# Algorithmic bias? A study of data-based discrimination in the serving of ads in social media 

Anja Lambrecht and Catherine Tucker

## Research Question

What may make an ad serving algorithm appear biased?

## Motivation

- Privacy debate has moved to a question of privacy harms:
- Papers in CS have documented empirical pattern of apparently discriminatory ad serving behavior (Sweeney, 2013; Datta et al., 2015)
- But they are not focused on understanding why


## What we do

- Field Test data on STEM ad across 190 countries
- Set up as gender neutral
- But shown to men more than women


## Why apparent algorithmic-bias happens

- Not because of
- Click propensity
- Media usage
- Underlying sexism
- Evidence that young women are valuable demographic and other advertiser bids crowd out intentionally gender neutral advertisers


## Why does this matter?

- First paper to explore the why of apparent algorithmic-bias
- We find that apparent algorithmic bias may not be intentional but instead the result of completely separate advertiser actions
- Emphasizes that privacy online is not an individual issue. Instead it may be a complex mass of intertwined decisions.

The FTC is worried about algorithmic transparency, and you should be too


## Policy Implications

- Not much support in our findings for 'Algorithmic Transparency' being a solution
- Perhaps auditing algorithmic outcomes is a better approach.
- If regulating privacy in online advertising is hard, regulating the potential for algorithmic discrimination or bias may be even harder


## Outline

Methodology<br>Field Test

Field Test

Data

## Empirical Evidence

## Results

Do men indeed see more STEM ads than women?

Implications

## Origin of the Test



STEM Careers
Information about STEM Careers
Figure: Sample Ad

## This was a very straightforward field test

- All that varied was the country it was targeted at
- 191 countries
- Ensured that in each country the ad was shown at least to 5000 people

| Location | People who live in this location <br>  <br> Une <br> United States <br> GenderAll Men Women |
| :--- | :--- |

Figure: Ad Targeting Settings - Ad intended to be shown to both men and women aged 18-65.

|  | Mean | Std Dev | Min | Max |
| :--- | :---: | :---: | :---: | :---: |
| Impressions | 1911.8 | 2321.4 | 0 | 24980 |
| Clicks | 3.00 | 4.52 | 0 | 42 |
| Unique Clicks | 2.78 | 4.15 | 0 | 40 |
| CPC | 0.085 | 0.090 | 0 | 0.66 |
| CPM | 0.18 | 0.30 | 0 | 3.85 |
| Reach | 615.6 | 850.7 | 0 | 13436 |
| Frequency | 4.38 | 4.32 | 1 | 53 |
| Click Rate | 0.15 | 0.17 | 0 | 1.52 |
| Reach Rate | 0.0064 | 0.013 | 0 | 0.25 |
| Female | 0.50 | 0.50 | 0 | 1 |
| (mean) femalelaborpart | 74.4 | 16.3 | 18.7 | 103.6 |
| (mean) femaleprimary | 103.4 | 17.0 | 20.8 | 174.8 |
| (mean) femaleequality | 3.31 | 0.58 | 1.50 | 4.50 |

Table: Summary statistics


Figure: Histogram of average cost per country

## Outline

## Methodology Field Test

Field Test

## Data

## Empirical Evidence

## Results <br> Do men indeed see more STEM ads than women? <br> Implications

## Really, this paper doesn't need any complex analysis

## Table: Raw Data reported

| Age Group | Male Impr. | Female Impr. | Male Clicks | Female Clicks |
| :--- | ---: | ---: | ---: | ---: |
| Age18-24 | 746719 | 649590 | 1156 | 1171 |
| Age25-34 | 662996 | 495996 | 873 | 758 |
| Age35-44 | 412457 | 283596 | 501 | 480 |
| Age45-54 | 307701 | 224809 | 413 | 414 |
| Age55-64 | 209608 | 176454 | 320 | 363 |
| Age 65+ | 192317 | 153470 | 307 | 321 |

