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I. Introduction 

This paper integrates the literature on capital utilization 

and shiftwork with the duality theory of cost and production 

functions. The model constructed below posits a production 

technology consisting of an instantaneous rate of production 

function and a time duration variable. The existence of a cost 

function dual to this tec hnology then follow9 directly from 

assumptions on the mathematical properties of the rate function. 

Marris's (1964) original work on the economics of capital 

utilization, and the more recent contributions of Betancourt and 

Clague (1981), and Winston (1982) either ignore or are outright 

hostile toward duality theory. The·time utilization of plant and 

equipment embodied in these models, however, is not inconsistent 

with the mathematical methods used in the "timeless'' duality 

theory. Indeed, the model proposed here contains neoclassical 

duality theory as a special casƴ. 

The crucial tool in this construction is Georgescu-Roegen 's 

(1970, 1971, 1972) process analysis of production. His analysis 

of an idealized factory yields a production model that precisely 

specifies the inputs and initially recognizes the time duration of 

production. Thus, the production process is directly modeled, 

rather than abstractly constructed. In this way the model is 

similar to engineering approaches to production. l 

The interesting aspects of the model, however, derive not 

from the process analysis, but from the speci fication of input 

prices. The· time element enters the cost function because the 



input prices must account for the time use of the inputs. Time 

affects the cost of labor directly, while the purchase price of 

capital is generally invariant wit h respect to production time. 

This asymmetry in the behavior of input prices over time combined 

with the returns to scale characteristics of the rate function 

determine the cost minimizing length of the "working day". 

For the sake of argument, the term "neoclassical" is used to 

denote the class of production models whic h ignore the firm's 

c hoice of the working day. These models treat inputs as flows 

accumulated over a fixed period of time with fixed (time 

invariant) prices. Recent theory has employed these models to 

such an extent that Winston criticizes them under the heading of 

duality models. Nevertheless, the objectionable assumptions 

underlying this literature can be traced to Wicksteed's pioneering 

work in the Nineteenth Century. 2 Thus, neoclassical is used here, 

however unfairly, to characterize a diverse literature in 

production theory. 3 

Fortunately, the mathematics behind duality approaches to 

production are blissfully indifferent to the meanings we attac h to 

them. 4 This allows us to 

results 

apply familiar mat hematical concepts to 

a novel production tec hnology with relative ease. In fact, it is 

possible to derive obtained by Winston, and by Betancourt 

and Clague for linearly homogeneous production functions and 

extend them to the class of homothetic production functions. 

For purposes of exposition, the model is built in reference 

to a working day. This is not a prerequisite. The time period to 
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Factory Analysis 

be determined can be structured in any number of ways. Daily pro­


duction, however, is immediately applicable to questions of 

capital utilization and shiftwork on which the existing literature 

has focused. 

The process analysis of factory production is reviewed in the 

following section. Section III establishes the cost function dual 

to the production tec hnology of sect.ion II, and demonstrates some 

grap hical properties of the model using familiar isoquant 

concepts. Section IV extends the model to include time variable 

prices and a sloped output demand curve in the context of profit 

ma ximization. Section V examines the characteristics of the 

optimum length of the working day and section VI concludes the 

investigation. 

I I. Production: A Process View 

Suppose we wish to analyze the production process of an 

industrial factory. By the term factory is meant an assembly line 

or "in line" process as opposed to an "in parallel" process suc h 

as agriculture. In an assembly line factory there are a succes­

sion of work stations suc h that at any given time there is a 

potential unit of output in each work station. Furt hermore, each 

worker and each article of capital are continuously employed by 

switching to a new unit of output as soon as their task on the 

previous unit has been completed. What we observe is a continuous 

line of "goods in process" moving successively from work station 

to work station until exiting the process as finis hed goods. 

-3-



The process analysis of a factory begins by surrounding the 

factory wit h an analytical boundary. This boundary is an 

imaginary barrier placed around the factory at the discretion of 

the investigator in order to separate the process to be observed 

from the rest of the world. The investigator may also choose the 

placement of this boundary as it best suits the goals of the 

analysis. Let us .choose our analytical boundary suc h that all raw 

materials, energy, and previously processed (i. e. , intermediate) 

inputs must move across this boundary directly into the factory 

process, and all outputs cross the boundary immediately upon exit 

from the process. This has been done schematically in Figure 1. 

We can observe that at any moment there is some flow of 

inputs across the boundary and some associated flow of output and 

"waste products" across the boundary in the opposite direct ion. 

