification, we replicate our results 

for all 231,925 mergers in our 9,000 simulated hospital markets. As in Section 6, we present 

these results for categories of mergers, indexed by r, for which the true price effect, denoted 
Δ
p
p
r

r , lies in the following ranges: (0.5%,1.5%), (4.5%,5.5%), (9.5%,10.5%), (14.5%,15.5%), and 

(19.5%,20.5%). We also list the mean hospital gross margin under each modification to illustrate 

how each modification affects, on average, the market power of hospital systems. In each of 

the tables below, we include the results from our baseline model in the top block to facilitate 

comparison. 

In our first modification, denoted M1 in the Table 18, we modify the equilibrium concept by 

assuming that insurers cannot re-optimize premiums under hypothetical exclusions of hospital 

systems. This modification is discussed in Section A4. As illustrated in Figure 5, we find 

that the bias exhibited by each of the simulation methods becomes more negative under this 

restricted equilibrium concept. Of particular interest is that fact that the positive bias exhibited 

by DWTP/Q is eliminated. The MAPE ratio of DWTP/Q is also significantly lower compared 

to our baseline results. 

In modifications M2-M6, we assume different sets of possible values of the key parameters 

in consumers’ preferences over insurers, θ and λ. In M2 and M3, we use lower and higher 

values of θ, respectively, compared to our baseline parameterization. In M2, we draw of θ from 

{0.4,0.7,1.0} instead of {0.5,0.8,1.1}. In M3, we draw θ from {0.6,0.9,1.2}. In M4 and M5, we 

use higher and lower values of λ, respectively, compared to our baseline parameterization. In 

M4, we draw λ from {3,6,9} instead of {2,5,8} In M5, we draw λ from {1,4,7}. In M6, we draw 

θ from {0.6,0.9,1.2} and λ from {3,6,9}. As expected, we find that hospital gross margins are 

higher when consumers are less price sensitive (θ is lower), and that hospital gross margins are 

lower when consumers are more price sensitive (θ is higher). Similarly, we find that hospital 

gross margins are higher when consumers are more sensitive to reductions in the value of the 

provider network (λ is higher), and that hospital gross margins are lower when consumers are 

less sensitive to reductions in the value of the provider network (λ is lower). Generally, we find 

that our baseline results are robust to these alternative values of θ and λ. 

In M7, we reduce the number of hospitals in our markets from 12 to 8 and the number of 

hospital systems from 5-10 to 4-7. We find that this modification does reduce the performance 

of WTP/Q and DWTP/Q by a small amount but does not materially affect the performance of 

UPP. One possible explanation is that reducing the number of systems in each market reduces 

the number of observations in the regression models underlying WTP/Q and DWTP/Q, making 

the predictions of those methods less precise. This is not a relevant consideration for UPP. 
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Turning to Table 19, we explore the sensitivity of our results under alternative groupings of 

consumers into insurance buying groups in M8 and M9. (See Appendix A1.5 for a discussion 

of our baseline approach to defining insurance buying groups.) In M8, we assume that all 

consumers buy insurance as individuals. This modification is of particular interest, since none 

of the three simulation methods directly account for the fact that most consumers purchase 

health insurance through groups. Hence, one might expect the simulation methods to perform 

better under this modification. Surprisingly, we find the opposite result for DWTP/Q. While 

the MAPE ratios for WTP/Q under this modification are similar to our baseline results, the 

MAPE ratios for DWTP/Q are significantly higher compared to our baseline results. The 

results for UPP are somewhat mixed. 

In M9, we increase the extent to which consumers are aggregated into insurance buying 

groups by assuming that each of the 500,000 consumers is randomly assigned to one of 5,000 

insurance buying groups of size 100. We find that this modification has little effect on the 

performance of WTP/Q and UPP, but the performance of DWTP/Q is slightly better compared 

to our baseline results. 

In M10, we test the robustness of our results to misspecification of the model of consumer 

preferences over hospitals. (See equation (A2).) Specifically, we assume that the true travel 

cost parameters (γ1, γ2) vary across consumers, but the analyst does nothing to account for 

this heterogeneity. Instead of assuming that (γ1, γ2) take on the values (0.1,001), (0.3,0.003), 

or (0.5,0.005) and are constant across consumer within a simulated market, we assume that for 

each consumer 

37γ1i ∼ N(0.3, 0.05) and γ2i = 0.001γ1i. (A15) 

We assume that the analyst simply estimates the discrete choice model underlying WTP and 

the diversion ratios, ignoring the true underlying heterogeneity in travel cost parameters. We 

find that this misspecification does little to reduce the performance of WTP/Q and UPP. It does 

reduce the performance of DWTP/Q by a significant amount for mergers in the (0.5%,1.5%) 

category but by only a small amount for the other categories of mergers. For the categories 

(4.5%,5.5%) and higher, the MAPE ratio of DWTP/Q remains below 0.20. 

In M11, we assume that travel costs are linear in the distance between the consumer and the 

hospitals, as opposed to quadratic. That is, we assume γ2 = 0. We find that this modification 

has almost no effect on our results. 

In M12, we test whether our results are sensitive to a different distribution of risk types 

Fρ. Specifically, we assume that each consumer has the same probability of requiring inpatient 

37We winsorize the draws of γ1i at 0.1 and 0.5. The probability of winsorization is approximately 6.33E-5 or 
about 32 of the 500,000 consumers. 
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care, and this probability is equal to the expected value of ρi in our baseline model. We find 

that this modification has almost no effect on our results. 

Finally, in M13 and M14, we test whether our results are sensitive to a significant increase 

in consumers’ valuation of healthcare not related to inpatient care Z and expenditures on that 

care pz. Specifically, we increase the values of Z from {2,5,8} to {4,7,10} in M13 and the value 

of pz from $3,200 to $5,000 in M14. We find that these modifications have almost little effect 

on our results. WTP/Q performs slightly worse than it does in our baseline results, DWTP/Q 

performs slightly better than it does in our baseline results. The performance is UPP is largely 

unchanged. 

Turning to Table 20, we explore the sensitivity of our results to measurement error in 

hospital system prices and costs. As noted above, we assume that hospital system prices and 

costs are observed without error in our baseline results. In the real world, prices and costs may 

be observed with meaningful measurement error. This is likely to degrade the performance of 

the simulation methods to at least some degree. 

