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A distinguishing feature of nonrenewable resource production is
that the marginal cost of extracting the resource at a given rate
increases with previous cumulative extraction.l For example, in the
case of oil, extraction costs increase from having to compensate for
a loss of natural pressure in the well. In the case of minerals, lower
grade ores or less accessible deposits must be utilized as the resource
is depleted. Mineral resources have am additional characteristic of
interest. Scarcer elements, like copper, zinc, and silver occur in
several distinct chemical structures. As a result, when the next most
difficult structure must be confronted, the unit cost of extraction
rises discontinucusly,

This paper considers how these realistic aspects of resource
recovery affect the length of an optimal extraction program. For
concreteness we sgssume there is some amount, T < «  of the resource
that 1s ultimately available for extraction. Let Si be the stock
remaining at the heginning of period 1 and let 9y be the amount of
extraction during period 1. The cost of extraction is given by
C(qi, Si). Denote E(S) as the average cost of extracting at an

infinitesimal rave with S units remaining: C(S) = lim C{y,S)/y.

Then, according z¢ tha discusaion above, this limiting unit extraction

cost lacreases z: 5 decreases. Also, it may rise discontinucusly when
diatinct deposi®. Lowet f0st resources are exhausted. This pheaouenca
ig illustrated -~ - .re la with the jumps in unit costs occurring at

1
gtock3d S and I
Figure 1o .. watrates our agsuwpiions about the dewand for the

regource. The i{nvs..¢ demand function, P{q), 18 assumed to bte
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Figures la and 1b go here.

stationary, downward sloping, and to intersect the price axis at a
finite ‘'choke’ price denoted by P(O).3

In an optimal extraction program, unit extraction costs rise
over time and price approaches the choke level. The relationship
between the choke price P(0) and the unit extraction cost in the
nelghborhood of P(0) turns out to be important in determining the
length of the optimal extractlon progrsm. We show chat the resource
is optimally extracted in infinite {(finite) time, 1if unit extraction
cost rises continucusly (discontinucuely) for values of E Just below
P{0). For exampi=» 1 choke price equal to P5 or P2 cr Pl in Filgure la
will result i{n an :»72mzl program of infinite length. A choke price

. <ause the tiue before optimal extraction ceases

t 3 P
equal to P4 or }3 .

o be finite.
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This result is noteworthy on four counts. First, it contradicts
a general belief that optimal extraction of a finite resource requires
infinite time only in the "neither believable nor important' case noted
by Solowa where the choke price is infinite. Second, it is currently
popular to talk about the availability of a natural resource in terms
of the remaining number of years that it can be economically exploited.
Our result points out an undesirable feature of this measure of resource
abundance. It may be quite sensitive to minor fluctuations in demand.
A shift in demand which causes a small change in the cheke price, (a
drop from P3 to P2, say) can produce dramatic changes in the eccnomic
lifetime of the resource. PFurthemore, the cumulative amount of the
resource that is ultimately recovered and the length of the extraction
horizon need not even be correlated. FPor example, ultimace recovery
increases but the extraction time becomes shorter when the choke price
shifts from P1 to P3.

Third, our result has important impiications for the way one
represents depletion effects in models of resource extraction. Some
studies of rescurce industries approximate a continuously rising unit

~

cost cof extraction cuxrve, C{S}, Wy a 3tep fumction. This Winl of

approximation i3 represented im Figure 7 by the dovc:d iduc, The step
functlea approzxitstinn i3 handy bacause It veduces the difficulny of
computing the <. . . zsxfracvicn program, Howewaer . oo loaal us
characterizcic = « ootimal program--ifg duration--ia paaly
approximated by - . o.p Funciion appreach.  With che steps fucozion,
extraction costs L TEise Lxoomrs,  dence, our vesulid iuooly saal

0o matter how fin: i sonrocoawiion, A0 always fnvolwes fterwinatiog



extraction in finite time, even if the situation being approximated

requires an infinite extraction horizon.

Figure 2 goes here.

Finally, our results put in perspective the traditional analysis where
depletion effects are neglected. In the absence of depletion effects,
the extraction problem can be posed in either of two equivalent ways:

If the mine initially contains T units, this fact can be summarized by
a constraint on cumulative extraction or, alternatively, by a continuous
cost function whose limiting unit cost jumps above the choke price once
T units have been extracted. The latter approach permits us to apply
our analysis and to conclude that optimal extraction must terminate in

finite time.

