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Abstract

Despite their widespread usage, little is known about the predictive accuracy of different dis-

crete choice demand models. To evaluate their performance, we use a series of natural disasters

that unexpectedly removed hospitals from consumers’ choice sets. We compare the model pre-

dictions of post-disaster behavior to the benchmark of actual post-disaster consumer behavior.

Across our different settings, we find that models that allow for flexible interactions between

patient characteristics and unobserved hospital quality perform the best and that it is impor-

tant to use different classes of models. Further, the use of less accurate models could lead to

more lax merger enforcement.
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1 Introduction

Since the seminal work of McFadden (1981), discrete choice demand models have become

one of the main tools used by economists, quantitative marketers, and statisticians to model

consumer preferences. Underpinning the choice models’ popularity and prominence is the

comparative ease with which they permit counterfactual analysis of behavior. For example,

economists use them to calculate the substitutability of merging parties’ products in antitrust

(Hendel and Nevo, 2006), to evaluate the extent of exchange rate passthrough in trade

(Goldberg, 1995), and to assess how usage patterns would change following the introduction

of a new light rail system in transportation policy (McFadden et al., 1977).

While they have proven popular in many fields, structural choice models’ predictions rely

heavily on functional form assumptions, the exogeneity of product characteristics, and the

presence of a sufficient number of consumer and product characteristics to capture plausible

substitution patterns. None of these criteria can typically be tested in the data, because

quasi-experimental variation in choice sets is rare. For example, the entry and exit of prod-

ucts is usually endogenous. Indeed, Angrist and Pischke (2010) have suggested that the field

of industrial organization’s heavy reliance on unvalidated models is so problematic that it

should be rebranded as industrial disorganization.

Even defenders of structural choice models acknowledge that “estimates driven by func-

tional form rather than credible sources of identification in the data are unlikely to produce

useful predictions” (Nevo and Whinston, 2010). However, in any given context, economists

will debate what constitutes “credible sources of identification”. Researchers may disagree

on how much the standard logit functional form assumption drives results, what types of

data are important to capture reasonable substitution patterns, and if there is sufficient vari-

ation in the instruments to identify any random coefficients.1 In other words, it is difficult to

1The debate between Jerry Hausman and Tim Bresnahan on the welfare benefits of the introduction
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ascertain which model is best and whether the best model is good enough. In most contexts,

there is no way to settle these debates, since there is no objective benchmark with which to

assess models.

In this paper, we use true natural experiments to evaluate models of consumer choice.

In particular, we focus on consumer choice of hospitals before and after four natural disas-

ters that severely damaged or destroyed hospitals but left the majority of the surrounding

area undisturbed. These natural disasters exogenously altered consumers’ choice sets, cre-

ating a benchmark against which to assess the performance of structural models. We use

pre-disaster data to estimate consumer demand under different models used by researchers

and policymakers and then predict the effects of the hospital elimination for each model.

By comparing the models’ predictions to actual post-disaster effects, we evaluate the rela-

tive strengths and weaknesses of various models. The natural experiments thus serve as a

“laboratory” to assess model performance.

Across all our natural experiments, we confirm the importance of accounting for consumer

heterogeneity in preferences for unobserved product quality.2 In general, we find that the

model that best predicts individual choices uses a semiparametric approach that allows for

very flexible substitution patterns across consumers, and only imposes the logit independence

of irrelevant alternatives (IIA) assumption across small and largely homogeneous groups.

The other best performing model includes a large number of individual level demographics

interacted with product dummy variables in order to account for this heterogeneity. In

contrast, models that include only observable product characteristics perform worse than

models that allow for preference heterogeneity across product fixed effects.

of Apple Cinnamon Cheerios is an example of such disagreement in a similar context (Hausman, 1997;
Bresnahan, 1997).

2 Ackerberg et al. (2007) state that “Attempts we have seen to model a random coefficient on the ξ
[unobserved product quality] have lead to results which indicate that there was no need for one.” This could
suggest that it is unimportant to model heterogeneity in preferences for unobserved product quality. Our
results suggest that, at least where there is rich micro data, it is very important to account for heterogeneous
consumer preferences for unobserved quality.
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However, even within the class of flexible models, we do not find a uniformly “preferred

model.” Rather, different models are better at predicting outcomes for different populations.

For example, the semiparametric model overfits the data among groups where the popularity

of the destroyed hospital was particularly high. Among such groups, more efficient paramet-

ric models produce more accurate results on average.

In the absence of a single “preferred model,” we borrow an approach from macroeconomic

forecasting to determine the optimal way to combine the predictions of the various models.

Our results show that no single model strictly dominates the others, and so receives all of the

weight, for any of the disasters. Rather, an optimal combination of models typically places

positive weight on more than one approach, with roughly equal weight on the predictions

from a semiparametric model and flexible parametric models. These results suggest that

both parametric and semiparametric approaches, or a model combination of them, be used in

practice to ensure that policy decisions are robust to either the overfitting of a semiparametric

model or the inflexibility of a given parametric model.

Within the hospital context, the heterogeneity in the settings we study gives us confi-

dence that our findings are relevant beyond these settings. The natural disasters we study

occurred in rural, suburban, and urban environments, and the destroyed hospitals range from

NYU Langone – a large, nationally ranked teaching hospital – to small community hospitals.

Beyond the health care context, our results provide guidance to researchers applying discrete

choice models to other areas where rich micro data are available, such as e-commerce (e.g.,

Einav and Levin, 2014), durable goods (e.g., Berry et al., 2004), telecommunications (e.g.,

Goolsbee and Petrin, 2004), neighborhood choice (e.g., Bayer et al., 2007), and political cam-

paigns (e.g., Gordon and Hartmann, 2013). While we compare different model specifications

for hospital choice, researchers studying other settings are likely to face similar decisions in

accounting for unobserved product quality and in the degree of structure to impose on the

data.

4



In this way, we contribute to the small but growing literature that examines the per-

formance of structural econometric models using experimental variation. LaLonde (1986) is

one of the first papers to do so, comparing structural models of the effects of a job trainee

program to the results of a field experiment. Other papers specifically examining discrete

choice models are Todd and Wolpin (2006), who estimate a model of child schooling and

fertility using pre-treatment data and then compare its predictions to the behavior of an ex-

perimental group, Conlon and Mortimer (2013), who compare the predictions of parametric

choice models to the behavior observed when products are removed from vending machines,

and Pathak and Shi (2014), who estimate a model predicting school choices in Boston and

plan to evaluate forecasts from that model after a major policy change.

We also aim to provide guidance to researchers studying competition in health care

markets (e.g., Garmon, 2016; Ho and Lee, 2015; Shepard, 2016). The extent of a managed

care organization’s bargaining leverage vis a vis a hospital in negotiating their contract

depends upon how consumers react if a hospital is removed from an insurance plan (Capps

et al., 2003; Gowrisankaran et al., 2015). Our natural experiments examine how well different

models capture patients’ substitution patterns after a hospital was removed from their choice

set, and thus directly address this question.

Finally, we examine whether model choice matters for the policy counterfactual of the

welfare impact of hospital mergers. Specifically, we consider the connection between model

accuracy and the welfare effects of a series of simulated hospital mergers. Dividing our

simulated mergers into two groups based on the magnitude of predicted harm, we find that

the standard deviation of the percent change in the loss of consumer welfare across models

is approximately 15% of the average for mergers that have larger predicted consumer harm.3

3We use the willingness to pay approach from Capps et al. (2003), as explained in Gowrisankaran et al.
(2015). We separate the mergers into two groups with greater and smaller WTP based on a WTP threshold
of 5%. There are alternative approaches to measure changes in consumer welfare and hospital prices from
mergers as in Ho and Lee (2015) and Dafny et al. (2016).
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Such variation is of significant magnitude to provide qualitatively different predictions of

competitive effects. Further, we find that, on average, failing to use a better fitting model

leads to underpredictions of consumer harm for those mergers most likely to harm consumers.

Therefore, in our sample, errors made as the result of using worse fitting models could

underestimate the reduction in competition from mergers.

The paper proceeds as follows. Section 2 describes our experimental design. In Section 3,

we briefly lay out the theoretical framework underpinning the modern approach to estimating

patient choice models, and discuss the specifications we focus on in this paper. In Section 4,

we present our results on model performance. We examine policy counterfactuals from

mergers in Section 5. Section 6 provides an overview of a set of robustness checks that we

have done, and Section 7 concludes.

2 Natural Experiments

2.1 Disasters

For our natural experiments, we exploit the unexpected closures of six hospitals in four

different markets following a natural disaster. Our set of disasters is itemized below in

Table I. The Americus tornado struck a community hospital in rural Georgia, while the

Moore tornado hit the suburbs of Oklahoma City. Hurricane Sandy flooded portions of

Manhattan and Brooklyn in New York City, and closed three hospitals in those boroughs.

The Northridge earthquake hit Los Angeles and closed one hospital in the Santa Monica

area.

For a natural disaster to provide a good natural experiment to assess choice models, it

must satisfy several criteria. First, the service area must be large enough and the period post

disaster for which the hospital is closed long enough that we have enough power to compare
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Table I Natural Disasters

Location Month/Year Severe Weather Hospital(s) Closed

Northridge, CA Jan-94 Earthquake St. John’s Hospital
Americus, GA Mar-07 Tornado Sumter Regional Hospital
New York, NY Oct-12 Superstorm Sandy NYU Langone

Bellevue Hospital Center
Coney Island Hospital

Moore, OK May-13 Tornado Moore Medical Center

different demand models. Second, the destroyed hospital must have had a large enough

market share in the service area for the disaster, because the experiment is informative

on model performance only when the choice environment undergoes a substantial change.

Finally, the damage from the disaster must be narrow enough that the change in patient

decision making is limited to the change in the choice set.

In addition, experiments should have greater external validity to other settings if there

is greater heterogeneity in the treated groups. In our case, the more the characteristics of

the destroyed hospital and patient choice sets vary considerably across disasters, the more

we are comfortable generalizing our results beyond our specific settings.

In the next sections, we demonstrate both that our disasters are good natural exper-

iments, and discuss the heterogeneity that makes us more comfortable extrapolating our

results to other settings.

2.2 Service Areas

We first construct a service area for each hospital in order to assess whether our criteria

are met. To construct the service area for each destroyed hospital, we determine the set of

patients that were likely to consider the destroyed hospital by looking at all patients going

to general acute care hospitals living in zip codes that comprise a 90% service area of the
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destroyed hospital.4 To compute this service area, we rank all zip codes by the number

of patient discharges from the destroyed hospital. Then, beginning with the zip code with

the most patients, we add zip codes until the sum of the hospital’s patients from those zip

codes is above 90% of overall discharges. This approach may sweep in many zip codes where

the hospital is competitively insignificant. Therefore, we exclude any zip code where the

hospital’s share in the pre-disaster period is below 4%.5

Table II displays some characteristics from the service area of each destroyed hospital

that allow us to assess whether the disaster provide good natural experiments. The service

area for Sumter Regional experiences a massive change post-disaster, as the share of the

destroyed hospital is over 50 percent. For the other disasters, the share of the destroyed

hospital roughly ranges from 9 to 18 percent. Thus, the destroyed hospital has a large

enough share in each service area that patients’ choice environment changes substantially.

To construct the post-disaster period for analysis, we exclude the period immediately

surrounding the disaster from our analysis.6 We do so in order to prevent both injuries from

the disaster and changes in traffic patterns following the disaster due to residual damage

from affecting our analysis. We have a substantial number of patient admissions post-period

after each disaster in which to examine model performance, ranging from about four to five

thousand admissions for Moore and Sumter, nine to ten thousand for Bellevue and Coney,

and fifteen to twenty thousand for NYU and St. John’s.7 Thus, we have enough admissions

in the post-period for all of the disasters to have power to compare different discrete choice

models.

4Our primary source of data for each of our natural experiments is the inpatient hospital discharge data
collected by state departments of health. Such patient-hospital data have been previously used by researchers
(Capps et al., 2003; Ciliberto and Dranove, 2006), and provide a host of characteristics describing the patient
receiving care as well as the type of clinical care being provided. The details on the construction of our
estimation samples are provided in Appendix B.

5Our results are robust to changes in this cutoff.
6We describe the periods dropped for each disaster in Appendix B.
7The New York service areas do overlap. The service area for NYU is much larger than Bellevue, so most

of the zip codes for Bellevue are also in the service area for NYU, but the reverse is not true. NYU has
about a 3 percent share in the Coney service area.
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Table II Descriptive Statistics of Affected Hospital Service Areas

Event Service Area Share Post-Period 2010 Pop Hospitals Beds Average Beds
Destroyed Hospital Admissions Destroyed Other

Sumter 50.4% 5,092 56,485 15 132 252
NYU 8.9 % 16,696 1,356,836 19 791 744
Coney 18.2% 9,666 613,894 17 371 831
Bellevue 10.8% 9,152 785,462 20 807 723
Moore 11.0% 4,480 98,976 12 45 350
StJohns 17.4% 18,130 686,031 21 610 401

Note: The first column indicates the share of the destroyed hospital in the service area, the second
column the total number of admissions in the post-period, and the third column the 2010 Census
population of the service area. The fourth column is the number of hospitals in the service area, the
fifth column is the number of beds in the destroyed hospital, and the sixth column is the average
number of beds in all other hospitals. Sources: State hospital discharge data, AHA, Census.