In (M15), we assume that hospital system prices within a given market are observed with 

an IID Normal mean zero error. Hence, we assume that the observed price for hospital system 

j is 

observed p = pj + errorp 
j j , 

pwhere pj denotes the true equilibrium price generated in our theoretical model and error ∼j 

N(0, vp). We assume that vp is proportional to the standard deviation of hospital system prices 

in the market. While we have no way to characterize how much measurement error an analyst 

would typically encounter in practice, we introduce what appears to us to be a reasonable 

amount of error by scaling this standard deviation so that, on average, the true hospital system 

prices in each market explain about 90% of the variation in the observed hospital system prices. 

The scaling that meets this standard in our simulations is to set vp equal to 0.35 times the 

standard deviation of hospital system prices in the market. 

In (M16), we assume that hospital system costs within a given market are observed with 

an IID Normal mean zero error. 

observed c cj = cj + error j , 

cwhere cj denotes the true hospital system cost in our theoretical model and error ∼ N(0, vc).j 
cHere, we assume that v equals the average standard deviation (across markets) of hospital 
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costs cj . Hence, we set vc = 0.3. Given this assumption, the true hospital system costs explain 

about 52% of the variation in the observed hospital costs within each market, on average.38 

In (M17), we assume that both hospital system prices and costs are measured with error, 

with vp still set to 0.35 times the standard deviation of hospital system prices in the market 
cand v still set to 0.3. 

We find that measurement error in prices degrades the performance (as measured by the 

MAPE ratio) of WTP/Q and DWTP/Q. However, the degradation is not so great that the 

simulation methods become unreliable under the amount of measurement error we apply here. 

Measurement error in costs results in a smaller degradation in the performance of DWTP/Q, 

but actually improves the performance of WTP/Q. Combining measurement error in prices 

and costs results in about the same level performance as measurement error in price alone for 

both WTP/Q and DWTP/Q. In contrast, we find that neither measurement error in prices nor 

costs, or price and costs combined, degrades the performance of UPP. 

38The reason we chose this level of measurement error in cost is as follows. In testing the effect of measurement 
in cost, we found that measurement error in costs had little effect on the performance of the simulation methods. 
Therefore, we chose a value of v c that results in as much measurement error in hospitals costs as there is true 
variation in hospital costs. We view this as likely a high amount of measurement error. 

82 

http:average.38


Table 18: Results Summary Under Modifications to 
Baseline Parameterizations and Assumptions 

ΔprMean Hosp 
pr 

Modification Gr Margin ∈ 

WTP/Q 

Rel. Bias MAPE 

DWTP/Q 

Rel. Bias MAPE 

UPP 

Rel. Bias MAPE 

(0.5%,1.5%) -0.194 0.290 0.268 0.141 0.872 0.534 

(4.5%,5.5%) -0.154 0.246 0.170 0.144 0.349 0.278 

Baseline 0.492 (9.5%,10.5%) -0.148 0.209 0.148 0.138 0.038 0.165 

(14.5%,15.5%) -0.149 0.212 0.137 0.127 -0.133 0.197 

(19.5%,20.5%) -0.166 0.194 0.130 0.135 -0.254 0.246 

(M1) (0.5%,1.5%) -0.269 0.294 0.184 0.142 0.641 0.427 

Insurers Do Not (4.5%,5.5%) -0.237 0.274 0.063 0.110 0.199 0.186 

Re-Optimize 0.508 (9.5%,10.5%) -0.239 0.262 0.029 0.101 -0.054 0.172 

Premiums (14.5%,15.5%) -0.255 0.268 -0.014 0.083 -0.196 0.225 

(19.5%,20.5%) -0.223 0.232 0.016 0.080 -0.295 0.307 

(M2) (0.5%,1.5%) -0.195 0.292 0.270 0.142 0.883 0.541 

(4.5%,5.5%) -0.153 0.249 0.170 0.141 0.368 0.287 

θ ∈ 0.525 (9.5%,10.5%) -0.155 0.205 0.144 0.139 0.055 0.174 

{0.4, 0.7, 1.0} (14.5%,15.5%) -0.151 0.207 0.131 0.128 -0.113 0.169 

(19.5%,20.5%) -0.158 0.211 0.144 0.123 -0.224 0.254 

(M3) (0.5%,1.5%) -0.189 0.288 0.269 0.142 0.867 0.529 

(4.5%,5.5%) -0.151 0.243 0.172 0.146 0.330 0.268 

θ ∈ 0.462 (9.5%,10.5%) -0.139 0.213 0.155 0.134 0.033 0.173 

{0.6, 0.9, 1.2} (14.5 15.5%) -0.129 0.200 0.129 0.125 -0.155 0.199 

(19.5%,20.5%) -0.148 0.184 0.146 0.133 -0.279 0.305 

(M4) (0.5%,1.5%) -0.156 0.289 0.323 0.158 0.976 0.581 

(4.5%,5.5%) -0.140 0.245 0.190 0.155 0.399 0.299 

λ ∈ 0.541 (9.5%,10.5%) -0.133 0.207 0.160 0.147 0.072 0.170 

{3, 6, 9} (14.5%,15.5%) -0.144 0.211 0.148 0.135 -0.102 0.168 

(19.5%,20.5%) -0.144 0.192 0.149 0.133 -0.230 0.240 

(M5) (0.5%,1.5%) -0.224 0.293 0.219 0.130 0.770 0.475 

(4.5%,5.5%) -0.171 0.247 0.147 0.135 0.291 0.266 

λ ∈ 0.426 (9.5%,10.5%) -0.146 0.214 0.143 0.134 0.031 0.179 

{1, 4, 7} (14.5%,15.5%) -0.145 0.211 0.135 0.122 -0.125 0.184 

(19.5%,20.5%) -0.176 0.195 0.106 0.108 -0.263 0.283 

(M6) (0.5%,1.5%) -0.156 0.287 0.320 0.156 0.966 0.576 

θ ∈ (4.5%,5.5%) -0.140 0.244 0.190 0.156 0.376 0.292 

{0.6, 0.9, 1.2} 0.512 (9.5%,10.5%) -0.142 0.209 0.154 0.147 0.046 0.165 

λ ∈ (14.5%,15.5%) -0.141 0.217 0.153 0.140 -0.125 0.193 

{3, 6, 9} (19.5%,20.5%) -0.157 0.192 0.150 0.137 -0.241 0.252 

(M7) (0.5%,1.5%) -0.182 0.369 0.428 0.188 0.977 0.541 

(4.5%,5.5%) -0.158 0.294 0.236 0.182 0.409 0.298 

#J = 8 0.511 (9.5%,10.5%) -0.182 0.270 0.197 0.171 0.087 0.177 

#S ∈ {4, 5, 6, 7} (14.5%,15.5%) -0.189 0.256 0.176 0.153 -0.117 0.187 

(19.5%,20.5%) -0.177 0.245 0.174 0.156 -0.239 0.262 
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Table 19: Results Summary Under Modifications to 
Baseline Parameterizations and Assumptions 

