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Abstract 

The advent of online advertising has simultaneously created unprecedented 

opportunities for advertisers to target consumers and prompted privacy concerns 
among consumers and regulators. This paper estimates the financial impact 
of privacy policies on the online display ad industry by applying an empirical 
model to a proprietary auction dataset. Two challenges complicate the analysis. 
First, while the advertisers are assumed to publicly observe tracking profiles, the 

econometrician does not see this data. My model overcomes this challenge by 

disentangling the unobserved premium paid for certain users from the observed 

bids. In order to simulate a market in which advertisers can no longer track 

users, I set the unobserved bid premium’s variance to zero. Second, the data 

provider uses a novel auction mechanism in which first-price bidders and second-
price bidders operate concurrently. I develop new techniques to analyze these 

hybrid auctions. I consider three privacy policies that vary by the degree of user 
choice. My results suggest that online publisher revenues drop by 3.9% under 
an opt-out policy, 34.6% under an opt-in policy, and 38.5% under a tracking 

ban. Total advertiser surplus drops by 4.6%, 40.9%, and 45.5% respectively. 

∗I thank the chair of my dissertation committee Robert Porter for his assistance.  I also thank the  
other committee members Eric Anderson, Benjamin Jones, and Elie Tamer. I thank Ivan Canay, 
Nicholas Della Penna, Jakub Kastl, and Christopher Ody for helpful discussions. Thanks as well 
to Mark Chicu, Arlene Chu, Simone Galperti, Megan Greenfield, Michael Powell, David Reiley, 
Katherine Rush, and Kim Singletary for additional assistance. All errors remain my own. 

1
 



1 Introduction  

Online advertisers use personal browsing data to improve ad effectiveness, but these 

methods have also spurred calls for industry-specific privacy regulation. Online dis­
play ads, or banner ads, are prominently displayed on webpages. Revenues from 

banner ads have increased from $1.7 billion in 2002 to $6.8 billion in 2011 (Interac­
tive Advertising Bureau, 2012) in part due to the harnessing of tracking technology. 
Tracking technology allows advertisers to target specific consumers by mining data 

from their browsing histories. In response to privacy concerns, American regulators 
want to rein in tracking practices but are unsure how various policies would impact 
the online ad industry’s performance. This paper examines the effects of privacy 

regulation on the online ad industry by analyzing its auction market. Using a large 

proprietary dataset, I simulate a market governed by several different counterfactual 
policies, each allowing a different proportion of users to be tracked. My results suggest 
that all the policies would more than halve publisher and advertiser surplus among 

the segment of users who can not be tracked. 
The online ad auctions operate as follows. The auctions sell individual ad impres­

sions, which are defined as one view of the ad by one user on one webpage. A user is 
an individual who browses the Internet. In 2011, American users viewed an incredible 

4.9 trillion online display ads (comScore, 2011). Websites are referred to as publishers 

and sell advertising space to advertisers. When  a  user  creates  an  impression  oppor­
tunity by visiting a webpage, the publisher chooses either to fulfill an advertiser’s 
standing bulk purchase (called a guaranteed contract) or sell the impression on the 

spot market. The spot market is an auction operated by an ad exchange. When  

queried, the ad exchange passes along the impression’s ad dimensions, publisher, and 

user information to potential advertisers. Once they determine how much the impres­
sion is worth to them, they calculate their bid. The exchange then determines who 

wins the right to display their ad. The entire process occurs in milliseconds. Note 

that advertisers must pay for each delivered impression regardless of whether the user 
clicks on, or even views, the online display ad. 

The use of tracking differentiates online display ads from traditional advertising. 
Tracking improves the match between users and advertisers. It exploits technologies 
like Internet cookies, which are small text files stored on a user’s computer that al­
low publishers and advertisers to identify the user. Tracking enables an advertiser to 

remember users who visit its websites, and retarget them with advertising on exter­
nal websites. Third-party companies called data collectors track users across a vast 
publisher network. They use data collected from browsing histories—combined with 

information from online and offline databases—to profile user interests, demographics, 
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and location. Data collectors then sell bundles of users to advertisers under headings 
such as: ‘Male ages 35–40’; ‘College educated’; ‘Earns $60–80,000’; ‘Interested in gar­
dening and Nascar’; ‘In market for a flight from Chicago to Tel Aviv’; ‘Married with 

children’; ‘Republican’; and ‘Likely to move in three months’. When advertisers use 

these profiles to target users, advertisers engage in what is called behavioral targeting. 
Auctions are useful in this industry because advertisers have asymmetric information 

regarding the impression’s worth, so auctions facilitate both allocative efficiency and 

price discovery. 
Privacy advocates object to tracking for four main reasons. First, surveys find that 

at least two thirds of the American public oppose behaviorally targeted advertising 

(Turow et al., 2009; McDonald and Cranor, 2010; Morales, 2010; Pubmatic, 2011). 
Second, data collectors track potentially vulnerable groups like children, the sick, and 

the overweight (Center for Digital Democracy, 2012; Angwin, 2010). Third, tracking 

can be used to price discriminate or offer discriminate (‘web-lining’), which may make 

some consumers worse off (Mattioli, 2012; Angwin, 2010). Fourth, strong privacy laws 
regarding traditional media spotlight the dearth of privacy regulation in the digital 
media. For instance, the government needs a warrant to look at the books a person 

borrows from the library, but private companies can track everything a user does 
online (American Civil Liberties Union, 2011). 

American regulators wish to respond to these privacy concerns without under­
mining the profitability of the ad–supported Internet sector. Six privacy bills are 

currently before Congress (Interactive Advertising Bureau, 2011), and the Obama 

administration is also pushing for legislation (White House, 2012). Industry groups 
like the Internet Advertising Bureau (2011) oppose privacy regulation and argue that 
it would unduly burden the industry. Meanwhile, privacy advocates like the Ameri­
can Civil Liberties Union (2011) claim the impact of regulation on the revenues of at 
least the publishers would be negligible. As Levin and Milgrom (2010) demonstrate, 
the narrow ad targeting in these markets reduces competition. Since a tracking ban 

could thicken ad markets, the net impact of privacy policy on publisher revenue is 
an open question that I address in this paper. The effect of regulation on advertiser 
surplus depends on whether the losses from reduced targeting exceed the benefits 
from reduced competition. Due to the lack of good estimates of the impact of privacy 

regulation on the online ad industry, regulators have been debating policy proposals 
in an empirical vacuum. 

In this paper, I measure the welfare impact of privacy policy on advertisers and 

publishers in the auction market for online display ads. I consider three regulatory 

options: 1) an opt-out policy where users can be tracked by default; 2) an opt-in 
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policy where users cannot be tracked by default; and 3) a tracking ban. In  Section  2,  

I predict that these policies will vary the portion of users to be considered Do Not 
Track (DNT) by about 10%, 90%, and 100% respectively. The ad auction market 
facilitates tracking by enabling advertisers to locate their target users through a single 

broad sweep across publishers. I measure the consequences of each of these policies 
for publisher revenues and advertiser surplus. Section 2 further discusses in more 

detail the market institutions, tracking methods, and their associated privacy issues, 
as well as the above policy alternatives. 

In Section 3, I describe my proprietary ad exchange dataset and its two types of 
bidders. The data contain several hundred million online display ad auctions that 
include thousands of publishers and hundreds of advertisers. The data feature two 

types of bidders that participate in the auction differently and face separate auction 

rules. Offline bidders pre-specify a single bid amount that they wish to submit ran­
domly for impressions that meet their criteria. In contrast, real-time bidders evaluate 

and bid on impressions as they arise in real time. These bidders employ computer 
algorithms that both evaluate an impression’s user and publisher characteristics, and 

anticipate competition. Both types of bidders can track users. In the hybrid auc­
tion, the offline bidders play by second-price rules and the real-time bidders play by 

first-price rules. The presence of two bidder types complicate the auction analysis. 
In Section 4, I describe equilibrium bidding in a hybrid auction, which includes 

first- and second-price bidders. In a conditionally independent private value setting, a 

weakly dominant strategy for a second-price bidder is to bid his valuation. First-price 

bidders shade their bids below their valuations, as they trade off higher surplus— 

conditional on winning—with a lower chance of winning. An offline (second-price) 
bidder bids B with positive probability, so the real-time (first-price) bidder’s proba­
bility of winning discontinuously improves by bidding just above B. Consequently, 
first-price bidders should not bid in a dominated interval below B. 

Section 5 models bidder behaviour and outlines the model’s identification and 

estimation approaches. In the model, bidders publicly observe a complete tracking 

profile of user characteristics. Conditional on these user characteristics, bidders have 

independent private values. However, I—as the econometrician—do not observe the 

user tracking characteristics. In auction terminology, the auctions are said to have 

unobserved heterogeneity at the user level. Bidders know more about the users than 

the econometrician, so their bids will show dependence within users. Offline bidders 
employ user tracking characteristics to select their target audience. I estimate this 
target audience’s share of the population using a mixture model. Without tracking, 
an offline bidder scales down his bid to reflect the average value of an untargeted 
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user. Real-time bidders collapse user tracking characteristics into a common, one-
dimensional quality ranking that represents user-specific unobserved heterogeneity. 
A real-time  bidder’s value  for an ad  impression is the product of  this unobserved  

heterogeneity term and a private, idiosyncratic term. I disentangle the two distribu­
tions when bids below the seller’s reserve price are not observed. The between-user 
bid variation identifies the distribution of the user-specific unobserved heterogeneity. 
The within-user bid variation identifies the distribution of idiosyncratic tastes. I sim­
ulate the counterfactual policy market by turning off the variation in the user-specific 

component, while allowing the idiosyncratic component to vary. 
In Section 6, I present my offline and real-time bidder estimates as well as my 

policy counterfactual estimates. I estimate the model on the subset of auctions that 

pertain to American users visiting the top three revenue-generating websites. Collec­
tively, these represent over 100 million auctions and half the revenue from American 

users in the data. My results indicate that opt-out, opt-in, and tracking ban poli­
cies would respectively reduce publisher revenues by 3.9%, 34.6%, and 38.5%. The 

policies would lower advertiser surplus by 4.6%, 40.9%, and 45.5%. 
Section 7 proposes several extensions of the model. The first extension proposes 

a way to account for self-selection by opt-out users. The other extensions discuss 
market adjustments that mitigate the impact of each of the privacy policies. Section 

8 concludes the paper with a summary of findings. 

1.1 Literature Review 

This study is among the first to discuss tracking and user privacy in the online display 

ad industry. Goldfarb and Tucker (2011) use the introduction of Europe’s opt–in 

tracking policy as a natural experiment and find that online display ads are 65% less 
effective in terms of survey metrics as a result of the policy. Tucker (2012) discusses 
the economic perspective on privacy and online advertising. Tucker (2011) shows 
through an empirical example that users can be more receptive to behavioral targeting 

when they can modify a publisher’s privacy settings. Bailey and Farahat (2012)’s 
experimental study confirms that behavioral targeting improves ad effectiveness; they 

find a median improvement of 40% in brand searches and 65% in click through rates. 
This literature does not grapple with the welfare impact of privacy regulation on the 

Internet advertising industry. 
Several papers in the economic literature discuss the online display ad industry 

but without addressing policy concerns. Evans (2009) provides an overview of the 

market. Levin and Milgrom (2010) discuss the market design trade-off between fine-
grained ad targeting and thick markets. Abraham et al. (2011) examine the adverse 
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selection problem that arises when computer programs called bots trigger a worthless 
ad impression, and discuss the theoretical implications for a second-price auction. 
Mahdian et al. (2012) investigate a publisher’s incentives to share user cookies with 

advertisers and how these incentives change with the publisher market structure. 
Celis et al. (2012) propose a novel auction mechanism that increases revenues, and 

then simulate the mechanism’s performance using ad auction data. They assume a 

symmetric independent value setup, but do not allow for user-level correlation in bids 
because of data limitations. 

I examine the  online display  advertising industry  through the lens  of empirical auc­
tion theory. Hendricks and Porter (2007), Athey and Haile (2007), and Paarsch and 

Hong (2006) provide a comprehensive introduction to the literature. In my analysis of 
real-time bidders, my identification strategy follows the support variation arguments 
outlined in D’Haultfoeuille and Février (2010) and my estimation approach resem­
bles Brendstrup and Paarsch (2006)’s sieve maximum likelihood estimator. I model 
user tracking as a user-specific unobserved heterogeneity term in bidder’s valuations. 
The methods previously developed by Krasnokutskaya (2011) and Hu et al. (2009) 
to identify and estimate unobserved heterogeneity do not apply here because they 

preclude a binding reserve price. I extend these models to accommodate a binding 

reserve price when the unobserved heterogeneity is at the user level and we observe 

a long  panel  of users.  

