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A distinguishing feature of nonrenewable resource production is 

that the marginal cost of extracting the reso urce at a given rate 

1 
increases with previous cumulative e:xtraction. For example, in the 

case of oilŎ extraction costs increase from havin g to compens ate for 

a loss 	of natural pres sure in the well. In the case of minerals, lower 

grade ores or less accessible deposits must be utilized as the resource 

is depleted. Mineral resources have an additional characteristic of 

interest. Scarcer elements, like copper, zinc, and silver occur in 

several 	 distinct chemical structures. As a result, when the next most 

difficult structure must be confronted , the unit cost of extraction 

2 
rises discontinuously. 

This paper considers how these realistic aspects of resource 

recovery affect the length of an optimal extraction program. For 

concreteness we assume there is some amount, < oo, of the resource 

that iŏ ultimately available for extraction. Let s1 be the stock 

remaining at the beginning of period i and let q1 be the amount of 

extraction during period i. The cost of extraction is given by 

C(q1, s1). Denote C(S) as the average cost of extracting at an 

"'inHnitt-sim.al ::::1-::e with S units remaining; C(S) lim C(q,S)/1{. 
qʐG 

Then, according 

E\ 

:'2 

decreases. 

:,ower .;:0st 

, ʏJ:e 

"ʎ c>Btrata8 

r.:' tl'e discussion above, this limiting unit eAtraction 

cost increases Also, it may rise discoGtin�..:ouely ;..rbc:n 

J.istinct depos:: 8 resources are exhausted. This pht:uO!.!l(;:ncn 

is illustracȅd la with the jumps in unit costs occurring at 

1stocks 	 S snd 

Figure l;:. OL.i:C about the d<!mand for the 

resource. The invڱ."'e deman.d function, P(q), is asaumed to bʍ 

I 
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extraction 
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Fig ures !a and lb g o  here. 


s tationary, downward sloping, and to inters ect the price axis at a 

3 
finite ''choke" price denoted by P (0). 

In an optimal extraction program, unit extraction costs ris e 

over time and p rice approaches the choke level. The relati onship 

between the choke price P(O) and the unit extraction cost in the 

neighborhood of P(O) turns out to be important i n determining the 

length of the optimal extraction program. We show that the resource 

is optimally extracted in infinite (finite) time, if 

cost rises continuously (discontjnucuely) for values 

unit 

of C just below 

P(O), For exanroJ o:o 

an ʌ,, .. ڰJ':ial 

P3 , . 

,i choke price equal to P 5 or P 2 or P 1 in Figure la 

will result in program of infinite length. A choke price 

equal to P4 or c::ause the tim12 before optimal extraction ceases 

to be finite. 
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This result is noteworthy on four counts . First, it contradicts 

a general belief that optimal extraction of a finite resource requires 

in the "neither believable nor important " case noted 

by Solow4 where the choke price is infinite. Second , it is currently 

popular to talk about the availability of a natural resource in terms 

of the remaining number of years that it can be economically exploited. 

Our result points out an undesirable feature of this measure of resource 

abundance. It may be quite sensitive to minor fluct uations in demand. 

A shift in demand Which causes a small change in the choke price, (a 

drop from P3 to P2, say) can produce dramatic changes in the economic 

lifetime of the resource . Furthermore, the cumulative amount of the 

resource that is ultimately recovered and the length of the extraction 

horizon need not even be correlated. For example, ultimate recovery 

increases but the extraction ttme becomes shorter when the choke price 

shifts from P1 to P3. 

Third, our result has important implications for the way one 

represents depletion effects in models of resource extraction. Somt! 

in finite time 

studies of resource industries approximate a continuously rising unit 

cost of extraction cu::-.;e, C (S). by .a ::�tep function, ·.::rd.s ·,,_i::._ i oi 
7 ..J 

approximation i:; re;.;!:'esented in .\?igure 2 by the do::::".: liiJc;. 
c 

function appro:A.:L'-otion i.s handy beگa.:Jae it reducas the d.t.Efic'-llt;; uf 

computing the (•_ 

characteri.::d:tc 

approximated bڮr 

extraction cos::s 
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extraction in finite time, even if the situation being approximated 

requires an infinite extraction horizon. 

Figure 2 g oes here. 

Finally, our results put in perspective the traditional analysis where 

depletion effects are neglected. In the absence of depletion effects, 

the extraction problem can be posed in either of two equivalent ways: 

If .the mine initially contains I units, this fact can be sWl'lliarized by 

a constraint on cumulative extraction or, alternatively, by a continuous 

cost function whose limiting unit cost jumps above the choke price once 

units have been extracted. The latter approach permits us to apply I 

our analysis and to ·ğonclude that optimal extraction :n1ʋst ter·winate in 

finite time. 

