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Merger 

' 
'' 

Lo sses Due to 

In a previou s note in this series, Salant, Switzer and Reynold s 

(1980) found that the intuitive notion that unity make s strength is 

not borne out in oligopoly model s solved by the u se of the Cournot­

Nash noncooperative equilibrium concept. Specifically, they discovered 

that firm s which merge may well be worse off after merger than they 

were when they operated as separate entities. 

This rai se s a serious question for economi sts intere sted in game­

theoretic analy sis of oligopoly models, as well as a general question 

as  to the separability of solution concept s and coalition struc˺ures. 

From the oligopoly theori st' s point of view, thi s result could be 

seen as a criticism of the Nash Equilibrium solution for this class 

of game s, or as evidence that "ind ustry structure'' and "indu stry be­

havior" are e s  sentially interrelated. 

The purpose of this note is to demon strate that the latter in­

terpretation is the be st one for practical purposes. This is not to 

say that there are not severe conceptual and practical problems with 

Nash Equilibrium in this context. However, we shall demonstrate 

that most of the other '' structure-free" solution concepts display 

the same phenomenon, so the clear implication is that we shall not 

succeed in finding a solution concept which is at the same time 

"sati sfactory'' in the sense of capturing our intuition about the 

effects of merger and '' structure-free" in the sense that it ca˻ 

succe ssfully be applied to any alignment of the players. 

The examples collected in this paper are differentiated t·· the 

solution concept imposed and by their game -theoretic attributes. 
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For our purposes, the important type s of games are differentiated 

according to: 

1} whether or not utility is tran sferrable; 

2) whether the set of players is finite, countable, a con­

tinuum or a mixed measure space; 

3) whether the game is cooperative or noncooperative; and 

4) whether the game can be derived from an underlying market 

situation. 

The solution concepts we shall impo se on these game s include: 

1) the core; 

2) the Shapley value; 

3) Nash, strong, and perfect equilibria; 

4) competitive equilibrium; and 

5) Nash Bargaining solution. 

We have omitted from di scu s sion such "structural" solution concepts 

as the von-Neumann-Morgenstern solution, the bargaining set family 

of solution concept s (including the kernel, the nucleolu s, etc. ), 

and solution concepts which specifically addre ss the problem of 

coalition formation. 

As far as po s sible, we have confined our attention to exampl. 

with direct economic relevance. However, some of the examples have 

much greater generality. 

In a subsequent paper, (Cave and Salant (1980) ) we pursue the 

second interpretation of these results, and con struct a model of olig­

opoly where the industry structure is endogenous, and bear s a close 
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and clear relationship to industrial performance. This not only re­

moves the problem raised by the phenomenon of '' disadvantageous syn ­

dication, but also provides testable hypotheses which may aid in 

choosing between various solution concepts as descriptions of in­

dustry behavior . 

I. and Literature 

We begin by describing the disadvantageous syndicates 

phenomenon and noting examples that have already appeared in 

the literature. In games with more than two players, a 

group of players can consider the possibility of forming a 

or acting as a single player. In the context of 

a cooperative game, where all strategic considerations are 

omitted and each coalition 
. 

C is represented by a (set of) 

utility (ies) it can obtain, the formation of a syndicate S 

simply removes from consideration those coalitions C which 

neither contain S nor are disjoint from S : whatever the 

members of S do, they do as a bloc. In strategic games, 

formation of S means that•the members of S agree to 

adopt some correlated strategy, and possibly to carry out 

some side payments to redistribute their receipts . In a 

game with (non)transferrable utility being played according 

to a solution concept l/ a syndicate is said 

to be disadvantageous if the solution obtained after the 

1/ E.g., Shapley va1ue, Nash equilibrium, Nash bargaining 
solution. 
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syndicate forms gives 

In a cooperative 

concept 1/, the 

less utility to (at least one member of) 

the syndicate. game played according to a set-

valued solution formation of a syndicate S 

usually enlarges the solution by removing some coalitions from 


consideration: we say that S is if the new 

allocations are worse for (at least some members of} S than 

those already in the solution. 

We shall now mention some of the observations on this 

phenomenon that have found their way into the literature. 

In respect of the core, the first examples of disadvan­

tageous syndication were given by Aumann (1973 ) in the context 

of Shi tovi tz' ( 197 3) model of a mixed Atomic/Nonatomic market 

with transferrable utility. Later, Samet (1971) showed that 

the phenomenon could not arise in case all the traders had 

differentiable utility functions, while Postlewaite and 

Rosenthal (1974) sought to overcome Aumann's example with 

an example where the disadvantages to syndication had an 

obvious validity. 

S. Hart, (1 974), working with the symetric von Neumann-

Morgenstern solution in the context of a finite-type mixed 

market without transferrable utility found that each type must 

cartel.,form a it being disadvantageous not to (given that all 

1/ Core, von Neuman-Morgenstern solution, Bargaining set, 

etc. 
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traders of the same type receive the same allocation l/) . Okuno, 

Pastlewaite, and Roberts (1 980) found a similar phenomenon for 

Nash Equilibria of a Shapley - Shubik exchange game, and Sal ant, 

Switzer and Reynolds (1980) also produced an example of disad­

vantageous syndication in an oligopoly game under Nash Equilibrium. 