2 Background  

2.1 Online Display Advertising Market Overview 

Figure 1 illustrates the online display advertising market from the point of view of the 

seller, the publisher. The supply side is characterized by both high concentration and 

a ‘long tail’ containing millions of small publishers. The top 50 publishers account for 
90% of online display ad revenues (IAB 2012). Facebook alone sold a quarter of all 
display ads in the U.S. in 2011, whereas Yahoo! sold 11%, and Microsoft sold 4.5% 

(comScore 2012). As Figure 1 demonstrates, the publisher must choose an advertiser 
to fill an ad impression within about 0.1 seconds of a user’s visit. The publisher 
must choose between satisfying its existing guaranteed contract advertisers or sell­
ing the impression on the exchange. A guaranteed contract with an advertiser is a 

bulk ad purchase that specifies the price and quantity, as well as the time frame and 

targeting criteria. Though publishers prefer the assured revenue of guaranteed con­
tracts, publishers sell the remaining inventory—called remnant inventory—on a spot 
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market for two reasons. Either publishers cannot locate enough guaranteed contract 
buyers or publishers cushion their guaranteed contracts, which punish under-delivery, 
in the face of uncertain supply. Ghosh et al. (2009) discuss the publisher’s choice 

between selling to guaranteed contracts or on the exchange and the authors worry 

that advertisers on the exchange will ‘cherry-pick’ the valuable users. Nonetheless, 
ad exchanges counsel publishers to ignore this issue and let the guaranteed contracts 
determine their ad inventory’s reserve price. McAfee et al. (2010) describe how a 

publisher should choose among its guaranteed contract advertisers. 
On the demand side, advertisers may enter on one or both sides of the market 

depending on their campaign goals. The demand side is more diffuse than the sup­
ply side. The top five advertisers in 2011 were AT&T, Experian (personal finance 

services), Verizon, Scottrade, and Google (comScore, 2012). Performance advertisers 
like direct marketers prefer the auction market since it allows them to balance the 

costs and benefits of their ads. Brand advertisers prefer guaranteed contracts to limit 
their brand’s exposure to risks like offensive content. Some examples of guaranteed 

contracts include: “200,000 impressions to US users on the New York Time’s finance 

related pages in July”, “all impressions on the Yahoo! homepage on Sept 21”, “300,000 

impressions on AOL to a retailer’s existing customers in April.” Large publishers can 

accommodate guaranteed contracts with retargeting and behavioural targeting, how­
ever the contracting costs make this impractical for smaller publishers. The auction 

market enables large-scale retargeting and behavioural targeting across multiple pub­
lishers. Within the auction market, most advertisers currently use real time bidding, 
though some offline bidders persist due either to technological limitations or lower 
costs. 

The market features about ten ad exchanges and the largest are Yahoo!’s Right-
Media and Google’s DoubleClick. RightMedia hosts over 9 billion auctions daily 

(Ghosh et al., 2009). Most exchanges use a second-price auction rule1, some  use  

first-price auction rules, while others use a hybrid of the two rules. The exchanges 
typically charge the sellers a flat fee or a commission on the sale. Exchanges sold 

13% of online display ads in 2011 and the figure is expected to grow (Angwin, 2012). 
Exchanges owe their growth in part to tracking since exchanges allow advertisers to 

locate narrowly targeted users across multiple publishers at larger scale. As such, 
tracking changed the exchange market from low-value remnant impressions to more 

1DoubleClick’s‘optional’ second-price rule allows bidders representing multiple advertisers to sub­
mit their top two bids: bidders may be contractually obligated to do so by the advertisers they rep­
resent since bidders have no incentive to reveal their second highest internal bid truthfully (Mansour 
et al., 2012). The Microsoft Ad Exchange employs a standard second-price auction (Celis et al., 
2012). 
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targeted and valuable impressions. 

2.2 Tracking & User Privacy 

Tracking is now widespread online. As early as 2000, advertisers used tracking to 

improve ad targeting (Federal Trade Commission, 2000). In 2011, tracking became 

so pervasive that the top 100 American publishers installed an average of 49 tracking 

cookies per visit (Hoofnagle et al., 2012). Specialized firms called data collectors2 

monitor users’ visits on a vast network of publishers using a variety of tracking tech­
nologies. Tracking technologies extend beyond cookies to include some that explicitly 

counteract user efforts to avoid tracking (Hoofnagle et al., 2012). Data collectors 
typically profile users in terms of their age, gender, zip code, estimated income, mar­
ital status, home ownership, interests, past purchases, purchase intent, etc. Data 

collectors bundle users and sell them to advertisers, often for a few pennies per user 
(Angwin, 2010). Data collectors integrate with ad exchanges to facilitate these sales. 
Beales (2010)’s survey of advertising networks suggest that tracking commands a 

price premium: average CPMs were $1.98 for untargeted “run of network” ads, $4.12 

for BT, and $3.07 for retargeting. 
Privacy advocates object to tracking for many reasons. As mentioned earlier, 

these reasons include: 1) two thirds of users say they object to tracking; 2) adver­
tisers track children and behaviorally target users based on sensitive information like 

their weight and medical conditions; and 3) tracking information be used for price or 
offer discrimination. Tracking is unavoidable: existing privacy tools are incomplete, 
are easily circumvented, and companies are neither legally required to respect the 

user’s preferences nor to offer an opt out (Privacy Rights Clearinghouse, 2010). The 

Federal Trade Commission only intervenes on behalf of users when a companies vio­
late its own privacy statement (Federal Trade Commission, 2012b). Despite industry 

claims that tracking is anonymous, data collectors routinely use personally identifi­
able information to connect users to offline data like their terrestrial address, public 

records, and past sales (American Civil Liberties Union, 2011; Steel, 2010). Even 

when tracking is anonymous, browsing histories are often unique and user data can 

be deanonymized in cases (Olejnik et al., 2012; Ohm, 2010). Finally, several studies 

show that users struggle to understand current browser privacy controls and privacy 

policies (Leon et al., 2011; McDonald and Cranor, 2009; McDonald et al., 2009; Turow 

et al., 2007). 
The internet advertising industry acknowledges privacy concerns but argues that 

2Data collectors are also referred to as data providers, data brokers, or trackers. 
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it can regulate itself. Recently, the Digital Advertising Alliance (2012b) advanced a 

voluntary ‘Ad Choices’ program that includes a small icon within participating ‘en­
hanced notice’ ads. The ads link to a website that both explains ad tracking and 

allows users to opt out of behaviorally targeted ads. The Alliance delivers 900 billion 

enhanced noticed impressions monthly and 90% of the online behavioural advertising 

market has committed to its principles (Federal Trade Commission, 2012b). Unfor­
tunately, this solution suffers from the technological conundrum of opt-outs: labeling 

users as ‘opt-out’ requires the same technologies used to track a user that the user 
may wish to disable. Internet browsers solve the technological problem of opt-outs by 

creating a Do Not Track (DNT) browsing option that communicates the user’s prefer­
ences to publishers. However, advertisers object to Internet Explorer’s plan to make 

DNT its default setting (Digital Advertising Alliance, 2012a) and advertisers circum­
vented Safari’s setting which restricts cookies by default (Federal Trade Commission, 
2012a). A survey of data collectors revealed that 52% either did not offer an opt-out 
option or did not participate in the industry’s self-regulatory programs; moreover, 
only a single data collector offered to comply with browser-level DNT (TechJournal, 
2012). Though the industry progressed on privacy issues, tracking is profitable and 

some firms may free-ride on these efforts. 

2.3 Privacy Policy 

America’s legislators, regulators, and executive are all concerned about online track­
ing and are moving to regulate the industry. Currently, six separate bills in the House 

of Representatives and Senate would restrict tracking (see Interactive Advertising Bu­
reau 2011 for an overview). The Federal Trade Commission (2012b) and the Obama 

Administration (White House, 2012) provide a regulatory blueprint based on the “Fair 
Information Practice Principles” of Notice, Access, Security, and Choice. Within the 

online display ad industry, these principles mean that the industry must clearly com­
municate to the users how their data is used (Notice), allow users to view—and 

possibly correct—their tracking profiles (Access), safeguard user data (Security), and 

give users the choice not to be tracked (Choice). The first three principles could im­
pose significant compliance costs on the industry (Hahn, 2001); I focus on the choice 

aspect of the policy as it would restrict the tracking that differentiates online display 

ads from traditional advertising. 
American regulators wish to mitigate the adverse impact to the Internet industry, 

but they lack impact estimates. The FTC (2012b) and White House (2012) proposals 
contain no such estimates. One contribution of this paper is to measure the impact 
of privacy policy on publisher revenues and advertiser surplus. 
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I consider  three policy  alternatives that  enable user  choice:  

1. Opt-out: the industry can track users by default unless they signal that they 

do not want to be tracked; 

2. Opt–in: the industry cannot track users by default unless it receives the users’ 
explicit consent; and 

3. Tracking Ban: the industry cannot track a user under any circumstance. 

The Obama administration, the FTC, and most legislative proposals favor an opt-
out policy. The European Union implemented an opt-in policy for online user data in 

2002 Goldfarb and Tucker (2011), and explicitly clarified in 2010 that tracking requires 
opt-in permission (European Data Protection Authorities, 2010). An outright ban is 
more of a curiosity. 

Although predictions vary, I predict the percentage of Do Not Track (DNT) users 
as 10% in the opt-out case and 90% in the opt-in case. These polar cases assume 

strong status quo bias and also reflect the estimated 39% of users who are unaware 

of tracking (Morales, 2010). Few users use existing privacy tools. Mozilla’s Firefox 

reports that only 8.6% of its desktop users enable its DNT setting (Fowler, 2012); more 

broadly, one search engine reported that less than 3% of its searches arose from users 
with DNT enabled (Lindahl, 2012). The Digital Advertising Alliance serves more than 

1 trillion  enhanced  notice ads  monthly  and  more than  one million  users  have  opted  

out since the Ad Choice program began in 2010 (Digital Advertising Alliance, 2012a). 
Other predictors of DNT opt-out rates are higher. About 12% of users blocked third-
party cookies in 2005 (Hoofnagle et al., 2012); an estimated 20% of users claim to 

value privacy as much as the Internet itself (Deighton and Quelch, 2009); and one 
online survey found that as high as 90% of users declared they intended to activate 

their browser’s DNT setting (Bachman, 2012). I forecast that 90% of users would be 

DNT in an opt-out policy again because of status quo bias. This policy is difficult to 

predict because it would require the industry to adjust significantly. Publishers could 

mitigate this collapse if they insisted on tracking users as a pre-condition for granting 

them access. Consequently, an opt-in policy could have important competitive effects 
if smaller publishers are less able to install barriers to access.3 Furthermore, tracking 

is a tough sell to users if publishers cannot bury permission in a lengthy legal contract. 
3Thus, an opt-in policy in particular would asymmetrically impact small publishers with little 

power to negotiate tracking for content and too few users to offer first party behavioural targeting. 
On the other hand, small publisher would be able to free ride if other publishers can convince users 
to opt-in to all sites rather than just their specific site. Along these lines, FTC Commissioner Rosch 
warns in his dissenting FTC statement that privacy policy could have unintended anti-competititive 
effects (Federal Trade Commission, 2012b). 
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Offline Bidder Real Time Bidder 
Bidding Method Pre-specified bids (offline) Real time bids (online) 
Observed Bids Fixed bid, randomly submitted Variable over time 

Tracking Crude or none Detailed, or none 
Prevalence ∼90% ∼10% 

Rules second-price first-price 

Table 1: A summary of the both bidder types
 

3 Data  

I analyze  a large proprietary  dataset  from an ad exchange that  auctions online  display  

advertising. To protect the identity of the data provider, I omit certain details like 

the exchange’s sales and customers. The dataset features several hundred million 

observations sampled from a single week in 2010. Each observation represents an 

auction arising from a single ad impression that a publisher sent to the ad exchange. 
Each auction observation includes information about the ad, the seller, the bid­

ders, and the user. The data contain the ad’s dimensions and its webpage URL. On 

the seller side, the data record the publisher’s identity, content category, and reserve 

price. On the bidder side, the data contain the top two bids above the reserve price 

and the corresponding bidder identities, but not any information about other bids. 
The data also include a user identifier and report the user’s browser and location (e.g. 
country and state). I do not observe any user tracking information. 

Thousands of publishers participate on the exchange. The top ten publishers in 

impression terms represent 46% of the data. Hundreds of different unique ad creatives 
compete for ad inventory, and dozens of bidder intermediaries—each representing 

multiple advertisers—bid on their behalf. The two thirds of users are American. 
Millions of users who appear, with a mean of 7.5 impressions. Users who appear 
more than 1,000 times make up 4% of the data. 

The publishers’ reserve prices are set high, and only a fifth of impressions are sold 

(i.e. receive one or more bids), and only a tenth receive two or more bids. The high 

reserve prices reflect the publishers’ outside option of delivering the impression to 

their guaranteed contract advertisers. On average, the sale price of the impressions 
appear to be low relative to the market. 