2.3 Choice Sets

Then, for that set of patients, we determine the choice set as the hospitals that are likely to be

the destroyed hospitals’ closest substitutes. We define the set of relevant substitute hospitals

by including all hospitals in the choice set that have a share of above 1% for the patients in

the 90% service area as defined above in a given month (quarter for the smaller Sumter and

Moore). Any hospital that does not meet this threshold is included in the “outside option.”

We examine the robustness of our results to choice set changes in Appendix D.7.

For external validity, it is useful to have our disasters affect different types of hospitals and

different settings. Table II provides insight into the large variation in market characteristics

across our different settings. Using population estimates from the 2010 Census, the rural

area of Sumter has about 55,000 people and the suburbs of Moore 100,000. In the densely

populated urban core of New York City, the Coney service area has over 600,000 people, the

Bellevue service area over 750,000, and NYU 1.35 million. The St. John’s service area in

Southern California has about 700,000 people in 2010.

For Sumter, the destroyed hospital is a small community hospital with 132 beds; the

surrounding hospitals are on average double its size, but there are no high quality teaching
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hospitals. For Moore, the destroyed hospital is extremely small at 45 beds, and nearby hos-

pitals are on average almost ten times larger. One teaching hospital, OU Medical Center,

is in the service area. The New York destroyed hospitals are all large – NYU and Bellevue

are both over 700 beds each, and Coney is almost 400 beds – with several teaching hospi-

tals in the service area, including NYU. St. John’s is similarly large with 610 beds, and

with several large and high quality hospitals in the area, including UCLA Medical Center.

The heterogeneity across these environments gives us more confidence to extrapolate any

consistent findings beyond these particular settings.

2.4 Disaster Damage

An important question for the validity of our natural experiments is whether or not the

disaster meaningfully disrupted the wider area as well as causing the closure of particu-

lar facilities. In such a circumstance, we might reasonably be concerned that predictions

based on the pre-period would not be meaningful following the disaster. Therefore, we have

carefully assessed whether or not the disasters’ impact could reasonably be characterized as

narrow. Below, we present graphical evidence of the comparatively modest scope of dam-

age in Sumter, Moore, Manhattan (where NYU Langone and Bellevue Hospital Center are

located), Coney Island, and Los Angeles in Figure 1 - Figure 5. In each figure, the service

area is shaded with zip codes with more overall hospital admissions in darker shading.

In all four circumstances, the figures suggest that the extent of the damage was compar-

atively limited compared to the size of the affected hospitals’ service areas. For example,

Figure 1 shows the path of the storm that destroyed Sumter Regional Hospital as a green

line. Its path was very narrow, cutting through Americus city without affecting the rural

areas surrounding Americus. The Moore tornado had a similar effect for the city of Moore

relative to its suburbs.
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The flooding from Hurricane Sandy – depicted in blue cross-hatching – primarily affected

areas adjacent to water. The actual damage in Manhattan was fairly small, while in Coney

Island most of the flooding affected the three zip codes at the bottom of the service area

that are directly adjacent to Long Island Sound. Our review of damage data ultimately led

us to conclude that we should drop Long Beach Medical Center, a fourth hospital closed due

to Sandy, from our sample of disrupted hospitals. We found that a considerable portion of

the Long Beach area experienced massive flood damage, and news reports indicate that life

on Long Island was substantially disturbed for a protracted period following the storm.

Figure 5 shows that the damage in the Los Angeles area was more widespread than the

other disasters; we depict the intensity of earthquake shaking in cross-hatching. While the

Santa Monica area was particularly hard hit, many areas nearby received little structural

damage from the earthquake.

As a robustness exercise, we have also explored dropping those zip codes that our research

indicates were most severely impacted, which is presented in Appendix D.2.8

3 Model

3.1 Patient Choice

We want to understand how well econometric models capture a patient’s decision of where

to receive care in the event that their preferred hospital is eliminated from the choice set.

Our representation of the patient choice process follows the prior literature, including Capps

et al. (2003), Ho (2006), and Gowrisankaran et al. (2015).

A patient i becomes ill with condition c at time t in market m, and chooses the specific

hospital h from the set of hospitals H (h = 1, ..., N) that are available to them based on the

8To determine these areas, we draw on resources distributed by various federal, state, and local authorities
acting in response to the disasters, such as damage maps, as well as surrounding media coverage.
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Figure 1 Damage Map in Americus, GA

Note: Green line indicates the path of the tornado and the shaded area around it is the government
designated damage area. Darker shaded polygons are zip codes we use in the estimation. Zip codes
with more overall hospital admissions during the estimation period are shaded in a darker color.
Sources: City of Americus, GA Discharge Data

level of utility that they anticipate from receiving care there. We follow the existing litera-

ture in assuming that the patient’s utility is a linearly separable combination of observable

elements and an idiosyncratic shock. Specifically, this means that the utility patient i with

condition c receives from care at hospital h can be represented as:

uihc = δihc + εihc, (1)

where δihc is the observable component of the patient’s utility and εihc is an unobserved shock

affecting the relative likelihood that patient i chooses hospital h.

The existing literature on hospital choice typically assumes that after using “sufficient”

observable variables xihc to generate δihc, ε can be assumed to be independent and identically

distributed random variables drawn from the type-I extreme value distribution. This implies

that consumers with identical δs will on average exhibit similar preference patterns which
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Figure 2 Damage Map in Moore, OK

Note: Green area indicates the damage path of the tornado. Darker shaded polygons are zip codes
we use in the estimation. Zip codes with more overall hospital admissions during the estimation
period are shaded in a darker color. Sources: NOAA, OK Discharge Data
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Figure 3 Damage Map in Manhattan, NY

Note: Cross-hatching indicates flood-affected areas. Darker shaded polygons are zip codes we use
in the estimation for Bellevue. Zip codes with more overall hospital admissions during the estimation
period are shaded in a darker color. Sources: FEMA, NY Discharge Data

Figure 4 Damage Map in Coney Island, NY

Note: Cross-hatching indicates flood-affected areas. Darker shaded polygons are zip codes we use
in the estimation. Zip codes with more overall hospital admissions during the estimation period are
shaded in a darker color. Sources: FEMA, NY Discharge Data
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Figure 5 Damage Map in Los Angeles, CA

Note: Cross-hatching indicates the earthquake intensity measured by the Modified Mercalli Inten-
sity (MMI); an MMI value of 7 reflects non-structural damage and a value of 8 moderate structural
damage. The areas that experienced the quake with greater intensity were cross-hatched in a darker
color, with the MMI in the area ranging from 7-8.6. Any areas with an MMI of below 7 were not
cross-hatched. Darker shaded polygons are zip codes we use in the estimation. Zip codes with
more overall hospital admissions during the estimation period are shaded in a darker color. Sources:
USGS Shakemap, OSHPD Discharge Data

are independent of irrelevant alternatives (IIA). Moreover, the logit assumption implies that

the probability that patient i with condition c receives care at hospital h is:

sihc =
exp(δihc)∑
j∈H exp(δijc)

. (2)

3.2 Empirical Implementation

Researchers have placed very different assumptions on the most effective way to model δ in

equation (1). Table III details some of the most prominent differences between the models

that we examine by showing how they differ in their treatment of three important sets of

variables: travel time, hospital characteristics, and hospital indicators.9 One check mark

9For travel time, we have information on each patient’s zip code and so use ArcGIS to calculate the travel
time (including traffic) between the centroid of the patient’s zip code and each hospital’s address.
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indicates the presence of an element. More check marks indicate the degree of interactions

between that element and patient characteristics, which may include race, sex, and age, as

well as the different diagnoses and procedures they have and their relative severity. Ap-

pendix C contains a detailed discussion of each model and Appendix F details all of the

variables present in each model.

Table III Summary of Tested Models

Name Travel Time Hospital Characteristics Hospital Indicators

Indic # # !

Char (Garmon WP) !! !! #

CDS (RAND ’03) !! !!! #

Time (May WP) ! # !

Ho (JAE ’06) ! !!! !

GNT (AER ’15) !! !! !!

Inter !!! # !!!

Semipar (Raval, Rosenbaum, Tenn
WP)

Hospital Indicators Interacted with Bins

Note: Each row is a stylized depiction of a given model. More check marks indicate the degree
of interactions between that element and patient characteristics, which may include race, sex, and
age, as well as the different diagnoses and procedures they have and their relative severity.

Our reference model (Indic) assumes that there is no patient level heterogeneity. In

other words, everyone within the relevant area has, on average, the same preferences for

each hospital. As a result, patient choices can be modeled as being proportional to aggregate

market shares, and δ can be estimated using only hospital indicators as covariates. In other

words, this model could be estimated with only aggregate data.

In our view, the most important differentiator among the different models accounting

for patient-level heterogeneity is whether or not they assume that patients’ choices can be

modeled exclusively in “characteristic” space (Lancaster, 1966; Aguirregabiria, 2011). That
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is, unobserved hospital characteristics do not consistently affect patient preferences. We

include two models (CDS and Char) that make this strong assumption, modeling δ simply

as a function of a rich set of interaction terms between patient attributes (age, sex, income,

condition, diagnosis) and hospital characteristics (for-profit status, teaching hospital, nursing

intensity, presence of delivery room, etc.), as well as a measure of the travel time from the

patient’s home to the hospital.10 CDS is based on Capps et al. (2003), while Char is based

on Garmon (2016).

A contrasting set of specifications relaxes the strong assumption of no unobserved hospi-

tal characteristics made by the characteristic space models by including a hospital dummy,

possibly interacted with individual-level characteristics. Time just includes hospital indica-

tors, travel time, and travel time squared; May (2013) claims that this model performs just

as well as more complicated models. Ho, based on Ho (2006), includes hospital indicators,

as well as many interactions between hospital characteristics and patient characteristics in

a similar way as the characteristics models. GNT, based on Gowrisankaran et al. (2015),

includes a large set of interactions between travel time and patient characteristics, as well

as hospital indicators and hospital characteristics interacted with acuity. Inter includes in-

teractions of hospital indicators with acuity, major diagnostic category, and time as well as

many interactions between patient characteristics and travel time.

Finally, we use a semiparametric bin estimator (Semipar), similar to Raval et al. (2015),

which moves away from a characteristics based approach altogether to even more flexibly

account for consumer heterogeneity across choices. This approach creates small and homoge-

10We obtain these hospital characteristics from the annual hospital characteristics data provided by the
American Hospital Association (AHA) Guide and Medicare Cost Reports; they include such details as for-
profit status, whether or not a hospital is an academic medical center or a children’s hospital, the number
of beds, the ratio of nurses to beds, the presence of different hospital services such as an MRI or cardiac
ICU, and the number of residents per bed. For a few hospitals in California, New York and Oklahoma,
the AHA and Medicare Cost Reports only contain data on the total hospital system rather than individual
hospitals. For the AHA Guide, see http://www.ahadataviewer.com/book-cd-products/AHA-Guide/. For
the Medicare Cost Reports, see http://www.cms.gov/Research-Statistics-Data-and-Systems/Files-

for-Order/CostReports/index.html?redirect=/costreports/.
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neous groups based upon patient characteristics, including zip code, age, disease acuity, and

diagnosis category. The main assumption is that IIA holds within groups, and so hospital

choice probabilities change proportionally to the observed shares of the group with a change

in the choice set. In our implementation of this approach, we allow for group sizes as small

as twenty, such that for some groups very few patients are used to predict substitution pat-

terns. As discussed in Carlson et al. (2013) and Raval et al. (2015), this flexible approach is

computationally efficient despite being equivalent to including a fixed effect for each group-

hospital interaction in a multinomial logit model and allowing thousands of groups. While

this model removes the restrictions of a characteristics based approach (for both products

and consumers), it also has the potential to give extremely noisy estimates due to the very

small group sizes.

All of these models provide different tradeoffs between model flexibility and power. A

more flexible model is better able to account for consumer heterogeneity, and so has less

bias, but its estimates are also likely to have greater variance. Since both greater bias and

greater variance reduce out of sample performance, it is not clear which models will perform

best.

4 Prediction

We estimate all of the models in Section 3 on data from the period before the disaster, and

assess each model’s predictive performance on data from the period after the disaster. Each

model is thus assessed out of sample along two dimensions; first, it is estimated on an earlier

time period, and second, the choice set available to patients has changed with the disaster.

The change in the choice set is crucial to see how well each model predicts patients’ choices

after a major change in market structure.
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4.1 Relative Performance

We compare the relative performance of the models on their predictions of aggregate mar-

ket shares, aggregate diversion ratios post-disaster, and individual hospital choices for each

destroyed hospital’s service area.

4.1.1 Aggregate Shares

A simple way to assess performance on aggregate shares is to plot the time series of pre-

dictions against observed shares. In Figure 6, we do this for the Sumter disaster for three

models, Semipar, Inter, and CDS, and 6 hospitals; the observed shares are the dashed red

line. The grey dot-dash vertical line depicts the quarter of the disaster.

With the disaster, Sumter Regional’s market share falls from about 50 percent to zero.

Both the Semipar and Inter models closely track the actual changes in market shares for

most of the remaining hospitals; for example, both predict the large rise in share for Phoebe

Putney. CDS, on the other hand, performs very poorly; for example, it underpredicts the

post-disaster share for Phoebe Putney by about 20 percentage points and predicts an initial

share that is much higher than the observed share for Crisp Regional. All three models

overpredict the share going to the outside option.

We examine the performance of all of the models across all of the destroyed hospitals

using the criterion of root mean squared error (RMSE). At the aggregate level, the RMSE

is defined as:

RMSE =

√
1

NJ

∑
j

[yj − ŷj]2.

Here yj is the share of alternative j, ŷj the model prediction, and NJ the total number of

alternatives.