We also observe some factors of production present inside the 

boundary whenever the factory is· in operation. 1'hese factors are 

what we commonly think of as labor and capital, plus the goods in 

process present at each work station along the assembly line. 

Thus the flow of output produced is related to the flow of 

material and energy inputs and the "quantity" of labor and capital 

present at the time. In mathematical notation 

(1) q('t') f(K(T), H(T), X('t')) = 

says that the maximum rate at which output crosses the process 

boundary at time T, q(T), is a function of the capital K and labor 

H present at T, and the rate x at which ot her inputs enter the 
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process at time T. Notice that q can be a vector of output rates, 

excluding the residual waste products, for the case of joint 

saleable outputs; that K is a census of mac hines and structures of 

each types present at T; that H is a census of workers of each 

type present at T; and x is a vector of input flow rates at time 

T. 

If T is the period over which the factory operates, then 

total production is given by 

T 
( 2) Q = J0 

f (  K (T), H (T),x (T))dT. 

If the capital and labor present over the period and the flow 

rates of inputs are constant, and the productivities of the 

factors are not affected by the length of the period, we can 

simplify (2) to 

(3) Q T•f (K, H, x). = 

This says that the total output of the factory is determined by 

the length of time the factory operates T, the capital and labor 

on hand over the period, and the flow of ot her inputs over the 

period. In addition (3) indicates that in order to produce the 

quantity Q of product the firm must choose the capital and labor 

to hire, the flow of inputs to purchase, and the length of the 

period to operate, T. Therefore the process analysis of factory 

production provides us wit h a production model that therequ·ires 
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firm to choose input factor proportions as well as a time period 

of operation in order to produce the desired output quantity Q. 

Equation (3) also shows an unf amiliar relation between the 

input factors and the quantity of output. K and H are just 

numbers of men and machines independent of time, while x is a 

vector of flow rates, or quantities per unit time. The first to 

develop a accounting for, and elaborating on, the 

differences capital , labor, and flow inputs was Nicholas 

Georgescu-Roegen (1971). He denoted the capital
-· . 

and labor 

components of (3) by the and the material and 

energy inputs by the term derivation of the 

flow factor's nomenclature is fairly obvious from (3) since the 

flow factors appear as flows in the function f. The case for the 

factors is not, in comparison, clear. 


Georgescu-Roegen reasons that the stock of capital inputs is 


a stock of machines that is perpetually maintained by the 

in which it participates. This stock 

represents the available capital services the firm buys when it 

purc hases a machine, or a whole plant, where the actual amount of 

capital services used is measured as machine hours for each type 

of machine. This "is less misleading than talking of service 

stocks because there is no physical flow that augments or depletes 

the capital fund. In fact, the capital fund can only be drawn 

down by running the machine until it is no longer economically 

feasible to do so. One cannot consume the entire ·fund immediately 

nor stretch the fund over a longer period by feedi ng in new 

term fund factors 

flow factors. The 
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supplies of services. Regular maintenance must be undertaken to 

insure eac h mac hine's operating efficiency, of course, but this 

does not increase the fund represented by a machine. At some 

point the machine will become very expensive to maintain, at which 

time it will be scrapped. 

There are two ma jor characteristics of a fund factor of 

production that we can identify : 

1. 	 The fund factors are not quantitatively altered by the 

production process. 

2. 	 A period of time is required to exhaust the services 

represented by a fund factor. 

It is obvious that the capital and labor elements of (3) 

represent fund factors in the factory process. Moreover, it is 

the ) of fund service that appears in (3) and is denoted by K 

and H. This can be illustrated wit h a simple example. Suppose a 

factory employs 50 wor kers for a period of 10 hours. The quantity 

of labor services used over the period is given by (50 men)•(lO 

hours) = 500 manhours. The rate of service use is then the 

quantity of labor services used divided by the period of time over 

which the services are rendered, or (500 manhours)/ (10 hours) = 50 

men. The rate of fund service is just the number of each fund 

factor present at any time the factory is in operation. 