The data feature two types of bidders that I analyze separately: offline bidders 
and real-time bidders. Offline bidders pre-specify rules that include their bid, target 
auction criteria, and a probability of submitting the bid.4 Real-time bidders evalu­
ate and bid on auction impressions in real time. Table 1 summarizes the differences 

4For this reason, offline bidders are also called rules-based bidders. 
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between the bidder types. An offline bidder’s bid criteria specifies the eligible publish­
ers, content categories, and user characteristics that the bidder targets. For instance, 
General Motors may run a campaign that targets American users on automotive or 
sports-related websites for which it will bid $1 with 40% probability (and $0 with 60% 

probability). In practice, advertisers specify their bid, ad budget, and time frame; 
the ad system then calculates the bid probability that spreads the purchases over 
that time frame. Real-time bidders, on the other hand, employ computer algorithms 
that return bids within 0.1 seconds. These algorithms incorporate an ad’s past per­
formance (e.g. clicks) on different publishers and user types, as well as the bidder’s 
competition. Both real-time and offline bidders may or may not employ user tracking 

information. Real-time bidders can use fine-grained tracking information since their 
bidding algorithms integrate that information; in contrast, offline bidders coarsely 

integrate tracking by manually refining their target audience in their bid criteria. 
Real-time bidders account for 10% of observed winning bids. Real-time bidding rates 
have grown since my sample period.5 

Offline and real-time bidders’ bids exhibit distinct patterns. The scatterplots in 

Figures 2–4 illustrate the evolution of the different bidders’ observed high bid over 
the sample period. The real-time bidder depicted in Figure 2 demonstrates enormous 
variation in its bids at all points in time. In contrast, the offline bidder in Figure 
3 submits  a single bid  throughout the entire week.  In  theory,  the offline bidder  can  

modify his bid and criteria at any point in time; however, such adjustments are costly. 
Only a quarter of offline bidders alter their bid in the sample, as is the case in Figure 

4. Two thirds of all the observed highest bids are from offline bidders who left their 
bid unchanged. 

The ad exchange employs a novel auction mechanism with hybrid rules: the offline 

bidders play by second-price rules and the real-time bidders play by first-price rules. 
The bidder with the highest bid wins the auction, regardless of her type, provided that 
her bid exceeds the reserve price. If an offline bidder wins, then he pays the second-
highest bid, no matter of whether an offline or a real-time bidder submits the second 

highest bid. He pays the reserve price when he is the sole bidder. If a real-time bidder 
wins, then she simply pays her bid. If bidders are symmetric, the hybrid auction 

rules are suboptimal as they treat bidders asymmetrically. However, the bidders in 

the sample are heterogeneous. The rationale for the hybrid mechanism is unclear. 
5 At DoubleClick, real time bidding rates grew from 8% to 64% within 2011 and reached 68% by 

May 2012 (Google 2011). 
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It may be designed to offset the information advantage of the real-time bidders. In 

another research project, I examine the revenue properties of the hybrid mechanism 

and in comparison it with a symmetric first-price and second-price mechanisms. 

4 Theory  

In this section, I develop a theory of equilibrium bidding in a hybrid auction in which 

some bidders play by first-price rules and others play by second-price rules. The goal 
is to map the observed bid data into the bidder valuations. This mapping is a first step 

towards disentangling the role of tracking in the next section and ultimately towards 
simulating a counterfactual market under privacy policy. I establish an equilibrium 

bidding bid function β (v) that maps valuations v into bids b when a seller sets a 

reserve price r. The inverse bid function η (b) then translates bids into the bidder 
valuations—the object of interest. 

I begin by  briefly  summarizing the setting and  results.  I study  hybrid auctions  

where offline bidders randomly submit their bid and play by second-price rules, and 

real-time bidders bid dynamically and play by first-price rules. I assume that bidders 
treat each auction separately and have independent private values. Under these as­
sumptions, I show that a second-price bidder optimally bids his valuation and that a 

first-price bidder optimally bids less than her valuation; in other words, the logic of 
the pure second-price and pure first-price auctions respectively holds in this hybrid 

setting. Discontinuous first-price bid functions distinguish these auctions. When a 

first-price bidder enters the market she trades off her surplus conditional on winning 

the auction with her probability of winning given her bid. The probability of win­
ning is given by the distribution of her competitors’ highest bid. Figure 5 illustrates 
that the competitors’ bid density is typically characterized by multiple mass points or 
positive probability bids repeatedly submitted by the offline bidders. The first-price 

bidders’ best responses imply a stark prediction: the support of their bids should 

have gaps because the first-price bidder wants to exploit the jump in the probability 

of winning just above a mass point in the distribution of competitor bids. 
Propositions 1 and 2 describe the general features of the bidder best response 

functions. Proposition 1 states that it is still optimal for the second-price bidder to 

bid his valuation in a hybrid auction. 

Proposition 1. In an independent private values auction with hybrid rules, a weakly 

dominant strategy for a second-price bidder is to bid his valuation, i.e. βSP (v) = v. 

This result follows from the usual dominant strategy logic of a pure second-price 

auction (see e.g. Krishna 2009). 
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Proposition 2 describes the first-price bidder’s optimal bidding behavior. 

Proposition 2. In an independent private values auction with hybrid rules, the first-
price bidder optimally 

1. shades her bid below her valuation: βFP  (v) ≤ v; and  

2. avoids bidding in an internal	 (bL, B] for some bL when she faces competition 

from a bidder who bids B > r  with probability Pr [B] > 0. βFP  (·) is there­
fore discontinuous meaning that the support of the first-price bidder’s induced 

distribution of bids is not connected. 

I sketch the intuition behind Proposition 2 below and refer the reader to Appendix 

A.	 The first-price bidder i chooses her bid b, given her  valuation  v, to  maximize  

max (v − b) Pr  [i wins|b]
b 

Thus, the first-price bidder trades off the higher surplus conditional on winning, and 

the diminished probability of winning as she raises her bid. As with pure first-price 

rules, Part 1 of Proposition 2 holds because bidding above (below) her valuation 

ensures a negative (positive) expected payoff. Part 2 states that a first-price bidder 
avoids bidding in an interval of strictly dominated bids below a competitor’s bid 

B when Pr [B] > 0, a  phenomenon  I  refer  to  as  a  bid gap. The intuition behind 

the bid gap is that the discontinuous improvement in the probability of winning at 
B + ε, for  ε > 0 small, more than compensates for the diminished surplus conditional 
on winning. Consider for example a first-price bidder with valuation v = $1.25 

who faces a single rival who bids B = $1  with probability
 1 
2 . The first-price bids
 

of b = $0.99 and b = $1.01 yield expected utility ($1.
25 − $0.99)
1 
2 = $0.
13 and
 

($1.25 − $1.01) 1 = $0.24 respectively; thus, outbidding B can increase the first-price 

bidder’s payoffs. 
Before characterizing the equilibrium, I make two assumptions about the bidders. 

Assumption 4.1. The first-price bidder valuations v are independently distributed on 

an interval [0, V ] according to the distribution F (v) with continuously differentiable 

density f (v), which is strictly positive on the  interior  of the support of  F (v). 

Assumption 4.2. The second-price bidder has valuation v above the seller’s reserve 

price r, and  bids  B with probability Pr [B] =  α > 0 and bids 0 with complimentary 

probability. 

Assumption 1 states that the first-price bidders have independent private values and 

makes regularity assumptions on the distribution of valuations F (·). Assumption  
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2 reflects  a feature of  the institutional  setting:  the  second-price  bidders are offline  

bidders who submit a fixed bid randomly on ad inventory that meets their criteria. I 
assume that the probability of submitting this bid is exogenous. The offline bidders 
bid randomly in order to spread their fixed advertising budget over time and across 
users, or ‘pulse’ their advertising in a simple and transparent manner. Strictly speak­
ing, however, this strategy is suboptimal in this environment: the budget-constrained 

offline bidders should optimally bid on all auctions and shade his bid downwards 
(Gummadi et al., 2012). 

Proposition 3 characterizes the equilibrium when first-price bidders compete with 

second-price bidders who submit bids with positive probability. 

Proposition 3. Suppose the auction has n >  1 symmetric first-price bidders who 

satisfy Assumption 4.1 and m asymmetric second-price bidders who satisfy Assump­
tion 4.2. The seller sets a reserve price of r ≥ 0. Then  a  pure,  symmetric  Bayesian  

Nash equilibrium exists in which 

1. the first-price bidder’s equilibrium bidding function βFP  (v) is strictly increasing 

with βFP  (r) = r and has K ≤ m + 1 segments of the form 

´ v n−1 
v F (u) du + ck� 

βFP  k(x; ck) = v − (4.1) k n−1F (v)

� � �for v ∈ (vk, vk+1), constants  ck, and threshold values  vk; and  

2. second-price bidder j’s equilibrium bidding function is 

βSP (vj) =  


 


 

0 with Pr = 1− αj 

vj with Pr = αj 

I sketch  the intuition  below and  refer  the  reader  to  Appendix  A  for  the  full proof.  

The second-price bidders bid their valuations due to Proposition 1, but submit this 
randomly due to Assumption 2. The first-price bidders equilibrium behaviour is more 

complicated. Consider first the solution without the offline bidder. A unique symmet­
ric equilibrium exists under these weak regularity conditions on f (·) (Athey and Haile, 
2007). The equilibrium bidding function is βFP  (v; 0)  because the initial condition 

βFP  (r) = r implies that c = 0. The first-price bidder’s first-order conditions define 

the optimal βFP  (v) as the solution to a differential equation. When the competitors’ 
distribution has mass points, the solution shares the same first-order condition which 

defines the same differential equation as without the mass points. Due to Proposition 
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2, the equilibrium bidding function has multiple initial conditions. The first initial
 
(r) =  r implying that c1 = 0. Suppose  the  competition  features  condition is still βFP  

a single positive bid  B with Pr [B] > 0. Proposition 2 states that the discontinuous 
improvement in the winning probability at b = B + ε implies that this bid dominates 
bids in some interval (bL, B]. The threshold bL and its associated valuation x� such 

that bL = β (v�) are then given by equating the expected payoffs at bL and B + ε as 
� , βFP  (·) is given by βFP  

2

1

ε > 0 approaches 0. Beyond v
 (v; c2) where c2 is pinned down 

βFP  (vby the initial condition limδ→0+ 
� + δ) =  B. Note  that  this  phenomenon  occurs  

because some bidders play by second-price rules. If all bidders play by first-price 

rules, then the bidder who submits B with positive probability could win as often by 

bidding bL + ε while reducing payment, so bidding B is not an equilibrium. However, 
this phenomenon is not limited to hybrid auctions: it also occurs in pure first-price 

auctions if the seller’s reserve price is secret and not continuously distributed. 
Figure 6 illustrates a simple example in which two first-price bidders with uni­

formly distributed values face an offline bidder who randomly bids B
 =
 1 
4 with prob­

ability
 1 
2 and bids 0 with remaining probability. The first-price bidder’s optimal
 

bidding function is given by
 




 1v if x ≤


βFP  (v) = 2 3 


 +
 1 
36v 

1v 
2 if x >
 3 

11which implies the bid gap b /∈ (
 Figure 6 shows that βFP  (v) coincides with the ].
,
6 4

solution (dashed line) without the offline bidder (β (v) = 
  v 
2) until the indifference
 

valuation v� =
 1 1and its associated bid bL =
 Figure 6’s dotted indifference line
 .
3 6

equates the utilities at B + ε and bL. The indifference line intersects with the bid­
ding function to pin down v� and bL. Beyond  this  valuation,  the  bidding  function  is  

reinitialized above B at the initial condition βFP  
� � 

=1 1 .
43 

Though Proposition 3 establishes the existence of an equilibrium, the equilibrium 

may not be unique because, in cases with multiple offline bids, the gaps can overlap. 
In Appendix B.1, I establish that multiple equilibria can exist a simple example. 
In the example, two first-price bidders with uniformly distributed values face two 

offline bids (0.25, 0.3) with probabilities (0.1, 0.15). The first equilibrium has two bid 

gaps (0.227, 0.25] and (0.266, 0.3], and  the  second  equilibrium  has  the  single  bid  gap  

(0.243, 0.3]. Unfortunately,  we  typically  observe  bids  in  the  theoretical  gaps,  so  the  

data can not be used to guide which equilibrium is selected. My bidding function 

algorithm selects an equilibrium by moving through the vector of offline bids from 

the lowest to the highest component Bi and selects the highest component Bj such 
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that its gap includes Bi (i.e., bL
j ≤ Bi). In the example above, this would select the 

second equilibrium with the single bid gap. See Appendix B, for a more in depth 

discussion of multiple equilibria in the hybrid auction. 
The theorized gaps in the bidding function is a stark prediction that could fail 

in the data for various reasons. The analysis assumes that all bidders have correct 
beliefs regarding their opponents’ distribution of valuations. Bids in a predicted gap 

may reflect incorrect beliefs or experimentation and learning in an evolving market­
place. In reality, bidders must pay to learn about their opponents’ distribution of 
bids by investing in better algorithms and incurring computational and data storage 

costs to update their model. So, these costs may exceed the loss in profits due to 

submitting a strictly dominated bid in a gap. Furthermore, a bidder must aggregate 

impression markets at some level to learn its competitors’ bid distribution. Since 

the markets can be cut differently (by time, user and publisher characteristics), the 

bidder’s beliefs would be incorrect if he aggregates the markets incorrectly. Nonethe­
less, the frequency and consistency of some offline bids are hard to ignore. These 

factors explain why we empirically observe real time bids in a theorized gap. As I 
elaborate in the model section, I abstract away from these factors and assume that 
bidders randomly bid in a gap with some positive probability but otherwise behave 

optimally. 
Finally, I discuss some of the key assumptions that I use in this section, starting 

with the assumption that valuations are private. This assumption rules out com­
mon values meaning that, conditional on observables, the valuations of a bidder’s 
opponents are irrelevant to the bidder’s own valuation. In reality, the market has a 

common value flavor. Some impressions are generated by computer algorithms called 

bots that advertisers view as worthless ‘lemons’ in the language of Abraham et al. 
(2011). This is a common value setting if bidders receive a private signal that a user 
is a bot. However, identifying bots is expensive. My discussions with people in the 

industry suggest that only some of the largest ad buyers invest in bot detection. Ad­
vertisers instead reduce their bids to reflect the fact that a certain portion of their 
ad purchases are worthless. Overall, my discussions with the people in the industry 

suggest the common value problem is not top of mind among advertisers. It us an 

open issue whether a common value auction model is identified when only the top 

two bids are observed or observed with censoring due to the reserve price. Though 

I am unable to identify a common value auction, my full model in section 5 allows 
bidder’s bids to be correlated within users. 