## Table: Raw Data Reported as an Average per Country

| Age Group | Male Impr. | Female Impr. | Male Clicks | Female Clicks |
| :--- | ---: | ---: | ---: | ---: |
| Age18-24 | 3909 | 3401 | 6 | 6 |
| Age25-34 | 3471 | 2597 | 5 | 4 |
| Age35-44 | 2159 | 1485 | 3 | 3 |
| Age45-54 | 1611 | 1177 | 2 | 2 |
| Age55-64 | 1097 | 924 | 2 | 2 |
| Age 65+ | 1007 | 808 | 2 | 2 |

## Three obvious patterns in the data

- Men see more impressions of the ad than women.
- Particularly in younger ad cohorts
- Clicks appear similar


## Outline

## Methodology Field Test <br> Field Test <br> Data <br> Empirical Evidence

## Results

Do men indeed see more STEM ads than women?

## Implications

## Really, this paper doesn't need any complex analysis

For campaign $i$ and demographic group $j$ in country $k$ on day $t$, the number of times an ad is displayed is modeled as a function of:

AdDisplay $_{i j k t}=$
$+\beta_{1}$ Female $_{j}$
$+\beta_{2}$ Age $_{j}$
$+\beta_{3}$ Female $_{j} \times$ Age $_{j}$
$+\alpha_{k}+\epsilon_{j k}$

Table: Women Are Shown Fewer Ads Than Men

|  | $\begin{gathered} \hline(1) \\ \text { Impressions } \\ \hline \end{gathered}$ | (2) Impressions | $\begin{gathered} \hline(3) \\ \text { Reach } \end{gathered}$ | (4) Reach | (5) Frequency | (6) Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Female | $\begin{gathered} -479.3^{* * *} \\ (97.09) \end{gathered}$ | $\begin{gathered} -209.7^{* * *} \\ (44.26) \end{gathered}$ | $\begin{gathered} -228.1^{* * *} \\ (35.45) \end{gathered}$ | $\begin{gathered} -98.97^{* * *} \\ (20.44) \end{gathered}$ | $\begin{gathered} 0.729^{* * *} \\ (0.150) \end{gathered}$ | $\begin{gathered} 1.276^{* * *} \\ (0.305) \end{gathered}$ |
| Female $\times$ Age18-24 |  | $\begin{gathered} -298.8 \\ (193.1) \end{gathered}$ |  | $\begin{gathered} -234.3^{* *} \\ (75.83) \end{gathered}$ |  | $\begin{array}{r} -0.523 \\ (0.268) \end{array}$ |
| Female $\times$ Age25-34 |  | $\begin{gathered} -664.6^{* * *} \\ (154.4) \end{gathered}$ |  | $\begin{gathered} -302.2^{* * *} \\ (48.64) \end{gathered}$ |  | $\begin{aligned} & -0.630^{*} \\ & (0.272) \end{aligned}$ |
| Female $\times$ Age35-44 |  | $\begin{gathered} -464.9^{* * *} \\ (110.5) \end{gathered}$ |  | $\begin{gathered} -159.9^{* * *} \\ (31.26) \end{gathered}$ |  | $\begin{gathered} -0.900^{* * *} \\ (0.246) \end{gathered}$ |