Now reconsider the right hand side of (3). Since K and H are 

the census figures for machines and workers present while the 

factory operates, they are the number of each type of fund factor 

therefore they represent the rates of fund service. Inpresent, 
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addition, the vector x represents the observed rates of flow of 


material and energy inputs into the process. This indicates that 

the function f(K, H, x) relates the rate at whic h output is 

produced to the rates at which input factors are used (as in 

(1) ) • 

It may be instructive to consider two comments on factory 

processes. The first is by Georgescu-Roegen as he explains the 

fund factors participation in the process, " • •  • in the case of 

manufactured or mi ned products, we can arrange the elementary 

processes in line in such a manner that each fund shifts to 

another process as soon as it has finished its task in the 

previous one. This is how any factory operates, like an assembly 

line even though orie is not in direct view. "S A similar point has 

been mentioned by Marsden, Pingry, and Whinston, "• •  • an 

assembly plant could be characterized by a series of assembly 

units (reactors), and the process could be described in terms of a 

rate equation. "  6 This is precisely what equation (1) and its 

counterpart equation (3) attempt for a factory process. The rate 

of output is determined by a function of input rates, and the 

total quantity is found by multiplying the rate of output by the 

time period T. 

Georgescu-Roegen spent a great deal of time formulating 

the substitution relationships among the inputs so that their 

co mpliance with the physicists' principle of Conservation of 

Matter-Energy was clear. This expanded the number and complexity 

of the structural equations and emp hasized the unusual aspects of 
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it 

the flow-fund approach. While his treatment of the waste outputs 

and the relation of the inputs and outputs to plant capacity was 

uniquely insightful, it undermined the intuitive appeal and the 

empirical utility of his production model. 

Fortunately it is possible to construct a model in the spirit 

of Georgescu-Roegen that can be represented more simply. Equation 

(3) and a dose of Alfred Mars hall's "sensitiveness of touch" are 

the main ingredients. The primary diff iculty is in understanding 

the way in which substitution occurs between the flow and fund 

factors and its relation to the conservation principle. Examine 

equation (2) once again 

q f(K, H, x). = 

By the conservation principle we know that in matter-energy 

terms the flow inputs must equal the flow outputs. Suppose we 

define q to be only the product flow, or a restricted output 

vector that excludes the waste products. If we are given (2) and 

some values K, H, and x, we can find q. We can then calculate 

the "waste" output from q and x :  w [x-q] . Since we can never= 

observe a process that defeats the conservation principle, it is 

not necessary to carry as an explicit constraint. We can 

presume that any process_we might meet obeys all physical law s and 

subsume these implicitly in the f function. 

There are several advantages to this approach. First, this 

allows the rate function f to display all the usual substitu­

tability properties we are accustomed to, except in terms of rates 
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Duality 

• • 

III. In the Flow-Fund Production Model 

Suppose we have an N factor neoclassical 

instead of quantities as in the strict neoclassical world. If we 

wish to increase the rate of output of the product by hiring more 

labor but no more material inputs, then this requires that the 

additional labor alter the relative amount of waste product flows. 

If  the waste flow is not altered then the rate of product flow 

will not change, but the f function still gives us a maximum 

output rate q for any values of K, H, and x. 

Furthermore, we can define the "product" an<i the "waste" 

outputs by letting q be the outputs wit h positive prices. The 

waste products are then identified as the residuals. 

In sum mary, we have a production model in (2) and (3) that 

gives the rate of output as a function of rates of input flows and 

rates of fund service. This model allows sub stitution among the 

inputs similar to the usual neoclassical production function, 

while incorporating the strengths of the flow-fund model. 

production function 

F :  u = F(yl, Y2, • , YN) F(y) where u is the· amount of output = 

produced during a given period of time and y = (yl, • • , YN) ) O N• 

is a nonnegative vector of input quantities used during the 

period. Suppose also that the producer faces fixed positive 

prices for inputs (pl, P2, • • • , PN) = p and that the producer does 

not possess market power in the input markets. 
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Assumption 

Properties 

linearly homogeneous 

We now define the producer's ( function C as the solution 


to the problem of mi nimizing the cost of producing at least output 

level u, given the input prices p, or 

(4) C(u, p) miny {p'y : F(y) ) u } •= 

Assumption 1 below is sufficient to imply the existence of 

solutions to the cost minimization problem as stated in the lemma 

that follows. 

1 : F is continuous from above; i. e. , for every u € 

range F, L(u) = {y : y ) O N, F(y) ) u } is a closed set. 

L emma 1 :  If F satisfies Assumption 1 wit h p >> ON, then for 

every u € range F, miny { p'y : F(y) ) u } exists. 

Furthermore the following seven properties ca n be derived for 

the cost function C requiring only Assumption 1 on F. 