To look at relative differences across models, we examine the percent improvement in

RMSE for each model over the baseline of the Indic model. The Indic model provides a
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Figure 6 Aggregate Market Shares, Predicted and Observed, for Sumter

Note: Red dashed line is the observed series of market shares. The grey vertical dot-dash line
depicts the quarter of the disaster.



(a) Aggregate Share

(b) Aggregate Diversion Ratio

Figure 7 Relative Improvement in RMSE of Aggregate Predictions

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Parametric models without hospital indicators are squares, with hospital indicators are circles, and
semiparametric models are triangles.
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useful baseline as it is a simple model that only requires aggregate data on market shares.

We define the percent improvement as:

1− RMSEModel

RMSEIndic

.

Our results are shown in Figure 7a, which depicts the relative improvement in RMSE for

each destroyed hospital’s service area and model in the period after the disaster. Each row

is a different destroyed hospital’s service area; the models are distinguished both by color,

and by shape, with the two parametric models without hospital indicators as squares, the

four parameteric models with hospital indicators as circles, and the semiparametric model

as a triangle.

The two characteristics based models – CDS and Char – always have much higher RMSE

than the other models. Their RMSE is substantially worse than Indic for all of the service

areas, and more than 100 percent worse for four service areas. These results demonstrate that

unobserved hospital characteristics are important to understand aggregate hospital demand.

Across all of the hospitals, the differences between models that include hospital product

effects – Semipar, Inter, Ho, GNT, and Time – are much smaller. For example, Semipar

ranges from 20 percentage points worse than Ho to 20 percentage points better across the

hospitals. Of these models, Semipar, Inter, and Ho are each the best model in two cases,

although all models underperform our baseline model, Indic, for Bellevue.

These results illustrate the extent to which models match the levels of consumer choice

probabilities before and after a choice was eliminated. However, in many applications, the

change in consumers’ choice probabilities for different options after removing an object from

the choice set is the object of interest, such as the diversion ratio referred to in Garmon

(2016). Therefore, we examine the RMSE of the aggregate diversion ratio following the

22



disaster. We define the aggregate diversion ratio for hospital j as:

yj,1 − yj,0
ydest,0

where yj,1 is the share of hospital j in the period after the disaster, yj,0 the share of hospital

j before the disaster, and ydest,0 the share of the destroyed hospital. Assuming that all

changes in market shares after the disaster are due to the closure of the destroyed hospital,

the diversion ratio tells us the fraction of the destroyed hospital’s patients that went to

hospital j. For the New York hospitals, the denominator of the diversion ratio includes all

destroyed hospitals in the choice set.

Figure 7b depicts the relative improvement in RMSE for each model over Indic. We

can immediately see that the characteristics models do much better on diversion ratios than

they did on shares; their earlier poor performance stems primarily from missing the levels

of shares. However, they are still typically worse than Semipar and Inter. Again, Semipar,

Inter, and Ho are each the best model in two cases, although Semipar is second to Indic for

Bellevue.

4.1.2 Individual Predictions

Since the shape of demand is determined by individual heterogeneous consumers, predictions

on individual choice are key for assessing welfare in differentiated product markets. Figure 8

depicts the percent improvement over Indic for all models and across all of the hospitals for

individual choices. We again measure model performance using RMSE, although we find in

Appendix D.8 general agreement across alternative performance metrics.11 The models that

provide the greatest flexibility to capture unobserved patient heterogeneity always perform

the best, on average, across all of our experimental settings: Semipar and Inter are always

11These alternative metrics are Mean Absolute Error, zero-one loss based on whether the patient went to
the choice with the highest probability, and relative entropy (a log likelihood based statistic).
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the best and second-best performing models. Inter is the best performing model for Sumter,

while Semipar performs best for the other five destroyed hospitals. Across hospitals, Semipar

is 0.5 to 3 percentage points better than Ho, and between one to 13 percentage points better

than Indic.

Figure 8 Relative Improvement in RMSE of Individual Predictions

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.

The three other hospital effects models – Ho, GNT, and Time – tend to perform similarly,

and are always clearly worse than Semipar and Inter. One of the pure characteristics models

– Char – continues to perform worse than the hospital effects models, although it is better

than Indic. CDS, the other characteristics model, is no longer clearly worse than the hospital

effect models, and performs well for many of the service areas. For Coney and Moore, many

of the models perform similarly or worse than our baseline Indic, which may indicate smaller

differences in preferences across patients than in the other service areas.
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In most situations, researchers will not have access to natural experiments like ours in

order to assess models, but could use in-sample model performance to evaluate models.

We examine whether in-sample performance can provide a good guide to out of sample

performance in Figure 9. For each of the destroyed hospitals, we compare each model’s

performance for individual predictions in the period before the disaster to after the disaster.

The blue line is the linear best-fit line across the models.

Figure 9 Relative Improvement in RMSE of Individual Predictions, Post-Period vs.
Pre-Period

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.

Overall, the performance of the model before the disaster is a good guide to its perfor-

mance afterwards; all of the linear relationships are upward sloping and most models are

close to the linear prediction. The models do tend to do worse compared to Indic in the

post-period than they did in the pre-period. In addition, CDS appears to over-fit for Sumter

and Coney, as it is better than Ho, GNT, and Time in the period before the disaster but
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worse afterwards. Thus, in general model performance before the disaster predicts model

performance after the disaster, but some models, such as CDS, may overfit the data.

4.2 Prediction Under a Changing Environment

The above results demonstrate that, on average, model flexibility generally trumps power

considerations. However, it is possible that this is because we include in our estimates many

patients for whom the choice set did not change after the disaster. If their preferred hospital

was unaffected by the disaster, then the destruction of a non-preferred hospital should have

no impact on their choices. The greater the number of patients included in our calculations

that prefer a non-destroyed hospital, the more our out-of-sample validation resembles more

traditional “split-the-sample” validation. In that environment, the flexibility may reflect a

type of overfitting that delivers good predictions in the existing choice environment, but fails

at extrapolations out of that environment.

We use two methods to focus on the patients who were more likely to experience the

elimination of their preferred hospital following the natural disaster: a) patients whose char-

acteristics place them in bins with a greater share of discharges from the destroyed hospital

in the pre-disaster period and b) patients who used the destroyed hospital in the pre-disaster

period.

For the first approach, we calculate the RMSE for each bin produced by Semipar and

examine how bin level performance varies by the bin’s share of the destroyed hospital for

all of the models; Figure 10 depicts this relationship for Sumter and NYU. The size of each

point is proportional to the number of patients in each bin; the blue solid line is the loess

trend weighting each bin by its number of patients. For Sumter, the average RMSE increases

as the share of the destroyed hospital increases, flattens out, and then increases again. For

NYU, the average RMSE about doubles when going from the lowest pre-disaster share to the
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(a) Sumter (b) NYU

Figure 10 Bin Level RMSE by Destroyed Hospital Share for Semipar model

Note: Blue solid line is the loess trend, weighting each bin by its number of patients. Each point
is the RMSE for a particular bin, and its size is proportional to the number of patients in each bin.

highest pre-disaster share. This pattern is intuitive – when there is a change in the choice

environment, the models generally do not predict as well.

While we should not expect the models to perform as well when there is a change in

the choice environment, some models may preform relatively better than others. Therefore,

we examine the relative performance by plotting the loess trend from each model across the

bins. Figure 11 depicts these graphs for each model for all of the hospitals. For the New York

and California hospitals, there is a cutoff share for the destroyed hospital, ranging from 25

to 55 percent, after which a parametric model performs better than Semipar. At high shares

of the destroyed hospital, Semipar performs worse than most of the parametric models. We

find one model to always perform the best for Sumter and Moore; this model is Semipar for

Moore and Inter for Sumter.

For our second approach to identify the patients most likely to have lost their preferred

hospital, we define the set of affected patients by looking at all patients that visited the de-
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Figure 11 Bin Level RMSE by Destroyed Hospital Share for All Models

Note: Each line is the loess trend for a different model, weighting each bin by its number of
patients in the pre-period.

stroyed hospital in the pre-disaster period. This approach allows us to focus on patients who

are most likely to be affected in their facility choices by the destruction of the hospital, since

they already received care at the destroyed hospital in the past.12 We have patient identifiers

for California and New York, and so use all patients who were admitted to the destroyed

hospital in the year of the disaster or the previous two years prior for these disasters.13

Figure 12 displays the model performance at the individual level for these patients. For

NYU, Semipar is the best model; for the other three hospitals, the best performing model

12Their continued preference for this hospital could either be the result of switching costs or time-invariant
preferences for certain types of facilities; see Raval and Rosenbaum (2016) for a discussion of this issue. Which
of these explanations is correct is irrelevant to our research question.

13For New York, we have to use a different dataset from HCUP, and so have to exclude patients discharged
in 2013 as 2013 is not presently in our dataset. In accordance with our data use agreement for these data, we
note that these data are from New York, State Inpatient Database (SID), Healthcare Cost and Utilization
Project (HCUP), Agency for Healthcare Research and Quality.
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Figure 12 Relative Improvement in RMSE of Individual Predictions for Previous Patients
of Destroyed Hospital

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.

is also the best model at high shares of the destroyed hospital in Figure 11. Semipar still

performs well for Coney and Bellevue, as it is the second best model in these cases, although

it performs relatively poorly for St. John’s. Ho and GNT perform very poorly for NYU and

Bellevue.

Overall, the Semipar model has the best predictive ability when it is least likely that

a patient’s first choice hospital was destroyed. However, while Semipar still performs well,

parametric models improve relative to the semiparametric approach when it is likely that a

patient’s first choice was eliminated. This decline in performance for Semipar could either

be because of the reduced precision of the semiparametric model in those areas, or because

a semiparametric approach is less effective in predicting following a change in the choice set.

For bins within the Semipar model in which the destroyed hospital has a large share,
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choice probabilities will be based upon data from only a few individuals and so will have

a high variance. To the extent that this is an issue, it would degrade the performance of

Semipar relative to the other models. Therefore, it is particularly surprising that Semipar

performs as well as it does in the population where the choice set changes.

4.3 Combining Multiple Models

So far, we have examined the performance of each model separately. However, since each

model may rely on a different source of variation, a combination of models might provide

better predictions than any given model separately. Further, the previous section shows

suggestive evidence that different types of models provide more accurate predictions for

different types of patients. These findings suggest that combining the predictions from

multiple models may lead to better predictions of behavior than using a single “preferred

model.”

While there are several ways to combine models, we apply a simple regression based ap-

proach that has been developed in the literature on optimal model combination for optimally

combining macroeconomics forecasts (Timmermann (2006)). To apply the method to our

context, we treat each patient as an observation, and regress the predictions from all the

models on observed patient behavior. We constrain the coefficients on the models’ predic-

tions to be non-negative and to sum to one. Thus, each coefficient in the regression can be

interpreted as a model weight, and many models will be given zero weight. We perform this

analysis separately for each disaster, which enables us to see the variation in our findings

across the different settings.

The regression framework implicitly deals with the correlations in predictions across mod-

els. If two models are very highly correlated but one is a better predictor than the other, only

the better of the two models might receive some weight in the optimal model combination.
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Formally, we regress each patient’s choice of hospital on the predicted probabilities from all

of the models in the period after the disaster without including a constant, as below:

yih = βSemiparŷSemipar
ih + ...+ βCDS ŷCDS

ih + ε

where yih is the observed choice for patient i and hospital h and ŷSemipar
ih is the predicted

probability for patient i and hospital h for Semipar. We include the characteristics based

models after re-estimating them including hospital indicators given the substantial bias in

aggregate predictions demonstrated earlier.

Table IV Model Weights for Optimal Model Combination

Model Sumter Moore NYU Coney Bellevue StJohn’s Average

Semipar 0.21 0.61 0.52 0.59 0.56 0.54 0.50
CDS 0.13 0.23 0.48 0.10 0.28 0.34 0.26
Inter 0.57 0.16 0.00 0.16 0.00 0.07 0.16
Ho 0.09 0.00 0.00 0.15 0.16 0.00 0.07
Indic 0.00 0.00 0.00 0.00 0.00 0.04 0.01

Note: The second through seventh columns provide the model weights for the optimal model
combination for each experiment’s service area in the period after the disaster. Models not included
in the table were given zero weight by the estimation. The last column provides the average weight
for each model across the different experiments.

Table IV displays the model weights from these regressions for all models with positive

weight for some experiment. We highlight two major findings. First, there is no one “pre-

ferred model.” Within a given disaster, there is no single model that receives all of the

weight; the largest weight any model receives is 61%. Across disasters, only Semipar and

CDS (with hospital indicators) have positive model weights for all of the experiments. In-

ter receives a substantial amount of weight for Sumter, and receives some weight in three

other experiments, while Ho receives positive weight in three experiments. While the im-

portance of “robustness” checks in empirical work is well known, the positive contributions
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of many model types in prediction illustrates that it is important to ensure that results are

qualitatively similar for a variety of different specifications.

Second, the results from the model combination suggest that researchers should adopt an

approach that puts roughly equal weight on a semiparametric and on a flexible parametric

approach. On average, Semipar receives 50 percent of the weight, and receives a majority of

the weight for all of the service areas except Sumter. The three parametric models receive

the remainder at 26 percent for CDS, 16 percent for Inter, and 7 percent for Ho.

A model combination incorporating semiparametric and parametric models can be done

informally, by estimating both models to ensure the consistency of results, and formally,

by combining predictions from the models using a weighting of 50% on a semiparametric

approach and 50% on a flexible parametric one. While there is variation across settings in

the exact weighting and which parametric approach to use, our results strongly suggest that

a flexible semiparametric specification is valuable in capturing variation that is missed by a

parametric approach.

