The Value of Information in Mobile Ad Targeting

Omid Rafieian Hema Yoganarasimhan

University of Washington

Smartphone Industry

• Smartphones are increasingly popular worldwide

- 2 Billion users in 2015
- Avg. user spends 2.8 hours/day on mobile phones
- "Apps" or Applications usage
 - 25 Billion iOS apps and 50 Billion android apps
- Monetization of Apps
 - Paid model
 - Freemium model (in-app purchases or paid premium)
 - In-app advertising

In-App Advertising

- Mobile ad-spend
 - 13 Billion USD
- Key players
 - Publishers Host ads
 - Advertisers Bid and place ads
 - Ad Network Match publishers and advertisers
- Common goal: increase ad response rates

Targeting to improve ad-effectiveness

- What is targeting?
 - Matching an impression to the best ad available
- How to do effective targeting?
 - Variables
 - Behavioral: what the user did (browse, click history)
 - Contextual: where and when of the impression
 - Data
 - User-level/aggregate
 - Size, length
 - How to combine across sources?

Targeting has privacy implications

Apple's IDFA Crackdown **Reverberates Through Mobile Ad** Ecosystem

by Judith Aquino // Monday, February 17th, 2014 - 6

Adobe Pitches Marketers On A Cross-Device Data Co-op, But Privacy Is A Snag

by Zach Rodgers // Tuesday, July 28th, 2015 – 5:04 pm

Share: 🔰 🕇 in 🖂

The competition among cross-device providers is no longer a one, two or even three-horse race, but looks more like a mad steeplechase with 20 animals of various sorts, including

> The biggest consumer en given the best odds, back.

Mobile, personalized in-app ads present 'a new privacy threat,' Georgia Tech study shows

ork on its own crossaring cooperative

among customers, AdExchanger has learned.

Adobe has begun actively recruiting co-op members, ahead of a

March 7, 2016 | By Daniel Kobialka

Research Agenda

• Substantive

- How does targeting improve effectiveness of mobile ads
- What type of information helps improve targeting and to what extent Contextual or Behavioral?
- What is the value of more/better data?
- Methodological
 - What types of methods perform well Econometric vs. Machine Learning
- Policy and Privacy
 - Would additional privacy regulations (e.g., no tracking ID) worsen ability to target? How much?
 - What are the incentives for data-sharing between advertisers, between advertisers and the platform?

<u>Challenge I</u>: Need high predictive accuracy

- Econometric models focus on causality, not prediction
- Causality: Given a model, derive consistent estimates
 - <u>Goal</u>: is to make counterfactual recommendations
 - <u>Challenge</u>: endogeneity concerns
- Prediction: No assumptions on underlying model
 - <u>Goal</u>: High out-of-sample predictive accuracy
 - <u>Challenge</u>: search space is over models (bias-variance trade-off)

<u>Challenge 2</u>: Large number of attributes with complex interactions

- Usually, we assume a fixed functional form and infer parameters — gives mediocre results
- Need to infer both the functional form and the parameters
- Difficult problem with ~38 features and unknown non-linear interactions
 - approx. I 600 variables with just two-way interactions

Related Literature

Targeting

- Analytical: Chen et al. (2001), Iyer et al. (2005), Levin & Milgrom (2010)
- Empirical: Rossi et al. (1996), Ansari & Mela (2003), Chatterjee et al. (2003), Manchanda et al (2006), Ghose & Yang (2009), Yao & Mela (2011)
- Online ads: Goldfarb & Tucker (2011b), Lambrecht & Tucker (2013), Goldfarb (2014)
- Privacy and data intermediaries
 - Pancras & Sudhir (2007), Goldfarb & Tucker (2011b, c, d), Johnson(2013), Tucker (2014)
- Mobile marketing and advertising
 - Luo et al. (2013), Ghose et al. (2012), Hui et al. (2013), Andrews et al. (2015), Sahni & Nair (2016a, b), Narang & Shankar (2016)
- Methodology: click prediction for online ads and MART
 - Methods: Friedman (2000, 2001, 2002), Friedman et al. (2001)
 - Applications: McMahan et. al. (2013), He et al. (2014)
- Machine learning in marketing
 - Toubia et al. (2003, 2004), Evgeniou et al. (2005, 2007), Huang & Lou (2016), Liu & Dzyabura(2016), Yoganarasimhan (2016)

Outline

- Introduction
- Research Agenda and Challenges
- Related Literature
- Setting and Data
- ML Framework
- Results

Setting

- Major app-store and in-app advertising platform
 - One of top three IT companies in Iran
 - Over 17 million actives users
 - Over 50 million ads served daily
 - Apps 25,000 apps and 250 ads
- Our data and sampling
 - Focus on top 50 ads and top 50 apps (approx. 80%)
 - Sample 727,000 users from 3 days for training & test
 - 17.7 million impressions in training, 9.6 million in test
 - History of 135 million impressions to make features