I for C :  

Cl : C is a non-negative function; i. e. , for every u € range F and 

p >> ON, C ( u , p ) ) 0 • 

C2 : C is (positively) in input prices 

for any fixed level of output; i. e. , for every u € 

range F, if p >>  ON and k > 0, then C(u, kp) = kC (u, p). 

C3 : If any combination of input prices increases, then the 

minimum cost of producing any feasible output level u 

will not decrease; i. e. , if u € range F and Pl ) POr 

then C(u, Pl) ) C(u, po). 

-12­



non-decreasing 

Lemma 

p *) • 

C4: For every 

range F, C(u, p) is continuous in p, 

is in u for fixed p; 

u E range F, C(u, p) is a concave function of p. 

CS: For u E p > >  ON• 

C6: C(u, p) i. e. , if 

p >>  ON, uo, Ul E range F and uo · Ul, then C(uo, p) · C(ul, p) . 

C7: For every p > >  ON, C(u, p) is continuous from below in u; 

i. e. if p* > >  ON, u* E range F, un E range F for n 1, 2, = 

. . . , Ul · u2 · ••• and lim Un = u*, then limnC(un,p) = C(u*, 

These results are well known and the proofs can be found in 

numerous places. We have followed Diewert's (19 82) rendition of 

the standard duality results above and follow his work once again 

in stating the ne xt result, frequently called Shep hard's Lemma. 

2: 'I  f the cost function satisfies Properties 

input prices 

I for C and, 

in addition, is di fferentiable with respect to at the 

point (u*, p*) ,  then 

(5 ) y ( u *, p*) Vp C ( u *, p*)= 

where y(u*, p*) = [yl(u*, p*) ,  •••, YN(u*, p*) ]' is the vector of 

cost minimizing input quantities needed to produce u* unit s of 

output given input prices p*, where the underlying production 

function F is defined above, u* E range F and p* >>  ON• 

The advantage of using Lemma 2 is that only the cost function 

is req uired to have certain properties and the corresponding 

production function F is derived from the given cost function. 


Given a cost function satisfying Properties I, we can derive the 
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(7) 

input demand equations directly from the functional form of C. It 

is not necessary to find F nor to carry through the entire 

constrained maximization of the production function explicitly to 

find the input demand equations. 

Now suppose we have the production rate function below: 

(6) q = f(K, H, x) . 

where q is the ma ximum quantity produced by continuous operation 

of a factory at a constant instantaneous rate for a 24 hour 

period; K is the rate of capital fund service over the period, or 

the number of ma chines and structures present over the period, 

assumed constant for any "day"; H is the rate of fund ser vice for 

labor, or the number or wor kers of each type present at any time 

during the period; and x is the quantity of material inputs used 

for a constant instantaneous rate of input flow sustained for a 24 

hour period. 

Notice that equation (6) describes a production tec hnology 

commensurate wit h the neoclassical production function when the 

given period of time is 24 hours and the measurement of labor and 

capital inputs is specified more precisely. However, the quantity 

produced in a working day is given by· 

Q = t • f(K, H, x) , 0 < t <: 1 

where t is the utilization rate, or proportion of a 24 hour period 

that the factory is in operation, and it follow s that Q = tq. 
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Since a dual cost function must· exist for f in (6) with given 


input prices by Lemma 1, a cost function dual to (7) should also 

exist, but it will not be identical to the neoclassical cost func­

tion due to the institutional differences in payments to ca pital 

vs. the other inputs. We take account of the firm's ability to 

purc hase labor services and material input flow s, but only the 

capital fund in the definition of the flow-fund cost function 

( 8) 	 C0(0, t, p) - min { pkK + tphH + tpxx : tf (K,H, x) ;> 0 } 
K,H,x 

or equivalently 

(9) 	 C(q, P) - min { pkK + tphH + tpxx : f( K, H, x) ;> q, 
K,H,x 

tq = 0 } 

where 

for any 

where 0 = 

P is the modified input price vector, P - (pk,tPhrtPx) .  7 

Since 	 given value of t, tf (K, H, x) ;> Q implies f(K, H, x) 

;> q tq by definition, the 	two forms of cost (8) and (9) 

are identical for any quantity O, and given values for t and input 

prices p. 

The equivalence of (8) and (9) causes some difficulties in 

notation when the derivatives of C and co with respect to q and t 

are encountered. Since this .occurs repeately, the following con­

ventions in notation are followed: 

=cq ac;aq = dC0/dq 
 p =po 
t=to 

� aco;ao 
 (30/aq) = (ac;ao) t 


(10) 

Ct = ac;at = dC0/dt I = aco;ao (3Q/3t) + aco;at 
q=qo 
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The usual notation for a partial derivative is used throug hout. 