4.4 Absolute Performance

So far, we have examined the performance of the models relative to each other. But how well

can the models predict actual choices, shares, and diversion ratios? We examine the absolute

performance of discrete choice models by examining the RMSE between actual and predicted

values. Figure 13a and Figure 14a display the RMSE for each hospital for aggregate shares,

aggregate diversion ratios, and individual choice predictions for the different models for the

Semipar and Inter models, respectively.

For Semipar, the RMSE on predictions of aggregate shares is quite small: between 0.7

percent and 2.2 percent across the models. The RMSE on aggregate diversion ratios is

substantially higher, lying between 4 and 12 percent across the hospitals. The RMSE at the
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individual level ranges between 19 and 27 percent across the hospitals.14 The results from

Inter are quite similar.

The RMSE can be large because the variance of actual and predicted choices is large, or

because the correlation between predictions and observed choices is low.15 To separate the

effects of higher variance from lower correlation on the RMSE, we display the correlation

coefficient between actual and predicted in Figure 13b and Figure 14b. At the aggregate

level, the correlation coefficient is above 0.98 for all of the hospitals for Semipar, so the

RMSE is likely due to the high variance of observed and predicted choices. The correlation

coefficient for aggregate diversion ratios has a wide range across disasters, from 0.95 for

Bellevue and 0.99 for Sumter to 0.65 for St. John’s; only for Sumter and Bellevue are these

close to the correlation of aggregate share predictions.

For Semipar, the correlation coefficient at the individual level is 0.64 for Sumter, between

0.42 and 0.48 for NYU, Bellevue, and St. John’s, and about 0.35 for Coney and Moore.

Semipar does substantially worse at individual prediction than aggregate prediction. How-

ever, given the complexity of modeling individual patient choice, individual predictions are

still reasonably correlated with actual choices. Again, results are similar for Inter.

For both aggregate shares and aggregate diversions, our models performed the worst for

St. John’s. In Figure 15, we plot the time series of predictions for Semipar, Inter, and

Ho against observed shares for two hospitals with large diversions – UCLA Medical Center

14The explained variance statistic, also known as Efron’s pseudo R2 (Efron (1978)), provides a transfor-
mation of RMSE that measures the amount of the overall variance in choices explained by the model. It is
defined as:

Explained V ariance = 1−
1
N

∑
j [sj − ŝj ]2

1
N

∑
j [sj − s̄j ]2

The explained variance is between 96 to 99 percent for aggregate shares. For aggregate diversions, the
explained variance ranges from 92 percent for Sumter, 80 percent for Bellevue, 70 percent for Coney, 57
percent for NYU, 44 percent for Moore, and 39 percent for St. John’s. For individual choices, it is 40
percent for Sumter and between 12 to 23 percent for the other disasters.

15Formally, E((y − ŷ)2) = V (y) + V (ŷ) − 2Cor(ŷ, y)
√
V (y) + V (ŷ) where y is the actual choice, ŷ the

prediction, Cor a correlation, V a variance, and E((y − ŷ)2) the MSE across predictions. If the variance of
observed values and predictions is equal, this simplifies to 2V (y)(1− Cor(ŷ, y)).
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(a) RMSE

(b) Correlation Coefficient

Figure 13 RMSE and Correlation Coefficient for All Hospitals: Semipar Model

Note: The correlation coefficient is between the predicted values from the model combination
model and observed choices or share in the period after each disaster.
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(a) RMSE

(b) Correlation Coefficient

Figure 14 RMSE and Correlation Coefficient for All Hospitals: Inter Model

Note: The correlation coefficient is between the predicted values from the model combination
model and observed choices or share in the period after each disaster.
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and Santa Monica Hospital.16 All of the models predict a big increase for Santa Monica

Hospital, which occurs although it takes longer than the models predict. This may be

because Santa Monica Hospital was also damaged in the earthquake, although it remained

open with reduced capacity, and so it took longer for the hospital to fully reopen. UCLA’s

share rises from about 11 percent to 18 percent. None of the models predict the extent

of the diversion to UCLA, although Ho performs better than the other two models. One

explanation for this rise is that UCLA was making strategic investments in the Santa Monica

area after the disaster. UCLA buys Santa Monica Hospital about a year after the disaster

after merger talks between St. John’s and Santa Monica Hospital break down.17

5 Policy Counterfactuals

So far, we have examined the predictive accuracy of a number of different models, and shown

that flexible models such as Semipar and Inter perform better than the others for individual

prediction. It is not clear, however, whether the differences in model fit are large enough

to impact policy counterfactuals of interest. We examine this through an application to

mergers, using the framework of Capps et al. (2003) to consider the connection between

model accuracy and expected changes in consumer welfare.18

Conditional on accurately modeling δ, the logit distributional assumption makes it straight-

forward to assess the welfare consequences of alterations to patients’ choice sets. A patient’s

16The predictions for Ho change dramatically between 1992 and 1993 because many of the Ho interactions
are based on AHA variables that change at the yearly level.

17See
http://articles.latimes.com/1994-12-17/business/fi-9940_1_santa-monica-hospital-medical-

center for a discussion of these changes.
18Interestingly, all four areas hit by disasters had substantial merger activity in the year following the

disaster; we saw evidence of this for California in the previous section with the merger of Santa Monica
Hospital and UCLA Medical Center. In Georgia, Sumter Regional, the destroyed hospital, merged with
Phoebe Putney, which, as we saw in Figure 6, was the hospital with the biggest diversion after the disaster.
In New York, Beth Israel Medical Center broke off merger talks with NYU Langone and merged with
Mount Sinai. New York Downtown Hospital, located close to NYU and Bellevue, merged with New York
Presbyterian. Finally, in Oklahoma, Norman Regional Health System, the owner of Moore Medical Center,
merged with a major physician group in the area.
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Figure 15 Aggregate Market Shares, Predicted and Observed, for St John’s

Note: Red dashed line is the observed series of market shares. The grey vertical dot-dash line
depicts the quarter of the disaster. February through April 1994 are omitted from the plot, since
that is the period immediately following the earthquake that we omit from our post-period.

ex-ante consumer surplus from being able to access a hospital, which we henceforth follow

Capps et al. (2003) and others in calling the patient’s “willingness to pay” (WTP) for the

hopsital, is defined for a given hospital as the change in utility for that patient if the hospital

is excluded from the choice set. A patient’s WTP for a hospital k given choice set H is the

difference between the patient’s ex-ante utility for hospital choice set H and their utility for

the choice set after hospital k is dropped from the choice set:

WTPi(k)(H) = Wi(H)−Wi(H/k) = log

(
1

1− sik(H)

)
where sik is the share of hospital k for patient of type i given choice set H.19 To construct the

19For convenience, we drop the dependence on H in our notation.
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overall WTP for a hospital, one simply integrates WTPi(k) over the distribution of patients.

For hospital merger simulations and screens, economists are often interested in how WTP

changes at the provider system level after the merger. If hospitals are close substitutes, the

WTP of a system composed of the two hospitals together is greater than the sum of the

WTP of each hospital separately. The WTP of the combination of two hospitals k and l is:

WTPi((k, l)) = Wi(S)−Wi(S/(k, l)) = log

(
1

1− sik − sil

)

The post-merger change in WTP for an individual is the difference between the WTP for

the combined hospital system and the individual hospitals, and so can be estimated as:

∆WTPi((k, l)) = WTPi(S/(k, l))−WTPi(S/k)−WTPi(S/l) (3)

= log

(
1

1− sik − sil

)
− log

(
1

1− sik

)
− log

(
1

1− sil

)
(4)

At the aggregate level, the change in willingness to pay is the WTP for the combination of

k and l minus the sum of the WTP for k and the WTP for l. The overall change in WTP is

thus the integral over this quantity; we report the percentage change in WTP, which is the

integral over WTPi(k, l) divided by the integral over the sum of WTPi(k) and WTPi(l).

We employ the WTP framework to examine the effect of counterfactual mergers in each

destroyed hospital’s market. In order to explore a range of different types of mergers, we

simulate a merger of the destroyed hospital with every other hospital in its service area.

This produces a total of 95 counterfactual mergers. We assess the connection of model

performance to policy outcomes by dividing our simulated mergers into two groups based

on their percent change in WTP, which can heuristically be associated with expected price

changes following a merger.20 Specifically, we define two sets of simulated mergers based on

20See, e.g., Robert Town’s address to the American Bar Association, http://apps.americanbar.org/
antitrust/at-committees/at-hcic/pdf/past-programs/20100601_town.pdf. In that address, Town
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(a) Coefficient of Variation (b) Correlation Coefficient

Figure 16 Density Estimates from Counterfactual Merger Predictions

Note: Each figure depicts smoothed kernel density estimates from estimates of the coefficient of
variation for the percent change of WTP and the correlation coefficient between individual level
RMSE and the percent change of WTP across all simulated hospital mergers.

whether or not they have an average percent change in WTP of above 5%, with those having

a higher change in WTP being more likely to result in substantial competitive harm.

The left figure of Figure 16 shows a density plot of the coefficient of variation of the

percent change in WTP for the two groups of hypothetical mergers. The coefficient of

variation, the standard deviation divided by the mean percent change in WTP, is computed

using different econometric models within a single hypothetical merger.21 This mimics how

suggests using a 10% change in WTP as a merger screen, stating that “In modestly concentrated mar-
kets, a 10% increase in the WTP for any hospital is noteworthy.”. This is broadly consistent with the
published and public evidence correlating changes in WTP to changes in price. For example, Capps et al.
(2003) found that WTP increases in the range of 12% to 20% were associated with predicted price increases
of 10% to 12%. In the ProMedica case, Robert Town as the FTCs expert estimated a model that predicted
that the 13.5% increase in WTP would lead to 16.2% higher prices. For a useful summary of this evidence,
see Capps (2014, p. 472). Moreover, the figures reported in published work are broadly consistent with
those reported in working papers. In particular, identifying the correlation between changes in WTP and
changes in price cross-sectionally using a set of consummated mergers, Garmon (2016) estimates a slightly
higher average elasticity of around 1.

21For example, for a given hypothetical merger suppose we computed percent change in WTP of 3, 6, and
9. The coefficient of variation would be 0.5 (3, the standard deviation, divided by 6, the mean).
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different analysts may use different econometric models to analyze the same transaction in a

merger investigation. We then pool the coefficient of variation from the hypothetical mergers

across all of the natural disasters to make the density plot.

The figure illustrates the significant relative variation in the predicted harm for mergers

with a relatively small percent change in WTP and the much smaller relative variation in

harm for mergers with larger predicted harm. This is reassuring. In the cases where the

percentage change in WTP results suggest a substantial reduction in competition, there is

much less variation than in cases where it is unlikely to be relevant for merger enforcement.

Nevertheless, the coefficient of variation is 0.15 on average for mergers with an average

change in WTP of over 5 percent, a potentially substantial magnitude. For example, suppose

that a given merger has a predicted 10% change in WTP on average across models and a

coefficient of variation of 0.15. Predicted changes ranging from a 7% change in WTP to a

13% change in WTP woud lie within 2 standard deviations of the mean.

While the analysis of the connection between model consistency and economic significance

tells us that using different models could lead to different policy conclusions, it is important to

know the types of mistakes that will be made from using different types of models. To study

this, we compute the correlation between out-of-sample RMSE and percent change in WTP

for all of the models within each hypothetical merger. In the right figure of Figure 16, we

show a density plot of these correlations. As we did above, we split the density plot between

mergers that are more and less likely to result in competitive harm. A negative correlation

suggests that more accurate models predict higher harm, while a positive correlation suggests

the opposite.

For mergers with low estimated changes in WTP, we find that the distributions of these

correlations across mergers is bimodal. For these mergers, it is hard to detect a pattern in the

bias from using a less accurate model – sometimes the merger effect will be overstated and

sometimes understated. For 22% of those mergers there is a negative correlation between
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percentage change in WTP and RMSE with a magnitude greater than 0.5, while for 33%

there is a positive correlation with magnitude greater than 0.5.

However, when looking at mergers with a percent change in WTP of above 5%, where

scrutiny is more likely, more accurate models generally predict higher harm. For 60% of

such mergers, there is a negative correlation between percent change in WTP and RMSE.

Moreover, for 42% of mergers with a percent change in WTP of above 5%, the negative

correlation is greater than 0.5 in magnitude. While not conclusive, this general trend suggests

that the use of less accurate models could make it more difficult for enforcers to make correct

enforcement decisions.

When would better fitting models typically produce higher changes in WTP? One answer

is that the type of unobserved heterogeneity that the best fitting models are capturing

has more patients with high probabilities for both merging hospitals. In Appendix E, we

show formally that the percent change in WTP will be larger on average for probability

distributions that increase the share of patients with high probabilities for both hospitals

and low probabilities for both hospitals, keeping the marginal distributions of probabilities

the same.22 Thus, if more flexible models like Semipar and Inter better represent high

probabilities for both merging hospitals for certain patients given the same aggregate shares,

they will also predict larger changes in WTP from a merger.

6 Robustness

In computing our main results, we assume that individuals are able to choose any hospital

within their region and that the distribution of hospital patients is unaffected by the natural

disaster. The first assumption would be violated if patients faced restricted health insurance

22The change in WTP, equation (4), is a supermodular function. This supermodularity means that
patients with high probabilities of visiting both merging hospitals will have large changes in WTP for the
merged hospital system. The aggregate change in WTP will then rise when the share of patients with high
probabilities for both hospitals rises, even if aggregate shares for each hospital remains the same.
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networks or hospital capacity constraints. The second would be violated if many people

moved in the aftermath of the natural disaster. In this section we argue that our results

are robust to addressing concerns surrounding both of these assumptions. We outline our

robustness results here and include more detail in Appendix D.