Data

- For each impression:
 - Advertising ID (user-resettable, device specific)
 - App ID
 - Ad ID
 - Geographical Location (IP address)
 - Click indicator
 - Time-stamp

Outline

- Introduction
- Research Agenda and Challenges
- Related Literature
- Setting and Data
- ML Framework
- Results

Problem Definition

- Problem: Accurately predict the probability that impression i, by user U, in app P, for ad A, at time T, with global history H, will lead to a click
- Goal: Devise an algorithm that takes as input a set of pre-classified data and generates an output probability p_i(U, P, A, T, H), as close as possible to the true click probability observed in test data

Machine Learning Framework

- Evaluation metric
- Feature set
- Classifying algorithm or supervised learning algorithm

Evaluation Metric

• LogLoss

$$-\frac{1}{N}\sum_{i=1}^{N} (y_i \log (p_i) + (1 - y_i) \log (1 - p_i))$$

Prediction p_i and click indicator y_i

Relative Information Gain

$$NE = \frac{-\frac{1}{N} \sum_{i=1}^{N} (y_i \log (p_i) + (1 - y_i) \log (1 - p_i))}{-(y_i \log (p) + (1 - y_i) \log (1 - p))}$$

where p is the baseline CTR

Framework for Feature Generation

Feature No.	Feature Name	Feature Class	Feature No.	Feature Name	Feature Class
1	Impressions (<i>user</i> , _, _, _)	F_B	20	CTR (, <i>app</i> ,, _)	F_C
2	Impressions (, <i>app</i> ,,)	F_C	21	CTR (_, _, <i>ad</i> , _)	F_C
3	Impressions (_, _, <i>ad</i> , _)	F_C	22	CTR (_, _, _, <i>time</i>)	F_C
4	Impressions (_, _, _, <i>time</i>)	F_C	23	CTR (_, <i>app</i> , <i>ad</i> , _)	F_C
5	Impressions (_, app, ad, _)	F_C	24	CTR (<i>user</i> , <i>app</i> , _, _)	F_B, F_C
6	Impressions (<i>user</i> , <i>app</i> , _, _)	F_B, F_C	25	CTR (<i>user</i> , _, <i>ad</i> , _)	F_B, F_C
7	Impressions (user,, ad,)	F_B, F_C	26	CTR (user, app, ad, _)	F_B, F_C
8	Impressions (user, app, ad, _)	F_B, F_C	27	CTR (<i>user</i> , _, _, <i>time</i>)	F_B, F_C
9	Impressions (user, _, _, time)	F_B, F_C	28	AdCount (<i>user</i> , _)	F_B
10	Clicks (<i>user</i> ,,,)	F_B	29	AdCount (_, <i>app</i>)	F_C
11	Clicks (_, <i>app</i> , _, _)	F_C	30	AdCount (user, app)	F_B, F_C
12	Clicks (_, _, <i>ad</i> , _)	F_C	31	AppCount (<i>user</i> , _)	F_B, F_C
13	Clicks (_, _, _, <i>time</i>)	F_C	32	AppCount (_, ad)	F_C
14	Clicks (_, <i>app</i> , <i>ad</i> , _)	F_C	33	AppCount (<i>user</i> , <i>ad</i>)	F_B, F_C
15	Clicks (<i>user</i> , <i>app</i> , _, _)	F_B, F_C	34	TimeVariability (user)	F_B
16	Clicks (user,, ad,)	F_B, F_C	35	AppVariability (user)	F_B
17	Clicks (user, app, ad, _)	F_B, F_C	36	Entropy (<i>user</i> , _)	F_B
18	Clicks (user, _, _, time)	F_B, F_C	37	Entropy (_, <i>app</i>)	F_C
19	CTR (<i>user</i> , _, _, _)	F_B	38	Entropy (user, app)	F_B, F_C

- Parsimonious functions take as input User, Ad, App, Time
- Classify features as "behavioral" or "contextual" (time, ad, app) or both

Classifying algorithm

- OLS
- Logistic Regression
- Boosted Trees (MART)
 - See Yoganarasimhan (2016) for application
 - Chapter on ML methods in Marketing (Dzyabura and Yoganarasimhan 2016)

Multiple Additive Regression Trees

- MART
 - Boosted combination of multiple CARTs
 - Can infer both optimal functional form and parameters
- Advantages of MART
 - Automatic variable selection, scalable to big data
 - Can incorporate nonlinear combinations of hundreds of features
 - Empirically shown to be the best classifier in the world

- Introduction
- Research Agenda and Challenges
- Setting and Data
- ML Framework
- Results