I further assume independence for a given auction. Though I allow the distribu­
tion of private values to be conditional on characteristics observed by the bidder, the 
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distributions are otherwise independent across bidders. I also assume that the value 

distribution is independent across time. Independence is especially relevant for the 

real-time bidders, since it allows me to treat their decision problem as static. Real-
time bidders strategies could be dynamic in the sense that they incorporate an ad’s 
past performance (e.g. clicks). However, the data do not contain any ad performance 

information. Celis et al. (2012) also assume independent private values in their em­
pirical analysis of a second-price online display ad auction. I weaken their assumption 

of independence across bidders by allowing valuations to be correlated within users 
due to an unobserved heterogeneity term as I discuss in the model section. 

5 Model  

In this section, I model user tracking in the online display ad auction market as user-
level unobserved heterogeneity. That is, auctions systematically differ by user charac­
teristics that bidders observe due to tracking but that I—as the econometrician—do 

not observe. This section comprises two subsections that model: 1) the offline bidders; 
and 2) the real-time bidders. 

Throughout this section, I maintain several assumptions. All advertisers publicly 

view user tracking characteristics. These characteristics can include user demograph­
ics, interests, and past purchases. Formally, each bidder views a vector of user u’s 
characteristics cu in some space C. For  instance,  C could be the product space of 
gender and income, C = {M, F} × R+. As  in  the  previous  section,  bidders  have  

independent private values conditional on observable auction characteristics and the 

unobservable (from our point of view) user tracking characteristics. This assumption 

allows bidder values to differ systematically between users. The assumption rules 
out common values which allow bidders to see private signals regarding user tracking 

characteristics that would be informative about their opponents’ valuations. It is not 
known whether a common value model is identified when only the two highest bids 
are observed with censoring. To focus on tracking, I condition on observable auction 

characteristics (e.g. website, user country and browser) so that auctions differ only in 

user tracking characteristics. Finally, bidders are exogenously assigned to be either 
offline or real-time bidders. I do allow the distribution of valuations to differ between 

the offline and real-time bidders. The differences between real-time and offline bidder 
behavior arise from their underlying preferences. 
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5.1 Offline Bidders 

The offline bidder’s restricted strategy space includes a fixed bid, a set of targeting 

criteria, and a random bidding probability. Offline bidders are asymmetric and spec­
ify targeting criteria based on user tracking characteristics. Formally, offline bidder i 
chooses a subset of user characteristics Ti ⊂ C that defines its target audience. When 

user u satisfies bidder i’s criteria, I write u ∈ Ti. In the model, we wish identify and 

estimate the proportion of users who satisfy i’s criteria Pr [u ∈ Ti] and the probability 

that i bids Bi > 0 on his target audience, Pr [bi = Bi|u ∈ Ti]. I  show  the  model  is  iden­
tified from only the winning bid when the offline bidder criteria overlap. Since users 
can satisfy several bidders’ criteria simultaneously, the offline bidder’s user targeting 

can be viewed as a mixture model. The mixture model is identified by repeated user 
observations and estimated using maximum likelihood. When bidders can not track 

users, their counterfactual bids reflect the average value of untargeted impressions. 
Assumption 5.1.1 rationalizes the offline bidder’s fixed bid. Offline bidder i values 

user u’s tth auction according to: 

Assumption 5.1.1. v Off = xi where yiu = I [u ∈ Ti].iut · yiu 

Assumption 5.1.1 states that offline bidder i’s valuation is the product of the 

bidder-specific constant xi and the user-bidder match term yiu. yiu is an indicator 
variable that equals one when user u meets i’s criteria. xi represents i’s value for users 
in his target group. Recall that offline bidders play by second-price rules and bid their 
valuation. As such, offline bidder i bids Bi = xi. Assumption  5.1.1  also  asserts  that  

users outside the target group are worthless. This assumption could be relaxed, since 

revealed preference implies that the value of untargeted users is less than the reserve 

price. yiu is the unobserved heterogeneity term whose binary form allows for a richer 
model that matches bidders to their desired user tracking characteristics. In principle, 
offline bidders could enter multiple bids that specify different values xi for different 
target groups. This is rare in the data, however, so I treat different bid amounts as 
different bidders for simplicity. I wish to relax this in the future. 

Assumption 5.1.2. rationalizes the final component of the offline bidder’s strategy 

space: probabilistic bidding. 

Assumption 5.1.2. a) Offline bidder i’s conditional bidding probability functions 

are 

βOff 
� 
v Off |u ∈ Tiiut 

�

�



 


 

0 with Pr = 1 − αi 
=
 

Bi with Pr = αi 

βOff 
� 

Off v |u /∈ Tiiut = 0  with Pr = 1
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b) When i can no longer track users, its conditional bidding probability function are 


0 with Pr 1− αi 

βOff,CF 
� 

Off,CF 
�  

v = iut  
iBCF with Pr αi 

Offline bidder i bids randomly on users that meet its criteria according to an 

exogenously given probability. This arises from an advertiser’s fixed budget which 

it wishes to spread across time and users. I take the ad budget, and hence αi as 
given. I maintain the same bidding probability αi in the counterfactual. Given its 
rationale, we could alternatively modify αi so that i expends his same budget in the 

counterfactual. 
Proposition 4 asserts that, when the offline bidder can no longer track users, he 

will bid his expected valuation for untargeted users. 

Proposition 4. Under Assumptions 5.1.1 and 5.1.2b, when the offline bidder i cannot 
track users, i counterfactual (denoted by CF ) is given by  

CF 
� 

Off 
�

B = E v = Biτii iut 

CF CFwhere τi = Pr [u ∈ Ti] and i bids randomly according to Pr
�
bi = Bi 

� 
= αi and 

CFPr
�
bi = 0

� 
= 1− αi. 

Proof. i’s counterfactual valuation can be decomposed using the Law of Total Prob­
ability 

E [viut] =  E [viut|u ∈ Ti] Pr [u ∈ Ti] + E [viut|u /∈ Ti] Pr [u /∈ Ti] 

= xi Pr [u ∈ Ti] + 0 · Pr [u /∈ Ti] 

= xi Pr [u ∈ Ti] 

= Biτi 

This follows from Assumption 5.1.1, which asserts that an offline bidder has 0 value 
for users outside his targeting criteria. Proposition 1 states that Bi

CF = E [viut]. i�s 
probabilistic bidding is assumed in 5.1.2b. 

Proposition 4 highlights the role of the targeting probability τi and the conditional 
bidding probability αi in describing the offline bidder’s counterfactual behavior. For 
example, an offline bidder who bids $1 on women with τ = 1

2 will bid $0.50 when 

he no longer observes gender. Given that we assume E [viut|u /∈ Ti] = 0  rather than 

E [viut|u /∈ Ti] ∈ [0, r], we  can  view  our  counterfactual  estimates  as  a  lower  bound  for  

the counterfactual revenues. 
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5.1.1 Identification 

The offline bidder model is identified using repeated user auctions when viewed as a 

mixture model. We wish to identify the two model parameters: bidder i’s targeting 

probability τi = Pr [u ∈ Ti] and conditional bidding probability αi = Pr [bi = Bi|u ∈ Ti]. 
I begin by explaining how these quantities are identified in the simpler case in which 

we observe all bids. I proceed to show that these quantities are identified in a setting 

with ordered bids and unconditionally dependent bids. 
By first considering the case in which when all offline bids are observed, we see 

that the offline bidder model is a mixture model. Again, we wish to identify τi and 

αi. We  require  that  Bi ≥ r to identify xi = Bi as well as αi and τi. We  incompletely  

observe the set of users such that u ∈ Ti since biut = 0 can occur when u /∈ Ti or when 

u ∈ Ti with probability 1 − αi. As  such,  Pr [biut] is given by a mixture model with 

the user two types u ∈ Ti and u /∈ Ti and their associated conditional probability 

Pr [biut|u ∈ Ti] and Pr [biut|u /∈ Ti]. 
If users appear only once in the data, we can still create informative bounds on 

the parameters αi and τi. The set of users for which we observe biut = Bi provide 

a lower  bound  for  τi. Denote  these  users  by  u ∈ Ti
LB. As  for  the  upper  bound,  all  

users could satisfy i’s criteria (τUB  = 1) because the  i bids randomly on those users 
that meet its criteria. Similarly, αi is bounded below by assuming all users satisfy i’s 
criteria (τi = 1) and  bounded  above  by assuming  that  τi equals its lower bound τi

LB . 
The bounds are thus 

�
τLB LBτi ∈ i = Pr

�
u ∈ Ti 

� 
, 1

� 
(5.1) 

αi ∈ 
�
αLB = Pr [biut = Bi|τi = 1] , αUB  = Pr

�
biut = Bi|τi = τLB 

��
i i i 

If we observe the same user across multiple auctions, the quantities αi and τi are 

point identified. Intuitively, though we do not know if any user u with biut = 0 for all 
t satisfies u ∈ Ti, this  becomes  increasingly  unlikely  (and  informs  αi) as  we observe  

more auctions t� with biut� = 0. Suppose we observe the same user twice, then the 

probability of their observed bids is given by 

Pr [biut, biut� ] =  Pr [biut, biut� |u ∈ Ti] Pr [u ∈ Ti] + Pr [biut, biut� |u /∈ Ti] Pr [u /∈ Ti] 

= Pr [biut|u ∈ Ti] Pr [biut� |u ∈ Ti] τi + Pr [biut|u /∈ Ti] Pr [biut� |u /∈ Ti] (1− τi) 

using the Law of Total Probability. The expression simplifies whenever we observe 

an auction t� such that biut� = Bi since Pr [biut� = Bi|u /∈ Ti] = 0. If  we  observe  users  
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twice, the system of equations
 

Pr [biut = 0, biut� = 0]  =  (1− αi)
2 τi + 1− τi (5.2) 

Pr [biut = 0, biut� = Bi] = 2αi (1− αi) τi 

pins down τi and αi. 
Two factors complicate the identification of τi and αi in our setting: 1) bidder tar­

geting probabilities are dependent conditional on observables; and 2) we only observe 

the top two bids. Overlap in bidder criteria induces dependence in offline bidders’ 
unobserved heterogeneity terms yui, yuj . This is unavoidable since, for example, two 

advertisers could target the same gender (perfect positive correlation) or target oppo­
site genders (perfect negative correlation). Since we observe only the top two bids and 

bids are not independent, lower bids are censored from above and are not censored 

at random. Proposition 5 overcomes these challenges and separately identifies each 

offline bidder’s τi and αi in the weaker setting where we only observe the winning bid. 
Consider now the case where we only observe the winning bid Wut as depicted in 

Figure 7. The winning bid simplifies to three possible cases: Wut < Bi, Wut = Bi 

and Wut > Bi 
6 . biut is censored when Wut > Bi, so  we  can  simplify  i’s competition to 

the effective competitors who outbid Bi and collectively denote them by C. Figure  7  

illustrates a Venn diagram of bidder of i and C’s target subpopulations. i exclusively 

targets the subset of users satisfying the criteria Ti\C . C exclusively targets the criteria 

TC\i, they  both  target  Ti∩C , and  they  both  ignore  T∅. Denoting  τE = Pr [u ∈ TE ], we  

seek the targeting probability τi = τi\C +τi∩C . This targeting model is general in that 
it allows any dependence structure in the match indicators yiu and yCu. Further,  I  

allow i’s effective competition to vary its conditional bidding probability on the users 
it alone targets: Pr

�
Wut > Bi|u ∈ TC\i

� 
≡ αC\i �= αi∩C ≡ Pr [Wut > Bi|u ∈ Ti∩C ]. 