Commercially insured patients have typically had largely unconstrained choices of facili-

ties. For example, Ho (2009) reports that 83 percent of hospitals and plans reach agreement.

However, to ensure that our results are robust to the possibility that some commercially

insured individuals face constrained choice sets due to being in “narrow network” plans,

we reestimate all of the models only using Medicare patients. While this population is a

narrower demographic group than our full sample, and a significantly smaller sample, they

should have unrestricted access to all hospitals in the area. Using this population, we find

qualitatively similar results to our baseline results, although Semipar tends to perform worse

at the individual level.

To address concerns that the hospitals faced capacity constraints following the disaster,

we approximate a measure of hospital capacity using our data. Using these measures, we find

that five hospitals are potentially impacted by capacity constraints following the disaster,

four of which are in areas of Brooklyn close to Coney Island. For three out of these five

hospitals we underpredict share and for two we predict correctly. If capacity constraints were

severely impacting our results, we would expect to systematically overpredict the shares of

the constrained hospitals.

Another concern following a disaster is that the population shifted in such a way that the

pre-disaster admissions are not a good proxy for the post-disaster admissions. For Coney,

St. John’s, and Sumter, we examine our models’ performance excluding the areas that were

most affected by the disaster. Using this population, we find qualitatively similar findings

to our baseline specifications.

We also examine how the case mix changed after the disaster in a number of dimensions,
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including age, diagnosis, diagnosis acuity, payer type, and number of admissions. The main

substantial change we find are falls in that the total number of admissions per month falls

by 6 to 14 percent across service areas, which is consistent with the evidence of falling

admissions after hospital exits in Petek (2016). This may reflect an extensive margin for

hospital admissions. In addition, the fraction of patients under 18 falls substantially for

Moore and Sumter. We also examine our model predictions separately for cardiac and

labor/pregnancy patients, two groups of people for which the extensive margin may be less

relevant. We find qualitatively similar results for these patients as for the overall sample.

One reason that models may do a poor job of prediction is that patients’ choices following

the disasters are driven by where the destroyed hospital’s physicians practice. We examine

this theory for the New York hospitals, and find that it is unlikely to be a concern in our

case for two reasons. Following the disasters, the physicians from the destroyed hospitals saw

many fewer patients than the average from the previous months; for Bellevue and Coney the

decline was above 90% and for NYU it was about 60%. Second, the regular patients of the

destroyed hospitals typically went to different hospitals after the disaster than the doctors

did; the physician and patient diversion ratios are uncorrelated with each other.

7 Conclusion

For many economists, the experiment is the benchmark by which to judge empirical economic

research (Angrist and Pischke, 2008). However, experiments and quasi-experiments typically

can only focus on a narrow population and set of market conditions. For example, it is not

possible to predict the counterfactual impact of a merger of two firms using an experiment

that merges them, and there may be no quasi-experiment of similar firms to the merging ones.

Further, it is not possible to assess welfare in the absence of a model of consumer utility, and

utility parameters must be estimated under assumptions on preferences. Therefore, many
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economists use structural modeling to predict policy counterfactuals over a much broader

set of events than focusing on quasi-experiments would allow.

In this paper, we take a similar approach as LaLonde (1986) did for program evaluation,

and compare the results obtained from structural models to quasi-experiments. Using de-

tailed micro data on patient choice of hospital facility, we compare consumer substitution

patterns obtained from structural discrete choice models of demand to those obtained from

an exogenous change in consumers’ choice sets. We construct a laboratory in which to as-

sess the performance of structural demand models, such that econometricians can use these

models in other markets with greater confidence in their conclusions.

Our qualitative conclusions are robust across markets. First, we find that the best per-

forming models allow for substantial preference heterogeneity. Second, flexible specifications

for consumer heterogeneity frequently involve a bias-variance tradeoff. Therefore, we sug-

gest that researchers consider the robustness of their conclusions to parametric and semi-

parametric approaches that balance this tradeoff differently. Finally, differences in model

specification can lead to qualitatively different predictions of competitive effects. While this

is not surprising, it emphasizes the importance of model selection and testing.

Where possible, we hope to see more studies that are able to use experimental analyses

to help cross-validate structural modeling. In industries where this is possible, this type of

external validation could become standard practice. As Nevo and Whinston (2010) remind

us, “in general, structural analysis and credible identification are complements.”
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A Disaster Timelines

In this section, we give a brief narrative descriptions of the destruction in the areas surrounding

the destroyed hospitals.

A.1 St. John’s (Northridge Earthquake)

On January 17th, 1994, an earthquake rated 6.7 on the Richter scale hit the Los Angeles Metropoli-

tan area 32 km northwest of Los Angeles. This earthquake killed 61 people, injured 9,000, and

seriously damaged 30,000 homes. According to the USGS, the neighborhoods worst affected by

the earthquake were the San Fernando Valley, Northridge and Sherman Oaks, while the neighbor-

hoods of Fillmore, Glendale, Santa Clarita, Santa Monica, Simi Valley and western and central Los

Angeles also suffered significant damage.23 Over 1,600 housing units in Santa Monica alone were

damaged with a total cost of $70 million.24

The earthquake damaged a number of major highways of the area; in our service area, the most

important was the I-10 (Santa Monica Freeway) that passed through Santa Monica. It reopened on

April 11, 1994.25 By the same time, many of those with damaged houses had found new housing.26

Santa Monica Hospital, located close to St. John’s, remained open but at a reduced capacity of

178 beds compared to 298 beds before the disaster. In July 1995, Santa Monica Hospital merged

with UCLA Medical Center.27 St. John’s hospital reopened for inpatient services on October 3,

1994, although with only about half of the employees and inpatient beds and without its North

Wing (which was razed).28

A.2 Sumter (Americus Tornado)

On March 1, 2007, a tornado went through the center of the town of Americus, GA, damaging

993 houses and 217 businesses. The tornado also completely destroyed Sumter Regional Hospital.

An inspection of the damage map in the text and GIS maps of destroyed structures suggests

that the damage was relatively localized – the northwest part of the city was not damaged, and

very few people in the service area outside of the town of Americus were affected.29 Despite the

tornado, employment remains roughly constant in the Americus Micropolitan Statistical Area after

the disaster, at 15,628 in February 2007 before the disaster and 15,551 in February 2008 one year

23See http://earthquake.usgs.gov/earthquakes/states/events/1994_01_17.php.
24See http://smdp.com/santa-monicans-remember-northridge-earthquake/131256.
25See http://articles.latimes.com/1994-04-06/news/mn-42778_1_santa-monica-freeway.
26See http://www.nytimes.com/1994/03/17/us/los-angeles-is-taking-rapid-road-to-recovery.

html?pagewanted=all.
27See http://articles.latimes.com/1995-07-21/business/fi-26439_1_santa-monica-hospital-

medical-center.
28See http://articles.latimes.com/1994-09-23/local/me-42084_1_inpatient-services.
29See https://www.georgiaspatial.org/gasdi/spotlights/americus-tornado for the GIS map.
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later.30

While Sumter Regional slowly re-introduced some services such as urgent care, they did not

reopen for inpatient admissions until April 1, 2008 in a temporary facility with 76 beds and 71,000

sq ft of space. Sumter Regional subsequently merged with Phoebe Putney Hospital in October

2008, with the full merge completed on July 1, 2009. On December 2011, a new facility was built

with 76 beds and 183,000 square feet of space.31

A.3 NYU, Bellevue, and Coney Island (Superstorm Sandy)

Superstorm Sandy hit the New York Metropolitan area on October 28th - 29th, 2012. The storm

caused severe localized damage and flooding, shutdown the New York City Subway system, and

caused many people in the area to lose electrical power. By November 5th, normal service had

been restored on the subways (with minor exceptions).32 Major bridges reopen on October 30th

and NYC schools reopen on November 5th.33 By November 5th, power is restored to 70 percent of

New Yorkers, and to all New Yorkers by November 15th.

FEMA damage inspection data reveals that most of the damage from Sandy occured in areas

adjacent to water.34 Manhattan is relatively unaffected, with even areas next to the water suffering

little damage. In the Coney Island area, the island tip suffers more damage, but even here, most

block groups suffer less than 50 percent damage. Areas on the Long Island Sound farther east of

Coney Island, such as Long Beach, are much more affected.

NYU Langone Medical Center suffered about $1 billion in damage due to Sandy, with its main

generators flooded. While some outpatient services reopened in early November, it only partially

reopened inpatient services on December 27, 2012, including some surgical services and medical

and surgical intensive care. The maternity unit and pediatrics reopened on January 14th, 2013. 35

While NYU Langone opened an urgent care center on January 17, 2013, a true emergency room

did not open until April 24, 2014, more than a year later.36

Bellevue Hospital Center reopened limited outpatient services on November 19th, 2012.37 How-

ever, Bellevue dis not fully reopen inpatient services until February 7th, 2013.38 Coney Island Hos-

pital opened an urgent care center by December 3, 2012, but patients were not admitted inpatient.

30See http://beta.bls.gov/dataViewer/view/timeseries/LAUMC131114000000005;jsessionid=

212BF9673EB816FE50F37957842D1695.tc_instance6.
31See https://www.phoebehealth.com/phoebe-sumter-medical-center/phoebe-sumter-medical-

center-about-us and http://www.wtvm.com/story/8091056/full-medical-services-return-to-

americus-after-opening-of-sumter-regional-east.
32See http://web.mta.info/sandy/timeline.htm.
33See http://www.cnn.com/2013/07/13/world/americas/hurricane-sandy-fast-facts/.
34See the damage map at https://www.huduser.gov/maps/map_sandy_blockgroup.html.
35See http://www.cbsnews.com/news/nyu-langone-medical-center-partially-reopens-after-

sandy/.
36See http://fox6now.com/2013/01/17/nyu-medical-center-reopens-following-superstorm-

sandy/ and http://www.nytimes.com/2014/04/25/nyregion/nyu-langone-reopens-emergency-room-

that-was-closed-by-hurricane-sandy.html.
37See http://www.cbsnews.com/news/bellevue-hospital-in-nyc-partially-reopens/.
38See
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It had reopened ambulance service and most of its inpatient beds by February 20th, 2013, although

at that time trauma care and labor and delivery remained closed. The labor and delivery unit did

not reopen until June 13th, 2013.39

A.4 Moore (Moore Tornado)

A tornado went through the Oklahoma City suburb of Moore on May 20, 2013. The tornado

destroyed two schools and more than 1,000 buildings (damaging more than 1,200 more) in the area

of Moore and killed 24 people. Interstate 35 was briefly closed for a few hours due to the storm.40

Maps of the tornado’s path demonstrate that while some areas were severely damaged, nearby areas

were relatively unaffected.41

Emergency services, but not inpatient admissions, temporarily reopened at Moore Medical

Center on December 2, 2013. Groundbreaking for a new hospital took place on May 20, 2014 with

a tentative opening of fall 2016.42

B Dataset Construction

For each dataset, we drop newborns, transfers, and court-ordered admissions. Newborns do not

decide which hospital to be born in (admissions of their mothers, who do, are included in the

dataset); similarly, government officials or physicians, and not patients, may decide hospitals for

court-ordered admissions and transfers. We drop diseases of the eye, psychological diseases, and

rehabilitation based on Major Diagnostic Category (MDC) codes, as patients with these diseases

may have other options for treatment beyond general hospitals. We also drop patients whose MDC

code is uncategorized (0), and neo-natal patients above age one. We also exclude patients who are

missing gender or an indicator for whether the admission is for a Medical Diagnosis Related Group

(DRG). We also remove patients not going to General Acute Care hospitals.

For each disaster, we estimate models on the pre-period prior to the disaster and then validate

them on the period after the disaster. We omit the month of the disaster from either period,

excluding anyone either admitted or discharged in the disaster month. The length of the pre-period

and post-period in general depends upon the length of the discharge data that we have available.

http://www.nbcnewyork.com/news/local/Bellevue-Hospital-Reopens-Sandy-Storm-East-River-

Closure-190298001.html.
39See http://www.sheepsheadbites.com/2012/12/coney-island-hospital-reopens-urgent-care-

center/, http://www.sheepsheadbites.com/2013/02/coney-island-hospital-reopens-er-limited-

911-intake/, and http://www.sheepsheadbites.com/2013/06/photo-first-post-sandy-babies-

delivered-at-coney-island-hospital-after-labor-and-delivery-unit-reopens/.
40See http://www.news9.com/story/22301266/massive-tornado-kills-at-least-51-in-moore-

hits-elementary-school.
41See http://www.srh.noaa.gov/oun/?n=events-20130520 and http://www.nytimes.com/

interactive/2013/05/20/us/oklahoma-tornado-map.html for maps of the tornado’s path.
42See https://www.normanregional.com/en/locations.html?location_list=2 and http://kfor.

com/2013/11/20/moore-medical-center-destroyed-in-tornado-to-reopen-in-december/.
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Table B-1 contains the disaster date and the pre-period and post-period for each disaster, where

months are defined by time of admission.

NYU hospital began limited inpatient service on December 27, 2012; unfortunately, we only

have month and not date of admission and so cannot remove all patients admitted after December

27th. Right now, we drop 65 patients admitted in December to NYU; this patient population is

very small compared to the size and typical capacity of NYU.