| Female $\times$ Age45-54 |  | $\begin{gathered} -224.2^{* *} \\ (69.94) \end{gathered}$ |  | $\begin{gathered} -97.25^{* * *} \\ (24.70) \end{gathered}$ |  | $\begin{gathered} -0.903^{* *} \\ (0.300) \end{gathered}$ |
| Female $\times$ Age55-64 |  | $\begin{gathered} 36.16 \\ (39.58) \end{gathered}$ |  | $\begin{gathered} 18.93 \\ (14.33) \end{gathered}$ |  | $\begin{gathered} -0.326 \\ (0.412) \end{gathered}$ |
| Age18-24 | $\begin{gathered} 2753.6^{* * *} \\ (248.0) \end{gathered}$ | $\begin{gathered} 2902.6^{* * *} \\ (284.3) \end{gathered}$ | $\begin{gathered} 909.5^{* * *} \\ (108.5) \end{gathered}$ | $\begin{gathered} 1026.5^{* * *} \\ (131.2) \end{gathered}$ | $\begin{gathered} -0.473^{*} \\ (0.207) \end{gathered}$ | $\begin{array}{r} -0.212 \\ (0.174) \end{array}$ |
| Age25-34 | $\begin{gathered} 2132.4^{* * *} \\ (204.4) \end{gathered}$ | $\begin{gathered} 2464.3^{* * *} \\ (236.5) \end{gathered}$ | $\begin{gathered} 561.4^{* * *} \\ (67.32) \end{gathered}$ | $\begin{gathered} 712.3^{* * *} \\ (83.38) \end{gathered}$ | $\begin{gathered} -0.683^{* * *} \\ (0.163) \end{gathered}$ | $\begin{aligned} & -0.369^{*} \\ & (0.143) \end{aligned}$ |
| Age35-44 | $\begin{gathered} 920.5^{* * *} \\ (117.4) \end{gathered}$ | $\begin{gathered} 1152.6^{* * *} \\ (135.2) \end{gathered}$ | $\begin{gathered} 197.4^{* * *} \\ (40.61) \end{gathered}$ | $\begin{gathered} 277.2^{* * *} \\ (47.39) \end{gathered}$ | $\begin{gathered} -0.556^{* * *} \\ (0.144) \end{gathered}$ | $\begin{gathered} -0.107 \\ (0.167) \end{gathered}$ |
| Age45-54 | $\begin{gathered} 492.4^{* * *} \\ (84.60) \end{gathered}$ | $\begin{gathered} 604.1^{* * *} \\ (85.93) \end{gathered}$ | $\begin{aligned} & 99.08^{* *} \\ & (31.03) \end{aligned}$ | $\begin{gathered} 147.5^{* * *} \\ (35.27) \end{gathered}$ | $\begin{gathered} -0.471^{* * *} \\ (0.108) \end{gathered}$ | $\begin{aligned} & -0.0198 \\ & (0.167) \end{aligned}$ |
| Age55-64 | $\begin{aligned} & 109.0^{*} \\ & (51.37) \end{aligned}$ | $\begin{gathered} 90.53 \\ (52.72) \end{gathered}$ | $\begin{gathered} 16.56 \\ (18.93) \end{gathered}$ | $\begin{gathered} 6.911 \\ (19.70) \end{gathered}$ | $\begin{aligned} & 0.0107 \\ & (0.182) \end{aligned}$ | $\begin{gathered} 0.173 \\ (0.147) \end{gathered}$ |
| Country Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 2291 | 2291 | 2291 | 2291 | 2291 | 2291 |
| R-Squared | 0.485 | 0.488 | 0.442 | 0.446 | 0.776 | 0.778 |