To demonst1·Ġt"" Dur results we assume the extractor i�> a 

monopolist ms.kir',; ..:i.sions at disc rete intervals. ʉ-hʊ thud.c re�Fllts 

obtain, howevez-. :. : "he .az:cractor were instead a plar::n,c;r, or if 

decisions were r.ea. ڭoatinuously. Continuous tim.2 rڬsultd ar:e derived 

in the Appendix. 
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Formally the monopolis t's problem is to choose {q1, q2, • • • } 
in order to 

imaximize 
00

L B (R(q ) - C(q1, S1)J 
i

i•O 

eubject to 

S • I < co0 

where R{q ) is the revenue produced by qi and B is a conotant discount
1

factor. 

7 for such a problem 

provided that, 

It can be shown that a maximtlm always 

8
(a) the net profit function, R - C, is continuous and that it is 

bounded from aboȂe, 

(b) 0 < B < l. 


It is assumed that these weak restrictions are satisfied by the problem 


under considerat:ton. Addit:tonal assumptions must be ra.a.d8 about the ner: 


profit کunc::: ڪ .. _ ;eʈerate our resol:s. 


' .  ..... 

A3, 

A4. 



10 

These assumptions are reasonable. 
9 

Since the revenue from 
selling (and the cost of extracting) nothing is zero, the first 

assumption is plausible. The second simply defines some level beyond 

which extraction is too costly. The third asserts the existence of a 

depletion effect which shifts the marginal cost curve up as the stock 

remaining falls. The last is slightly stronger than the standard 

assumption that marginal profits are a downward sloping function of 

the rate of extraction although as indicated below, the weaker formu-

lation is su fficient to prove our basic results in continuous time. 

We require that the net profit function be continuous everywhere 

and twice contin uously differentiable except at a finite set of points 

j 1denoted z. Z is the set of stocks S (s and s2 in Fig. la), where the 

limiting unit extraction costs rise discontinuously as S de clines . We 

assume that for any q ' S such that S t Z and S -q t Z the net profit
t t t t t 

function is twice continuously differentiable. This assumption permits 

10 
us to consider most cases of interest.

To prove our results we need to look at tvo possibilities, 

P(O) - lim C(S) - R (0) - lim c (O,S) 0c 
q qStS* Si-S* 

P(O) - lim C(S) R (C) - lim C (O,S) > 0.a 
s+s* q s+s• q 

The first posAibility occurs at choke prices P5• r2 o: ڦl ia 

Figure la while the second p ossib ility occurs at choke prices P4 

or P3• 

If (2) holds, we will shڨڧ that the optimal terminal extractioa 

time, T is infinite. Assume to the co ntrary that opt imal eʇtraction 

ceases in finite time, so that T < 00• Clearly, ST+l > S* is not 
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optimal since (2) and (A3) would then imply that further extraction 

after timeT would be profitable. Nor is S + < S* optimal by (A2).T l 
Hence ST+l • S*. By hypothesist Tis the final period of extraction 

so that x • S - S* > 0. The profit earned in that period is
T 

R(q ) - C(qT, qT + S*). But (2) in conjunction with (Al) and (A4)T

implies this profit is strictly negative for any qT > 0. Hence we 

can dominate any proposed program of this type by simply replacing 

the extraction in period T with abstention. S ince a maximum exists 

and any finite program can be dominated if (2) holds, the optimal 

extraction horizon must be infinite. 

If (3) holds, we will show that the optimal terminal extraction 

' 

time, Tis finite. For suppose it ia claimed that an infinite prograc 

is optimal. The claim is obviously false if St < S* for some t 

or--given the stationarity of (1)--if q • 0 for acme t. If, however,t 
q > 0 and S ȁ S* for all t then {s } is a strictly decreasing sequencet t t
that lies in the interval [S*, I]. Thus S +S as t+oo for some t 
S £ [S*, I] by the monotone convergence theorem. Horeover, since {s } t 

is a Cauchy sequence, S - St+l • qt+O as t-+-<.G,t 
Consider the value of incraaBing qt and J'-=creabing qtH by ac 

equal amount leaving unchangE'd the rest of the ;>r:o�::rʄ; 

- .  1.. :.... -
('--' '

wherever si - 1i t z and si t z for iat, t+l. 

If the infinite DPgran ʅr-o;:;oʆ::.! is ' .- drnal {) for all :: 

for which the derivatives are defined, 
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A 

Since Z is a finite set, there exists an interval I • S) 

- A -
for S < S ȀI such that S E I implies S t Z and S - q t Z. Thus, 

beyond some date the derivatives are well-defined. Since the choke 

price is finite, 	 lim R (q) exists and we obtain: 
q-+0 q 

lim diT • [R (0) -lim C (O,S)][l-B]. 	 (5) 
qdq 

q Sf'S"t-+co 
t s 

t+2 

Now by (3) and B < 1, (5) is strictly positive. Hence one can always 

find a date after which a dominant program can be constructed by 

expanding production in one period and cutting back by an equivalent 

amount in the following period. Since an optimal program exists and 

yet any infinite program can be dominated whenever (3) holds, it must 

be finite in this case. 