Note that prices are not required to remain fixed for Ct since we 


will presently allow some prices to change with utilization rate. 


We interpret Cq and Ct as the marginal cost of increasing output 


by increasing rate of production and the ma rginal cost of 


increasing output by increasing utilization rate, respectively. 


Recall that the input prices in (8) - (10) are daily prices, 

or prices per 24 hours. This means that Pk is depreciation and 

interest for one day; Ph is the cost of employing one worker for 

24 hours, or Ph = 24wh where wh is the hourly wage; and Px is just 

the price per unit of the flow inputs. 

Suppose that C and co have properties I for C, so that 

factor demand equations can be found by Lemma 2. Suppose further 

that C(q, P) is twice continuously differentiable at the point 

(q*, P*) .  Then differentiating (9) with respect to factor prices 

gives daily factor dema nd functions 

ac;apk = K(q*, P*) ,  ac;aph = tH (q*, P*) ,  

(11) 

ac;apx = tx(q*, P*) .  

Further, we know the following so-called sym metry conditions must 

holds 
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But here is a surprise. For the labor and flow inputs we get the 


usual result 


while for the capital input we find 

i. e. ,  the usual conditions are now weig hted by the utilization 

rate t. Georgescu-Roegen (1972) derives an equivalent result 

using the Lagrangean method: that the marginal rate of substitu­

tion of capital for labor is equal to the price ratio weig hted by 

the utilization rate. He interprets this to mean that the budget 

line in K and H space is not tangent to the relevant isoquant when 

t < 1. We know that this is not possible for a (K, H) co mbination 

that is a solution to the cost minim ization problem. A closer 

look at (14) resolves this parado x. 

Recall, first of all, that Ph is defined as a 

for labor, Ph 24wh when wh is the hourly wage. This 

daily price 

means= 

changes in Ph arise from changes in wh alone, or 

And using this with (14) yields 

which we rea rrange to find 

=(17) 3K/3w h 24t(3H/3pk) T(3H/3pk) 3(TH) /3Pkr= = 
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where T is the number of hours per day that the factory operates. 


Of course TH is nothing more than the number of ma nhours, or the 

quantity of labor services, used by the firm in a working day. We 

can now write the demand for labor services as 

(18) M(T, q, P) = T•H(q, '), 


and this allow s us to rew rite (14) in the more familar form 


Clearly the relevant isoquant is in K and M = TH space as 

shown in Fig. 2 (a) . Furthermore, the isoquants contain both a 

production rate and a utilization rate component, Q = t·q. In 

2 (a) the isoq uant is drawn for a fixed utilization rate to, and 

the labor services determined by the tangency imply some number of 

wor kers, Hl, for the entire working day, To = 24to, so M1 = ToHl• 

If we wish to consider utilization rates other than to, it 

is necessary to redraw the isoquant map for the new t. This has 

been done in Fig. 2(b) for t1 < to. Reducing the length of the 

working day from To to T1 shifts the isoquants so that the firm 

moves to a hig her rate q1 to maintain output at Oo. Figure 2(c) 

shows this change in the utilization rate in K and H space. Here 

the fall in the length of the working day appears as a fall in the 

"price," or relative daily cost, of a worker which rotates the 

budget line away from the H axis. The firm reacts to this change 

as it would to a change in the wage, by substituting labor for 
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Output Input 

cap ital and moving to a higher rate of production. We can see 

that the deciding factor for the firm is no longer the relative 

pri ces of the inputs, but the relative daily cost of the inputs 

when the lengt h of the working day is a decision variable. 

Suppose the producer chooses production rate qo and hires K1 

and H1. This represents only one point on the plant's planning, 

or long run, production rate function f(K, H, x) . The producer is 

free to vary his labor and flow inputs on a daily basis so he has 

the short run production rate function f( Kl, H, x) shown in Fig. 

2 (d) . The firm is always able to move along f( K, H, x) at any 

time, but can forego the cost of rea rranging its capital from day 

to day by moving along f( Kl, H, x) as dem and fluctuates. Now we 

may observe the firm adj usting its input mi x as well as the length 

of the working day in response to short run fluctuations. 

IV. 

Two obvious extensions of the model involve the usual 

"monopoly problem" , in which the firm faces a sloped demand curve, 

and the case of input prices that va ry with the utilization rate. 