Ordinary Least Squares Estimates. Dependent variable as shown. Omitted demographic groups are those aged 65 + and men. Robust standard errors. * $p<0.05$, ** $p<0.01$, ${ }^{* * *} p<0.001$

Do our results reflect the fact that women were less likely to click on the ad?

Table: If They See The Ad, Women Are More Likely To Click Than Men

|  | $(1)$ <br> Clicks | $(2)$ <br> Unique Clicks | $(3)$ <br> Click Rate | $(4)$ <br> Reach Rate | $(5)$ <br> Clicks | $(6)$ <br> Unique Clicks | $(7)$ <br> Click Rate |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reach Rate |  |  |  |  |  |  |  |

Aggregate Logit Estimates in Columns (1)-(2) and (5)-(6). Ordinary Least Squares Estimates in Columns (3)-(4) and (7)-(8).
In Columns (2), (4), (6) and (8) the population variable is ad reach. In Columns (1), (3), (5), and (7) the population variable is ad impressions. The dependent variable is whether someone who was exposed to an ad clicked. Omitted demographic groups are those aged $65+$ and men. Robust standard errors. * $p<0.05,{ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$

## Do women spend less time on social media?

- No.
- At least every piece of recorded data says no.


## Do our results reflect cultural prejudice or labor market

 conditions for women?Table: Women Being Exposed To Fewer Ads Than Men Is Not Driven Entirely By Underlying Gender Disparity In Labor Market Conditions In That Country

|  | $\begin{gathered} (1) \\ \text { Reach } \end{gathered}$ | (2) Reach | (3) Reach |
| :---: | :---: | :---: | :---: |
| Female | $\begin{gathered} -326.7^{* * *} \\ (91.61) \end{gathered}$ | $\begin{gathered} \hline-257.3^{* * *} \\ (45.34) \end{gathered}$ | $\begin{gathered} -324.8^{* * *} \\ (56.52) \end{gathered}$ |
| Female $\times$ High \% Female labor part=1 | $\begin{gathered} 58.72 \\ (100.9) \end{gathered}$ |  |  |
| Female $\times$ High \% Female primary $=1$ |  | $\begin{gathered} -64.69 \\ (101.0) \end{gathered}$ |  |
| Female $\times$ High Female Equality Index (CPIA)=1 |  |  | $\begin{gathered} 140.6 \\ (162.3) \end{gathered}$ |
| Age18-24 | $\begin{gathered} 1035.3^{* * *} \\ (149.6) \end{gathered}$ | $\begin{gathered} 1007.0^{* * *} \\ (149.0) \end{gathered}$ | $\begin{gathered} 1057.3^{* * *} \\ (150.5) \end{gathered}$ |
| Age25-34 | $\begin{gathered} 620.7^{* * *} \\ (96.55) \end{gathered}$ | $\begin{gathered} 610.6^{* * *} \\ (95.92) \end{gathered}$ | $\begin{gathered} 1181.9^{* * *} \\ (106.1) \end{gathered}$ |
| Age35-44 | $\begin{aligned} & 177.4^{* *} \\ & (58.79) \end{aligned}$ | $\begin{aligned} & 173.1^{* *} \\ & (58.20) \end{aligned}$ | $\begin{gathered} 460.9^{* * *} \\ (42.14) \end{gathered}$ |
| Age45-54 | $\begin{gathered} 64.55 \\ (45.13) \end{gathered}$ | $\begin{gathered} 56.19 \\ (44.42) \end{gathered}$ | $\begin{gathered} 150.9^{* * *} \\ (32.05) \end{gathered}$ |
| Age55-64 | $\begin{aligned} & -12.99 \\ & (27.34) \end{aligned}$ | $\begin{aligned} & -17.90 \\ & (26.89) \end{aligned}$ | $\begin{aligned} & -42.40 \\ & (27.98) \end{aligned}$ |
| Country Controls | Yes | Yes | Yes |
| Observations | 1500 | 1512 | 588 |
| Log-Likelihood | -11998.5 | -12091.7 | -4485.8 |
| R-Squared | 0.417 | 0.422 | 0.601 |

Ordinary Least Squares Estimates. Dependent variable is whether someone is exposed to an ad. Omitted demographic groups are those aged 65+ and men. Robust standard errors. ${ }^{*} p<0.05$, ${ }^{* *} p<0.01$, ***

$$
p<0.001
$$

Do our results simply reflect competitive spillovers?

## Does price matter?

Across all campaigns, the average cost per click was nearly identical for men and women (\$0.09)

But maybe we just were not bidding high enough to reach women. So we went out and collected some more data.

|  | Mean | Std Dev | Min | Max |
| :--- | :---: | :---: | :---: | :---: |
| Avg Suggested Bid | 0.45 | 0.66 | 0.010 | 15.7 |
| Min Suggested Bid | 0.19 | 0.31 | 0.010 | 4 |
| Max Suggested Bid | 0.77 | 1.32 | 0.017 | 43 |
| Female | 0.50 | 0.50 | 0 | 1 |