As before, some observed bids rule out possible user types. In particular, Wut = Bi 

implies that u /∈ TC\i ∪ T∅, and  Wut > Bi implies that u /∈ Ti\C ∪ T∅. As  an  example,  

if we see the same user twice with bids Wu1 < Bi and Wu2 > Bi, the  probability  of  

the data is given by 

Pr [Wu1 < Bi, Wu2 > Bi] 

= Pr
�
Wu1 < Bi|u ∈ TC\i; α

� 
Pr

�
Wu2 > Bi|u ∈ TC\i; α

� 
τC\i 

+ Pr [Wu1 < Bi|u ∈ Ti∩C ; α] Pr [Wu2 > Bi|u ∈ Ti∩C ; α] τi∩C 

= 
�
1− αC\i

� 
αC\iτC\i + (1− αi∩C ) (1− αi) αi∩C τi∩C 

6For ease of exposition, I assume away ties, so that Wut = Bi if and only if i wins the auction. 
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The winning bid data also represent the outcome of a mixture model where a user 
potentially belongs to at most four possible types. 

Proposition 5 presents my identification result. 

Proposition 5. Under Assumptions 5.1.1 and 5.1.2, αi and τi are identified from the 

winning bid when we observe some users who appear once and some who appear twice 

in auctions provided that the solution to the implied system of equations is unique. 

See Appendix A for the detailed proof. The proof includes a system of seven equations 
of the form in in equation (5.2). These equations pin down the six unknowns in 

the vectors α = 
�
αi, αi∩C , αC\i

� 
and τ = 

�
τi\C , τi∩C , τC\i

�
. These quantities are not 

identified, for instance, when αi∩C ≡ Pr [Wut > Bi|u ∈ Ti∩C ] = 1. Specifically,  if  i’s 
competitors always bid on users that both i and C target, then i’s bids will always 
be censored. Then, i’s targeting probability and conditional bidding probability are 

not identified on this region of users. Since we actually observe the top two bids, we 

could handle at most one such bidder by dropping his bids. 
This paper is among the first to use mixture models in an empirical auction set­

ting. Lamy (2012) identifies an asymmetric first-price auction model when bidders 
are anonymous. Observed bid distributions are a mixture over the individual bid 

distributions. He explains that his model can also be applied to models with unob­
served heterogeneity when its form is discrete. An et al. (2010) identify a first-price 

auction model where the number of bidders is possibly random and unknown to the 

econometrician but known to bidders. In their case, the mixture is over the number 
of bidders who generate the bid data. 

5.1.2 Estimation 

I estimate the offline bidder  model using constrained maximum likelihood  estimation.  

My estimation approach follows my identification argument. The parameters of in­
terest are the targeting probability τi = τi\C + τi∩C and conditional bid probability 

αi. The nuisance parameters are τC\i, αC\i, and  αi∩C . 
The log-likelihood function for the parameters θ ≡ τ, α has the form 

�
� 

�
�

L (W ; θ) =  
� 

log τE · Pr (Wut|u ∈ TE ; α) 
U E Tu 

where U denotes the set of users, E = {i \ C, i ∩ C, C \ i, ∅} the possible user types, 
and Tu the total number of auctions for user u. The constrained maximum likelihood 
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estimation problem is written as follows 

max L (W ; θ)
θ≡τ,α 

s.t. 
� 

τE = 1  
E 

[τ, α] ≡ θ ∈ 
�
θ, θ

� 

This includes the equality constraint that all users must satisfy a single set of target­
ing characteristics. The constraints also include rectangular bounds of the form (5.1). 
Though the likelihood function currently only makes use of the winning bid, I use the 

second-highest bid data to tighten these bounds on τ and α. The rectangular con­
straints also reduce computational time. The model simplifies the winning bid data 

into a few main cases that can be collapsed into a frequency weighted data set. This 
greatly reduces the computational burden of estimating the structural parameters 
in datasets with millions of auctions. In the future, I can see if an expectation-
maximization algorithm approach improves performance. 

In Monte Carlo simulations, the estimator generally performs well. When i wins 
infrequently, the estimator has trouble distinguishing between low τi and low αi cases. 
This problem recedes as the number of users and the number of observation per user 
increase. 

When the parameters are not on the boundary, I use the nonparametric boot­
strap for inference. Inference is challenging when parameter estimates approach the 

boundary. The nonparametric bootstrap is known to perform poorly on the boundary 

(Horowitz 2001). In this mixture model, we can lose identification when parameters 
are on the boundary (e.g. when αi∩C = 1, as  discussed  above).  Inference  in  such  cases  

remains an unsettled issue in the econometrics literature. The parametric bootstrap 

might be appropriate in this case. 

5.2 Real-Time Bidders 

In the model, the real-time bidders rank users in terms of their tracking character­
istics. Real-time bidders publicly observe user tracking characteristics, which are 

unobserved by the econometrician. Tracking characteristics enter the real-time bid­
der’s valuation as a common, user-level unobserved heterogeneity component. Their 
valuation also includes an idiosyncratic taste component. In the counterfactual, the 
unobserved user heterogeneity term collapses to its mean value across consumers while 

the idiosyncratic term is still allowed to vary. I separately identify the distribution 

of the idiosyncratic and unobserved user heterogeneity components using a combi­
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nation of within-user and between-user variation in bids. To estimate the model, I 
isolate users who share a common realization of the unobserved user heterogeneity 

term. I then use maximum likelihood to estimate the idiosyncratic term’s distribution 

holding the unobserved heterogeneity realization fixed. Proposition 2 predicts that 
bidders should not bid in an interval below an offline bid, but observed bids do not 
respect this. To rationalize this behavior, I model real-time bids as arising from a 

probability mixture of optimal bids with probability 1 − δ and sub-optimal bids in 

these dominated intervals with probability δ. Real-time  bidders  optimize  their  bids  

against their opponents’ entire bid distribution. 
Assumption 5.2.1 describes real-time bidder i’s value of user u’s tth auction. 

Assumption 5.2.1. 
RT v = xityuiut 

where xit and yu satisfy the regularity conditions in Assumption 4.1 (though the sup­
port of yu can be strictly positive). xit and yu are mutually independent as are xit and 

the offline bidder’s yiu. 

Real-time bidders are symmetric. Their utility function is the product of a bidder-
and auction-level idiosyncratic taste term xit and a common, user-level unobserved 

heterogeneity term yu. xit captures the bidder’s private taste which can vary due to 

budget smoothing and ad performance. yu captures the bidder’s shared quality rank­
ing for users. Bidders share a function f : C → R+ that maps the multi-dimensional 
user tracking characteristics into a user quality scalar. We can think of this scalar 
as being increasing in user income and responsiveness to advertising. This utility 

function resembles that of Krasnokutskaya (2011) though with user-level rather than 

auction-level unobserved heterogeneity. The regularity assumptions on xit and yu en­
sure an equilibrium (see Proposition 3). They are also used to identify and estimate 

the model. 
Assumption 5.2.2 lays out a real-time bidder’s counterfactual valuations (denoted 

by CF ) when it cannot track users. 

RT,CF 
Assumption 5.2.2. viut = xitE [yu] 

Without tracking, real-time bidders evaluate untargeted users according to the ex­
pected value of their unobserved user heterogeneity. The counterfactual valuations 
still vary because xit fluctuates as before. The identification argument pins down yu 

and therefore E [yu]. 
Thus, when bidders cannot track, the new equilibrium is given by a corollary to 

Proposition 3. 
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Corollary 6. Suppose the auction has n >  1 symmetric real time (first-price) bid­
ders who satisfy the regularity conditions in Assumption 5.2.1 and the preferences in 

Assumption 5.2.2. The auction also has m asymmetric offline (second-price) bidders 

who satisfy Assumption 5.1.1 and 5.1.2. The seller sets a reserve price of r ≥ 0. 
Then a pure, symmetric Bayesian Nash equilibrium exists in which 

])
1. the real-time bidder’s counterfactual equilibrium bidding function βRT,CF (x; E [yu

is strictly increasing with βRT,CF 
� � 

=
 r and has 2 ≤ K ≤ m + 1 
r ; E [yu]E[yu] 

segments of the form
 

� 
k 

F (u)n−1´ x 
du + ck (E [yu])x

βRT,CF E[yu] 

k (x; E [yu]) = xE [yu] − E [yu] 
F (x)n−1 (5.3) 

�� xfor x ∈ ( x k+1 ), constants  ck (E [yu]) that depend on Yu and threshold values k ,E[yu] E[yu] 

x� k; and  

2. the offline bidder j’s equilibrium counterfactual bidding function is 

βOff,CF
� 
v
Off,CF 

jt 

�
 
=
 


 


 

0 with Pr = 1 − αj 

Off,CF v with Pr = αjjt 

Off,CF where v = E [vjut|u ∈ Tj] Pr  [u ∈ Tj] =  xjτj.jt 

Corollary 6 assembles previous results and lays out the counterfactual market un­
der privacy policy. In Section 6, I simulate the counterfactual market and compare 

it to the status quo in order to evaluate the policy. Corollary 6 also shows how the 

model’s structural parameters enter the counterfactual. A real-time bidder’s prefer­
ences depend on the distribution of her idiosyncratic taste term and the mean of her 
unobserved user heterogeneity term. Corollary 6 clarifies that the real-time bidder’s 
counterfactual bids reflect not only her modified utility function due to Assumption 

5.3.2, but also her response to the modified offline bids. An offline bidder’s behavior 
is a function of his targeting probability (τi), his  conditional  bidding  probability  (αj) 

and his value for targeted users, given by xi = Bi. Below, I discuss how I identify 

and estimate the real-time model. 

5.2.1 Identification 

To construct the market counterfactual in Corollary 6, we first wish to identify the 

distribution of the idiosyncratic and unobserved user heterogeneity utility terms Fx (·) 
and Fy (·). Proposition 7 states that these distributions are identified. 
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Proposition 7. Suppose the auction has n > 1 symmetric real-time bidders who 

satisfy Assumption 5.2.1, m asymmetric offline bidders who satisfy Assumption 5.1.1 

and 5.1.2, and a seller who sets the reserve price r. Fx (·) and Fy (·) are identified 

from the support maximum or another quantile of user bids. 

Appendix A contains a detailed proof. I present an overview below. 
The proof of Proposition 7 employs the maximum and occasionally another quan­

tile of user bids to isolate the distributions of the idiosyncratic term xit and unob­
served user heterogeneity term yu. Proposition 7’s conditions generate the equilibrium 

in Proposition 3. This defines the real-time bid function βRT (x; Yu), which depends 
on the realized Yu. From  Assumption  5.2.1,  denote  the  bounded  support  of  xit and 

yu by 
�
X, X

� 
and 

�
Y , Y

�
. By  fixing  a  user  u, we  also  fix  u’s realized unobserved 

heterogeneity term Yu. Let  b (u) = β (x; Yu) denote a real-time bid for user u, where 

b (u) is a random variable that varies due to xit. Denote  b (u)’s support by 

¯
�
b (u) , b (u)

� 
=

�
β (X; Yu) , β 

�
X; Yu 

�� 

Figure 8 conveys the intuition behind the proof. Figure 8 layers the supports of 
xit and yit and relates them to the support of bids. The within-user variation b (u) 

in bids identifies Fx (·) by holding yu = Yu constant. To connect b (u) to x, I  use  

the inverse bid function, that Proposition 3 delivers. The between-user variation 

in a user’s maximum bid b (u) =  β 
�
X; Y

� 
primarily identifies F (·) by holding 

xit = X constant. To connect b̄ (u) to Yu

u 

, I  show  that  β 
�
X̄; Yu 

� y 

defines a finite 

inverse correspondence that outputs Yu. When  this  correspondence  is  not  unique,  I  

can pin down the correct Yu using a bid quantile sufficiently close to the reserve price. 
The support variation approach extends auction models with unobserved hetero­

geneity to settings where the reserve price censors the observed bid distribution. My 

identification argument resembles D’Haultfoeuille and Février (2010). Their result is 
more general in that it only requires three observed repeated measurements (bids) to 

identify the distributions of x and y. Similarly,  Hu  et  al.  (2009)’s  allow  β (x; y) to be 

non-separable in y and also requires three bids. Krasnokutskaya (2011) needs only 

two bids when β (x; y) is separable in y (e.g. uit = xityt implies βi (uit) = ytαi (xit)). 
Nevertheless, none of these approaches can accommodate censoring of the bid distri­
bution, since the observed x and y combinations are no longer random. Moreover, bids 
are non-separable in y whenever the real-time bidders face a binding reserve price or 
an offline (positive probability) bid. D’Haultfoeuille and Février (2010), Krasnokut­
skaya (2011) and Hu et al. (2009) are also more general in the sense that they allow 

for auction–level than user–level unobserved heterogeneity. However, it is not known 
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if such models are identified when we observe ordered bids (e.g. the two highest bids) 
rather than random bids. 

5.2.2 Estimation 

We wish to disentangle and estimate the distributions of the idiosyncratic and un­
observed user heterogeneity terms Fx (·) and Fy (·). Following the identification by 

support variation argument, I use frequent users’ maximum bid to isolate yu and 

estimate Fy (·). I  use  maximum  likelihood  to  estimate  Fx (·) holding yu fixed. To 

rationalize all observed bids, I model bids as a probability mixture of optimal and 

sub-optimal bids in the dominated bid gap. Real-time bidders optimize against their 
competitors bids, which includes the sub-optimal bids. I discuss the estimation pro­
cess below. 