APPENDIX 

This Appendix establishes the continuous time analogues of 

the results presented in the text. 

The problem facin g the monopolist is to 

JT -rt
maximize e [R(q) - C(q,S)] dt (1)
{q}, T 0 

• 

subject to q, S, T -> 0, S0 • I < (, and S • -q. Tile finite set Z 

is defined as in the text. We assume that the profit function is 

twice continuously differentiable for S ¢ Z, a nd that 

Bl. R(O) - C{O,S) • 0; 


B2. a S* E[O,I) such that S* • inf(S I R(q) - C(q,S) < 0, q > 0); 


B 3. R (q) - C (q,S), (wherever it is defined), is strictly

q q 

increasing in S; and 

B 4. R (q) - C (q,S), (wherever it is defined) is strictly decreasing 
q q 

in q. 

The solution to (1), (aasuming it exists), is characterized by the 

11
following necessary conditions: 

R (q) - C (q,S) -A < 0 (•, if q > 0); S ¢ Z. 	 (2a)-q 	 q 
(2b) 

. 

s .. -q . (2c) 


H(T) • 0 fvr T<oo, lim H(t) • 0 for T-oo. 	 (2d) 
t-+T 

-rt 	 12for !<oo, 	 lim e A(t) • 0 for Taro. (2e) 
t+T 

Al 



 ڥ

Z 

(4) 

(6) 

A2 

e -rTA(T)[I-S(T)] • 0 for T<±. 

lim e-rtA(t)[I-S(t)] • 0 for T², (2£) 

-rtwhere R(t) • e [R(q) C(q,S) - Aq].-

Consider our first case where 


R (0) - ltm C (O,S) • 0. (3)
q S³S* q 

Assu me T<´. It follows from (B2) that S(T) > S*. Further (3) and 

(B3) imply R (0) - C (O,S) > 0 for S > S*. This together with (Bl)q q 

implies 

S(T) • S* < I. 

If T<´, then (4) and (2f) imply 

A(T) • 0. (5) 

Equations (3) - (5), (2a) and condit ion (B4) imply 

q(T) • 0. 
A 

Since Z is finite there exists an interval (S*,S] such that 

S £ (S*,S] implies S ¢ z. Thus the optimal program is completely 

desc ribed by (2a) - (2£) as S+S*. Notice also that (1) is a 

stationary (with respect to time) problem. Hence we can uµe (2a) -

(2f) to represent the so lution in synthesized form as a function 

of S. In particularf as S�S* 

. .

S • -q(S,Ǿ(S)) • S(S) 
 (7) 


where q is implicicly defined in (2a) with 

oq/oS e C 8/(R - C ) > 0 
q qq qq 


oq/oA - 1/(R - c ) < o (2a')
qq qq 

dA/dS • ¶/S. 
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dS 
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A3 

•

We now establish that the nonlinear autonomous system S(S) 

takes infinite time to move from any initial position in (S*,S] to S* • 

•

Tbe argument proceeds as follows. We first verify that S(S) has a 

finite first derivative at S* and is continuous in some neighborhood 
•

around S*. Accordingly K(S*-S) ǻ S(S) 2 0 for some K E (O,(). We 

next note that linear system S • K(S*-S) takes infinite time to 

decline to S*. Since our nonlinear system declines more slowly than 

some linear system with stationary point S*, it must take infinite 

time to reach S*. 

To begin, we verify that dS(S*) is bounded. Define ã(S) • -S(S).
dS 

Then, from (7), (2a'), and (2b)- (2c): 

(8) 

Since q+O, A+O as S+S*, the second term in square brackets in 

(8) is of indeterminate form, 0/0, as s+s*. Applying L'Hospital's 

rule to evaluate the second term we obtain 
" 

SäS* dǽ (r\ + CS)
lim d 

" A � 
dA 

r + css + cso dS
- - -

dS ·" 

lim d dA.... 
(9) 


S+S* ds (-q) Ǽ 
- dS 

where the "hate' .::>2r.ote that variablea are evaluated in the lill1 • 
Si-S* 

From (8) ve soh.-; "vr dA/dS ""dq,._/dS(R - C \ - C • qq qq' qS 

Substituting fc,: i.\/dS into (9) we obtain 

(10) 



A4 

.... 

It is apparent that (10) can not be satisfied for dq/dS @ or 0• 

which establishes that lim S(S) is bounded. 
s+s• 

Next, we verify that S(S) is continuous in some neighborhood of S*. 