ΔprMean Hosp 
pr 

Modification Gr Margin ∈ 

WTP/Q 

Rel. Bias MAPE 

DWTP/Q 

Rel. Bias MAPE 

UPP 

Rel. Bias MAPE 

(0.5%,1.5%) -0.194 0.290 0.268 0.141 0.872 0.534 

(4.5%,5.5%) -0.154 0.246 0.170 0.144 0.349 0.278 

Baseline 0.492 (9.5%,10.5%) -0.148 0.209 0.148 0.138 0.038 0.165 

(14.5%,15.5%) -0.149 0.212 0.137 0.127 -0.133 0.197 

(19.5%,20.5%) -0.166 0.194 0.130 0.135 -0.254 0.246 

(M8) (0.5%,1.5%) -0.116 0.288 0.353 0.173 0.711 0.417 

500,000 Insurance (4.5%,5.5%) -0.092 0.237 0.247 0.224 0.226 0.208 

Buying Groups 0.419 (9.5%,10.5%) -0.065 0.209 0.250 0.234 -0.020 0.183 

of Size 1 (14.5%,15.5%) -0.034 0.178 0.285 0.255 -0.159 0.193 

(19.5%,20.5%) -0.040 0.211 0.259 0.240 -0.299 0.317 

(M9) (0.5%,1.5%) -0.203 0.292 0.259 0.138 0.902 0.555 

5,000 Insurance (4.5%,5.5%) -0.165 0.246 0.145 0.132 0.358 0.290 

Buying Groups 0.500 (9.5%,10.5%) -0.168 0.221 0.122 0.125 0.056 0.180 

of Size 100 (14.5%,15.5%) -0.169 0.207 0.124 0.119 -0.138 0.187 

(19.5%,20.5%) -0.164 0.183 0.100 0.108 -0.251 0.249 

(M10) (0.5%,1.5%) -0.082 0.258 0.380 0.224 0.865 0.523 

Random (4.5%,5.5%) -0.133 0.217 0.190 0.170 0.299 0.243 

Travel Cost 0.487 (9.5%,10.5%) -0.141 0.198 0.165 0.163 0.011 0.165 

Parameters (14.5%,15.5%) -0.144 0.196 0.152 0.146 -0.136 0.193 

(19.5%,20.5%) -0.141 0.206 0.184 0.180 -0.258 0.272 

(M11) (0.5%,1.5%) -0.209 0.283 0.235 0.127 0.883 0.539 

(4.5%,5.5%) -0.175 0.245 0.152 0.136 0.370 0.295 

Linear 0.481 (9.5%,10.5%) -0.178 0.231 0.132 0.126 0.078 0.162 

Travel Cost (14.5%,15.5%) -0.165 0.216 0.128 0.134 -0.099 0.176 

(19.5%,20.5%) -0.202 0.221 0.116 0.119 -0.236 0.259 

(M12) (0.5%,1.5%) -0.187 0.290 0.277 0.145 0.930 0.560 

(4.5%,5.5%) -0.155 0.248 0.169 0.144 0.372 0.294 

ρi = E[ρi] 0.502 (9.5%,10.5%) -0.150 0.216 0.146 0.136 0.056 0.165 

∀i (14.5%,15.5%) -0.149 0.215 0.136 0.126 -0.115 0.193 

(19.5%,20.5%) -0.166 0.187 0.129 0.128 -0.258 0.258 

(M13) (0.5%,1.5%) -0.209 0.293 0.247 0.135 0.831 0.510 

(4.5%,5.5%) -0.162 0.247 0.159 0.137 0.337 0.268 

Z ∈ 0.491 (9.5%,10.5%) -0.155 0.209 0.138 0.130 0.029 0.169 

{4,7,10} (14.5%,15.5%) -0.164 0.215 0.124 0.126 -0.140 0.200 

(19.5%,20.5%) -0.179 0.197 0.115 0.121 -0.253 0.251 

(M14) (0.5%,1.5%) -0.166 0.288 0.302 0.152 0.937 0.572 

(4.5%,5.5%) -0.136 0.245 0.190 0.153 0.366 0.289 

pz = $5, 000 0.491 (9.5%,10.5%) -0.138 0.206 0.158 0.142 0.054 0.169 

(14.5%,15.5%) -0.136 0.207 0.153 0.132 -0.127 0.199 

(19.5%,20.5%) -0.156 0.186 0.149 0.140 -0.249 0.247 

84 



Table 20: Results Summary Under Modifications to 
Baseline Parameterizations and Assumptions 

ΔprMean Hosp 
pr 

Modification Gr Margin ∈ 

WTP/Q 

Rel. Bias MAPE 

DWTP/Q 

Rel. Bias MAPE 

UPP 

Rel. Bias MAPE 

(0.5%,1.5%) -0.194 0.290 0.268 0.141 0.872 0.534 

(4.5%,5.5%) -0.154 0.246 0.170 0.144 0.349 0.278 

Baseline 0.492 (9.5%,10.5%) -0.148 0.209 0.148 0.138 0.038 0.165 

(14.5%,15.5%) -0.149 0.212 0.137 0.127 -0.133 0.197 

(19.5%,20.5%) -0.166 0.194 0.130 0.135 -0.254 0.246 

(M15) (0.5%,1.5%) -0.198 0.319 0.261 0.247 0.872 0.536 

(4.5%,5.5%) -0.161 0.290 0.162 0.226 0.350 0.282 

Prices Measured 0.492 (9.5%,10.5%) -0.158 0.242 0.136 0.212 0.035 0.167 

with Error (14.5%,15.5%) -0.150 0.251 0.133 0.195 -0.134 0.188 

(19.5%,20.5%) -0.175 0.240 0.125 0.191 -0.256 0.252 

(M16) (0.5%,1.5%) -0.025 0.233 0.467 0.291 0.872 0.539 

(4.5%,5.5%) -0.064 0.202 0.269 0.221 0.350 0.285 

Costs Measured 0.492 (9.5%,10.5%) -0.085 0.174 0.211 0.186 0.038 0.166 

with Error (14.5%,15.5%) -0.100 0.176 0.190 0.179 -0.133 0.196 

(19.5%,20.5%) -0.130 0.184 0.164 0.164 -0.255 0.246 

(M17) (0.5%,1.5%) -0.032 0.259 0.455 0.306 0.871 0.540 

Prices and Costs (4.5%,5.5%) -0.073 0.240 0.256 0.248 0.350 0.286 

Measured 0.492 (9.5%,10.5%) -0.095 0.205 0.200 0.213 0.035 0.170 

with Error (14.5%,15.5%) -0.096 0.213 0.193 0.199 -0.134 0.192 

(19.5%,20.5%) -0.140 0.233 0.150 0.204 -0.257 0.253 
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A9 Computation 