To demonstizt= our results we assume the extractor Is a

moncpolist making .:-:.isions at discrete intervals. The saue results
obtain, however, .: rhe excractor were inmstead & placnar, or 1f
decisions were wz. - -eatinususly. Continuous tima ressults are derivad

in the Appendix.



i
$
|
|
)
)

e
H t
7

e e wom sk s owes

e Ly i s T e -

Figure 2



Formally the monopolist's problem is to choose {ql, Qpsene }
in order to
Tl
maximize ) B [R(qy) - Clqy, Sy)) 1)
i=0

aubject to

where R(qi) is the revenue produced by 44 and B 18 a constant discount
factor.

It can be 8hown7 that a maximum always exists for such a problem
provided that,
(a) the net profit functiecn, R - C, 18 continuous8 and that it 1s

bounded from above,

(b) 0 <B < 1.
It is assumed that these weak restrictions are satisfied by the problem

under consideraticn, Additional assumptions must Le wmadz about the ner

profit functl.. o ganarate ouY resolza, We vacuice Thal

AL, RO - Coo 0 - G
T ome . - e v L sl s o PR N

42, Z 3405, 0 sneo D% o qpf (5 R(q) - C8n oA 0L gt

83, 7 (g cosraver it 1 definsd) 15 ot iroceasing
L{

A4, R {7; - " ' Con 3y, fwherever 1t dg doIf.ody i ogtricnly
q ol
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These assumptions are reasonable.9 Since the revenue from
selling (and the cost of extracting) nothing 1is zero, the first
assumption is plausible. The second s8imply defines some level beyond
which extraction is too costly. The third asserts the existence of a
depletion effect which shifts the marginal cost curve up as the stock
remaining falls. The last ig elightly stronger than the standard
assumption that marginal profits are a downward sloping function of
the rate of extraction although as indicated below, the weaker formu-
lation 18 sufficient to prove our basic results in continucus time.

We require that the net profit function be continuous everywhere
and twice continuously differentiable except at a finite set of points
denoted Z. Z 1is the set of stocks Sj (S1 and 52 in Fig. la), where the
limiting unit extraction costs rise discontinuocusly as S declines. We
assume that for any Qs St such that St ¢ Z and St-—qt ¢ Z the net profit
function is twice continuously differentiable. This assumption permits
us to consider most cases of interest.lo

To prove our results we need to look at two possibilities,

P(0) - 1im C(S) = R (0) - 14m C (0,S) = 0 3
StS* 1 s+sx @
P(0) - 1im C(S) = R (C) - 1im C_(0,S) > O. %)
SS* q sysk 8
The first possibility occurs at choke prices oo £, or £y 1a

Figure la while the secoad possibility occurs at chcke prices Pa

or P3.
If (2) holds, we will show that the optimal terminal extractica

time, T 18 infinite. Agsume to the contrary that optimal extraction

ceases in finite time, so that T < =, C(Clearly, ST+1 > S* {s unot
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optimal since (2) and (A3) would then imply that further extraction

after time T would be profitable. Nor i3 S < S* optimal by (A2).

T+1
Hence ST+l = S*, By hypothesis, T 18 the final period of extraction
so that 9 = ST - S* > 0. The profit earned in that period is
R(qT) - C(qT, qp + S*). But (2) in conjunction with (Al) and (A4)
implies this profit is strictly negative for any 4r > 0. Hence we
can dominate any proposed program of this type by simply replacing
the extraction in period T with abstention. Since a maximum exists
and any finite program can be dominated 1f (2) holds, the optimal
extracﬁion horizon must be infinite.

If (3) holds, we will show that the optimal terminal extraction
tiie, T i1s finite. For suppose it is claimed that an infinite progranm
is optimal. The claim is obviously false 1if St < 8* for soume t
or--given the stationarity of (1)--if q " 0 for some t. If, however,
q, > 0 and St_z S* for all t then {St} is a strictly decreasing sequence
that lies in the interval [S*, I). Thus St4§ as t>° for some
S € [S*, T] by the monotone convergence theorem. Horeover, since {St}
is a Cauchy sequence, St - St+1 = qt40 ag tw,

Consider the value of increasing Gy and decreawing G pl by an

equal amocunt leaving unchanged the rest of rthe rroyran:

d = 2 LI SN E= DS B -5 DAY - B I € DR CI
ar ”q(qt‘ oo [ qk"tv’u At el
dq - ‘
s
“eAT - 1A & )7
L RIS SRS Py
wherever S1 - 1. £ 7 end Si £ 7 for i=c, ¢+l
If the infinite crogram oropesed 1 o.cimal  d7T = { for all ¢
dy
St

for which the derivatives are defined.
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Since Z 1s a finite set, there exists an interval I = (§, §3
for S < § S_T'such that S € I implies S § Z and S - q ¢ Z. Thus,
beyond some date the derivatives are well-defined. Since the choke

price i8 finite, lim Rq(q) exists and we obtain:
q*0

1im dIl_ = [R (0) - 1im C _(0,S)][1-B]. (5)
t+ dq_ q svg ¢

t+2
Now by (3) and B < 1, (5) is strictly positive. Hence one can always
find a date after which a dominant program can be constructed by
expanding production in one period and cutting back by an equivalent
amount in the following period. Since an optimal program exists and
yet any infinite program can be dominated whenever (3) holds, it must

be finite in this case.