In what follows we shall discuss the phenomenon of disad ­

vantageous syndication. In this paper, we shall add ress: the 

noncooperative equilibrium concepts; the Nash Bargaining Solu­

tion; the Shapley value; and competitive equilibrium. 

II. 

2. 1 Definition: A in normal form is a 

triple (N, L:, p) where: N is the set of (taken 

here to be finite) ; L: = x L:i are the available 
ien 

to the players; and p: L:˷ m is the function which meas­

ures th e preferences of the play ers over outcome or strategy 

n-t in L: • 

2. 2. Definition: a*sL: is a Nash iff Vi , vaisz::i 

if (a*(i) , ai) = (a*l, 

a* is a Nash if V C C N 1 and V a C s X z::i 
isCC= z::	ü 3 isc s. c. 

Pi(a* (c) , aC) < pi(a*) 

This "equal treatment" property, imposed by the symmetry 
of the VN-M solution, is not trivial; even the core fails to 
provide equal treatment in mixed markets. 

1/ 
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Equilibrium 

Nash if 

set of weights on 

the pure strategies 

(o*i+Ei) (ni) 

mixed strategy. Let 

bations: it is an 

X Ej (a*j ) then a* 

definition) o * is a 

true: Vi let Ei be a -
i s. t. if rri cri are 

s.t. V pure strategy 

o*i + Ei 1's a 

the set of all such pertur­

Since the set of all players is itself a coalition, a strong 

Pareto optimal. The concept of a 

normal form is based on what Selten 

{1 974) hand principle". The assump-

equilibrium is Ę fortiriori 

perfect equilibrium in the 

has called the "trembling 

5
V

(there are many variants of this 


the f ollowing is 


the pure strategies of 


Ei
f. = 1 and
JI1 ­

.> 0 1' .e , 

Ei(a*i) be 

open set. If we denote by E(i)(o*(i)) the set 

is a perfect N.E . iff Vi and V sequence 
j ĺi 

E(i)¤ 0 in E(i)(a(i}) , there is a sequence Ei with the 
t T 

properties 

1) Ei ¤ 0T 
i2) 	 V n E Ei(a*i) 

pi(a*i Ei , a*(i ) + t:(i)) > pi(a*i +
T T 

definition of Nash 

Ļi, a*(i) + E(i) )+ 
T 

2.3 Remark: The is of a situa­

ation from which no individual can profitaoly and unilaterally 

defect. A strong Nash Equilibrium strengthens this concept by 

ruling out profitable multilateral defections by any coalition. 

tion is that one's opponents may not actually be able to carry 

out their parts of the equilibrium, but may, with small but 

positive prcbabilities, make any nove. If the stated s_trļtegy 
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n-Ľple is proof against such small mistakes, it is said to be 

perfect. There is a further qualification due to My erson (1976) ,  

where the probability of mistake is proportional to 

ability of the mistake. Such equilibria are called 

However, these refinements need not concern us, as our first 

example will d emonstrate disadvantageous syndication in the 

context of a proper, hence perfect, hence Nash equilibrium. 

the profit­

2.4 This is a noneconomic example: there are three 

playeľs, each of whom has 2 moves. The game is displayed in 

bimatrix form below: the rows are indexed by the strategies 

T1, a1, of player 1 while the moves of players 

i = 2, 3 are used to index the columns. In the entry corres­

ponding to a pa=ticular choice of strategies, the payoff is 

shown. For example, if 1 plays 2 plays and 3Tl' R2 

plays we find the triple (4, 0, 1)  meaning tpat 1 gets 

gets $0. 00 and 3 gets $1 . 00.  To avoid mixtures, we 

have arranged matters that there is in each case a unique, 

perfect and proper equilibrium. 

L3 R3 

L2 R2 L2 R2 

(2, 2, 1) (4, 0, 1 ) (- 1, 1/2, 0) (1 /2, -1, 0) Tl 
(0, 4, 1) (3,3, 1) (1/2, -1, 0) (0,0, 2)Bl 

The unique equilibrium of this game is at (T1, L2, L3) 

and gives a payoff of (2,2, 1) If the syndicate (1, 2) forms, 

it acts as a single player and chooses any convex combination of 
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the four pure strategies indexing the rows of the following matrix 


in an attempt to maximize its total payoff. 


move of {1,2} 


L3 R3 

(4,1) (- 1/2 1 0) 

(4,1) (- 1/2,0) 

(4 1 1) (- 1/2,0) 

(6,1) (0,2) 

This time the unique equilibrium is at (B1, R2, R3) but 

.the payoff to {1,2} is $0 instead of the $4 they get acting 

separately. What happened is that greater power lead to greater 

greed, which got them into trouble. To address the question of 

strong equilibria, notice first that, while there are no strong 

equilibria of the original game, the equilibrium of the syndi­

cated game is also a strong equilibrium: any pareto optimal 

equilibrium of a 2- player game is LĿrong by definition. 

In a sense, this is an unsatisfactory way of dealing with 

the strong equilibrium since it might be objected that we have 

implicitly allowed transfers of utility in claiming that the 

syndicate acts to maximize its total payoff, while at the same 

time ruling out transfers in the definition of strong equilib­

rium. However, the difficulties are not so grave in this example, 

since the coalition {1,2} can achieve any transfers by correla­

tion, without the necessity of involving sidepayments. As for 
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the definition of strong equilibrium: if it were made on the 

basis of total payoff to the defecting coalition the number of 

games possessing strong equilibria would fall drastically. What 

game, there 

tion will 

formation 

we do need for use in such situations is some way to determine 

the syndicate's preferences from those of its members. This is 

a deep problem and we shall defer it to the second paper. 