In order to locate the bid gaps, the estimator needs to first fix a distribution of 
valuations. Recall from Section 3 that real-time bidders play by first-price rules and 

face offline competitors who submit bids with positive probability. Proposition 2 pre­
dicts that real-time bidders should avoid bidding in an interval below an offline bid: 
the ‘bid gap’. The rationale is that their probability of winning improves discontin­
uously by outbidding the offline bidder. We can locate the bid gaps by equating the 

real-time bidder’s utility at the endpoints of a gap, provided we know the bidder’s 
distribution of valuations. At each iteration, the estimator employs a given value 

distribution to derive the optimal bid function and its gaps. It then searches over a 

family of distributions to best fit the empirical bid distribution. Thus, the estimator 
reverses previous approaches that first estimate the distribution of bids, then back 

out the implied valuations, in settings with a continuous bid function (Guerre et al., 
2000). 

The data show little evidence that real-time bids respect the bid gaps predicted by 

the theory. Figure 2 depicts a typical real-time bidder’s bids for one publisher, which 

shows no obvious gaps in its bid support. Figure 9 shows all bidder’s bids on a single 

ad form (defined by the ad dimensions) and a single publisher over the week of data. 
As is typical, the real-time bids overlap with the big gaps, which are conservatively 

given by the gray bars.7 As it stands, my theory of bidding cannot rationalize a bid 

in the gap. 
To account for bids in the gap, I assume the distribution of bids G (b) represents 

a probability mixture of  the optimal bids  G∗ (b) and sub-optimal bids Ggap (b) in the 

gap, given by 

G (b; δ) = (1− δ) G ∗ (b) + δGgap (b) 

7The bid gaps in Figure 9 assume a fixed 10% markdown (biut = 0.9viut). 
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I take the stand  that  bids in  the gap represents  sub-optimal behavior  that  is  not  

rationalized by my model. This would occur for instance if the real-time bidder’s 
priors differ from the empirical distribution over my sample period. The dominant 
strategy logic of the bid gaps is hard to avoid, though it might be interesting to 

consider richer models of learning and dynamics that better fit the data. The δ 

approach has its own challenges: the optimal bid function endogenizes δ in that the 

real-time bidder optimizes against G (b; δ) rather than G∗ (b). Finally,  I  estimate  δ as 
a structural parameter.  

The real-time estimator includes three steps: 

1. Isolate the unobserved heterogeneity term yu 

2. Estimate the idiosyncratic taste distribution Fx (·) and the bid gap probability 

δ 

3. Estimate E [yu] 

In the first step, I select a group of users who share a common realized Yu term among 

the set of users who appear frequently. In the second step, I estimate the within-user 
distribution of the idiosyncratic taste term xit using maximum likelihood. In the final 
step, I estimate the distribution of the unobserved user heterogeneity term Fy (·) from 

the between-user variation. I use the estimated distribution to estimate E [yu], which 

governs counterfactual bidding. I discuss these steps in detail below. 
Step 1 : Isolate  yu 

The first step holds yu constant by selecting the appropriate the subset of data. 
This sample yields the within-user variation in xit that feeds the estimator in Step 

2. I choose the subset of frequent users who appear in more than T auctions, where 

T is sufficiently large that a user’s maximum bid approximates the upper limit of 
its support.8 I rank  user  u by his highest observed bid bmax (u). I  then  isolate  the  

unobserved heterogeneity component by choosing the set of users umax ∈ Umax such 

that bmax (umax) = maxu bmax (u). 9 I estimate  Fx (·) on the Umax sample to hold 
¯yu = Ymax constant. This is the sample equivalent of fixing y = Y and examining the 

set of bids generated by β 
�
x; Ȳ

�
. In  the  future,  I  may  estimate  Fx (·) on the entire set 

of users who appear more than T times. However, this compounds the computational 
demands of Step 2, which must be computed for every realization of Yu. 

Step 2 : Estimate Fx (·) and δ 

8In application, T is chosen to be 400 or 500 auctions chosen at the publisher level. 
9I can choose another  set  of  users  U � as long as their corresponding Yu ≥ E [yy ]. This ensures 

rthat the portion of the x distribution for which x ≥ is identified, since this is used for the E[Y ] 
counterfactual. 
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I use maximum likelihood to estimate the idiosyncratic taste distribution given  

the maximum realized unobserved user heterogeneity term Fx (·; Ymax) and the bid 

gap probability δ. 
As discussed, I use the distribution of valuations Fx (·) as a starting point to esti­

rmate the distribution of bids. The distribution of X is not identified below , since  Ymax 

bidders only bid when xitYmax ≥ r. I  separately  estimate  the  censoring  probability  � 
r rFx 

� 
and the non-censored Fx 

�
·|x ≥ 

� 
distribution given by Ymax Ymax 

� 
r 

�
� � Fx (x)− Fxr Ymax 

Fx x|x ≥ = 
Ymax 

� 
r 

�
1− Fx Ymax 

rI restrict  Fx 

�
·|x ≥ 

� 
to a family of distributions parametrized by Θ. In  principle,  Ymax 

rwe can nonparametrically estimate Fx 

�
·|x ≥ 

� 
by choosing Θ to be a space Ymax 

of sieve functions (Brendstrup and Paarsch, 2006). In practice, Θ is the family of 
re-scaled Beta distributions. The Beta distributions use only two parameters, but 
flexibly describe many standard distribution shapes. A third, scaling parameter θ3 

ensures that non-censored valuations lie on the support [r, r + θ3]. 
The likelihood function is constrained by the fact that the highest observed bid 

Bmax must fall below the maximum bid β (Xmax; Ymax, δ, θ) as a function of θ and 

δ. As  Athey  and  Haile  (2002)  point  out,  first-price  bidders  coordinate  on  the  same  

maximum bid since a bidder is worse off whenever he outbids it. First-price auction 

estimates can therefore be sensitive to the constraint Bmax ≤ β (Xmax; Ymax, δ, θ). In  

the estimator, the scaling parameter θ3 is an implicit parameter in the estimation 

that ensures that Bmax = β (Xmax; Ymax, δ, θ). 
The likelihood function combines n symmetric real-time bidders and m asym­

metric offline bidders. The former have bid distribution G (·) and the latter bid 

B = [B1 . . . Bm] with probability α = [α1 . . . αm]. I  assume  that  the  number  of  poten­
tial real-time bidders n is constant conditional on observed characteristics. I set n to 

be the total number of real-time bidders who ever submit an observed bid conditional 
n−n:n n:non observed characteristics. The density of the top two bids 

�
bk , bj 

� 
takes three 

main forms. If we observe no bids (∅, ∅), then  the density is  given  by  

m
nf (∅, ∅; r) = G (r)
�

(1− αi) 
i 
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If we observe only the highest bid yj , then  the density is  given  by  

 �mG (r)n αj i=� j (1 − αi) j ∈ Offline 
f 

�
∅, bn

j 
:n; r

� 
= 

nG (r)n−1 g 
�
bn:n

� �m(1 − αi) j ∈ RT 
j i 

If we observe both the highest bn
j 
:n and second-highest bids xk, then  the  density  is  

given by 

f 
�
bn
k 
−n:n, bj

n:n; r
� 

= 

(1 − αi)
I[Bi>bn−n:n


G 

�
bn
k 
−n:n

�n �m
i�=j,k 

k ] · αj αk k, j ∈ Offline 
�n−2 �m ]n (n − 1) G 

�
bn
k 
−n:n

i (1 − αi)
I[Bi>bn

k 
−n:n 

· k, j ∈ RT 

 
g 

�
bn−n:n

� 
g 

�
bn:n

� 
k j 

nG 
�
bn−n:n

�n−1 �m (1 − αi)
I[Bi>bn

k 
−n:n] · g 

�
bn−n:n

� 
αj k ∈ RT, j ∈ Offlinek i�=j k 

 �n−1 �m (1 − αi)
I[Bi>bk

n−n:n] �
bn:n

�nG 
�
bk
n−n:n · αkg j k ∈ Offline, j ∈ RTi 

Note that we treat the offline bids and the real-time bids as independent in the density 

function. This is valid because we have fixed y = Ymax and we assume in Assumption 

5.3.1 that xit and the offline bidder’s yiu are independent. Evaluating the likelihood 

function is computationally intensive, so I use a grid search to find the θ̂ and δ̂ that 
maximize the likelihood. 

The estimator in Step 2 has two components: a) estimate the offline bidding 

probability α and the real-time bidder’s censoring probably Fx 

� 
r 

�
; and  b)  deriveYmax 

the bid distribution G (b; Ymax, θ, δ) as a function of θ and δ.� 
r 

�
Step 2A: Estimate α and Fx Ymax 

Since Step 2B is computationally intensive, we wish to estimate as much outside 

that step as possible. These include the offline bid probabilities α and the real-time� 
r 

�
censoring probability Fx = ). In  principle,  we  can  estimate  theYmax 

G (r; Ymax

f (∅,bn:n
λj j =Bj ;r)

αj components from using αj = where λj ≡ . In  practice,  I  use1+λj f(∅,∅;r) 

the offline bidder estimates from section 5.2.2. Then, we can use the estimates to 
n

� 
f (∅,∅;r)determine F (r) =  Qm 

� 1 

.(1−αj )j 

Step 2B : Derive  G (b; Ymax, δ, θ) 

To derive the distribution of G (b; Ymax, δ, θ), the  key  is  to  determine  the  optimal  

bid function β (x; Ymax, δ, θ). This bid function is monotonically increasing (Proposi­
tion 3) and defines the inverse η (b; Ymax, δ, θ). G (b) is then given by: 

� 
r 

� � � 
r 

�� � � 
r 

� � 

G (b) =  F + 1 − F (1 − δ) G ∗ b|b ≥ ; Ymax, δ, θ + δGgap (b)
Ymax Ymax Ymax 
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where
 
� 

r 
� � 

r 
� 

G ∗ b|b ≥ ; Ymax, δ, θ = Fx η (b; Ymax, δ, θ) |x ≥ ; Ymax, δ, θ
 
Ymax Ymax
 

As shown in Proposition 3, we can calculate β (x; Ymax, δ, θ) when δ = 0  given the 

offline bids B. These gaps may overlap, so the number of gaps is weakly less than 

the number of offline bids. As in section 3, multiple equilibria can exist when the 

gaps overlap. My bid function algorithm (in the appendix) selects an equilibrium 

by moving up through the ordered B and choosing the gap with overlap from the 

highest possible component. When δ > 0, a real-time bidder’s chance of winning 

by outbidding B increases by the mass of real-time competitor bids in the gap. For 
simplicity, I assume that Ggap (b) is uniform over the total support of the gaps. When 

δ > 0, the  size  and  arrangement  of  the  gaps  can  change.  I  solve  for  β (x; Ymax, δ, θ) 

using a fixed point algorithm. For more details on the bid function algorithm, see the 

appendix. 
Step 3 : Estimate E [yu] 

ˆ ˆGiven β 
�
Xmax; Yu, δ, θ

�
, I  back  out  Yu primarily from the maximum of the fre­

quent user’s bid support bmax (u) (see the proof of Proposition 7). Towards, this we 

need to verify that β 
�
X; Yu 

� 
is strictly increasing in Yu given the estimated param­

eters. Failing this, Proposition 7 explains that we will need to make use of another 
bid quantile to pin down Yu in cases. The variation in Yu between frequent users tells 

us the distribution of yu. However,  we  are  only  interested  in  the  mean  of  yu for the 

counterfactual. If Fy (·) is censored by the reserve price, we could instead use the fact 
rthat y ∈ [0, ] to bound E [yu]. In  application,  I  use  the  mean  of  the  non-censored  Xmax 

distribution since most of Fy (·) is observed. 
In future work, I intend to compute confidence intervals for the real time estimates. 

I will need to show how the estimates depend on using Ymax to approximate Y . 
The nonparametric bootstrap and subsampling are inappropriate for inference on an 

extremum estimator. We would need to restrict the distribution of yu to be parametric 

in order to use the parametric bootstrap instead. Setting this aside, we can use the 

nonparametric bootstrap to compute confidence intervals for the estimates in Step 

2. The estimates should be precise given that they typically use several thousand 

observations. 
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6 Results  

I first  present  the structural auction  estimates  of the bidder  value  distributions.  I use  

these estimates to simulate the counterfactual market under tracking restrictions to 

evaluate the effect of the privacy policy. Overall, my results suggest that publishers 
are unambiguously worse off under tracking restrictions. Though advertisers are 

worse off overall, some advertisers are better off because the resulting market is less 
competitive. My estimates suggest that a tracking ban would devastate the industry: 
publisher revenue falls by 38.5% and advertiser surplus falls by 45.5%. 

I estimate the model for  a  sample  of American users visiting the top three pub­
lishers in revenue terms on the exchange. These three publishers account for over 100 

million auctions and half of all revenues arising from American users in the data. I 
intend to extend the analysis to additional publishers in the future. 