APPENDIX

This Appendix establishes the continuous time analogues of
the results presented in the text.
The problem facing the monopolist is to
T -rt
maximize [~ e  -[R(q) - C(q,S)]dt 1)
{q}, T 0
subject‘to q, S, T >0, So =T < ®, and S = ~q. The finite et Z
18 defined as in the text. We assume that the profit function is

twice continuously differentiable for S £ Z, and that

Bl1. R(0) - c(0,S) = 0;

B2. 3 S* €[0,I) such that S* = inf(S[R(q) - C(q,S) <0, g >0);

B3. Rq(q) - Cq(q,S), (wherever it is defined), 1s strictly
increasing in S; and

B4. Rq(q) - Cq(q,S), (wherever it 1s defined) is strictly decreasing
in gq.

The solution to (1), {(assuming it exists), is characterized by the

following necessary conditions:ll
Rq(q) -C,@,8) -x<0 (=, 1f q > 0); S ¢ 2. (2a)
A=ra+c,(q,8); 8¢ 2. (2b)
S = —q. (2¢)
H(T) = 0 fcr T<w, lim H(t) = O for Tmx, (24)
t-+T
TN > 0 for T<w, Lin T (t) = 0 for Tmwe.'? (2e)
t+T

Al



A2

e TTA(T) [T-S(T)] = 0 for T<w.

1im e—rtk(t)[fls(t)] = () for Tm=», (2f£)
T

where H(t) = e-rt[R(q) - C(q,S) - 2\q].

Consider our first case where

R (0) - 1im C (0,S) = 0. (3)
q s+sx 4

Assume T<w, It follows from (B2) that S(T) > S*. Further (3) and
(B3) 4imply Rq(O) - Cq(O,S) > 0 for S > S*, This together with (Bl)
implies
S(T) = S* < T. (4)
If T<o, then (4) and (2f) imply
A(T) = 0. (5)
Equations (3) - (5), (2a) and condition (B4) imply
q(T) = 0. (6)
Since Z is finite there exists an interval (S*,§] such that
S € (S*,§] implies S ¢ Z. Thus the optimal program is completely
described by (2a) - (2f) as S+S*. Notice also that (1) is a
stationary (with respect to time) problem. Hence we can use (2a) -
(2f) to represent the solution in synthesized form as a function
of S. In particular, as SvS*
§ = —q(s,A(5)) = §(5) %

where q is implicicly defined in {(2a) with
S = ( -
8q/8 CqS/Lqu qu) >0
&q/8\ = /(R - <0 '
q/Sx /( @ qu) (2a")

dr/ds = X/S.



We now establish that the nonlinear autonocmous system é(S)
takes infinite time to move from any initial position in (S*,E] to S*,
The argument proceeds as follows. We first verify that $(S) has a
finite first derivative at S* and is continuous in some neighborhood
around S*, Accordingly K(S*-S) g_é(s) < 0 for some K € (0,®), We
next note that any linear system § = K(S*-S) takes infinite time to
decline to S*. Since our nonlinear system declines more slowly than
some linear system with stationary point S*, it must take infinite
time to reach S*.

To begin, we verify that gé(s*) is bounded. Define a(S) = -§(s).
ds

Then, from (7), (2a'), and (2b) - (2¢):

dg= 3q,3gd =l {Cqs R CS(‘"S)] (8)

Since q*0, A+0 as S+S*, the second term in square brackets in
(8) 1s of indeterminate form, 0/0, as S+S*. Applying L'Hospital's

rule to evaluate the second term we obtain

lim g ~ 2 N
sisvda PTG g Tagt Css * Osq T %)
lim g (=) ds R
S+s* ds 1 _ 49
ds
where the "hatsa' Zzenote that variables arsevaluated in the 1liw .