In this appendix, we provide details on our approach to solving for the Nash-in-Nash price 

equilibrium in our simulated hospital markets. The equilibrium consists of two broad compo-

nents: (i) maximizing the set of Nash objective functions that model the bilateral bargaining 

between hospitals and insurers, and (ii) maximizing the profit functions of the insurers in the 

Bertrand games that model competition among insurers. The terms that define the equilibrium 

are, respectively, the prices paid by insurers to hospitals to provide inpatient care and insurance 

premiums. 

For each simulated market, we solve these components simultaneously using a nested search 

algorithm. In the outer loop of the algorithm, we solve the systems of equations defined by the 

insurer Bertrand games by searching for optimal premiums conditional on the current guess of 

hospital prices. In the inner loop, we solve the system of equations defined by the first-order 

conditions of the Nash bargaining objective functions by searching for optimal hospital prices 

conditional on the current guess of optimal insurance premiums. Upon convergence in the 

inner loop, we resolve the insurer Bertrand games (the outer loop) given the updated prices 

from the Nash bargaining game. We define a set of hospital prices and insurer premiums as 

the equilibrium if the hospital prices satisfy the first-order conditions of the Nash objective 

functions to a given tolerance, the premiums satisfy the first-order conditions of the insurer 

Bertrand game to a given tolerance, and the update in optimal premiums across outer loop 

iterations is within a given tolerance. 

Before proceeding, we remind the reader of some basic notation. J denotes the set of 

hospitals, and S denotes the set of hospital systems. Js denotes the set of hospitals in system 

s, and, in somewhat of an abuse of notation, J\s denotes the set of hospitals excluding system 

s. M denotes the set of insurers. Jn denotes the set of hospitals included in the network of 

insurer n. πJn is the general notation for the premium charged by insurer n when insurer n 

has network Jn. However, when it is clear from the context, we use πJ and πJ\s to denote 

premiums charged by a given insurer if its network consists of J or J\s, respectively. 

A9.1 Solving the Insurer Bertrand Games 

In this section, we describe the search algorithm we apply in solving the insurer Bertrand games 

for a given vector of hospital prices. These Bertrand games model the downstream competition 

among insurers in selling their insurance product to consumers, and the equilibrium profits 

determined by these games constitute the insurer payoffs in the upstream Nash bargaining 

games with hospitals. As discussed in the paper, there are two categories of insurer Bertrand 

games. The first models insurer competition in the equilibrium outcome under which, in our 
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setting, all hospital-insurer combinations reach an agreement. The insurer profit from this game 

define the insurer payoff in the Nash bargaining game denoted ΠJ in (6). The second models n 

insurer competition in the hypothetical outcome under which all hospital-insurer combinations 

reach an agreement other than insurer n and one of the hospital systems in the market. The 

profit for insurer n from this game define the insurer disagreement payoff in the Nash bargaining 

game denoted ΠJ
n 
\s 
in (6). We refer to these hypothetical equilibria as “exclusion equilibria” 

since they involve the hypothetical exclusion of one of the hospital systems. Since there are 

#S Nash bargaining problems, we solve this hypothetical “exclusion” Bertrand game for each 

of the #S hospital systems in the market. 

A9.1.1 Equilibrium Premium and Insurer Profits 

We begin by describing our search algorithm for solving the equilibrium profit for all insurers 

under which all hospital-insurer combinations reach an agreement. The expected profit of 

insurer n if all hospital-insurer combinations reach an agreement is defined as 

⎛ ⎞ X X X 
ΠJ σJn ⎠

n(πJn ) ≡ Λgn({πJm }m∈M ) ⎝#Ig(πJn − pz) − ρi ij (pjn + τ ) , (A16) 
g i∈Ig j∈Jn 

where the probability that buying group g chooses insurer n is given as n oPλ exp Zn − θπJn + ρiEmaxiJn#Ig i∈Ig
Λgn({πJm }m∈M ) ≡ n o .P Pλ1 + m∈M exp Zm − θπJm + ρiEmaxiJm#Ig i∈Ig 

As noted in the paper, we assume symmetric competition among insurers. This allows us 

to solve the equilibrium Bertrand game by solving a single equation. Taking the derivative of 

(A16) with respect to πJn and then applying symmetry, we have the first-order condition 

⎛ ⎞ X X X 
σJ#IgΛg(πJ ) − θΛg(πJ )(1 − Λg(πJ )) ⎝#Ig(πJ − pz) − ρi ij (pj + τ)⎠ = 0, (A17) 

g i∈Ig j∈J 

where πJ denotes the premium that is common to all insurers in the symmetric equilibrium, 

and 
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� 

−1 

λ X 
Λg(πJ ) ≡ 

⎛⎝#M + exp 

⎧⎨ ⎩ θπJ − Z − ρiEmaxiJ 

⎫⎬ ⎭ 
⎞⎠ . 

#Ig 
i∈Ig 

Since this is a single variable search problem, and (A17) is monotone in πJ , we solve (A17) 

using bisection and apply the following convergence criteria. 

Convergence Criteria C1. Letting πR denote the right bracket in the bisection algorithm (at 

which A17 < 0) and πL denote the left bracket in the bisection algorithm (at which A17 > 0), 

we define convergence in solving for the equilibrium insurer premium π∗ as values of πR andJ 

πL such that: 

πR+πL 
If πR − πL < 10−10, then π∗ = .J 2 

The equilibrium profit for each insurer is (A16) evaluated at πJ 
∗ . Since prices and premiums 

in our simulations are scaled by $1,000, our convergence criteria solves the optional insurance 
premium to the nearest $0.0000001. 

A9.1.2 Exclusion Equilibrium Premium and Insurer Profits: Monopoly Insurer 

Case 

Next, we describe our search algorithm for solving the equilibrium profit for insurer n if all 

hospital-insurer combinations other than insurer n and hospital system s reach an agreement. 