The derivations of both of these are based on Diewert (1982) , 

where the case of a variable input price is formally a modifica­

tion of the monoposony problem. This section derives the flow­

fund equivalents of the neoclassical duality results. 

Suppose we have a flow-fund production function f that 

satisfies the following conditions: 

Variable and Prices 

-21­



increasing. 

quasiconcave 

(i) f is a real valued function defined over the non-


and continuous 

a 

negative orthant on this domain. 

(ii) f is 

(iii) f is function. 

then given f and positive inputs and outputs, we write the 

profit maximization problem as 

(20) max { D(Q) Q - C(q, P) Q = tq > 0, 0 < t ( 1} 
t,q 


= D(Q*) Q* - C(q*, P*). 


Q is total daily output, D(Q) is a daily inverse demand function, 

and C(q, P,) is the cost function dual to f. Solutions to the 

profit maximization problem are denoted by an asterisk. The first 

order conditions for a ma ximum are 

D(Q) q  + (aDjaQ) qQ - Ct = 0 
( 21) 

=D(Q) t + (aDjaQ) tQ - Cq 0 

where Cq and Ct are defined by (1 0). This condition can be 

restated as 

= =(22) Cq/t MR Ct/q 

where MR is marginal revenue in the usual sense. This condition 

can be interpreted as a variant of the typical neoclassical 

marginal condition: the firm chooses to operate where the marginal 

gain from an increment to time in production is just equal to the 

marginal gain from an increment to rate of production. Cq/t and 
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Ct/q are "marginal cost" in the two output dimensions weighted 

by the reciprocals of t and q. Thus "marginal revenue equals 

marginal cost" in (30). 

Input prices that va ry by "time of day" can be incorporated 

in this framework, if the utilization rate can be measured 

relative to a specific starting time during the day. The proper 

measurement of t will guarantee that the size of t corresponds to 

a known set of operating hours such that t and "time of day" are 

paired. In this context input prices that change over the course 

of the day can be desc ribed by a price function P, P(t) > 0, that 

depends on utilization rate. 

Applying Diewert's (1982) treatment of the monopoly and 

monopsony problems for econometric purposes, if we know the ou tput 

demand function and the input price or supply func tions, then the 

system defined by (21) is identical to the profit function dual to 

f when the output and input prices have been "linearized" as thei r 

shadow prices. That is, for example, if 

=Pq D(Q) + [aD (Q) jaQ] Q P; + D' (Q) Q, = 

is the shadow or marginal price of output, where P* is theQ 

product price, then 

maxq,t {pqO - P'X : Q tq > 0, 0 < t(l} = IT(pq,P ) = 

where IT is the firm's true profit function which is dual to the 

rate function f. 9 
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( /2 4 ) 

V. Restrictions on the Production and Cost Functions 

We can now make some statements on the firm's optimal choice 

of q and t by im posing restrictions on the form of f, which imply 

a form for C. Suppose f is homogeneous of degree l/ 8 suc h that 

(23) f(X) = [g (X) ] l/ 8 

where g(X) is linearly homogeneous. Then 

f (>.X) = >.l/ 8 f(X) = [g (>.X) ]l/ 8 = [>.g(X) ] l/ 8 = J,)/ 8 [g (X) ]l/ 8 

and the cost function dual to f decomposes in the following way. 

where 


8c(q, P ) = q 8c( 1 ,P ) = q c( P ) 


8 = 1 implies constant returns to scale, 8 < 1 
im plies 


increasing returns to scale, 8 > 1 implies decreasing returns to 

scale, and c(P) is the unit cost function dual to g. 

If we impose the neoclassical assumptions of cons tant 

returns to scale and perfectly competitive firm s, the firs t order 

conditions for profit maximization become 

(24) c(P) 
--= = ac ( P) 

att 

If all factors of production are paid only for the time they 

actually participate in the process, t, and all factor prices are 

=constant over all values of t, then P tp and 

c ( P) = c ( tp) = tc ( p) 
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by the homogeneity property of c in P. The first order conditions 


then become 

(26) c(p) = p* = c ( p) • 
Q 

In this case any combination of t and q will do, since all combi­

nations have identical marginal cost. This occurs because we have 

ignored the differences in factor payments that distinguish the 

flow-fund model from neoclassical production models. (Note that 

we can derive (26) by assuming t = 1. ) Thus the neoclassical 

ignorance of the time factor in production, t, is perfectly con­

sistent with ignoring the differences in factor payments. In 

fact, q•c(p) is the neoclassical cost function dual to f. 