SyS*

Lors £o S dA'4= o - AN - - .
From (8) we soiv: ror dA/dS q/ub(qu qu, CqS

Substituting fc- ii/dS into (9) we obtain

~ .d_’g: ii _A ‘)..6 + ~ + A gﬂ
%% 1 (r (g8 ¢ ¢ Caa)"Cqs) * Cos ®sq ds, 2 (109
R -C ; 45 -
49 “qq L - dg



A4

It is apparent that (10) can not be satisfied for da/ds = ® or 0

which establishes that lim é(S) is bounded.
S+S*

Next, we verify that é(S) i8 continuous in some neighborhood of S*,
Since S(t) and A(t) are continuous in t and H i8 strictly concave in q,
q 18 continuous in t and hence in S. But é = ~q, 80 §(S) is8 continuous.

Hence, we can conclude that:

0 3.§(S) > K(S*-S), for some K > 0 and any S € (S*,§]. Q1)
That 18, our nonlinear autonomous system declines more slowly toward
S* than some autonomous linear system with the same stationary point.

Hence (11) and the fact that S(t) = S(0) + ft S(u)du imply
0
S(t) > §* + e ""(s _-5%), (12)

But (12) implies S(t) > S* for all t<®, This violates our original

aupposition that T<® and that S reaches S* in finite time. Thus T==,

Consider now the second case where

R_(0) - 14m C _(0,S) > O. (13)
E sts* 4

Assume T=®, The stationarity of (1) implies q(t) > O for all t<T since
it 18 never optimal to have am interval of gero production followed

by an interval of pnsitive production. Clearly lim S{t) > S* by (B2).

t*l

Since the total amount ultimately extracted, I - lim S(t), is finite
t*T

it follows that
1im q(t) = 0; (14)
=T

otherwise there would exist a t* and an € > 0 such that q(t) > ¢ for

t>t* and cumulative extraction would be finite.



Now since q(t) > 0, (2a) implies that A = Rq(q) - Cq(q,S).
But since the choke price is finite and marginal profits strictly
decrease in q and increase in S, A < Rq(O) - Cq(O,T)<m.

Since C(2,S) = 0, it follows that CS(O,S) = 0 go that from

(2b), X ~ r\ &8 t+T and q(t)+0. Since A is bounded and yet A~ 1) as t+T,

1im A(t) = 0. (15)
t+T

Together (14),(15), and (2a) imply

R (0)-1im ¢ (0,8) < O. (16)
s+s(T) 1

But (13), (B3) and fhe fact that S(T) > S* imply a violation of
(16). Hence our original presumption fhat Tex cannot te correct,

so that T must be finite.






FOOTHOTES

For a discussion of this point, see Gordon (1967).
See Brobst (1979).
The last assumption is equivalent to saying that the resource is
not essential.
Typical of this view 13 the following remark made by Solow (1974).
"The Age of 011 or Zinc or Whatever It Is will have
come to an end. (There is a limiting case, of course, in
which demand goes asymptotically to zerc as price rises to
infinity and the resource is exhausted only asymptotically.
But it is neither believable nor important.)"
This is formally equivalent to assuming that the resource base
consists of a collection of pools with different, constant unit
axtraction costs. Solow and Wam (1976) use this convention to
calculate optimal extraction programs.
For the case of the planner, the net benefit furctioa, U(q,S),
replaces the »rofit function of the monopolist in (1).
To prove existence, the Welerstrass theorem may be applied. This
requirea generaliizing the concepts of continuity of a function and
compactness of Its domain to infinite sequences. See Milton Harrie
{1978] for detalls.
Note that we arzs assuming C(g,S) is continuous, although Cq and CS

may not be.
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Notice that Al-A4 constitute restrictions on the net profit function
rather than on either the revenue or cost function individually.
Since Al-A4 can be translated into restrictions on the net benefit
function (U(q,S)), it is clear that the basic result also applies

to the planning problemn.

If the rate of extraction does not influence 1its cost, the
extraction cost function can be written as C(q,S) = g(S-q) - g(8),
wvhere g(X) is a strictly decreasing, strictly convex function. It
should be noted that this special case satisfies A3 and A4.
Purthermore, 1f g(S) is not differentiatle at S', C(q,S) is not
differentiable at any (q,S) pair such that S~S’ or S-q = s'. This
cost function has the following intuitive interpretation. Let g(X)
be the cost of drawing the mine down from its initial level to where
X units remain. Then g(S-q) - g(S) is the cost of drawing the mine
down from its initial level to where S-q remains less the cost of
drawing it down from its initial level to where S remains; heace,

it 18 the cost of drawing the mine down from where S remains to where
S-q remains.

See Takayama (1974, theorem 8.C.3., p. 655).

The classges of problems for which the infinite time transversality
condition is necessary are discussed in Seierstad (1979). The

.
.

roofs of cuc .ropositions do not utilize this condition.
- P
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