We compute this equilibrium for each hospital system in the market, and the solutions constitute 

the #S “exclusion equilibria”. Our approach to solving these Bertrand games depends on the 

number of insurers in the market. If there is a single insurer, then solving for the profit 

maximizing premium under the hypothetical exclusion of system s is exactly analogous to 

solving for the equilibrium premium under symmetry. We discuss the oligopoly insurer case in 

the next subsection. If insurer n is a monopolist and excludes system s, its profit function is 

given by 

⎛⎝ ⎞⎠X XX� J\s
ΠJ\s 

n πJ\s ≡ Λgn(πJ\s) #Ig(πJ\s − pz) − ρi σ (pjn + τ) , (A18)ij 
g i∈Ig j∈J\s 

where the probability that buying group g chooses insurer n is given as 
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−1 

λ X 
Λgn(πJ\s) ≡ 

⎛⎝1 + exp 

⎧⎨ ⎩ θπJ\s − Z − ρiEmaxiJ\s 

⎫⎬ ⎭ 
⎞⎠ . 

#Ig 
i∈Ig 

Taking the derivative of (A18) with respect to πJ\s, we have the first-order condition 

⎛⎝ ⎞⎠ = 0. 
X XX 

J\s
#IgΛgn(πJ\s)−θΛgn(πJ\s)(1−Λgn(πJ\s)) #Ig(πJ\s − pz) − ρi σ (pjn + τ)ij 

g i∈Ig j∈J\s 

(A19) 

As with the search for the equilibrium premium, this is a single variable search problem, and 

the derivative of the profit function under the exclusion of s is monotone in πJ\s. Hence, we 

again solve (A19) using bisection, applying the same convergence criteria. 

Convergence Criteria C2. Letting πR denote the right bracket in the bisection algorithm (at 

which A19 < 0), and πL denote the left bracket in the bisection algorithm (at which A19 > 0), 

we define convergence in solving for the equilibrium exclusion insurer premium π∗ as values J\s 

of πR and πL such that: 

πR+πL 
If πR − πL < 10−10, then π∗ = .J\s 2 

The exclusion equilibrium profit for the monopoly insurer under the exclusion of system s is 

(A18) evaluated at π∗ .J\s 

A9.1.3 Exclusion Equilibrium Premium and Insurer Profits: Oligopoly Insurer 

Case 

If there is more than one insurer, a hypothetical exclusion of a given hospital system for one 

of the insurers creates asymmetric competition in the insurance market since one insurer’s 

network is different from the others. Since competition is otherwise symmetric, the first-order 

conditions of the Bertrand game played by insurers under the hypothetical exclusion reduces to 

a two-by-two system of equations: one first-order condition for the insurer that is excluding the 

hospital system (insurer n) and one first-order condition for the remaining insurers (m ∈ M\n), 
each of which includes all hospital systems. 

The profit function of insurer n under the exclusion of hospital system s is 
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X 
ΠJ\s ) ≡n (πJ\s Λgn(πJ\s, πJ ) 

⎛⎝#Ig(πJ\s − pz) − 

⎞⎠XX 
J\s

ρi σ (pjn + τ ) , (A20)ij 
g i∈Ig j∈J\s 

where the probability that buying group g chooses insurer n if n excludes system s and all 

other insurer include all systems is 

n P o 
exp Zn − θπJ\s + λ ρiEmaxiJ\s#Ig i∈Ig

Λgn(πJ\s, πJ ) ≡ n o n o .P P P 
1 + exp Zn − θπJ\s + λ ρiEmaxiJ\s + exp Zm − θπJm + λ ρiEmaxiJm#Ig i∈Ig m∈M\n #Ig i∈Ig 

The profit function of each of remaining insurers m ∈ M\n, for which system s is not excluded 

is 

X 
ΠJ 

m(πJ ) ≡ Λgm(πJ , πJ\s) 

⎛⎝#Ig(πJ − pz) − 
XX 

ρi σJ 
ij (pjm + τ) 

⎞⎠ , (A21) 
g i∈Ig j∈J 

where the probability that buying group g chooses insurer m if n excludes system s and all 

other insurer include all systems is 

n P o 
exp Zm − θπJm + 

#
λ
Ig i∈Ig 

ρiEmaxiJm 

Λgm(πJ , πJ\s) ≡ n o n o .P P P 
1 + exp Zn − θπJ\s + λ ρiEmaxiJ\s + 0∈M \n exp Zm0 − θπJ 0 + λ ρiEmaxiJ 0#Ig i∈Ig m m #Ig i∈Ig m

Taking the derivatives of (A20) and (A21) with respect to πJ\s and πJ , respectively, and 

applying symmetry, yields the system of first-order conditions 

⎛⎝ ⎞⎠ = 0. 
X XX

J\s
#IgΛgn(πJ\s, πJ )−θΛgn(πJ\s, πJ )(1−Λgn(πJ\s, πJ )) #Ig(πJ\s − pz) − ρi σ (pj + τ )ij 

g i∈Ig j∈J\s 

(A22) 
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⎛ ⎞ X X X 
σJ#IgΛg(πJ , πJ\s)−θΛg(πJ , πJ\s)(1−Λg(πJ , πJ\s)) ⎝#Ig(πJ − pz) − ρi ij (pj + τ)⎠ = 0. 

g i∈Ig j∈J 

(A23) 

where 

n P o 
exp Z − θπJ\s + λ ρiEmaxiJ\s#Ig i∈Ig

Λgn(πJ\s, πJ ) ≡ n o n oP P 
1 + exp Z − θπJ\s + λ ρiEmaxiJ\s + (#M − 1) exp Z − θπJ + λ ρiEmaxiJ#Ig i∈Ig #Ig i∈Ig 

and 

n P o 
exp Z − θπJ + λ ρiEmaxiJ#Ig i∈Ig

Λg (πJ , πJ\s) ≡ n o n o .P P 
1 + exp Z − θπJ\s + λ ρiEmaxiJ\s + (#M − 1) exp Z − θπJ + λ ρiEmaxiJ#Ig i∈Ig #Ig i∈Ig 

We solve the system given by (A22) and (A23) for πJ\s and πJ using Newton’s method. We 

apply a two-component stopping rule based on Judd (1998). First, the Euclidean norm of the 

vector composed of (A22) and (A23) must be less than a given tolerance. Second, the the 

Euclidean norm of the vector composed of the updates to πJ\s and πJ must be less than a 

given tolerance. The first component verifies that the first-order conditions are satisfied, and 

the second verifies that the sequence of guesses of the optimal premiums has converged. 