6.1 Structural Model Estimate 

6.1.1 Offline Bidders 

I estimate the offline bidders individually.  I split  the  data by  publisher  and ad form  

(ad dimensions). Given that the estimator is unreliable when the offline bidder wins 
infrequently, I only estimate the model on offline bidders who submit over 1,000 

winning bids.10 To condition on observables, I define an auction to be eligible if the 
offline bidder ever bids on an auction with the same observable characteristics.11 

Table 2 summarizes the estimates of 184 offline bids on the top three publishers. 
The model parameters include the bidder targeting probability and conditional bid­
ding probability. The targeting probability describes the proportion of users in the 

offline bidder’s audience who visit the publisher. The mean and median targeting 

probabilities are 53% and 63% respectively. The 25th quantile is 9%, so few bidders 
seem to finely target eligible users. Table 2 also shows the correlation between the 

targeting of the offline bidder and the bidders who outbid it. On average, the tar­
geting correlation is positive though it is frequently negative as well. This shows the 

importance of allowing for arbitrary targeting correlation in the model. The condi­
10This cut-off could be modified. To be conservative in calculating publisher losses, I assume 

the offline bidders with less than 1,000 winning bids are not targeting (τ = 1) and  attribute  their  
infrequent bids to a low bidding probability α. Since even 1,000 winning bids typically generate less 
than $1 in revenues, this assumption has little bearing on overall revenues.

11I presently define the set  of  observable  characteristics to be  the intersection of  the user’s browser,  
state and Designated Marketing Area evaluated for every of the hour of the week. I am concerned 
however that the hour-level criterion is too narrowly defined. I intend to relax this in the future 
and to intersect all these variables over the entire data week. I would then exclude the hours during 
which the bidder does not bid, to allow for entrance and exit. 
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Mean Min. Q=0.25 Median Q=0.75 Max. 
Targeting Probability 53.1% 0.3% 9.3% 62.5% 84.1% 100.0% 
Targeting Correlation 11.6% -36.2% -6.3% 9.0% 24.1% 97.3% 
Conditional Bidding Probability 35.9% 0.2% 18.2% 32.5% 49.6% 92.5% 

Table 2: A summary of the offline bidder estimates for 184 frequent offline bids on 
the top three publishers. The targeting correlation describes the correlation between 
the offline bids target audience and that of the bidders who outbid him. 

tional bidding probability describes how often the offline bidder bids on users who 

satisfy his targeting criteria. The purpose of the conditional bidding probability is to 

smooth the offline bidder’s ad budget. The conditional bidding probability estimates 
range from 0.2% to 93% with a mean of 36%. This shows that bidders selectively 

bid on observable users, though the mean of 36% is actually fairly high given the 

tremendous supply of impressions. 

6.1.2 Real-Time Bidders 

I estimate the distribution of valuations for the symmetric real-time bidders. This 
distribution is composed of the distributions of the idiosyncratic and user-level unob­
served heterogeneity terms xit and yu. I  estimate  the  distribution  of  the  idiosyncratic  

utility term Fx (·) separately for each publisher’s combination of ad form and reserve 

price. I only estimate the model when these cuts of the data include over 750 real-
time bids among the chosen set of frequent users with common Y u realizations. For 
computational reasons, I currently estimate Fx (·) for a single Yu realization though I 
intend to extend this estimation to all Yu later. 

Table 3 shows the estimates for the symmetric real-time bidder idiosyncratic taste 

distribution Fx (·) for various cuts of the data. I estimate the non-censored part of the 

distribution Fx (·|xYu ≥ r), by  fitting  it  to  a  beta  distribution  parametrized  by  (θ1, θ2). 
I scale this distribution to have support  on  [r, θ3 + r] using the scaling parameter θ3. 
I also calculate the probability  δ with which a bidder bids in the dominated ‘bid 

gap.’ The estimated δ̂ is 24% on average across the 18 density estimates. Figure 10 

illustrates the Fx (·|xYu ≥ r) density plot for publisher A’s three different ad forms as 
indicated in Table 3. Figure 10 shows the two predominant shapes that all the fitted 

distributions take. When the fitted beta distribution has the form θ1 > 1 and θ2 < 1 

(see Figure 10, Cut #1 and #3), the distribution has a reverse ‘L’ shape that puts 
weight on the right tail of the support. When both θ1, θ2 < 1 (see Figure 10, Cut 
#2), the fitted beta distribution has a ‘U’ shape. 

The real-time bidder estimator has severable notable features. For example, 
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θ1 θ2 θ3 δ 
Publisher A 
Ad 1 X r 1 8 0.01 6 0.1 
Ad 2 X r 1 0.01 0.1 4 0.15 
Ad 3 X r 1 6 0.1 5.9 0.3 

Publisher B 
Ad 1 X r 1 2.5 0.1 7.6 0.4 
Ad 1 X r 2 4 0.1 6.4 0.25 
Ad 1 X r 3 0.1 0.01 5 0.1 
Ad 1 X r 4 4 0.01 19.1 0 
Ad 2 X r 1 1.8 0.3 8.9 0.4 
Ad 2 X r 2 2.5 0.3 7.9 0.25 
Ad 2 X r 3 1.8 0.3 11.2 0.05 
Ad 2 X r 4 2.5 0.1 17.3 0 

Publisher C 
Ad 1 X r 1 0.9 0.3 4.8 0.2 
Ad 1 X r 2 8 0.01 6.5 0.4 
Ad 2 X r 1 0.01 0.1 3 0.15 
Ad 2 X r 2 0.7 0.01 2 0.5 
Ad 2 X r 3 8 0.01 0.9 0.05 
Ad 3 X r 1 2 0.01 8.6 0.5 
Ad 3 X r 2 1.8 0.01 8.1 0.5 

Table 3: The estimates of the real-time bidders’ value distribution for several ad forms 
(‘Ad’) and reserve prices (‘r’) for the top three publishers. The beta distribution 
parameters are defined by (θ1, θ2) with scaling parameter θ3 and the probability of 
bids in the gap is denoted δ. 
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the real-time bidder’s optimal bid function currently ignores infrequent offline bids 
(Pr [Bi] < 0.01) since these should have little bearing  on optimal bidding  behav­
ior. Since each set of beta distribution parameters implies a maximum possible bid, 
I rescale  the  bid  support  using parameter  θ3 to allow all beta parameters (θ1, θ2) 

to be considered as candidate estimates. θ3 is set implicitly to ensure the maxi­
mum observed bid matches the theoretical maximum bid given the model param­
eters, bmax = β (Xmax; Ymax, θ, δ). Following Guerre et al. (2000), I rescale bids by √ 
b† = b − r to avoid the problem that the bid density will otherwise approach infinity 

for bids near the reserve price. For computational reasons, the estimator currently 

uses grid search. Despite expanding this grid, some estimated parameters remain on 

the boundary of the grid, which I will further expand if required after extending the 

estimator from a single Yu to all realizations of yu. 

6.2 Privacy Counterfactual 

I use the structural auction results to simulate counterfactual auctions in which bid­
ders cannot track users. Corollary 6 outlines the counterfactual equilibrium in these 

simulations. 
I compare the average advertiser  and publisher  outcomes  in the status quo  and  

policy simulations. I simulate 100,000 auction draws for each combination of ad 

form and reserve price in each of the top three publishers. Since bidders can no 

longer condition on user tracking information, the real-time and offline bids are now 

independent. We can then use the imputed counterfactual estimates without worrying 

about dependence based on unobservables. However, there could still be dependence 

based on observables. I currently do not allow this for all observable characteristics. 
In the future, I could draw users at random from the sample and assign bids based 

on their observable characteristics. 
As welfare measures, I examine the advertiser’s bidder surplus and the publisher’s 

revenue. The offline bidder’s surplus is the difference between his bid (which equals 
his valuation) and the price paid. The real-time bidder’s surplus is her bid markdown 

v − b, and this calculation requires inverting her bid with the estimated inverse bid 

function v = η 
�
b; θ̂

� 
. The publisher’s measure of producer surplus is more nuanced 

as it depends on the outside value of an impression on the unobserved guaranteed 

market. Moreover, the publisher’s outside value of a marginal impression sent to the 

exchange declines in impressions as demand in the guaranteed market falls and the 

publisher needs less flexibility to fulfill its guaranteed contracts. Currently, I use the 

publisher revenues as my measure of publisher surplus as an upper bound estimate. 
Since the reserve price provides an upper bound for the advertiser’s outside option, 
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Opt-Out Opt-In Ban 
Total Industry Surplus -4.3% -39.1% -43.5% 
Publisher Revenues -3.8% -34.6% -38.5% 
Total Advertiser Surplus -4.5% -40.9% -45.5% 

Offline Bidder -4.7% -42.6% -47.3% 
Real-Time Bidder -4.5% -40.7% -45.3% 

Table 4: The overall impact of privacy policy on the online display ad auction par­
ticipants. The opt-in, opt-out, and tracking ban policies envision that the proportion 
of users who can not be tracked is 10%, 90%, and 100% respectively. 

subtracting the reserve price from the sale price provides a lower bound for the level of 
producer surplus in the status quo. If we are willing to assume the guaranteed market 
weakly falls under the privacy policy, subtracting the status quo reserve price also 

provides a lower bound for the counterfactual publisher surplus. In the next revision, 
I will include this measure of publisher surplus. Since the decrease in revenues is 
the same in both cases, the lower bound estimates of surplus would have a larger 
percentage decline in welfare. I will also differentiate the proportion of revenue which 

accrue to the publisher and the commission collected by the exchange. 
I consider the effect of opt-in, opt-out and tracking ban policies. As described 

in Section 2.3, I project that these policies correspond to Do Not Track (DNT) user 
percentages of 10%, 90%, and 100%. In the baseline model, I assume users opt out 

at random and that the buyers and sellers make no adjustments like changing reserve 

price. The policy’s impact is then proportional to the number of users who cannot be 

tracked. That is, for the status quo outcome wSQ, counterfactual  outcome  wCF and 

DNT user share γDNT , the  impact is given by  

Impact (γDNT ) =  wSQ − [γDNT wCF + (1  − γDNT ) wSQ] 

= γDNT (wSQ − wCF ) 

Though the welfare impact scales linearly with the Do Not Track population percent­
age in the base line model, these estimates provide policymakers a yardstick to gage 

their policy aggressiveness. 
The overall results suggest large losses for publishers and advertisers. Table 4 

shows the welfare losses due to the opt-out, opt-in, and tracking ban policies for 
the different agents. These policies correspond to a drop in total surplus of 4.4%, 
39.2%, and  43.5%. The burden is shared quite equally since publisher revenues falls 
3.9%, 34.6%, and  38.5% advertiser surplus falls 4.6%, 40.9%, and  45.5%. Within  

the advertisers, offline and real-time bidder surplus falls about equally by -47.3% 
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Total 
Surplus 

Publisher 
Revenues Total 

Advertiser S
Offline 

urplus 
Real-Time 

Publisher A 
Publisher B 
Publisher C 

-42.4% 
-41.9% 
-48.9% 

-48.5% 
-12.1% 
-46.1% 

-39.9% 
-46.3% 
-54.1% 

-59.1% 
-53.2% 
-32.1% 

-36.4% 
-46.2% 
-66.7% 

Table 5: The impact of a tracking ban policy on publishers and advertisers for each 
of the top three publishers. 

and -45.3% respectively under a tracking ban. The offline bidder surplus falls as 
some bidders exit the market and this offsets the benefit to the remaining bidders of 
reduced competition. While the total losses to publishers and advertisers seem large, 
they are on the same order of magnitude as Goldfarb and Tucker (2011)’s analysis 
of Europe’s opt-out policy that found a 65% decrease in ad effectiveness. To give 

a sense  of the economic  magnitudes,  I perform a back-of-the-envelope calculation  

for the impact on publisher revenues. If auctions represent 20% of the industry’s 
$6.8 billion in revenues, the three policies imply losses of $52, $471 and $523 million 

respectively. This is a lower bound impact estimate since it does not include the 

impact on advertisers, the guaranteed contract side of the market or the compliance 

costs to the industry. 
The results vary when we consider the three publishers separately. Under a track­

ing ban, Table 5 shows the revenues effect by publisher varies from -12.1% to -41.9%. 
The effect on advertiser surplus varies from -39.9% to -54.1%. 

Note that the existing results will need to undergo some further refinements. The 

policy impact estimates are sensitive to the censoring probability F (r) estimate. 
F (r) is typically very close to 1. So,  the  real-time  estimates  and  the  simulated  

auction outcomes are sensitive to the F (r) estimate. For the time being, I simulate 

the status quo industry welfare as a more reasonable baseline. At present, I compute 

the real-time surplus with respect to the subsample of users with a single unobserved 

heterogeneity realization Y � > E [yu]. I  can  extend  this  to  all  frequent  users  in  the  u 

future. In the meantime, we can think of the reduction real-time bidder’s surplus 
as an upper bound. For the time being, I also choose E [yu] to be the Y ∗ such u 

that β (Xmax; Y ∗) =  Ey [β (Xmax; yu)]. Later, I will update this to be the true mean u 

estimate E [yu]. 
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7 Extensions  

In Section 7, I propose four extensions to my analysis. The first corrects for opt-out 
user self-selection by weighing the counterfactuals by current opt-out user browsing 

behaviour. The next three describe market adjustments: 1) the seller reduces his 
reserve price; 2) the portion of real-time bidders is increased to reflect current levels; 
and 3) the advertisers shift their ad budgets to websites where they can find their 
target audience. I describe the extensions in detail below. 