Since S(t) and A(t) are continuous in t and H is strictly concave in q, 

q is continuous in t and hence in S. But S • -q, so S(S) is continuous . 

Hence, we can conclude that: 

0 ' S(S) ' K(S*-S), for some K > 0 and any S € (S*,S]. (11) 

That is, our nonlinear autonomous system declines more slowly tP1ard 

S* than·some autonomous linear system with the same stationary po int. 

Hence (11) and the fact that S(t) • S(O) + /t S(u)du imply
0 

S(t) > S* + e-Kt(S -S*). (12)- 0 

But (12) implies S(t) > S* for all t<@. This violates our original 

supposition that T<· and that S reaches S* in finite time. Thus Tǿ. 

Consider now the second case where 

R (0) - lim C (O,S) > 0. (13)
q qSiS* 

Assume T.oo. The station arity of (1) implies (t) > 0 for all t<T since q

it is never optimal to have an interval of zero production followed 

by an interval of p0sitive production. Clearly lim S(t) Ǻ S* by (B2). 
c-..,.r 

Since the total am.Junt. ultimately extracted, I- lim S(t), is finite 
t-+'I 

it follows that 
l:i;m q(t) • 0; (14)
t+T 

otherwise there would exist a t* and an s > 0 such that q(t) ǹ £ for 

t>t* and cumulative eAtraction would be fi nite. 



AS 

Now since q(t) > 0, (2a) implies that A • R (q) - C (q,S). 
q q 

But since the choke price is finite and marginal profits strictly 

decrease in q and increase in S, A < R (0) - C (O,I)<oo. 
q q 

Since C(O,S) • 0, it follows that c8(0,S) • 0 so that from 

(2b),R- rA as t� and q(t)�. Since A is bounded and yet 1- rA as t+T, 

lim A(t) • 0. (15) 
t� 

Together (14),(15), and (2a) imply 

R (0)-lim
s+s (T) q 

(B3) and the fact that S (T) 

C (O,S) < 0. (16) 
·q 

But (13), Ƃ S* imply a violation of 

(16). Hence our original presumption that Taeo cannot l::.e correct, 

so that T must be finite. 





FOOTll'OTES 

1/ For a discussion of this point, see Gordon (1967) . 

1J 	 See Brobst (1979). 

11 	 The last assumption is equivalent to saying that the resource is 

not 	essential. 

w 	 Typical of this view is the following remark made by Solow (1974) . 

nThe Age of Oil or Zinc or Whatever It Is w ill havt: 

come to an end. (There is a limiting case, of course, in 

which demand goes asymptotically to zero as price rises to 

infinity and the resource is exhausted only asymptotically. 

But it is neither believable nor important.)" 

11 	 This is form ally equivalent to assuming that the resource base 

consists of a coll ectio n of pools with different, co nstant unit 

extraction costs. S olow and lJaD (1976) use this conventiort to 

calculate optimal extraction programs. 

Ǹ/ 	 For the case of the planner, the net benefit function, U(q,S), 

replaces the profit function of the monopolist in (1). 

II 	 To prove existence, the Weierstrass theorem may be applied. This 

requirea genera:.izing the concepts of continuit y  of a function and 

compactness oʃ its do!Uiin to infinite sequences. See lfilton Harris 

[1978] for details. 

§_/ 	 Note tha t we are assuming C(q,S) is continuous, although Cq and c5 

may not be . 



12/ 

!I 	 Notice that Al-A4 constitute restrictions on the net profit function 

rather than on either the revenue or cost function individually. 

Since A1-A4 can be translated into restrictions on the net benefit 

function (U(q,S)), it is clear that the basic result also applies 

to the planning problem. 

If the rate of extraction does not influence its cost, the 

extraction cost function can be written as C(q,S) • g(S-q) - g(S), 

where g(X) is a strictly decreasing, strictly convex function. It 

should be noted that this special case satisfies A3 and A4. 

Furthermore, if g(S) is not differentiable at S 
' 

, C(q,S) is not 

10/ 

' ' 
differentiable at any (q,S) pair such that S•S or S-q • S • This 

cost function has the following intuitive interpretation. Let g(X) 

be the cost of draving the mine down from its initial level to where 

X units remain. Then g(S-q) 5 g(S) is the cost of drawing the mine 

down from its initial level to where S-q remains S the cost of 

drawing it down from its initial level to where S remains; hence, 

it is the cost of drawing the mine down from where S remains to where 

S-q remains. 

111 See Takayama (1974, theorem 8.C.3., p. 655). 

The classes of problems for which the infinite time transversality 

condition is necessary are discussed in Seierstad (1979). The 

proofs of ou£ Jropositions do not utilize this coudit1on. 
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