Convergence Criteria C3. Let ι index iterations in the Newton search for the optimal pre-

miums (π∗ , π∗ ) given hospital prices. We define the equilibrium as (πι , πι ) if:J\s J J\s J r� 
J\s �2 � �2� 

∂ΠJ �∂Πn m(i) + � < 10−7, and ∂πJ\s ∂πJ π
J
ι 
\s,πJ

ι q � q � 
(ii) (πι − πι−1)2 + (πι − πι−1)2 < 10−7 1 + (πι )2 + (πι )2 .J\s J\s J J J\s J 

The exclusion equilibrium profit for the insurer n under the exclusion of system s in the insurer 

oligopoly case is (A20) evaluated at (π∗ , π∗ ).J\s J 

We solve for the optimal premiums under a hypothetical exclusion of a given hospital system, 

for either the monopoly or oligopoly insurer case, for each of the #S hospital systems in the 

market. 
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A9.2 Solving the Hospital-Insurer Bargaining Game 

In the subsection, we describe our approach to computing the price equilibrium in the Nash 

bargaining games between hospitals and insurers conditional on the current guesses of the n o 
optimal insurance premiums, π∗ , π∗ , ..., π∗ . Since there are #S hospital systems in J J\1 J\#S 

each market, and we assume symmetric competition among insurers, the equilibrium is found 

maximizing (simultaneously) the joint surplus of #S Nash bargaining games. We compute the 

equilibrium by solving the system of #S equations defined by the derivatives of the #S Nash 

objective functions with respect to its own price. We solve for the set of optional prices using 

Newton’s method. 

As noted in the paper, we impose the restriction that each hospital system and insurer 

negotiate a single price that is applied to each hospital within the system. Hence, we described 

computing the equilibrium at the hospital system-insurer level. 

Recall that the expected volume for system s from enrollees of insurer n is computed from 

three stochastic components: the probability that a consumer’s insurance group g will select 

insurer n, the probability that each consumer in group g will require inpatient care, and the 

probability that each consumer in group g who does require inpatient care will select a hospital 

in system s. This expected volume is defined as 

X X X 
qsn ≡ Λgn(πJn ) ρi σJ 

ij . 
g i∈Ig j∈Js 

The expected volume is defined analogously across all insurers, and, of course, is equal across 

all insurers in equilibrium because of the assumption of symmetric competition in the insurance 

market. Note that hospital prices affect expected hospital volumes only indirectly through the 

premium in the first term, Λgn(πJn ). The remaining two components of expected hospital 

volumes, ρi and σJ 
ij , are exogenous. 

Similarly, the expected volume for system s from another insurer m in the event that s does 

not reach an agreement with insurer n is defined as 

X X X 
(πJ , πJ\s) σJ qs(m\n) ≡ Λgm ρi ij . 

g i∈Ig j∈Js 

Next, we turn to defining the cost of providing inpatient care at the hospital system level. 

Recall that the exogenous cost terms cj are drawn at the hospital level. Hence, the marginal cost 

of inpatient care for system s should be the expected volume weighted mean of {cj }j∈Js . Since 

a component of expected volume (the insurance choice probability Λgn(πJn )) is endogenous, the 
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weights used to determine system-level cost cs should be determined in equilibrium. However, 

almost none of the variation in expected volume across hospitals is due to Λgn(πJn ). Rather, 
39almost all of this variation is due to variation in the exogenous components, ρi and σJ 

ij . 

Hence, including Λgn(πJn ) in constructing the volume weights would unnecessarily add to the 

computational burden. Therefore, we use only the exogenous components of expected volume 

in constructing the weights. Hence, we define system-level marginal cost as P P P 
σJ 

g i∈Ig 
ρi j∈Js ij cj 

cs = P P P ,
σJρig i∈Ig j∈Js ij 

and we treat this cost as fixed throughout the search algorithm. 

Given these terms, the Nash bargaining objective function for hospital system s and insurer 

n is 

⎛ ⎞α !1−αX 
NBsn ≡ ⎝qsn (psn − cs) − (qs(m\n) − qsm) (psm − cs)⎠ ΠJ

n(psn) − ΠJ
n 
\s . 

m∈M\n 

Note that we list the dependence of the insurer n’s equilibrium payoff ΠJ
n(psn) on the price paid 

to system s, but not the disagreement payoff Πn
J\s 
. This distinction arises because, under no 

agreement, no enrollees of n will be treated by s. However, each of these payoffs depends on 

the prices paid to all other systems, as shown in (A16), (A18), and (A20). 

The derivative of the Nash objective function with respect to its own price is 

∂qsn ∂πJn ∂ΠJ ∂πJnn(psn)qsn + (psn − cs) qkn +∂ ln(NBsn) ∂πJn ∂psn ∂πn ∂psn = α P −(1−α) . 
n(psn n

J\s∂psn qsn (psn − cs) − m∈M \n(qs(m\n) − qsm) (psm − cs) ΠJ ) − Π
(A24) 

The price acts indirectly through the insurance premium in both the insurer and hospital system 
∂ΠJ 

n(psn) ∂πnpayoffs. The indirect effect in the insurer payoff ∂πn 
equals zero in equilibrium by the ∂psn 

Envelope Theorem. This equilibrium condition is enforced by the outer loop of our search 

algorithm in which we search for the premiums that maximize insurer profits. Hence, we can 

39To test this, we evaluate the correlation at the hospital level between the expected volume for hospital jP P P P 
g Λgn(πJn i∈Ig ij and the expected volume using only the exogenous components P g i∈Ig Pij . Gener-) ρiσ

J ρiσ
J 

ating these terms for 1,000 simulated markets and computing the correlation between Λgn(πJn ) ρiσ
J 

g i∈Ig ij 

and 
P P 

ρiσ
J in each market, we find that the correlation is never less than 0.999 and greater than g i∈Ig ij 

0.9999999 in 659 markets. 

93 



ignore this term in the inner loop component of our search algorithm. However, the indirect 
∂πneffect of price in the hospital system payoff ∂qsn − cs) must be accounted for. This∂πn ∂psn 

(psn 

term captures the reduction in hospital system profits from a small increase in price because of 

the reduction in expected volume through the decline in insurance quantity demanded.40 

The first term in this indirect effect, which measures the reduction in expected volume due 

to a premium increase, is 

P P P 
∂ Λgn(πJn ) ρi σJ X X X∂qsn g i∈Ig j∈Js ij≡ = −θ Λgn(πJn ) (1 − Λgn(πJn )) ρi σJ 

ij∂πJn ∂πJn g i∈Ig j∈Js 

The second term in this indirect effect, which measures the effect of a small price increase on the 

equilibrium premium, is evaluated by applying the Implicit Function Theorem to the insurer’s 

first-order condition (A17). Hence, 

P P P 
θ ) (1 − Λgn )) σJ 

∂πJn g Λgn(πJn (πJn i∈Ig 
ρi j∈Js ij 

= − h � �i .P P P∂psn −θ ) (1 − Λgn(πJn )) 2#Ig + θ (2Λgn(πJn ) − 1) ρiσJ 
g Λgn(πJn #Ig (πJn − pz ) − j∈Jn 

(pjn + τ) i∈Ig ij 

Applying symmetry to (A24), and plugging in the expressions for the indirect effects of 

price, we have the following first-order condition for the bargaining problem between a given 

insurer and hospital system s. 