For California, we exclude all patients going to Kaiser hospitals, as Kaiser is a vertically in-

tegrated insurer and almost all patients with Kaiser insurance go to Kaiser hospitals, and very

few patients without Kaiser insurance go to Kaiser hospitals. This is in line with the literature

examining hospital choice in California including Capps et al. (2003). We also exclude February

though April 1994, as the I-10 Santa Monica freeway that goes through Santa Monica only reopens

in April.

Table B-1 Pre and Post Periods for Disasters

Hospital Closure Date Pre-Period Post-Period Partial Reopen Full Reopen

St. Johns 1/17/94 1/92 to 1/94 5/94 to 9/94 10/3/94 10/3/94
Sumter 3/1/07 1/06 to 2/07 4/07 to 3/08 4/1/08 4/1/08
NYU 10/29/12 1/12 to 9/12 11/12 to 12/12 12/27/12 4/24/14
Bellevue 10/31/12 1/12 to 9/12 11/12 to 12/12 2/7/13 2/7/13
Coney 10/29/12 1/12 to 9/12 11/12 to 12/12 2/20/13 6/11/13
Moore 5/20/13 1/12 to 4/13 6/13 to 12/13 NA NA

C Model Details

In this section, we give a narrative description of each of the models we test. In Appendix F, we

show a detailed table of included variables across all models.

Capps, Dranove, and Satterthwaite (CDS)

In one of the earliest applications of discrete choice models to the hospital choice literature, Capps

et al. (2003) suggest that the different hospitals can be modeled exclusively in characteristic space

(Aguirregabiria, 2011). In other words, they assume a utility function that includes a rich set of

interaction terms between patient attributes (age, sex, income, etc.) and hospital characteristics

(for-profit status, teaching hospital, nursing intensity, etc.), as well as a measure of the travel time

from the patient’s home to the hospital. They also include several interactions between hospital

services and patient disease characteristics; for example, between a patient’s admission for childbirth

and the presence of a labor and delivery room at a hospital. As a result, their specification does
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not include any time invariant controls for individual facilities. We attempt to implement as close

a version of the model used in Capps et al. (2003) as we can using our data.

Characteristic (Char)

Other models than just CDS have relied exclusively on interactions between hospital and patient

characteristics. We include one additional such model Char that was used by Garmon (2016). It

includes a different, and smaller, set of such interactions than CDS.43

Hospital Indicators (Indic)

This model is composed of only time-invariant hospital indicator variables.

Hospital Indicators and Travel Time (Time)

This model includes hospital characteristics, time, and squared time; May (2013) suggests that this

model performs just as well as more sophisticated models.

Ho (Ho)

This model attempts to mirror the specification used in Ho (2006). The specification integrates

more elements of the characteristics approach of CDS into Time by including a fairly rich set

of interactions between patient and hospital characteristics. For example, the model explicitly

incorporates the possibility that oncology (or other types of) patients may be disproportionately

more interested in receiving care at teaching hospitals, while also allowing some teaching hospitals

to be consistently more desirable than others. It also includes a set of hospital indicators.

Gowrisankaran, Nevo, and Town (GNT)

In a recent paper, Gowrisankaran et al. (2015) include a different set of interactions than Ho

(2006). In particular, they add in a set of interactions between the acuity “weight” assigned to the

DRG of the patient and the hospital indicators. Such controls help to account for the possibility

that the payoffs to visiting some hospitals are highly dependent on the rareness or severity of

the complication. They also include several interactions between patient characteristics and travel

time, and a couple of interactions between patient characteristics and hospital characteristics.44

We attempt to as closely as possible replicate their specification.

43Our model is based on an earlier version of this paper. In the more recent version of the paper, there is
an additional indicator for whether a patient was admitted through the emergency room that we have not
included.

44In addition, Gowrisankaran et al. (2015) use a specification that includes the copay owed by the patient.
Consistent with the general “option demand” hypothesis (Gaynor et al., 2013) that consumers are largely
indifferent to prices when selecting among those providers in their insurance network, the estimated coefficient
on this term was of very small economic magnitude (albeit statistically significant).
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Weights and Other Interactions (Inter)

This model builds on both Ho and GNT, focusing on the possibility of important unobserved

heterogeneity affecting the relative desirability of different hospitals to different consumers. This

model, addresses the possibility of such unobservables by including an even richer set of interaction

terms. In particular, it builds on GNT by incorporating interactions between key major diagnosis

categories (e.g., oncology, cardiology, etc.) and each hospital indicator, travel time and each hos-

pital indicator, as well as between DRG weight and hospital indicator. This new set of variables

explicitly accounts for the possibility that some hospitals are particularly specialized in certain

clinical categories. It also includes interactions of travel time with patient characteristics.

Semiparametric Bin Model (Semipar)

This model, detailed in Raval et al. (2015), takes even more seriously the possibility of unobserved

heterogeneity affecting the relative desirability of different hospitals for different patients. It does

this by permitting individuals of different ages, medical categories, condition severities, and zip

codes to have arbitrarily different preferences for hospitals. For example, zip code might reflect

further patient demographics than captured in the discharge data that affect hospital preferences,

and therefore this heterogeneity would not be captured by simply including a “distance” term in

the the estimation.

This approach pools together individuals with common characteristics and estimates the choice

probabilities for that group. All individuals in that group are assumed to have the same ex-ante

choice probabilities. As discussed in Carlson et al. (2013) and Raval et al. (2015), this highly flexible

approach is actually extremely computationally efficient despite being equivalent to the inclusion

of a very large number of indicator variables in a multinomial logit model.

In this particular implementation, we use an iterative procedure to generate predicted probabil-

ities. Our initial approach is to use bins based on zip code, acuity group, age group, major MDC,

in that order. If the resulting bin is too thin – meaning that it contains less than 20 individuals,

we drop a category. This minimum bin size functions analogously to an bandwidth parameter; we

choose a minimum bin size of 20 because Raval et al. (2015) find that estimates of diversion ratios

and willingness to pay are relatively insensitive to intermediate ranges of the minimum bin size.
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D Robustness

D.1 Medicare-only Sample

As a robustness check, we restrict the sample to only the Medicare population, estimate our models

on this population, and then examine the performance of the models for this population after

the disaster. For the states for which Fee for Service Medicare and Managed Care Medicare are

distinguished, we exclude Managed Care Medicare as well. The Medicare sample should have

unrestricted access across all of the hospitals in the choice set. The Medicare sample is also

considerably smaller than the full dataset; this may hurt the performance of more flexible models

such as Semipar because of power considerations. Finally, the Medicare sample has a different

variety of treatment conditions than the full sample; for example, Medicare patients probably do

not value the pediatric or obstetrics departments of a hospital.

Figure 17 and Figure 18 contain the aggregate and individual level performance results for the

Medicare sample. The prediction results for the Medicare sample are, in general, quite similar to

the overall sample. While Semipar does perform worse at the individual level, which is consistent

with it losing power with a much smaller dataset, it remains one of the three best models for all of

the disasters.

D.2 Sample Removing Destroyed Areas

We also conduct a robustness check of removing the areas most affected by the disaster from our

estimates of model performance after the disaster. If destruction from the disaster affects how

patients make decisions beyond just the change in the choice set (for example, they are forced to

move), then models estimated before the disaster may not be able to predict patients’ decisions

after the disaster.

For Sumter, we remove the two zip codes comprising the city of Americus; the destruction of

the Americus tornado was concentrated in the city of Americus. For Coney Island, we remove three

zip codes which had the most amount of damage after the disaster, as based on post-disaster claims

to FEMA; these zip codes are on the Long Island Sound and so suffered more from flooding after

Sandy. For St. Johns, we remove zip codes with an average Modified Mercalli Intensity (MMI) of 8

or above based on zip code level data from an official report on the Northridge disaster for the state

of California. The US Geological Survey defines MMI values of 8 and above as causing structural

damage. This procedure removes 9 zip codes, including all 5 zip codes in Santa Monica.45

45The zip codes removed are 31719 and 31709 for Sumter; 90025, 90064, 90401, 90402, 90403, 90404, 90405,
91403, and 91436 for St. Johns; and 11224, 11235, and 11229 for Coney. See http://www.arcgis.com/

home/webmap/viewer.html?webmap=f27a0d274df34a77986f6e38deba2035 for Census block level estimates
of Sandy damage based on FEMA reports. See ftp://ftp.ecn.purdue.edu/ayhan/Aditya/Northridge94/
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Figure 17 Relative Improvement in Predictive Accuracy at the Aggregate Level Across
Hospitals: Medicare Sample

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Only patients admitted with Medicare insurance are included.

We do not remove any areas for NYU or Bellevue, as the area immediately nearby these hospitals

had very little post-Sandy damage. For Moore, removing the zip codes through which the tornado

traversed would remove almost all of the patients from the choice set, so we do not conduct this

robustness check for Moore.

The areas removed tend to have higher market shares for the destroyed hospital. Thus, removing

destroyed areas cuts Sumter’s market share from about 50 percent to 31 percent, St. John’s market

share falls from 17 to 14 percent, and Coney’s from about 18 to 10 percent. We then estimate

the models on the full sample but restrict our performance validation measures to the restricted

sample removing destroyed areas. Figure 19 and Figure 20 contain the aggregate and individual

level performance results. We find very similar results to the full sample; the characteristics models

tend to do poorly at aggregate prediction. For individual and aggregate prediction, Semipar and

Inter are the best models, although at the aggregate level, all of the models tend to perform worse

than Indic for Sumter.

OES%20Reports/NR%20EQ%20Report_Part%20A.pdf, Appendix C, for the Northridge MMI data by zip code.
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Figure 18 Relative Improvement in Predictive Accuracy at the Individual Level Across
Hospitals: Medicare Sample

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Only patients admitted with Medicare insurance are included.

D.3 Capacity Constraints

One concern with the natural disaster experiments is that the remaining hospitals are capacity

constrained after the disaster. Since the estimated models do not take into account capacity

constraints, they might then overpredict diversion to capacity constrained hospitals, and so perform

poorly.

For the Sumter and St. John’s disasters, we have data on the date that each patient was

admitted and discharged, and so can explicitly measure capacity for each day. For the Moore and

Sandy disasters, we only have data on the month of admission and discharge. We thus calculate

monthly capacity as a sum of each patient’s length of stay for patients admitted in that month

divided by the total number of days in the month. While crude, we compare this capacity measure

to true capacity for the hospitals in the choice set for Sumter and find that it is approximately

unbiased.

Defining “capacity constrained” as at least 90 percent capacity utilization after the disaster,

none of the hospitals in the Sumter or Moore disaster are constrained. For the New York hospitals,

several hospitals breach the capacity constraint of 90 percent at some point in the sample. However,
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Figure 19 Relative Improvement in Predictive Accuracy at the Aggregate Level Across
Hospitals: Removal Sample

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Zip codes with some destruction from the disaster removed.

five hospitals move from never constrained before the disaster to constrained in both months after

the disaster: Kings County Hospital Center, Lutheran Medical Center, Maimonides Medical Center,

New York Community Hospital, and New York Downtown Hospital. The first four hospitals are

located in Brooklyn and are in the choice set of Coney Island; two are in NYU’s choice set and one

in Bellevue’s choice set. New York Downtown Hospital is located in lower Manhattan and is in all

of the choice sets.

Figure 21 depicts the aggregate market shares and our predictions based on our Inter and

Semipar models for the four Brooklyn hospitals. We underpredict market shares for three of

these hospitals and correctly predict one. If capacity constraints were seriously affecting model

performance, we would expect to overpredict actual market shares for most of the hospitals. For

New York Downtown Hospital, we predict the share of the hospital after the disaster roughly

correctly in both the NYU and Bellevue experiments.

For California, Daniel Freeman Memorial Hospital is overcapacity both before and after the

disaster. No hospital becomes capacity constrained after the disaster, including Santa Monica

Hospital, whose capacity drops considerably due to disaster related damage.
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Figure 20 Relative Improvement in Predictive Accuracy at the Individual Level Across
Hospitals: Removal Sample

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Zip codes with some destruction from the disaster removed.

D.4 Case Mix

In this section, we examine how the case mix changed from the period before the disaster to the

period after the disaster. The case mix could have changed for a couple of reasons. First, patients

could have left the service area after the disaster, perhaps because their homes or workplaces

were damaged. Second, some patients could have decided not to receive medical assistance after

the hospital closest to them was destroyed. Changes in case mix would impair the performance

of simpler models such as Time and Indic that do not control for patient characteristics; they

may also indicate substantial changes to the service area that make the disaster less of an clean

experiment.

In Table D-1 to Table D-6, we examine changes in case mix across a set of variables including

age, fraction aged less than 18, fraction aged above 64, diagnosis acuity (DRG weight), fraction

circulatory diagnosis (MDC 5), fraction labor/pregnancy diagnosis (MDC 14), fraction using a

commercial payer, fraction using Medicare, and average number of admissions per month. We

report the average of each variable in the pre-period, post-period, as well as the percent difference

between the two.
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Figure 21 Aggregate Market Shares, Predicted and Observed, for Coney

Note: Red dashed line is the observed series of market shares. The grey vertical dot-dash line
depicts the quarter of the disaster.

There are no large changes in age across the hospitals, except that the fraction admitted under

18 falls by 23 percent for Moore and 45 percent for Sumter. Diagnosis acuity does not change much

after the disasters. The only large change in type of insurance is for Sumter, where the fraction

of commercial insurance falls by about 30 percent after the disaster. We examined this change;

the fraction of patients reporting “Unspecified Other” payer rises precipitously in the first quarter

after the disaster, and then falls back to a small fraction of patients. Our belief is that this reflects

improper coding post-disaster.