The other unsatisfactory aspect is that, in the original 

were no strong equilibria. However, a little reflec­

convince the reader that, in general situations, the 

of a syndicate strictly diminishes the set of coali­

tions whose strategic options must be taken into account when 

computing strong equilibria. Thus the set of strong equilibria 

enlarges and the appropriate notion of disadvantageous syndica­

tion is the set-valued one. To see how synd ication may be 

disadvantageous in respect of consider the 

following example. 

2. 5 Example: This is again a 3-player game with two pure 

moves for each player. 

r 
L3 

(1-r) 
R3 

L
2 

R
2 

L
2 R:2 

p T
l (0, 

q 

01 1) 
(1-q) 

(0, 0, 0) 
q 

(0, 0 ,0) 
(1-q ) 

(4,4, 4) 

(1-p) Bl (0, 1.1, 4) (1, 1, 10) (0, 0, 0) (0, 0, 0) 
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This game has 2 pure equil ibria: 

with payoff (0, 1.11 4) 

with payoff (4, 41 4) 

in addition there are two kinds of mixed equilibria denoted by 

(p, ql r): 

a) equil ibria of the form (pi l1 1 )  with payoffs 


(0, 1. 1(1-p ), r-3p) 


b) equil ibria of the form (1, q, 1 )  with payoffs 


(1. 1(1-q), 0, 2-q) 


(the 	 equil ibria of type a include the first pure equilibrium) 

There is a single strong equil ibrium at (T1, R21 R3) • 

Now suppose the coalition {112} forms. The game becomes 

L3 R3 
pl Tl L2 ( 0 1 1) (01 0) 

p2 Bl L2 (1. 1, 4) (0, 0) 

p3 Tl R2 (1. 1' 2) (81 4) 

(2,(l- pl-p2-p3) Bl R2 10) 0) 

Now there are but three equilibria: 

(Tl, R2' with payoff ( 81 4) 

(Bl l R2 ' L3) with payoff ( 2 1 10) 

and a mixed equilibrium at = = 0 I p 3 = . 8  333pl p 2 
= q .8988 with payoff (1. 79771 3.3333) 
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We retain (T1, R2, R3) as a strong equilibrium, giving pay­

offs of (8 ,4). However, there is now one additional strong 

equilibrium, at (B1, R2, L3) with pay offs of ( 2, 10). -This 

shows that in this case, formation of the syndicate {1, 2} is 

disad vantageous with respect to strong equilibrium. 

III. Nash Solution 

Closely related to the notion of Nash equilibrium is 

Nash's solution to the with variable threats. 

To show that syndication is not necessarily an advantage in 

the context of %his model, we shall begin by describing the 

fixed model. 

3. 1 Definition: A fixed- threa t is a pair 

(Afd) where 
nA sm is a set of possible agreements, represented 

as n-tuples of utility. It is taken to be compact and 

convex. 

dsmw is the or threa t point, repre­

senting the utility agents receive if they fail to 

agree. 

For obvious reasons, we assume that 

{asA: ai > di , a f d} f ė 

(In other words, that there are some worthwhile agree­

ments). This is the model appropriate to situations in which 

players must reach so me agreement as to the division of the 



symmetry 

-11-

spoils before taking joint action. The solution to this prob­

lem is given as the unique function that maps problems into 

agreements and satisfies certain axioms. These are laid out 

in the Appendix. 

For our purposes, it is sufficient to say that the Nash 

Solution maximizes the total gain from agreement. In other 

words, the Nash solution n(A, d) is that agreement aEA for which 

the number 

is the greatest, subject to the condition that 

all i . In the fixed-threat model, due to the 

the solution, 

can be clurified 

Example: 

all synd ication is disadvantageous. 

i d
i a > for 

of 

Perhaps this 

claim by means of an example. 

3. 2a three-person, transferrable utility, fixed-threat 

bargaining. "Transferrable utility'' in this context means that the 

set of possible agreeF:nts is part of a plane with slope -1: essen­

tially, there is a certain amount of money to be divided between 

three players who all value it in the same linear (constant mar­

ginal utility) way. Suppose that the amount is $1 . 00 and that the 

disagreement payoff is $0. Then the Nash solution selects numbers 

a1, a2, and such that + + = 1,  and such that the "Nash a3 a1 a2 a3 

product" is maximised. It is easy to see that the alloca˸iona1a2a3 

selected is = = = 1/3. If 1 and 2 form a coalition, wea1 a2 a3 

have a two-person bargaining problem, to which the Nash solution 

assigns a division of b = b2 = 1/2. If we divide the proceeds1 

among the members of the coalition (1 , 2) using the Nash solution 
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again, we get the three-person allocation for the "syndicated" 

game given by: c1 = c2 = ĕ ; c3 = Ĕ , which is clearly worse for the 

members of the coalition (1 , 2) .  