∂qs ∂πJ
∂ ln(NBs) qs + ∂πJ ∂ps 

(ps − cs) qs 
= α� � � � − (1 − α) , (A25)

∂ps #M qs − q + q (ps − cs) ΠJ (ps) − ΠJ\s 
s\ s\ 

where qs\ denotes the expected volume for system s from each of the competing insurers if the 

given insurer and system s fail to reach an agreement, and 

�P �2 
θ ) (1 − Λg (πJ )) 

P P 
σJ 

∂qs ∂πJ g Λg (πJn i∈Ig 
ρi j∈Js ij 

= − h � �i .P P P∂πJ ∂ps Λg (πJ ) (1 − Λg (πJ )) 2#Ig + θ (2Λg (πJ ) − 1) #Ig (πJ − pz ) − (pj + τ ) ρiσJ 
g j∈J i∈Ig ij 

ΠJ (ps) denotes the insurer’s expected profit if it reaches an agreement with system s. This is 

defined (A16) and evaluated at the premium π∗ as defined in (C1). Finally, ΠJ\s denotes the J 

40Hence, a price increase reduces the joint surplus that is to be shared between the hospital and the insurer. 
Because of this term, hospitals always capture less than α percent of the joint surplus. 
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insurer’s expected profit if it fails to reach an agreement with system s while each of the other 

insurers (if any exist) do. This is defined for the monopoly and oligopoly insurer case in (A18) 

and (A20), respectively, and evaluated at the premium π∗ as defined in (C2) in the monopoly J\s 

insurer case or at (π∗ , π∗ ) as defined in (C3) in the oligopoly insurer case. J\s J 

We solve the system of equations defined by the vector of first-order conditions across each of 

the #S Nash bargaining problems using Newton’s method, applying the following convergence 

criteria. 

Convergence Criteria C4. Let ι index iterations in the Newton search for the optimal hos-
∗ ιpital prices {p }s∈S given insurance premiums. We define the equilibrium prices as {p }s∈S if:s s

r � �2�P ∂ ln(NBs) �
(i) � < 10−10, and s ∂ps ι{p }s∈Ssq � q � P � 

ι−1�2 P 
ι ι(ii) p − ps < 10−7 1 + (p )2 . s s s s

We alternate the outer loop search (solving the insurer Bertrand games for optimal premi-

ums given hospital prices) and the inner loop search (solving the Nash bargaining games for 

optimal hospital prices given premiums) until the update in optimal premiums converges across 

outer loop iterations. This defines our global convergence criteria to compute the equilibrium 

in any simulated market. 

Convergence Criteria C5. Let ιι index iterations in the outer loop search for optimal pre-
∗miums given hospital prices {p }s∈S . We define the equilibrium as a set of insurance premiums sn o 

πιι∗ ιι∗, πιι∗ , ..., πιι∗ and hospital prices {p }s∈S if:J J\1 J\#S s n o 
πιι∗ ιι−1∗(i) , πιι∗ , ..., πιι∗ satisfies either (C1) and (C2) or (C1) and (C3) given {p }s∈S,J J\1 J\#S s n o 
ιι∗ πιι∗(ii) {p }s∈S satisfies (C4) given , πιι∗ , ..., πιι∗ , and s J J\1 J\#S r � �2 P � �2 
πιι∗ − πιι−1∗ πιι∗ − πιι−1∗ (iii) + < 10−7 .J J s J\s J\s 

To summarize the algorithm, we start with an initial guess of hospital system prices {p }s∈S .s

For example, the initial guess for a given hospital system’s price could be a small amount above n o 
0 π1∗its marginal cost. Given {p }s∈S , , π1∗ , ..., π1∗ then satisfy either (C1) and (C2) in s J J\1 J\#S 

1∗the monopoly insurer case or (C1) and (C3) in the oligopoly insurer case. {p }s∈S then satisfy sn o 
(C4) given π1∗, π1∗ , ..., π1∗ . We repeat this process until step (iii) of (C5) is satisfied. J J\1 J\#S 
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In each simulated market, we solve the equilibrium for the baseline ownership structure and 

for each pairwise combination of mergers between hospital systems. We repeat this for each of 

our 9,000 simulated markets. 

A9.3 Uniqueness of the Equilibrium 

We do not have a proof regarding the uniqueness of the equilibrium of our theoretical model. 

However, we test for the possibility of multiple equilibria by testing whether the search algorithm 

converges at different price vectors given different starting values. We simulate 200 hospital 

markets. For each market m, we solve for the price equilibrium as described in the previous 

section 50 times. For each replication r, we set the starting value in the search algorithm for 

the price of hospital system s in market m, pmsr, as a random draw from 

o p ∼ U [cs + 1, 40],msr 

where cs denotes the marginal cost of hospital system s. Given that the expected value of cs 

is 8, this constitutes a broad range of possible starting values for each hospital system price in 

our search algorithm. 

After solving for the price equilibrium for each of the 200 markets 50 times, we take the min 

and max (within each market) of the set of equilibrium insurance premium {π∗ } and the set mr

∗of each equilibrium hospital system price {p } across replications r. With the min and max msr

of the premium and each hospital system price, we evaluate the distance of a vector consisting 

of the differences between these max and min values within each market. Finally, we evaluate 

the max of these distances across markets. That is, we evaluate 

max 
m 

⎧⎪⎨ ⎪⎩ 
� " 
max 

r 

⎫⎪⎬ ⎪⎭ , (A26) 

# 1 X#Sm

∗ ∗ {π ∗ } − min{π ∗ } + max{p } − min{p }mr mr msr msrr r r 

�2 � �2 
2 

s=1 

where #Sm denotes the number of hospital systems in market m. The value of A26 in this 

exercise is approximately 2.6E-6. Based on this value and the broad range of starting values, 

we conclude that it is likely that the equilibrium in our theoretical model is unique. 