Table: Summary statistics

Table: In General, Women Are More Expensive To Advertise To On Social Media And The Competitive Spillover From Other Advertisers' Decisions May Explain Our Finding

|  | (1) | (2) Avg Suggested Bid | (3) <br> Min Suggested Bid | (4) <br> Max Suggested Bid |
| :---: | :---: | :---: | :---: | :---: |
| Female | $\begin{gathered} -0.0464 \\ (0.0378) \end{gathered}$ | $\begin{aligned} & 0.0525^{*} \\ & (0.0247) \end{aligned}$ | $\begin{gathered} -0.0139 \\ (0.0294) \end{gathered}$ | $\begin{gathered} -0.0157 \\ (0.0404) \end{gathered}$ |
| Female $\times$ Age 18-24 | $\begin{aligned} & 0.0648^{+} \\ & (0.0376) \end{aligned}$ |  | $\begin{gathered} 0.0242 \\ (0.0296) \end{gathered}$ | $\begin{gathered} -0.221 \\ (0.282) \end{gathered}$ |
| Female $\times$ Age25-34 | $\begin{gathered} 0.174^{+} \\ (0.0935) \end{gathered}$ |  | $\begin{gathered} 0.0393 \\ (0.0295) \end{gathered}$ | $\begin{gathered} 0.103^{*} \\ (0.0436) \end{gathered}$ |
| Female $\times$ Age35-44 | $\begin{aligned} & 0.150^{* * *} \\ & (0.0429) \end{aligned}$ |  | $\begin{aligned} & 0.0683^{*} \\ & (0.0296) \end{aligned}$ | $\begin{aligned} & 0.191^{* * *} \\ & (0.0481) \end{aligned}$ |
| Female $\times$ Age45-54 | $\begin{gathered} 0.0751 \\ (0.0544) \end{gathered}$ |  | $\begin{gathered} 0.0235 \\ (0.0387) \end{gathered}$ | $\begin{gathered} 0.128^{+} \\ (0.0751) \end{gathered}$ |
| Female $\times$ Age55+ | $\begin{aligned} & 0.129^{* *} \\ & (0.0445) \end{aligned}$ |  | $\begin{gathered} 0.0496 \\ (0.0346) \end{gathered}$ | $\begin{aligned} & 0.193^{* * *} \\ & (0.0546) \end{aligned}$ |
| Age18-24 | $\begin{gathered} -0.0421 \\ (0.0405) \end{gathered}$ | $\begin{array}{r} -0.0100 \\ (0.0282) \end{array}$ | $\begin{gathered} -0.0421 \\ (0.0310) \end{gathered}$ | $\begin{gathered} 0.342 \\ (0.283) \end{gathered}$ |
| Age25-34 | $\begin{aligned} & -0.0105 \\ & (0.0406) \end{aligned}$ | $\begin{gathered} 0.0763 \\ (0.0519) \end{gathered}$ | $\begin{aligned} & -0.0415 \\ & (0.0310) \end{aligned}$ | $\begin{gathered} 0.118^{*} \\ (0.0495) \end{gathered}$ |
| Age35-44 | $\begin{gathered} -0.000557 \\ (0.0444) \end{gathered}$ | $\begin{aligned} & 0.0740^{*} \\ & (0.0364) \end{aligned}$ | $\begin{gathered} -0.0477 \\ (0.0325) \end{gathered}$ | $\begin{aligned} & 0.173^{* *} \\ & (0.0610) \end{aligned}$ |
| Age45-54 | $\begin{gathered} 0.0216 \\ (0.0557) \end{gathered}$ | $\begin{gathered} 0.0589 \\ (0.0405) \end{gathered}$ | $\begin{gathered} -0.0268 \\ (0.0362) \end{gathered}$ | $\begin{aligned} & 0.229^{* *} \\ & (0.0817) \end{aligned}$ |
| Age55+ | $\begin{gathered} -0.0446 \\ (0.0435) \end{gathered}$ | $\begin{gathered} 0.0198 \\ (0.0347) \end{gathered}$ | $\begin{gathered} -0.0551 \\ (0.0335) \end{gathered}$ | $\begin{gathered} 0.102^{+} \\ (0.0591) \end{gathered}$ |
| Country Controls | Yes | Yes | Yes | Yes |
| Observations | 2096 | 2096 | 1916 | 1915 |
| Log-Likelihood | -1215.0 | -1219.8 | 637.1 | -2745.5 |
| R-Squared | 0.571 | 0.569 | 0.679 | 0.409 |