In general games, without sidepayments, we would have trouble 

in describing syndication , since the data of the problem typically 

do not allow us to define the set of agreements available to sub­

sets of the set of all players: the bargaining game is an unanimity 

game. However, we shall verify our claim for two situations where 

we can describe syndication. 

3. 2b Let (A, d) be a transferrable utility bargain­

ing problem (i. e. , the Pareto-optimal set is an hyperplane) . 

Then V C N I if (A , d )c c is the bargaining problem when 

forms [#C > 2] : 

.2: n i(A, d) > n 
c(A , d )

c cl.SC 

C 
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First we must describe (Ac, d )e

JR n -+ 
• =Let '¥ : JR n-#C+l be 'f (xl , • • 1 Xn ) ( 'f j (X) 1 j C 1 'fC (X) )-cc 	 C C 

for j .iC 

c 


C 1 n i 

'fj (xl , 

'f (X , • •  • 1 X ) = L X

C 
 isC 

then A = '¥c(A)

c 


d = 'fc(d)

c 


and the content of the theorem is that if 

a 	 = arg max IT (aj-d 	 )(ac - dc)1
EA j ECc 

i. e. , a = arg max IT (aj-dj) ( L: ai - di) 
aLA jtc iEc 

then L: ai does not maximize IT (ai-d i)
isc i Ec 

To simplify the argument, 	 we first write 

B = A - d B = A - dc c c 
so that the original problem is then 

the problem after syndication is 

I max 
bEB 

and 

II  	 max 

bEB 


To further simplify matters we note that the constraint bEB 

can in this caŀe be written as 

L: 7\j bj = k 

j sn 


where Aj > 0 (all j ) are fixed weights. The solution to prob­

lem I under these condi tions can be found from the first- order 

for maximizing 
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bj 	 j j= IT + ģ(k - tA b )o1 jt.:N 	
j 

i. e. , (neglecting corner solutions) 

v. 	 or Y..J J 
j jthus A b is independent of j and by feasibility 

bkIT 
j j K 	 jl:A b = 	 = k = nAj

b
j 

so Tf.

J 

j kb = 

n\ j 

i k#cand . 2:  A ib = Wt:C 	 n 

Before turning to problem II, we remark that, by virtue 

jof the affine invariance of the solution we can write A = 1 . 

The first order conditions for II  are now 

- ģ = 0IT 
k,icuj 


C: 

bj k be= = 
n-c+l 

To see the conclusion of the theorem compare 

kc kand n n-c+l 

so syndication is disadvantageous iff 

kc > k 

n n-c+l 


=lJ(jQc 
 0
-
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i. e. , nc -c 2 + c > n 

i. e. , n{c - 1) > c(c - 1) 

i. e. , n > c > 1 QED. 

Instead of proving the theorem for the more general case, 

it may be instructive to consider an example of bargaining with 

out transfers of utility. 

certain amount of money $k , be specified 

n agents trying to divide this money. 

i's utility for money is given by 

further simplify the example, we assume 

that k > n and that if the agents fail to agree they each 

get $1 for trying. First, we can easily solve the n-person 

problem, upon noting tha t in all su ch money division problems 

with reference levels of 0 the first-order condition for the 

Nash solution is 

i iU (x ) = const. 
MUi(xi) 

MUi = 

to 

is i's marginal utility. This trans-

lates 

Where 

x.lnx. = const.
1 1 
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but since x ln x is a monatone increasing function of x , 

this means that the Nash solution calls for equal division. 

k 
n 

Now consider the effect of syndication: a group C 

forms and agrees to divide any joint proceeds according to 

the bargaining solution. In other words, if C gets by 

Xcconcerted action an amount of money they will then 

bargain ·over this. Thus, within C we have again the equality 
i uof -- This gives c as virtual utility function weiMU • 

which reflects the total utility numbers of C get by acting 

in concert : 

Xc Xcwhere is the bargaining solutions division of among
i 

the is C. In fact in this case the amount xc will be 

equally divided, by the previous argument, so if c = # C  

c x. = l. 

i c cy. [ ln x - ln c]. E u (x. ) = 1. C l.l.E C l. 

and 

r.xc[ln x - ln c]= 

= 

Thus, the Nash solution for this two-stage procedure satis-
. - (-j . -Cfies the fo llowing condit1.ons, where x = x : JSC, x ) is 
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the allocation given by the solution: 

j j'1) by symmetry x = x = xl' Vj, j't C 

uj j j j' j' j'[i. e., = x ln x = x ln x = u

MUj I 

2) (n-c) X1 + XC = k (feasibility) 

X1 ln X1 = XC [ln XC - ln c) (Nash condition) 

It is easy not to show the disadvantages of syndication: 

In the range x' ŕ 1, x' ln x' > o. 

x.c - ln c] is 

k 
n 

x.c = ck 

But if xc[ln XC - ln c] 

-c monotone increasingly, 

-1 X-1 = 

> 0 and X > 0, then XC [ln 

cas before: x. = ex'as is X ln • Now try x' 
n 

so condition 3 becomes 

=ln X 

c[ln XC 

XC 

x' ex' ln x' 

Thus x + ln c] x' ln x' and so by monotonicity 

we must reduce (while simultaneously increasing x' by condi­

tion 2 above). Therefore, the syndicate winds up with less 

money, and so each member has lower utility. We can prove a 

generalized version of Theorem 3. 2  appropriate to situations 

of money division, but the proof is not very enlightening. 