The conditions required for the firm to choose t < 1 can now 

be derived from the firm's average daily cost function, 

(27) A (q,P) : C(q,P)/tq = qe-1 t -lc(P) 

Totally differentiating and rearranging (27) gives 

(28) Idt 
dA aA .::9. aA= ' .99. + ' = 

dQ=O aq dt at aq t + at 

where we have used dQ = tdq + qdt = 0. Equation ( 28) shows two 

effects. The first is the change in the rate of production 

required to hold the total quantity, Q, constant as t changes. 

The second is the effect of changing input prices on factor 

proportions and average cost caused by changes in t. Carrying out 

the differentiation yields 
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�� \ = [(e-l)qe-2 t-lc(P)J(-q/t) + qe-1 t-lac (P)/at dQ=O 

- qe-1 t-2c(P) 

which reduces to 

(29) dA = (qe-1 t-1) [ac;at - ec (P)/tJ 
dt I dQ=O 

and produces the condition 

(30) dA j . 0 as [ac;at - ec (P)/t] f:< 0dt (
·dQ=O 

for q > 0, t > 0. 

Therefore, the value of t that minimizes the average cost of 

producing any quantity Q depends not only on the slope of c in t, 

but also on the returns to scale parameter e. The 

these factors can be illustrated in an example. 

Suppose there are only two inputs, capital K 

w here capital has a time invariant price Pk and labor's price 

varies directly with t, PH = tPh• We evaluate the brac keted term 

in ( 30) as 

[ac;at - ec(P)/tJ = (ac;apk)(apk/at) + (ac;apH)(apH/at) 

- 8/t (p kK + PHH) 

where K and H are the dual input dema nd functions from Lemma 2. 

Using Lemma 2 again and sim plifying, we have 

(31) [ac;at - ec (P)/tJ = PhH - e((Pk/t)K + PhH1 

interaction of 

and labor H, 

since apkfat = 0 and PH = tPh• 
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For e = 1, (31) is negative over all t and the firm choses 

t = 1. As e increases (31) declines, implying that the firm is 

more likely to choose a small value of t when economies of scale 

are more pronounced. If we rewrite (31) for the more general case 

of  PH = Ph(t), p' > 0, then 
h 

( 32) [ac;at - ec(P)/t] = (aph/at)H - e;t <PkK + PhH) 

and we can derive the following condition 

where SH = PhH/c (P) is labor's share of cost, and e = Ecq is the 

elasticity of cost with respect to q. Therefore the optimal t 

depends on the slope of labor's price in t as well as labor's 

share of cost and the scale properties of the rate function. 

Equation (33) contains the results obtained by Betancourt 

and Clague in their propositions 2, 3, and 4, and by Winston for 

linearly homogeneous rate functions. lO Yet (33) holds not only 

for homogenous rate functions of any degree as defined by (23), 

but also for homothetic rate functions. The reader may verify 

this result using the cost function dual to a homothetic 

production rate function, 

C(q,P) = m(q)c(P) and A(q,P) = q -1 t-1 m(q)c(P). 

where m is a postive, increasing function. It then follows easily 

that 
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for the two input case. 

V I. Conclusion 

We have shown that dual cost and production functions exist 

for the flow-fund production tec hnology deri ved from a process 

analysis of factory production. This duality includes the time 

utilization of the factors of production and asymmetric time pat­

terns of payment of those factors. The usual results associated 

with the op timal utilization rate for linearly homogeneous rate 

functions can be extended to include homothetic rate functions. 

The rela tionship between neoclassical production theory and 

the capital utilization literature is ill uminated by the results 

of section v. If one ignores the time util ization problem, 

including the asymmetric variation in .input prices with respect to 

time, and assumes a linearly homogeneous production function, then 

the flow-fund dual cost function collapses to the neoclassical 

cost function. Thus, the flow-fund production and cost relation­

ships contain neoclassical production theory as a special case. 


The flow-fund duality model encompasses the best attributes 

of neoclassical production theory, the mathematics of duality 

theory, and the time characteristics of capital utilization 

models. The neoclassical isoquant concepts remain useful and 

valid. The empirical vitality of duality theory is preserved. 
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The captial utilization problem is incorporated and extended to a 

wider range of tec hnologies. In this way the unifying goal of 

this inquiry is achieved. 