Ordinary Least Squares Estimates. Dependent variable is average suggested bid in the Columns (1)-(3), minimum suggested bid in Column (4) and maximum suggested bid in Column (5). Omitted demographic groups are those aged between 13-17 and those of the male gender. Robust standard errors. ${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$

## Why Are Women Such a Prized Demographic?

To investigate this, we looked at additional data about the purchasing of consumer items as a result of a social media campaign.

Table: Younger women may be a valuable demographic as they appear more likely to convert conditional on clicking an ad

|  | Clicks out of impressions <br> (1) <br> Clicks | Add-to-cart out of clicks <br> (2) <br> Add to Cart | Add-to-cart out of impressions <br> (3) <br> Add to Cart |
| :---: | :---: | :---: | :---: |
| Female | -0.0522*** | -0.0231 | -0.0979 |
|  | (0.0152) | (0.186) | (0.185) |
| Age Group 18-24 | -0.795*** | -0.528 | -1.392** |
|  | (0.0379) | (0.558) | (0.548) |
| Age Group 25-35 | -0.533*** | -0.149 | -0.742*** |
|  | (0.0194) | (0.265) | (0.264) |
| Age Group 35-44 | -0.244*** | -0.168 | -0.430** |
|  | (0.0155) | (0.202) | (0.201) |
| Female $\times$ Age Group 18-24 | 0.408*** | 1.078* | 1.553*** |
|  | (0.0399) | (0.575) | (0.566) |
| Female $\times$ Age Group 25-35 | -0.0602** | $0.701^{* *}$ | 0.709** |
|  | (0.0272) | (0.326) | (0.324) |
| Female $\times$ Age Group 35-44 | -0.000403 | 0.509* | 0.508* |
|  | (0.0220) | (0.264) | (0.263) |
| Week Controls | Yes | Yes | Yes |
| Day of week controls | Yes | Yes | Yes |
| Product Controls | Yes | Yes | Yes |
| Observations | 127617816 | 67501 | 127605845 |
| Log-Likelihood | -574304.1 | -3339.4 | -7802.1 |

Aggregate logit estimates. Dependent variable as listed. ${ }^{*} p<0.05$, ** $p<0.01$, ${ }^{* * *} p<0.001$. Omitted demographic groups are men and those aged 45+.

## Outline

## Methodology Field Test

Field Test

## Data

## Empirical Evidence

## Results <br> Do men indeed see more STEM ads than women?

Implications

## Limitations

- Single field test.
- Descriptive paper
- Just look at gender
- Big (non-economist) questions are not tackled - Should we think of this as bias? Should we think of this as discrimination?


## Punchline

- Cross-national field test suggests that an ad which is intended to be gender-neutral may not be allocated in a gender-neutral way by an ad-serving algorithm
- We show that women are shown fewer STEM ads than men NOT because of an algorithm responding to click behavior or local prejudice
- But instead because women's desirability as a demographic and consequent high price means that an algorithm trained to be cost effective avoids showing ads to them.
- Apparent algorithmic bias may be an unintentional consequence of external behavior


## Implications for Practice

- Managers can't assume an algorithm will neutrally deliver ads.
- In our case, can be easily solved by managing two separate campaigns for men and women and paying more for women.
- But what about cases where the algorithm does not neutrally distribute ads with respect to harder-to-address factors such as economic marginalization or race?


## Implications for Policy

- Difficult to see how algorithmic transparency would help here?
- Emphasizes the need for nuance in algorithmic auditing policy


## Thank you!

alambrecht@london.edu cetucker@mit.edu

Datta, A., M. C. Tschantz, and A. Datta (2015). Automated experiments on ad privacy settings. Proceedings on Privacy Enhancing Technologies 2015(1), 92-112.
Sweeney, L. (2013). Discrimination in online ad delivery. ACMQueue 11(3), 10.