In the above model, one highly counterintutive feature 

is the existance of a fixed threat with resp˯ct to which a 

strong measure of symqetry exists: either side can invoke the 

threat by refusing to agree, and this is all either side can 

do. In real bargaining situations, however, there are usually 

a range of possible threats arrl counter threats. The bargaining solution 
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has been modified to take this into account, albeit in a highly 


specialized way. 

3.4 Definition: A variable threat is (A, E, p) 

where A is the set of possible subject to the same 

assumptions as before; and (L, p) is a game in normal form 

(see de£ 2 .  1) called 

This game is played 

cr € E leads . 

If we denote by h(A, d) fmn the Nash bargaining solution to 

the fixed-threat prob lem (A,d) , we can extend this to give a 

new payoff function to the threat game: 

H : E  -+ IRn defined by
A


H : (cr) = h(A,p(cr))

A

a.Nash equilibrium (not solution) of this new noncooperative game 

a variable-threat bargaining solution, and the 

used at this equilibrium are called 

our purposes the fact that both the 

bargaining solution and Nash equilibrium are used 

fixed-threat 

to define the 

the threat 

as follows: each n- tuple of threat 

to a possible threat p(cr)Emn 

(E,HA) is called 

strategies cr*EE 

threats. For 

variab le-threat solution is ample evidence that disadvantageous 

syndication can and does occur in this context as well. 

-Iv. The Value 

In this section, we turn to what are called coooerative 

or games in characteristic function form. In passing 
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from the 

move is displayed, to the normal 

extensive (tree) form of a game, where the order in which 

players or strategic form, we 

obliterated certain strategic considerations. Now we are going 

to altogether remove any considerations of individual strategy 

in order to focus on the coalitional aspects of the game. As 

we shall show, it is possible to obtain several characteristic 

functions from strategic or normal form games, but the reverse 

passage can only be made in a trivial manner. In keeping with 

most of the rest of this paper, we shall s tick to games of 

transfer rable utility which are a special case of games without 

transferrable utility . 

4. 1 Definition: Let (T, Z, ē) be a probability space. T is 

a (possible finite) set of players. £ is a a-field (see appen­

dix) of subsets of T called coalitions, and S:£Ė [0,1] is a (o-) 

additive measure with ˰(T)=l. For the reader unfamiliar with 

these concepts, it is possible to think of 

T = { 1, ....n} 

v: l + JR s. t. v,0) = 0. The game is 

::::;> v(S) 

) ( S ) + \) ( S 1 ) < 'J ( S S I ) • 

> 'J(S'); and superadditive if 

VS t S I (£ S • t • S S I - }) t 

£ = {SCT} 

;J(S) = #S 
n 

a is a function 

monotonic if S S' 
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4.2 Remarks: The number v(S) is called the worth of the co ali­

tion S, and reflects the total amount of money, utility, etc. 

that S has to distribute among its members. From the data 

given by v, cooperative game theory seeks to predict what 

allocations will be made to the individual players and under 

some circumstances, what coalitions will form. Such games are 

quite common: two examples are 

i) 2/3 majority rule 

function 

(ũt) ]J( dt) : �ũtl.l(dt) = 

redistribute its 

greatest total 

{if J.l (S

trader 

JR 

) > 2/3 
(S) 	 = { 

{otherwise 

ii) monetary exchange economy: each V has 

an endowment sJR and a 	 uT:JR � +˱T t 

v(S) = sup {�u �˲tl.l (dt)}t

th at is, each coalition can 	 resources in any 

˳ay it likes to promote the 	 utility. 

In example ii we see the presence of some strategic con­

siderations: actual redistributions of goods are involved. 

In general, given any normal form game (N,l:,p) we can 

two characteristic functions Va and v3 as follows: 

derive 

i) Va(S) = max {v: 3 ass X ri s.t. 

iss 


'I :r(s)s X 
is s  

{v: 'l 

< 

_(s)
T 

L: Pi (as , 

E), v < L: pi (as , T(s))} 
j,is 

--. 	 sii) Vs(S) = max 	 , * assr s. t. 
(s)

v T )} 
iss 
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Thus, the a-worth of S is the amount that s can guarantee 

if it has to move first (is not allowed to react to T/S' s 

specific choice), while the S-worth of S reflects the amount 

s can guarantee if they can react to T/S with a specific defen se, 

Clearly, Va(s) Ē v6(s). At any rate, there are many ways of 

solving such cooperative games, and of constructing them to 

model feature s of the real economy. Before looking at syndi­

cation in the context of any specific example s, we must define 

(T, £, S), v be a game, and Ss£. The 

S, or V is the game formed by restriGting s 

the range of v to coalition s S' that do not "break up S" i. e. , 

it. 