Results

RIG over baseline

Method	User	Ad	App	Ad-App	User-Time	User-Ad-App	All
MART	0.093	0.007	0.044	0.051	0.112	0.132	0.152
Logistic Regression	0.068	0.008	0.042	0.044	0.079	0.094	0.100
OLS	0.066	0.009	0.044	0.046	0.078	0.091	0.095
Ad-App CTR	0.049	0.049	0.049	0.049	0.049	0.049	0.049

- ML methods (MART) perform much better than baseline, Logit model, and OLS
- Behavioral targeting more useful than Contextual (ad, app, time)
 - Of course, combining both is even better
 - app-specific features more valuable than ad-specific features
- Overall model performance is very good; I 5.2% improvement in predictive accuracy

Policy Questions and Consumer Privacy

- Strengthen privacy regulations:
 - What if we get rid of Advertising ID?
- Weaken privacy regulations:
 - What if we allow the platform to share data with advertisers at different levels of granularity?
 - What if we allow advertisers access to own data and allow data-sharing among them?

Value of User Identifiers: Ad ID vs. IP

RIG over baseline

Optimization model	Advertising ID	IP
MART	0.143	0.092
Logistic Regression	0.092	0.066
OLS	0.092	0.062

- Significant loss in targeting ability with IP
 - Low persistence: moving from one network connectivity to another changes IP.
 - Masking: VPNs and masked IPs lead to many users falling under the same IP.
 - Automatically reset: Ad ID needs to be actively changed by user, whereas IP changes automatically.

If platform is allowed to shares data with advertisers

- Arrangement between advertisers and platform
 - Scenario I: ad-specific CTR
- Consider four counterfactual scenarios
 - Scenario 2: access to app-ad specific CTR
 - Scenario 3: access to individual-level data for own ads
 - Scenario 4: access to full feature-set, but individual-level data only for own ads
 - Scenario 5: access to all the data

Value of data to advertisers

RIG over baseline

	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Large	0.037	0.098	0.152	0.155
Medium	0.046	0.071	0.098	0.104
Small	0.038	0.063	0.105	0.119

- While least privacy-preserving arrangement is first-best, we can get very close to it while preserving ad-user privacy!
 - Scenario 4 is only marginally inferior to Scenario 5
- Large advertisers benefit most, followed by small and medium
 - Size of the data helps
 - Controlling for size, advertisers with higher variation in the data (higher CTR) benefit more

If we allow advertisers to share data?

- We compare the value of sharing data among pairs of advertisers (i, j) or (receiver, giver)
- What affects gains of *i* from sharing data with *j*?
 - Larger advertisers gain less from sharing
 - Better when both advertise in common contexts (apps)
- Incentives of sharing pairs is not perfectly aligned
 - Need an incentive-compatible payment system
 - Positive implications for privacy

Conclusion

- Targeting is an important decision in mobile advertising
- From industry perspective
 - How to measure the returns to targeting?
 - What type of information is valuable?
 - What kind of models perform well?
 - Benefits to data-sharing? Who benefits and how much?
- From consumers' perspective
 - Significant privacy concerns
- Some answers
 - Behavioral targeting is more valuable than contextual
 - ML models outperform even the best Logit/OLS models
 - We don't need complete individual-level data for targeting
 - Players' incentives are not aligned in data-sharing

Thank You!

Advertiser's Problem

$$\frac{d\pi \left(x, y(z)\right)}{dx} = \frac{\partial \pi \left(x, y(z)\right)}{\partial x} + \frac{\partial \pi \left(x, y(z)\right)}{\partial y(z)} \frac{dy(z)}{dx}$$

- x is the bid
- y(z) is the probability of clicking conditional on z
- $\pi(x, y(z))$ is the profit from bid x and click prob. y(z)
- G(x, z, y(z)) is the probability of winning

Advertiser's Problem

$$\frac{d\pi \left(x, y(z)\right)}{dx} = \frac{\partial \pi \left(x, y(z)\right)}{\partial x} + \frac{\partial \pi \left(x, y(z)\right)}{\partial y(z)} \frac{dy(z)}{dx} = 0$$

- x is the bid
- y(z) is the probability of clicking conditional on z
- $\pi(x, y(z))$ is the profit from bid x and click prob. y(z)
- G(x, z, y(z)) is the probability of winning

Advertiser's Problem

$$\frac{d\pi \left(x, y(z)\right)}{dx} = \frac{\partial \pi \left(x, y(z)\right)}{\partial x} + \frac{\partial \pi \left(x, y(z)\right)}{\partial y(z)} \frac{dy(z)}{dx} = 0$$

- x is the bid
- y(z) is the probability of clicking conditional on z
- $\pi(x, y(z))$ is the profit from bid x and click prob. y(z)
- G(x, z, y(z)) is the probability of winning

$$\pi(x, y(z)) = (V - x)G(z, x, y(z))y(z)$$

$$-xG(z, x, y(z))y(z) + (V - x)G'(z, x, y(z))y(z) = 0$$

Advertisers need a good predictive model of y(z)