96 



References 

Ashenfelter, O. and Hosken, D. (2010). The Effect of Mergers on Consumer Prices: Evidence 

from Five Mergers on the Enforcment Margin. The Antitrust Law Journal, 53(3):417–466. 

Balan, D. J. and Brand, K. (2014). Bargaining in Hospital Merger Models. Working Paper. 

Brand, K. (2013). Price Equilibrium in Empirical Models of Hospital Competition. Working 

Paper. 

Brand, K. and Garmon, C. (2014). Hospital Merger Simulation. AHLA Member Briefing. 

Capps, C., Dranove, D., and Satterthwaite, M. (2003). Competition and Market Power in 

Option Demand Markets. RAND Journal of Economics, 34(4):737–763. 

Collard-Wexler, A., Gowrisankaran, G., and Lee, R. S. (2017). Nash-in-Nash Bargaining: A 

Microfoundation for Applied Work. Forthcoming in Journal of Political Economy. 

Dafny, L., Ho, K., and Lee, R. S. (2017). The Price Effects of Cross-Market Hospital Mergers. 

NBER Working Paper 22106. 

Farrell, J., Balan, D. J., Brand, K., and Wendling, B. W. (2011). Economics at the FTC: 

Hospital Mergers, Authorized Generic Drugs, and Consumer Credit Markets. Review of 

Industrial Organization, 39(4):271–296. 

Fournier, G. and Gai, Y. (2007). What does Willingness-to-Pay reveal about hospital market 

power in merger cases? iHEA 2007 6th World Congress. 

Garmon, C. (2017). The Accuracy of Hospital Merger Screening Methods. RAND Journal of 

Economics, 48(4):1068–1102. 

Gaynor, M., Ho, K., and J.Town, R. (2015). The Industrial Organization of Health-Care 

Markets. Journal of Economic Literature, 53(2):235–284. 

Gaynor, M. and Town, R. (2012). Competition in Health Care Markets. In Pauly, M., McGuire, 

T., and Barros, P., editors, Handbook of Health Economics, Volume 2, pages 499–637. Else-

vier. 

Gowrisankaran, G., Nevo, A., and Town, R. J. (2015). Mergers When Prices are Negotiated: 

Evidence from the Hospital Industry. American Economic Review, 105(1):172–203. 

Haas-Wilson, D. and Garmon, C. (2009). Two Hospital Mergers on Chicago’s North Shore: A 

Retrospective Study. FTC Bureau of Economics Working Paper No. 294. 

97 



Ho, K. and Lee, R. S. (2017). Insurer Competition in Health Care Markets. Econometrica, 

85(2):379–417. 

Judd, K. (1998). Numerical Methods in Economics. MIT Press. 

Katz, M. L. (2011). Insurance, Consumer Choice, and the Equilibrium Price and Quality of 

Hospital Care. The B. E. Journal of Theoretical Economics, 2(5). 

Lewis, M. S. and Pflum, K. E. (2015). Diagnosing Hospital System Bargaining Power in 

Managed Care Networks. American Economic Journal: Economic Policy, 7(1):243–274. 

Lewis, M. S. and Pflum, K. E. (2017). Hospital Systems and Bargaining Power: Evidence from 

Out-of-Market Acquisitions. RAND Journal of Economics, 48(3):579–610. 

May, S. and Noether, M. (2014). Predicting the Price Effects of Hospital Mergers. CRA 

Insights: Healthcare. 

Miller, N. H., Remer, M., Ryan, C., and Sheu, G. (2016). Pass-Through and the Prediction of 

Merger Price Effects. Journal of Industrial Economics, 64(4):683–709. 

Miller, N. H., Remer, M., Ryan, C., and Sheu, G. (2017). Upward Pricing Pressure as a 

Predictor of Merger Price Effects. International Journal of Industrial Organization, 52:216– 

247. 

Peters, C. T. (2006). Evaluating the Performance of Merger Simulations: Evidence from the 

U.S. Airline Industry. Journal of Law and Economics, 47(3):627–649. 

Peters, C. T. (2014). Bargaining Power and the Effects of Joint Negotiation: The Recapture 

Effect. Working Paper. 

Ramanarayanan, S. (2014). Diversion Analysis as Applied to Hospital Mergers: A Primer. 

NERA Economic Consulting. 

Health Care Cost Institute (2015). 2014 Health Care Cost and Utilization Report. 

Town, R. and Vistnes, G. (2001). Hospital Competition in HMO Networks. Journal of Health 

Economics, 20(5):733–752. 

Vistnes, G. and Sarafidis, Y. (2013). Cross-Market Hospital Mergers: A Holistic Approach. 

Antitrust Law Journal, 79(1):253–293. 

Weinberg, M. C. (2011). More Evidence on the Performance of Merger Simualtions. American 

Economic Review: Papers and Proceedings, 101(3):151–155. 

98 



Weinberg, M. C. and Hosken, D. (2013). Evidence on the Accuracy of Merger Simulations. 

Review of Economics and Statistics, 95(5):1584–1600. 

99 


	Balan_Brand_20180911.pdf
	Introduction
	Background and Previous Literature
	Theoretical Model
	Consumer Preferences and the Insurance Market
	Bargaining
	Hospital Mergers
	Simplifications

	Parameterization
	The Merger Simulation Methods
	Predicted Price Effects of the Simulation Methods

	Results
	Bias of the Simulation Methods
	Dispersion of the Predicted Price Effects
	Application as Screen in Prospective Merger Analysis

	Discussion
	Conclusion
	Parameterization
	Hospital and Consumer Attributes
	Consumer Preferences over Hospitals
	Bargaining Game
	Insurance Market Parameters
	Insurance Buying Groups
	Deriving the Distribution of Risk Types, F()

	Derivation of the Merger Simulation Methods
	Comparison to HHI in Prospective Merger Analysis

	Merger Effects
	Sources of the Biases Exhibited by the Simulation Methods
	Dispersion
	Bayesian Inference
	Full Dispersion Results
	Robustness of the Results
	Performance by Level of Hospital and Insurer Competition
	Relative Bias and MAPE Ratios by Parameter Values
	Modifications to Baseline Parameterizations and Assumptions

	Computation
	Solving the Insurer Bertrand Games
	Equilibrium Premium and Insurer Profits
	Exclusion Equilibrium Premium and Insurer Profits: Monopoly Insurer Case
	Exclusion Equilibrium Premium and Insurer Profits: Oligopoly Insurer Case

	Solving the Hospital-Insurer Bargaining Game
	Uniqueness of the Equilibrium