4. 3 Definition: Let 

with 

Where = { S I: S 1fl S = xr Or S I fl S = S}£S 

V S's£s , V (S' ) = v(S')s 

If we have to deal with several disjoint coalition s, we 

n of T :can describe them by means of a 

then the relative to the 

n C £ which satisfies U {S ' 2 n} = £ 

v s',S" s n, s' n s" = fJ 

n, is the restriction VTI 

of v to­

£ = {S's £: VS"sn either S"DS' = fJ orn 

S"flS' = S"} 
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In other words, our view of syndication is that the syndi­

cate members act as an indissoluble unit. Among the ways of 

solving cooperative games, the Shapley value is one of -the 

most thoroughly explored. It has an axiomatic characterization 

as the unique solution with certain efficiency and equity pro­

perties (see appendix) as well as probabilistic and construe­

tive characterizations. It was expressly designed to aid in 

the analysis of and has been used for analyses of 

political and economic power, allocation of inframarginal costs, 

allocation of school funds, etc. The axioms that give rise to 

the value are essentially the same as those giving the Nash 

bargaining solution in a different context. 

The value gives to each player an amount that may be 

described as the player's "expected contribution to a random 

coalition. To indicate why we might expect syndication to be 

advantageous in the context of the'va lue, we quote from 

Aumann's discussion of his example of disadvantageous syndication 

in the core: 

"The concept of core is based on what 
a coalition can guarantee for its elf. Mono­
poly power is probably not based on this at 
all, but rather on what the monopolist can 

other coalitions from getting. His 
strength lies in his threat possibilities, 
in the bargaining power engendered by the 
harm he can cause by refusing to trade. 
Put differently, the monopolist's power ­
and for that matter, that of any other 
trader - is measured by the difference be­
tween what others can get with ˵ and what 
they can get without him. This line of 
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reasoning i s  entirely different from that 
u sed in the definition of the core. But 
it is not foreign to game theory; indeed 
it is clo sely related to the idea s under­
lying the Shapley value. " 

We begin by writing out the formulae for the value of 

a three-per son game: there are six pos sible orders of the 

players, and if each order has equal probability (this is how 

the random coalition s are generated) we get, writing Yv(i) 

for the 	value of player i 

lf'v ( 1) = . (2 v (1) - v ( 2 ) - v ( 3) - 2 v ( 2 , 3) + v ( 1, 2 ) + v ( 1 , 3 ) + 2 v (1 , 2 , 3 ) · 

lf'v(2 ) = 	 1(2 v(2 ) - v(l) - v(3) - 2v(l,3) + v(l, 2) + v(2 , 3) + 2v(l,2 , 3)' 
6 

lf'v ( 3) = 	 1 ( 2 v ( 3) - v ( 1) - v ( 2 ) - 2 v ( 1 , 2 ) + v ( 1 , 3) + v ( 2 , 3 ) + 2 v ( 1 , 2 , 3 ) : 
6 

It will be noted that the total payoff, \f'v(l) + ˶v(2 ) 
• 

+ lf'v(3) = v(l,2,3), so the value is efficient; based on the 

as sumption that the all-player coalition can guarantee the big­

gest total, the value is a scheme for dividing this total. The 

total amount earned by the coalition (1,2 ) under this scheme 

is readily seen to be: 

'±'v(l) + '±'v(2 ) = 	 l:_(v(l) + v(2 ) - 2 v(3) - v(2, 3) 

6 


+ 2v(l,2 ) + 4v(l,2 ,3)) 

On the other hand, we could treat them as a single player: 

in other word s, we would have a two pl ayer game in which the 

only coalition s that could form are those that either contain 

or are di sjoint from the coalescence (1,2). In this case, there 
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are only two orders of the players, and the Shapley values are: 


'¥v ( 1, 2) = 1/2 ( v ( 1, 2) + v ( 1, 2, 3 )  - v(3 )  ) 

'¥v(3 ) = 1/2 (v(3 ) + v(l,2,3 )  - v(l,2)) 

From these data, it is easy to see that players 1 and 2 

benefit from merging if and only if 

v(l) + v(2) + v(3 )  + v(l,2,3 ) < v(l,2) + v(2,3 ) + v(l,3) 

and the symmetry of this condition makes it clear that this is 

true for any other coalition we might consider. 

We now present economic examples of both profitable and 

unprofitable merger. Both have quasi-concave utilities and 

reasonable endowments (from the monopoly -theoretic point of 

view), so neither is pathological. 

We begin with a 3 - agent 3-good economy, where4. 4 

the endowments are given by: 

Player Endowment of x y z 

1 1 0 0 

2 0 1 0 

3 0 0 1 

Ui(x,y,z) = xy + yz + xz - xyz. Using 

the formula for v(S) given in 4.2 iii above, we get the follow­

a) Profitable 

ing, representing the best each coalition can do with its endow­

ment: 
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V(i) = U(ei) = 0 i = 1,2,3 

= U(e. + e.) = 1 for i "F j1. J 

[The reader can easily check that with these utility functions, 

the best total utility is achieved by giving all the goods to 

one agent]. This characteristic function satisfies the condi­

tion for profitable merger. 

b) unprofitable merger: Ui(x, y, z) = xy + yz + xz + xyz 

U(e.) = 01. 
=V(i, j) = U(ei + e )j 1 


V(l,2,3) = U(e + e + e ) = 41 2 3

We now turn to another cooperative solution concept. 
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V. The Core 

A great deal has been written about the Core in economics, 

so we shall not repeat the discussion here. Suffice it to say 

that an allocation x 

> 

T ) Û of utility or money is in the core 

iff, v s e: t 

v(S) .fx 
s t-

In Aumann's example 3, we were presented with a situation 

in which, given that the monopoly formed as a single entity 

· 
(atom) , the core consisted of two points: a competitive allo­

cation which would result if the monopoly acted as independent 

uni ts, and one othe r allocation which_require d the exe rcise of 

monopoly power. The pay off to the monopoly at the latter allo­

cation was strictly worse than at the competitive allocation. 