Furthermore, a general approach to production modeling is 

suggested. One begins with a process analysis of the system in 

question. This identi fies the inputs and outputs concretely. 

E xamination of the time pattern of input payments all ows the 

construction of an appropriate cost function using duality theory. 

It is then a simple matter to derive the input demand equations 

for econometric estimation, given the appropriate data, or to 

estimate the cost function directly with the usual tec hiques. 

This method also guarantees that the error for which Winston 

criticizes Shep herd, that "t he representations of tec hnology and 

input prices, and hence costs, that underlie and justify duality 

theory are eit her internally inconsistent or else applicable on ly 

to a firm that is, in very central ways, unlike any we know, nll 

is not repeated . One cannot properly apply the process analysis 

approach without unveiling the deficiency of neoclassical produc­

tion duality analysis, "the failure to recognize that input flows 

to production differ in essential respects in their tec hnological 

and ownership characteristics and that those differences are an 

integral part of the production process that must be captured 

either in its tec hnological representation or in the representa­

tion of its prices and costs. "l2 That "capture" has been ef fected 

here, in no small part, by following the instruction of 

Georgescu-Roegen: 
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"From all we know, only cost is a fact; the produc­

tion functions are analytical fictions in a broader 

sense of the term than the formulas of the natural 

sciences. The latter are calculating devices, 

while the former are analytical similes which only 

help our Understanding to deal wit h a complex 

actuality pervaded by qualitative change. All the 

more necessary it is that these similes should be 

as faithful as Analysis can allow them to be. "13 
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FOOTNOTES 


1 Smith (1961) constructed a similar model based on the concept 

of  "economic balance" . Marsden, Pingry, and Whinston (1974) built 

a reaction model for chemical processes. Stewart (198 0) and 

Cowing (1974) investigate steam electric power generation using an 

engineering approach. 

2 This was pointed out by Georgescu-Roegen (197 0), p. 1, some 

time ago . 

3 In fact, J. M. Clark's (1923) work foreshadows much of this 

literature on capital utilization. This is one reason why Winston 

lauds the more intuitive and casual contributions to prod uction 

theory under the blanket term neoclassical. Nevert heless, his 

condemnation of mathematical duality theory is misplaced . It is 

not the mathematics, but some well-worn interp retations of its 

applications 'that are at fault. Since these date from the 

marginalist period, we use the neoclassical label. 

4 Some argue that the modern scientists' reliance on mathematics 

has blinded much research to the world of common sense. See, for 

instance, Barrett (1978) and Georgescu-Roegen (1971). A sim ilar 

case can be made here: That economists in their zeal for develop­

ing a mathematical literature failed to incorporate some obvious 

characteristics of real production processes. Winston (1982), 

Chapter 6, attacks neoclassical duality models for this fault. At 

any rate, this tendency may have contributed to the belated atten­

tion given to questions of capital utilization and shiftwork. 
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FOOTNOTES--Continued 


5 Georgescu-Roegen (1972), p. 284. 

6 Marsden, Pingry, and Whinston (1974), p. 136. 

7 It is a trivial exercize to show that 

C(q,P) = minx {P'X : f(X) > q, tq = 0} 

exists for f(X) satisfying Assumption 1 with input vector X and an 

appropriately modified price vector, P = (Plr•••PmrtPm+lr•••tPnTƲ· 

w here all Pi and t are given. 

8 The Hessian matrix of the cost function with respect to the 

input prices evaluated at (q*,P*) is defined as 

We know that 


Where 3Xi/3Pj is the matr ix of partial derivatives of the input 

demand functions with repsect to the input prices. Concavity of 

C in P, along with twice contiDuous differentiability of C with 

respect to P at (q*,P*), implies that the Hessian is a negative 

semidefinite matri x. Thus, we can find that 
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FOOTNOTES--Continued 


or that the ith cost minimizing input demand function cannot slope 

upward with respect to its own price. Furthermore, twice 

continuous differentiability of C with respect to P at (q*,P*) 

implies that the hessian is a symmetric matrix, so the following 

symmetry conditions must hold 

aXi/aPj aXj /aPi, for all i and j. 

9 Diewert (1982}, pp. 587-588. 

10 Betancourt and Clague (1981}, pp. 18 and 26, and Winston 

( 1982}, p. 79. 

= 

11 Winston 

(1982) 

(1982} p. 129. 

12 Winston pp. 131-132. 

13 Georgescu-Roegen (1972} p. 293. 
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