The number of admissions per month falls in all service areas, ranging from 6 to 8 percent for

NYU, Coney, Moore, and St. John’s, 11 percent for Bellevue, and 14 percent for Sumter. This

likely reflects some extensive margin in inpatient admissions, consistent with the findings of Petek

(2016) from hospital exits. The fraction of labor/pregnancy diagnosis rises in all service areas, and

by more than 10 percent for Bellevue and Coney, which may be because pregnancies cannot be

postponed or ignored and so have no extensive margin. Overall, we do not find major changes in

case mix after the disaster, except for the fall in admissions across the service areas and the fall in

the under 18 share for Sumter and Moore.
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Table D-1 Changes in Case-Mix for Moore

Variable Pre Post Percent Difference
Age 51.68 51.79 0.21%
Age < 18 0.06 0.05 -23.37%
Age > 64 0.36 0.35 -2.67%
Diagnosis Acuity 1.41 1.44 2.23%
Circulatory Diagnosis 0.12 0.10 -12.02%
Labor/Pregnancy Diagnosis 0.20 0.22 6.86%
Commercial Payer 0.35 0.36 3.76%
Medicare Payer 0.40 0.39 -1.79%
Admissions Per Month 610 560 -8.22%

Note: The second column is the average of the variable in the pre-period, while the third column
is the average of the variable in the post-period. The fourth column is the percent difference from
the pre-period to the post-period.

Table D-2 Changes in Case-Mix for Coney

Variable Pre Post Percent Difference
Age 57.59 57.65 0.11%
Age < 18 0.05 0.05 3.18%
Age > 64 0.46 0.47 3.05%
Diagnosis Acuity 1.34 1.39 3.41%
Circulatory Diagnosis 0.20 0.19 -5.17%
Labor/Pregnancy Diagnosis 0.16 0.18 13.30%
Commercial Payer 0.19 0.18 -6.23%
Medicare Payer 0.46 0.47 2.26%
Admissions Per Month 5176 4833 -6.63%

Note: The second column is the average of the variable in the pre-period, while the third column
is the average of the variable in the post-period. The fourth column is the percent difference from
the pre-period to the post-period.

D.5 Physicians

In this section, we explore, and present evidence against, the possibility that patients’ hospital

choice following the disasters was primarily driven by where the hospitals’ physicians practiced.

Using the discharge data from New York, we look at where the doctors that generally practice

in the destroyed hospitals admit patients in the months following the storm. We compare the

behavior of the physicians to the post-storm behavior of the patients that frequently used the

destroyed hospitals in the months and years preceding the disaster.

For this analysis, we look at the patients and doctors that were regular users of the destroyed

hospitals in the months preceding their closure. We select physicians who are recorded as an

operating physician for at least 50 patients in the first 9 months of 2012, and patients who had five

or more admissions to one of these hospitals in the 2 years prior to the disaster and in the first 9
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Table D-3 Changes in Case-Mix for NYU

Variable Pre Post Percent Difference
Age 56.09 56.61 0.93%
Age < 18 0.05 0.05 2.54%
Age > 64 0.42 0.44 4.71%
Diagnosis Acuity 1.28 1.30 1.01%
Circulatory Diagnosis 0.17 0.16 -7.74%
Labor/Pregnancy Diagnosis 0.18 0.20 7.16%
Commercial Payer 0.32 0.31 -2.87%
Medicare Payer 0.42 0.44 4.83%
Admissions Per Month 8883 8348 -6.03%

Note: The second column is the average of the variable in the pre-period, while the third column
is the average of the variable in the post-period. The fourth column is the percent difference from
the pre-period to the post-period.

Table D-4 Changes in Case-Mix for Bellevue

Variable Pre Post Percent Difference
Age 53.83 55.10 2.35%
Age < 18 0.06 0.05 -12.89%
Age > 64 0.38 0.41 9.03%
Diagnosis Acuity 1.25 1.29 3.15%
Circulatory Diagnosis 0.18 0.16 -6.84%
Labor/Pregnancy Diagnosis 0.17 0.19 10.79%
Commercial Payer 0.24 0.24 -2.08%
Medicare Payer 0.39 0.42 9.23%
Admissions Per Month 5140 4576 -10.97%

Note: The second column is the average of the variable in the pre-period, while the third column
is the average of the variable in the post-period. The fourth column is the percent difference from
the pre-period to the post-period.

months of 2012.

We compute a “diversion-ratio” illustrating the change in usage patterns for patients and physi-

cians from the period prior to the storm to the period after. For the patients that were regular users

of a given hospital, we compute the difference in the share of admissions to other area hospitals in

the first 9 months of 2012, prior to Superstorm Sandy, to the last two months of 2012, after the

hospital was destroyed. We scale that change in the share of admissions by the share of admissions

from these patients to the destroyed hospital in the pre-disaster period.

We do a similar calculation for the physicians. For physicians that were regular users of the

destroyed hospital, we compute their share of admissions. These shares are computed by using all

admissions where these physicians are listed as the operating physician. Similar to the calculation

with patients, we compute the difference in the share of admissions to other area hospitals in the

first 9 months of 2012, prior to Superstorm Sandy, to the last two months of 2012, after the hospital
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Table D-5 Changes in Case-Mix for St. Johns

Variable Pre Post Percent Difference
Age 54.34 53.78 -1.02%
Age < 18 0.05 0.05 11.83%
Age > 64 0.41 0.40 -2.19%
Diagnosis Acuity 1.23 1.27 3.14%
Circulatory Diagnosis 0.17 0.18 5.38%
Labor/Pregnancy Diagnosis 0.18 0.19 5.98%
Commercial Payer 0.44 0.47 6.23%
Medicare Payer 0.38 0.34 -8.91%
Admissions Per Month 3881 3626 -6.58%

Note: The second column is the average of the variable in the pre-period, while the third column
is the average of the variable in the post-period. The fourth column is the percent difference from
the pre-period to the post-period.

Table D-6 Changes in Case-Mix for Sumter

Variable Pre Post Percent Difference
Age 53.76 54.27 0.94%
Age < 18 0.07 0.04 -44.86%
Age > 64 0.38 0.37 -4.62%
Diagnosis Acuity 1.24 1.29 3.71%
Circulatory Diagnosis 0.16 0.18 11.41%
Labor/Pregnancy Diagnosis 0.15 0.16 7.86%
Commercial Payer 0.28 0.20 -28.40%
Medicare Payer 0.42 0.40 -5.22%
Admissions Per Month 496 424 -14.40%

Note: The second column is the average of the variable in the pre-period, while the third column
is the average of the variable in the post-period. The fourth column is the percent difference from
the pre-period to the post-period.

was destroyed. We scale that change in share of admission by the share of admissions from these

physicians to the destroyed hospital in the pre-disaster period.

These calculations provide multiple reasons to doubt that patients were following their doctors

in their post-disaster choice of hospital. Many of the physicians that were regular doctors at the

destroyed hospital saw many fewer patients than their typical load in the months following the

disaster. Their level of admissions fell by 58% for doctors at NYU, 92% for doctors at Bellevue,

and almost 100% for doctors at Coney. Among those physicians that did admit patients, Figure 22

illustrates that there is essentially no correlation between patient and physician diversion ratios.

This suggests that hospitals where the regular doctors of the destroyed hospitals went were not

necessarily the hospitals where the regular patients went. Further, there is suggestive evidence that

patterns here were consistent with the the ownership of the hospital. For example, Bellevue Hospital

is a flagship hospital of the the public New York Health and Hospitals Corporation (“HHC”). Those
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Figure 22 Diversion Ratios, Patients vs. Physicians

Note: This graph shows any hospital with above a 5% diversion of either patients or physicians.
Each dot represents a pair of “diversion ratios” (for patients and physicians) from the destroyed
hospital to a given non-destroyed hospital.

Bellevue physicians that continued operating on patients most often went to other hospitals in the

HHC. In contrast, regular Bellevue patients most often went to Beth Israel Hospital, which is only

approximately 10 blocks south.

D.6 Different Diagnosis Categories

So far, we have examined the performance of each choice model over patients across all patients. In

this section, we examine two important classes of patients based on their diagnosis: cardiac patients

(with a Major Diagnostic Category of 5) and obstetrics patients (with a Major Diagnostic Category

of 14). We estimate the models on all patients, but then separately examine their performance for

patients in each of the two diagnosis categories. Figure 23 and Figure 24 contain the results for

cardiac and obstetrics patients at the individual level. In both cases, the results are fairly similar;

Semipar performs the best in all cases except for Sumter, for which Inter is the best. However, the

differences in model performance are magnified for the obstetrics patients.
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Figure 23 Relative Improvement in Predictive Accuracy at the Individual Level Across
Hospitals: Cardiac Sample

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Only patients with MDC code 5 are included.

D.7 Different Choice Sets

In our baseline specifications, we set our choice set to include any hospital with a share of 1 percent

in any period in our data, excluding the period of the disaster itself. This generates large choice

sets; on average, we have between 12 and 21 hospitals in our choice sets. These large choice sets

mirror the literature; for example, Capps et al. (2003) has a choice set with 22 hospitals, Ho (2006)

reports an average of 15 hospitals per market, and Gowrisankaran et al. (2015) has a choice set of

11 hospitals, with one hospital with a share below one percent. In this section, we examine how

model performance changes as we vary the threshold for inclusion from 1 percent to 6 percent,

examining each integer value in between. This procedure can vary the choice set quite a lot – for

example, St. John’s and Sumter have 21 and 15 hospitals given a cutoff of 1 percent, and 4 and 6

hospitals given a cutoff of 6 percent.

Figure 25a and Figure 25b depicts how the model performance of Semipar, Inter, and CDS

varies as the choice set changes at the aggregate and individual levels. The x-axis is the number

of hospitals in the choice set and the y-axis the relative performance of each model compared to

Indic. At the aggregate level, CDS improves relative to the other two models as the choice set
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Figure 24 Relative Improvement in Predictive Accuracy at the Individual Level Across
Hospitals: Obstetrics Sample

Note: Improvement is Percentage Improvement in RMSE for each model over the Indic model.
Only patients with MDC code 14 are included.



(a) Aggregate

(b) Individual

Figure 25 Relative Improvement in Predictive Accuracy Across Hospitals as Choice Set
Changes

Note: Improvement is Percentage Improvement in RMSE for each model
over the Indic model. We vary the choice set cutoff from 1 percent to 6
percent, examining each integer value in between.
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shrinks, although it is always significantly worse than the other two models. As the choice set

shrinks, the model performance of all three models improves at the individual level. Intuitively,

the hospitals with a small market share were more difficult to predict. Second, however, CDS does

relatively better as the choice set shrinks. While CDS is the worst model of the three for the

largest choice set, it is better than Inter for two of the experiments for the smallest choice set.

One possible explanation is that it is easier to map the observed characteristics in CDS to the

unobserved characteristics space when the choice set is small. When the choice set is large, such a

mapping may not be possible and so the pure characteristics models perform much worse.

D.8 Different Performance Measures

So far, we have focused on the RMSE. We find similar results across a wide set of goodness of fit

measures. In this section, we examine these different measures for individual level prediction.

The first measure is the mean absolute error (MAE), defined as:

MAE =
1

N

∑
i

∑
j

|yij − ŷij |

The MAE penalizes errors linearly while the RMSE penalizes errors quadratically, so the MAE

penalizes large errors much less than the RMSE. The second measure is the relative entropy, or the

Kullback-Leibler divergence, of the model, defined as:

Entropy =
1

NI

∑
i

−log(ŷij∗)

where j∗ is the alternative actually chosen. The relative entropy is the negative of the average

predicted log probability averaged over the actual probability distribution; thus, only predicted

probabilities for the choice actually picked are averaged. The relative entropy is zero when the pre-

dicted probability for each choice chosen is one, so the model predicts perfectly. Thus, the relative

entropy provides a measure of distance between the actual and predicted probability distributions,

and even more strongly penalizes larger errors than the RMSE does.

If a model predicts a zero probability for an observed choice, the entropy statistic will be infinite.

For the Semipar model, this can pose a problem, as the Semipar model will give zero probabilities

for hospitals that no one within a group went to. We thus bottom code all probabilities by a

probability of .001.

For the last measure, we set the predicted choice for each individual as the alternative given the

highest probability. This measure, the individual prediction loss, is then the fraction of individuals

that we would predict incorrectly:

Zero−One Loss =
1

NI

∑
i

1(yi 6= arg max
j
ŷij)
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Here yi is the alternative chosen by individual i. The individual prediction loss would be zero if

we predicted each individual’s actual choice correctly. This measure is useful in cases for which we

would like to provide individuals the most likely prediction. For example, we might want to provide

each patient with a default hospital to go to which would correspond closest to their typical choice

behavior.

In Figure 26, we plot the relative performance of each model across these four measures at

the individual level – the RMSE, MAE, Entropy, and Zero-One Loss – for Sumter. As before, this

relative performance is relative to the Indic model. The Inter model is the best model for the RMSE,

Zero-One Loss, and Entropy, while the Semipar model is the best for MAE. Semipar performs

particularly poorly for the Entropy measure because it often predicts zero probabilities that are

heavily penalized based upon the bottom code, although it is still better than the characteristics

based models. For all other hospitals, the various measures all agree on the best performing model,

except that Semipar is typically the second best model after Inter on the Entropy measure.

Figure 26 Relative Improvement in Predictive Accuracy at the Individual Level Across
Measures for Sumter Hospital Area

Note: Measures are as defined in the text. Improvement is Percentage Improvement for each
model over the Indic model.