We will merely prese nt the cores derived from one of the games 

in graphic form.of example 4.4, 

5. 1 

Transferrable-utility core: The following is a diagram 

in utility space of the game. of example 4.4b: The lines con­

necting pairs of axes are the possible redistribution of the 

worth of that two-pe rson coalition to its members: the plane 

represents re distributions of V(l,2,3) .  The core is the shaded 

area: that part of the V(l,2,3) surface lying above all the 

V(i,j) lines when the latter are projected out. Next to it 

we have drawn the same figure for the syndicated case, and 
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have shaded only the portion s added to the core. It will be 

noted that neither shaded region represents a gain for both 

member s of the coalition. 

notion of disadvantageous syndica­

tion, but we can easily construct stronger examples in a non­

transferrable-utility context, where the v(S) curves may have 

proper curvature. Full discussion of this situation will be 

postponed to a subsequent paper, but we present below a simple 

non economic example: the functions v(S ) are now given as sets 

of utilities - the transferrable-utility v(S) is now v(S) = 

{u:T -+ :JR : �U ]J(dt) = v(S) }.t t

This is a rather weak 

5. 2 Example: T = {1, 2,  3} 

v(i) = 0 Vi 

v(l, 2 ) = { (Ul, U2, U3): +ul u2 

-
 21/2 ) : 
 < 
 1}
v(2, 3) = (Ul, U2, U3): 
 ul 
 < 
 1 - 4(U3 
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=V(l,3 ) {(Ul,U2,U3 ) :  ul 1 - 4(U3 - 1/2) 2: u
3

2.2 2 2V(l,2,3) = (Ul,U2,U3 }: u u u = 10}
1 + 2 + 3 

portions added to the 
core when the syndicate 
(1, 2) forms 

. . 
·I •' Ji'

;.'£:ore' t( i . 

V(l,2,3) 

* 

the above diagram that 
u3 

It is clear synd1cation only 

introduces inferior outcomes into the core. 

VI. 

The competˮtive equilibrium is not really a game-theoretic 

concept, since it obviates any notion of market power, but we 

shall calculate a simple example to show that syndication is 

disadvantageous in this context as well. 

As before, we have a three-agent, three-good6. 1 

economy. This time, however, we use utility functions that 

are explicitly of the transferrable utility type: the third 

good (money) enters each agent's utility function linearly. 

In the previous example, the linearity in z was achieved only 

by symmetry, which ensured that the marginal utility of a.1 

extra unit of z was the same constant: in those cases, maxi­

mising the total utility of a coalition involved giving all 
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the goods to a single member, whereas in the present case there 

is a nontrivial optimal division. 

The endowments are as before: agent 1 has e = (1,0,0};1 
= (0,1,0}; and = (0,0,1). Agent i's utility function is: e2 e3 

u. (x,y,z} = a.ln(x) + (1-a.}ln(y) + z 

where the a. are positive real numbers between 0 and 1; we
' 

assume that the sum + a + is strictly between 1 and 2a1 2 a3 

for casŎ of exposition. Given a vector (px,p ,l) of prices, y

we can calculate demand functions in the usual way: each agent 

i solves: 

max ui(x,y,z) subject to Pxx + PyY + zŏp ef + p el + e�x Y

The results of these calculations, which are summarized below, 

can then be used to compute the equilibrium prices and alloca-

tions; find the price at which demand equals supply, and the 

amounts demanded at those 'clearing prices'. 

demand for X demand for demand for z 

1 (l-a1)/p p -1 a1/Px y X 
2 a2/P (l-a2)/Py py-1x 
3 a31Px (l-a3)1Py 0 

For this economy, which we shall think of as the unmerged case, 

the equilibrium is described as follows (letting b = a +a2+a3):1
p� = b ; p *  = 3-b 

y 



agent y 

-30­

allocation of x allocation of 


1 
 a1lb (l-a1)1(3-b) 


2 
 a2lb (l-a2)1(3-b) 


3 
 a3lb (l-a3)I(3-b) 

For our purposes, it is also important to know the combined 

utility of agents 1 and 2. 

u *  + u * = a  ln(a ) + a  ln(a ) + (1-a )ln(l-a ) 1 2 1 1 2 2 1 1 

allocation 

b-1 

2-b 

0 

of z 

If age nts 1 and 2 form a coalition, we shall assume that 

they will act as a single agent using the best possible redis­

tribution of the goods between themselves to provide a vir tual 

utility function. In particular, if agents 1 and 2 had a fixed 

amount (x,y,z) to divide between themselves in such a way as to 

maximize the sum of their utilities, it is easy to see that the 

allocation which does the job is (keeping the same column head­

ings as above) : 

1 (a x)l(a +a )
1 1 2 

( ( l-a1)y)I(2-a1-a
2

) any 

2 (a2x)l(a1+a2) ({l-a2)y)l(2-a
1

-a 
2 

any 

Consequently, if we let c = a +a , we obtain the following demand 
1 2 

function for the 'agent' (1,2): this agent has an endowment of 

( 1,1,0) and a vir tual utility function given by: 
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u (x,y,z) = d + d + cln(x) + (2-c)ln(y} + z 

12 1 2 


where d = a  ln(a ) + a  ln(a ) - ln(c), and = (l-a )ln(l-a ) ­
1 1 1 2 2 

d2 1

+ (l-a2)ln(l-a2) - (2-c)ln(2-c) 

are constants. The demand function are as follows: 

x *  = (c)(p p -l)/(2p ) X+
12 y X 


= (2-c) (p +p -l}/(2p }
y �2 X y y

z *  = 1
12 

Since this is a two-agent economy, the equilibrium prices 

are determined only up to the ratio of P to P · Thus we mayx y 

set p *  = 1 as well. In this equilibrium, Py = 2(1-a3)/c.X 
Using the optimal split derived above, we can write the alloca­

tion corresponding to this equilbrium as: 

allocation of x allocation of allocation of z 

1 a (l-a )/c (l-a1)/2 z (any z between1 3 0 and 1) 

2 a2(1-a3)/c (l-a2)/2 Ú-z 

3 
 c/2 0 


In this case, the total utility of the two merged agents is given 

as 

u *  = d 
12 1 


+ d 
 + + (2-c)ln((2-c)/2) + 1 




-32­

After some manipulations, we can derive the change in 

utility upon forming the merged entity : 

ui - ui - u; = c(ln(c)+ln(b)+ln(l-a3)+ln(3-b)+ln(2)) - 2(ln(3-b)
2 

+ ln(2)} 

This formula may be rather opaque, but we can see immediately 

that it can assume either sign if a is close to 1 and both3 
a and a are close to 0, the two large negative terms ln(c)

1 2 
and ln(l-a3) will dominate everything else and ensure the unpro­

fitability of mergers. On the other hand, if o is a very small 

positive number, and we set a = a = 1 - o, while = 8, the
1 2 

a3 

difference becomes 2(1-o) (2ln(2) + 2ln(l-o) + ln(l+o) + ln(2-o) 

- 2ln(2(1+3). As o becomes arbitrarily small, this tends to 

6ln(2), which is certainly positive, indicating the profitability 

of merger. 

In our next note, we shall take up the issues of nontrans­

ferrable utility, market poH2r, and some more sophisticated 

solution concepts. 




Appendix: Shapley 

bargaining gŐőe 

agreement disagreement 

individually 

Independence 

symmetric, 

Axiomatic basis of Nash Solution and Value 

I. 	 Nash Solution: a is a pair (A,d) where A is 

the set of points and d is the or 

threat point; both objects live in utility space. It is 

conve nient to assume that d belongs to A and that A is 

compact and convex. The axioms do not require selection 

of a single point, so we shall state them in terms of a 

S(A,d) 	 that depends on the data of the problem. 

Axiom I: S(A,d) A: the result should be feasible; 

Axiom II: if y s A is Pareto-dominated by some other 

set 

point x s A (that is, x is better for every­

one than y) then y iS(A,d): the result 

should be Pare to-optimal; 

Axiom III: if x s S(A,d), then x. > d.: the resultl. -	 -l. 

should be rational; 

Axiom IV: 	 if A and B qre two P' ssible agreement sets, 

with d s A B, and if X t A and X € S(A,d) 

- if x was chosen when a larger set of 

agreements was available, then it should be 

chosen from a smaller set - the technical 

term for this axiom is of 

Irrelevant Alternatives; 

Axiom V: if A and d are both in the sense 

that any interchange of the names of the 

players gives us the same problem back 



symmetric; 

linearity. 

game 

(symmetry) if 

the property 

containing neither 

again - in particular, this requires that 

each player get the same disagreement pay­

off - then the result should be 

Axiom VI: 	 the solution is not affected by (independant) 

linear transformations of utility scales 

- this is called 

The theorem is that there is a unique function satisfying these 


six axioms; it is what we have called the Nash bargaining solu­


tion. 


in characteristic function form is a 

a 

Shapley value: 

pair (N,v) where N is the set of players and v is a func­

tion that associates a number v(S) to each subject S of N, 

with the added convention that v(Œ) = 0. A value is an 

operator that associates to each game a vector of payoffs, 

one to each player in the game. We denote this vector for 

a particular gave v by 

lf'v = (?v(l), ?v(2), .. .  , ?v(n)) 

and ask that it satisfy the following axioms: 

Axiom I: i and j are two players with 

that, [if Tis any coalition 

i nor j then v(T i) 

= v(T j) ] ,  then œv(i) = Ŕv(j) - if i and 

j are substitutes in the game, they should 

II. a 

get the same thing; 




player)if 

(efficiency) 

{additivity) 

• 
. ' 

'. 

(null i is a player with the 

property that v(T i) = v(T) for all 

T N, then Qv(i) = 0 - if i never adds 

anything, it should not get anything; 
n 

Axiom I I I: 

Axiom I I: 

E Qv(i) = v(N) 

i=l 


Axiom IV: 
 let u and v be games with 

the same set of players, and define a 

new game w( = u + v) by: 

w(S) = u(S) + v(S) 

Then Qw(i) = Qu(i) for all players 

i N. 

The Shapley value is the unique operator satisfying these con-

ditions. 
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