Another way to examine how model performance varies across measures is through the corre-

lations across models of each measure with RMSE. Table D-7 examines these correlations for each
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disaster at the individual level. All measures are correlated with RMSE with correlation of at least

0.89; most correlations are close to one.

Table D-7 Correlation with RMSE, Individual Level

Measure Sumter NYU Bellevue Coney Moore StJohns

MAE 0.97 0.99 0.99 0.99 0.97 0.97
Entropy 0.97 0.99 0.99 0.99 0.97 0.98
Zero-One Loss 0.91 0.98 0.89 0.95 0.97 0.94

Note: Each correlation is across models, including Indic, for the given hospital service area.

E WTP and Unobserved Heterogeneity

In this section, we formally demonstate how changes in the probability distribution for hospitals

across patients would affect the percent change in WTP.

Define f(s1, s2) as:

f(s1, s2) = log[
1

1− s1 − s2
]− log[

1

1− s1
]− log[

1

1− s2
] (5)

This expression is the change in WTP for someone with probabilities s1 for hospital 1 and s2

for hospital 2.

Each econometric model produces a distribution of s1 and s2 across people. The aggregate

change in WTP is just the expectation over f given this probability distribution. The percent

change in WTP is the aggregate change in WTP divided by the expectation over log[ 1
1−s1 ] +

log[ 1
1−s2 ].

We are interested in changes to this probability distribution that increase the share of consumers

with high probabilities for both hospitals or low probabilities for each hospital and decrease the

share of consumers with high probabilities for one hospital and low probabilities for the other

hospital.

Definition 1 H ′ is defined to be more concordant than H if, for discrete probability measures H

and H ′, H and H ′ have the same marginal distributions, and H ′ can be obtained from H by a finite

number of changes that, for (x, y, x′, y′) such that x′ > x and y′ > y, add mass ε > 0 to (x, y) and

(x′, y′) and subtract mass ε from (x, y′) and (x′, y).

Proposition 1 Given distribution H ′ more concordant than H, the expectation of the change in

WTP and percent change in WTP is higher under H ′ than H.
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Proof. By Theorem 1 of Tchen (1980), if H ′ is more concordant than H, then H ′(x, y) ≥ H(x, y),

where H(x, y) and H ′(x, y) are cdfs of the respective distributions. Then, Theorem 2 of Tchen

(1980) states that, for any bounded, right-continuous, super-additive function φ, and H and H ′

with identical marginals,∫
φdH ′ −

∫
φdH =

∫
[H ′
−

(x, y)−H−(x, y)]dK (6)

where K is the positive measure associated with φ, and H− and H ′− are the left continuous cdfs

of the respective probability measures.

Well, since H ′ is more concordant than H, H ′−(x, y)−H−(x, y) ≥ 0 for all (x, y), and since K

has positive measure the right hand side must also be ≥ 0.

This means that
∫
φdH ′ −

∫
φdH ≥ 0.

We now need to show that the WTP function f is bounded, right-continuous, and super-

additive. f will be bounded and continuous except where s1 + s2 = 1; in all practical applications,

s1 + s2 < 1.

We now need to demonstrate super-additivity; i.e., for (x1, y1, x0, y0) such that x0 < x1 and

y0 < y1,

f(x1, y1) + f(x0, y0) > f(x1, y0) + f(x0, y1) (7)

We can rewrite this as:

f(x1, y1) + f(x0, y0)− f(x1, y0)− f(x0, y1) > 0 (8)

Now, the LHS is equivalent to:

f(x1, y1) + f(x0, y0)− f(x1, y0)− f(x0, y1) =

∫ x1

x0

∫ y1

y0

fxy(x, y)dydx (9)

So it should be sufficient to show that the cross-partial fxy is always positive.

fxy =
1

(1− x− y)2
> 0 (10)

Thus, f is superadditive, and we have proved the first part of the claim. The percent change in

WTP is the expectation over f divided by the expectation over log[ 1
1−s1 ] + log[ 1

1−s2 ]. Because the

marginal distributions of H and H ′ are the same, the expectation over log[ 1
1−s1 ] + log[ 1

1−s2 ] is the

same for both distributions, and so the expected percent change in WTP is also higher under H ′

than H.

70



F Table of Variables Used

Indic Char CDS Time Ho GNT Inter

Hospital Indicators X X X X X

× Weight X X

× Time X

× Obstetrics X

× Circulatory X

× Digest X

× Muscular X

× Respiratory X

× Female Repro X

Inside X X

× Cardiac Surg Diag X

Same County X

Time X X X X X X

× Median Income X X

× LOS X

× nPX X

× nDX X

× Emergency X X
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Indic Char CDS Time Ho GNT Inter

× Medical X

× Obstetrics X X

× Weight X X X X

× Age X

× Under18 X X

× Over64 X X X X

× Female X X X X

× Black X

× Cardiac Surg Diag X

× Circulatory X X

× Digest X X

× Muscular X X

× Respiratory X X

× Female Repro X X

× RN Share X

× Teach X

× RN Intense X

× For Profit X

× Beds X

× Residents Per Bed X
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Indic Char CDS Time Ho GNT Inter

× Teach X

Squared Time X X X X X X

× Weight X X

× Over64 X X

× Under18 X

× Female X X

× Black X

× Obstetrics X

× Circulatory X

× Digest X

× Muscular X

× Respiratory X

× Female Repro X

Closest X

Cardiac Surg Hosp

× Cardiac Surg Diag ×
Adult

X

× Weight × Adult X

Obstetrics Hosp

× Obstetrics Diag X

73



Indic Char CDS Time Ho GNT Inter

× Female X

NICU Hosp

× Female X

× Obstetrics Diag X

Residents/Bed

× Weight X

× Over64 X

× Female X

RN Share

× Female X

× Over64 X

× Median Income X

× LOS X

× nPX X

× nDX X

× Under18 X

RN Int

× Female X

× Over64 X
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Indic Char CDS Time Ho GNT Inter

× Median Income X

× LOS X

× nPX X

× nDX X

× Under18 X

RN/Bed

× Commercial X

× Cardiac X

× Oncology Alt X

× Neurology X

× Digest Alt X

× Labor and Delivery X

× Median Income X

For Profit

× Weight X

× Over64 X

× Female X

× Commercial X

× Cardiac X

× Oncology Alt X
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Indic Char CDS Time Ho GNT Inter

× Neurology X

× Digest Alt X

× Labor and Delivery X

× Median Income X

Imaging Complexity

× Commercial X

× Cardiac X

× Oncology Alt X

× Neurology X

× Digest Alt X

× Labor and Delivery X

× Median Income X

Teach

× Female X

× Old X

× Median Income X

× LOS X

× nPX X

× nDX X
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Indic Char CDS Time Ho GNT Inter

× Under18 X

× Commercial X

× Cardiac X

× Oncology Alt X

× Neurology X

× Digest Alt X

× Labor and Delivery X

× Median Income X

Cardiac Complexity

× Commercial X

× Cardiac X

× Median Income X

× Commercial X

× Oncology Alt X

× Median Income X

Birth Complexity

× Commercial X

× Labor and Delivery X

× Median Income X
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Indic Char CDS Time Ho GNT Inter

Oncology Diag × Cancer

Center

X

Delivery × Birth Room X

Circulatory × Cardiac

ICU

X

Circulatory × Cath Lab X

Under18 × Ped Beds X

Trauma × CTC X

Imaging Diag × MRI X

Variable Source Description

Adult Disch Age greater than 17

Age Disch Patient age

Beds AHA Number of beds in hospital

Black Disch Patient is racially black

Birth Room AHA Whether hospital has birthing (LDR, LDRP) room

Birth Complexity AHA We apply the Ho services intensity algorithm (see be-

low) to the obstetrics and birth room flags from the

AHA data

Cardiac Surg Diag Disch For V24 DRG coding: DRGs between 215 and

236; Between V24 and V12: DRGs in this list

(104,105,106,108,515,525,535,536,547,548,549,550);

Below V12: DRGs between 103 and 107, 20746

Cardiac Surg Hosp AHA Whether hospital has an cardiac surgery program

Cardiac Diagnosis Disch 3 digit ICD9 diagnosis codes between (and including)

393 and 398, 401 and 405, 410-417, 420-429

46Across the models, three different underlying variables are based on the patient’s diagnosis. First, the
discharge data include ICD9 diagnosis codes for patients; these diagnosis codes, along with other variables
such as procedures, age, sex, discharge status, and the presence of complications or comorbidities, are used
to assign a Diagnosis Research Group or DRG. The DRGs themselves are grouped into 25 different Major
Diagnosis Categories or MDCs. For example, a patient presenting signs of ”maple syrup urine disease”
would have ICD9 diagnosis code 270.3, DRG 642 (Inborn and other disorders of metabolism), and MDC 10
(Diseases and Disorders of the Endocrine, Nutritional And Metabolic System).
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Cardiac ICU AHA Whether hospital has cardiac ICU

Cardiac Complexity AHA We apply the Ho services intensity algorithm (see be-

low) to adult diagnostic catheterization, cardiac in-

tensive care, adult interventional cardiac catheteriza-

tion, and adult cardiac surgery flags from the AHA

data

Cath Lab AHA Whether a hospital has both a diagnostic and inter-

ventional catheterization lab

Cancer Center AHA Whether hospital has oncology services

Cancer Complexity AHA We apply the Ho services intensity algorithm (see

below) to the cancer and maximum of the image-

guided radiation and intensity-modulated radiation

flags from the AHA data

Closest Disch Whether hospital is closest facility to patient

Circulatory Disch MDC equals 5

Commercial Disch Patient has a commercial insurer

CTC AHA Certified Trauma Center

Delivery Disch For DRG coding above V24: DRGs in this list (765,

766, 774, 775, 767, 768, 776, 769, 777, 780, 781, or

782). For DRG coding below V12: DRGs from 370-

378 and 382-384

Digest Disch MDC equals 6

Digest Alt Disch 3 digit ICD9 diagnosis codes between (inclusive) 520

and 579

Emergency Disch Patient admitted through emergency room

Female Disch Patient is female

Female Repro Disch MDC equals 13

For Profit AHA Whether hospital is a for profit facility

Imaging Complexity AHA We apply the Ho services intensity algorithm (see be-

low) to SPECT, MRI, CT, ultrasound, and PET scan

flags from the AHA survey

Imaging Diag Disch MDC code is 1, 5, or 8

Labor and Delivery Disch ICD9 diagnosis codes between (inclusive) 650 and

657, 644, 647, 648, V22, V23, V24, V27

Inside NA Hospital is not the outside option

Median Income ACS Median income of zip code

Medical Disch Medical DRG

MRI AHA Hospital has an MRI

Muscular Disch MDC equals 8

nDX Disch Number of diagnoses
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nPX Disch Number of procedures

LOS Disch Length of stay

Neurology Disch 3 digit ICD9 diagnosis codes between 320 and 326,

330 and 337, or 340 and 359 (inclusive)

NICU Diag Disch For V24 DRG Coding: DRG 790 or 791; Pre V24:

DRG 386 or 387

NICU Hosp AHA Hospital has a NICU

Obstetrics Diag Disch MDC equals 14

Obstetrics Hosp AHA Hospital has an obstetrics program

Oncology Diag Disch MDC equals 17 or for DRG later than V24 in this list

(54, 55, 146, 147, 148, 180, 181, 182, 374, 375, 376,

420, 421, 422, 435, 436, 437, 542, 543, 544, 582, 583,

584, 585, 597, 598, 599, 656, 657, 658, 686, 687, 688,

711, 712, 715, 716, 722, 723, 724, 739, 740, 741, 736,

737, 738, 744, 745, 754, 755, 756, 843, 844, 835, 836,

837, 838, or 839). For DRG pre V12 in this list (10,

11, 64, 82, 172, 173, 199, 203, 239, 257, 258, 259, 260,

274, 275, 303, 318, 319, 338, 344, 346, 347, 354, 355,

357, 363, 366, 367, 406, 407, 408, 413, 414).

Oncology Alt Disch 3 digit ICD9 diagnosis codes between 140 and 239

(inclusive)

Over64 Disch Patient is over 64 years old

PatCounty Disch Patient’s County of Residence

Ped Beds Disch Hospital has pediatric beds

Respiratory Disch MDC equals 4

Residents Per Bed MCR Residents per bed from Medicare Cost Reports

RN Share AHA Nurses regularly working as a share of licensed nurses

RN Intense AHA Nurses regularly working as share of inpatient days

RN/Bed AHA Nurses per bed

Same County Disch Hospital and patient in same county

Teach AHA Teaching hospital

Trauma Disch MDC equals 24

Time Disch/Compute Travel time from centroid of patients zip code to hos-

pital

Under18 Disch Patient is under 18

Weight Disch DRG weight

Description of Ho Services Intensity Algorithm: Hospitals were rated on a scale of

zero to one, reflecting the sophistication of their services in different categories. Zero indicates low

sophistication and one indicates a high level of sophistication. The four categories are cardiac,
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imaging, cancer, births.

The intensity variable for category c in hospital h is given by:

max{max
x∈Xc

1xh ∗ (1− x̄)(1− ȳc), 1yhc}

where

• x indexes the services in each category

• 1xh is 1 if hospital h offers service x and 0 if not

• x̄ is the state share of hospitals offering that service

• y is the service with the smallest x̄

• 1yh is 1 if hospital h offers service y and 0 if not

• ȳ is the percent of hospitals offering service y

For more details see Table IX in Ho (2006).
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