7.1 Do Not Track user self-selection 

The first extension corrects for the self-selection of Do Not Track (DNT) users in an 

opt-out policy. To date, I assume that users opt out at random, so that the subpop­
ulation that opts out is identical to its complementary subpopulation. An opt-out 
policy would affect not only the proportion of DNT users but also the composition of 
users who self-select into DNT. An Internet Advertising Bureau study found that the 

segment of privacy concerned users were disproportionately lower income households 
and single (Deighton and Quelch, 2009). 

To correct for self-selection, I intend to weight the policy’s impact to reflect the 
browsing patterns of existing DNT users. My data feature a tiny fraction of users (less 
than 0.1%) who opt out of tracking. The fraction is too small to reliably estimate 

the structural model. However, opt–out users systematically differ in the types of 
content they access. In this extension, I will account for self-selection by choosing 

users for the opt-out counterfactual whose browsing behavior resembles that of the 

current opt-out population. The extension indicates how publishers with different 
content types may be affected differently by an opt–out policy and how the aggregate 

market impact would differ. For instance, if opt–out users are more likely to visit 
low-value websites (e.g. file-sharing websites), the total impact of the opt–out policy 

would be blunted. 

7.2 Seller adjustment 

In this extension, I propose that the sellers reduce their reserve price to mitigate 

the policy’s effect on their revenues. To date, I assume that the sellers maintain the 

status quo reserve price in the privacy counterfactual despite the fact that revenues 
fall by 6% under a tracking ban. The assumption is realistic if the seller’s reserve 

price reflects the publisher’s outside value given by his guaranteed contracts and if 
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these contracts do not change.12 However, I do not know how the guaranteed side of 
the display ad market will respond to privacy policy. Beyond the reserve price, I have 

no data on the other side of the market to inform a more general equilibrium view. 
Instead, I propose that sellers reduce the reserve price to maintain the status 

quo ad exchange sell-through rate. That is, sellers wish to maintain the fraction of 
inventory that they sell on the exchange. This assumption delivers an estimate for 
the alternate counterfactual’s impact. We can think of this exercise as indicating the 

order of magnitude of the effect if the supply side adjusts. If advertisers can not track 

users, the guaranteed delivery market’s equilibrium price could lie somewhere between 

remaining constant and falling by as much as the auction market. Then the two 

estimates as bounds on the publisher’s revenue loss. The constant sell-through rate 

counterfactual is also more applicable when publishers view the fraction of inventory 

they sell on the exchange to be remnant inventory. Publishers have remnant inventory 

if they struggle to find enough guaranteed buyers or if they were purposely leave a 

fraction of their inventory unsold to have some flexibility to meet their guaranteed 

contracts. One problem with reducing the reserve price is that the status quo bids 
below the reserve price are not identified, so I cannot predict bidder entry at a lower 

reserve price. 

7.3 Increased real-time bidder prevalence 

The third extension adjusts the proportion of real-time bids to reflect the higher level 
of real-time bidders in modern online display advertising auctions. Real-time bidders 
account for about 10% of sold impressions in the data. However, Google’s DoubleClick 

ad exchange suggests that the proportion of real-time bidders grew rapidly since 

the time my data was sampled. By 2011, real-time bidders represented 68% of the 

auction’s bids (Google, 2011). This extension would boost the share of real-time 

bidders to reflect their rise in prominence. In the process, this would also reduce the 

distortion created by offline bidders on the real-time bid function. Nonetheless, I can 

not know how the composition of the real-time entrants and the offline bidders who 

exit might differ. 
12Alternately, we can view that publishers submit the optimal reserve price and back out the 

outside value that rationalizes the reserve price. We could then recompute the seller’s optimal 
reserve price in the counterfactual market. However, the publisher market is so competitive that 
it is unclear if publishers have sufficient market power to price their inventory above their outside 
value. 
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7.4 Offline bidder adjustment 

This extension allows the demand side to readjust by increasing the advertiser’s bid­
ding probability on sites where it can find its target audience. For example, suppose 

an offline advertiser values its target audience at $1 and bids on two websites where 

its target audience appears with probability 40% and 60%. Its counterfactual bids 
would therefore be $.40 and $.60. If all the publisher maintain a reserve price of $.50, 
then the offline bidder would exit the first publisher’s auctions since only the second 

bid exceeds the reserve price. Instead, I propose that advertisers expend their ad 

budgets on sites where their target audience is better represented. This too would 

mitigate the collapse in the market and lead to interesting compositional effects. In 

particular, specific interest websites may do better than general interest publishers. 

8 Conclusion  

This paper estimates the previously unquantified impact of privacy policy on the auc­
tion market for online display advertising. I measure the responsiveness of publisher 
revenues and advertiser surplus in order to guide regulators in their policy selection. 
An opt–out policy allows privacy-conscious users to avoid tracking. If these users rep­
resent a minority of user (i.e., 10%), my estimates suggest that publisher revenues fall 
by 3.9% and advertiser surplus falls by 4.6%. The losses are substantial though per­
haps manageable in an industry that has grown 20% annually over the past decade. 
Alternatives like an opt–in policy and an outright ban would nearly or entirely or 
eliminate the portion of users who can be tracked. In these cases, publisher revenues 
and advertiser surplus would fall by half or more, as many advertisers would exit 
the market. This paper solely examines the auction market for online advertising. 
Back-of-the-envelope calculations suggest that the publisher’s revenue losses alone in 

an opt-out, opt-in or tracking ban policies would be $471, $52, or  $523 million re­
spectively. These costs must be weighed against the benefit to consumers of increased 

privacy protection net of the cost to consumers of worse ad targeting. This consumer 
welfare calculation is a challenging and interesting question for future research. 

Beyond answering the policy question, this paper makes some additional method­
ological contributions. I demonstrate two novel approaches to auction models with 

unobserved heterogeneity where we observe a panel of users in auctions and the 

unobserved heterogeneity is at the user level. In the first model, the unobserved 

heterogeneity utility term takes a binary form but can accommodate bidder-to-user 
matching. This appears in a setting where asymmetric bidders bid by proxy on users 
using binary auction criteria. In the second model, the unobserved user heterogeneity 
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appears as a scalar term in the bidder’s utility. I extend unobserved heterogeneity 

models to auctions where the reserve price binds, but where we observe a long panel 
of users. I identify and estimate the model by exploiting both the between-user and 

within–user variation in bids. In addition, I describe the equilibrium of a novel auc­
tion where some bidders play by first–price rules and others play by second–price 

rules. This novel setting necessitates fresh estimation approaches for the structural 
auction model that can accommodate discontinuous bid functions. Finally, I ana­
lyze a very large online display ad auction dataset, an industry which represent an 

extensive application of auctions. 
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Publisher 
Chooses Sales Channel & Advertiser 

Guaranteed Contract 
- Advertiser G1 $2 
- Advertiser G2 $1.50 
- Advertiser G3 $4 

Ad Exchange 

Real Time Bidders 

User Generates
 
Impression Opportunity
 

Offline Bidders 
- Advertiser OB1 $0.10 
- Advertiser OB2 $1 
- Advertiser OB3 $0.25 RTB1 

$1 

RTB2 
No Bid 

RTB1 
$1.10 

RTB1 
$0.10 

RTB1 
No Bid 

Figure 1: From the publisher’s point of view, a user generates an impression opportu­
nity. The publisher chooses to sell to a standing customer by fulfilling a guaranteed 
contract or sell on an ad exchange. The ad exchange runs an auction with offline 
bidders that pre-specify their bids and real-time bidders that bid on each impression 
in real time. 
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Figure 2: The hourly evolution of one real-time bidder’s observed highest bid over a 
week demonstrates high variance. Bids are aggregated hourly and larger dots indicate 
more frequent bids. 
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Figure 3: The hourly evolution of one offline bidder’s observed highest bid over a 
week reveals that he left his fixed bid unchanged. Bids are aggregated hourly and 
larger dots indicate more frequent bids. 
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Figure 4: The hourly evolution of one offline bidder’s observed highest bid over a week 
reveals that she modified her fixed bid on a number of occasions. Bids are aggregated 
hourly and larger dots indicate more frequent bids. 
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Figure 5: A histogram showing the density of observed highest bids for American 
users on a top publisher. The distinction between real time and offline bids shows 
they are characterized by discrete and continuous distribution respectively. Note that 
the y-axis uses a square root scale so that the real-time bids are visible given the very 
high probability on some offline bids. 
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Figure 6: The optimal bid function when two uniform first-price bidders face an 
offline bidder with Pr [B] =  12 = Pr [0]. The dashed blue line represents the optimal 
bid function in the absence of the offline bidder. The dotted red line represents 
the indifference relation given by u (x�, bL) = limδ→0+ u (x� + δ, B). The interaction 
between the dotted and dashed lines determines the indifference valuation x� and 
bL = β (x�). The gap in the bid support is highlighted in grey.
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Figure 7: A Venn diagram illustrates the targeting of bidders i and its effective 
competitors C on the space of users. 
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Figure 8: Demonstrates how the support of each user’s bids corresponds to the un­
derlying support of the idiosyncratic taste component x and the unobserved user 
heterogeneity term y in the real-time bidder’s valuation. 
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Figure 9: Illustrates the bids of several real-time bidders with respect to the predicted 
gaps in the bid function. The data is restricted to a single ad form (defined by its 
dimensions) for a single publisher and American users who appear more than 100 
times. The bid gaps are represented by the dark gray lines and reflect a 10% markup 
in the bid function b = 0.9v. I will correct the time periods with missing data in a 
later revision. 
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Figure 10: Real-time bidder value distribution estimates for Publisher A ad types 
1-3 with beta distribution parameters (θ1, θ2) and rescaling parameter θ3 given by 
#1 = (8, 0.01, 6), #2 = (0.01, 0.1, 4), and  #3 = (6, 0.1, 5.9). 
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Appendix 

A Proofs  

Proposition 1 

Proof. See Proposition 2.1 in Krishna (2009). 

Proposition 2 

Proof. Part 1 holds because a first-price bidder i chooses the bid b, given  his  valuation  

x to solve 

max (x− b) Pr [i wins|b]
b≤x 

Thus, bidding above (below) her valuation ensures a negative (positive) expected 

payoff. For Part 2, we wish to show that i’s bids in an internal (bL, B] are strictly 

dominated for some bL when it faces competition from a bidder who bids B > r  

with positive probability (α = Pr [B] > 0). We consider the case where α < 1, 
since that case is isomorphic to setting the reserve price at B. Write  Pr [i wins|b] =  

H (b) (1− α)I[B>b] α 
2 

I[B=b] where H (b) denotes the distribution of competing first-price 

bidders (equals 1 if none exist). 
Suppose that i’s valuation satisfies x > B. Then we choose bL = B − ε where 

ε must first satisfy x − B > ε >  0. Then, compare the payoffs for bid B + ε and 

bL = B + ε. bL is dominated 

u (bL) x− (B − ε) H (B − ε) (1− α)
= < 1 

u (B + ε) x− (B + ε) H (B + ε) 

H(B−ε)(1−α) x−(B−ε)for some ε since < 1 and limε→0 = 1. Moreover, this inequality H(B+ε) x−(B+ε) 

holds for any b ∈ [bL, B] provided that ε satisfies 

u (bL) x− (B − ε) H (B) α 

< 2 < 1 
u (B + ε) x− (B + ε) H (B + ε) 

Now, suppose that i’s valuation satisfies x ≤ B. If  x < B−ε = bL then any bid b ∈ 

[bL, B] is obviously strictly dominated by some b� < bL provided that Pr [i wins|b] > 0. 
Now suppose that B − ε ≤ x ≤ B. We  must  also  choose  ε such that b ∈ [B − ε, B] is 
strictly dominated for some b� < bL. Such  an  ε must exist or else b = β∗ (x) =  x for 
some x, which we know is not optimal so long as Pr [i wins|b�] > 0 for b� < bL. 
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Proposition 3 

Proof. In an equilibrium, the second-price bidders bid their valuations due to Propo­
sition 1, but submit their bids randomly due to Assumption 2. 

Theorem 2.1 from Athey and Haile (2007) delivers a unique equilibrium in pure 

strategies with a strictly increasing differentiable bid function β (x) in a independent 
private value auction with symmetric first-price bidders under the regularity condi­
tions on the value distribution F (·). Below, we show that the same theorem yields an 

equilibrium here because the problem is unchanged but for the discontinuity described 

in Proposition 2. 
The first-price bidder i chooses the bid b, given his  valuation  x, to  solve  

max (x− b) Pr [i wins|b]
b≤x 

Suppose the equilibrium bid function β (x) is strictly increasing, so that we can define 

the inverse bid function η (b) =  β−1 (b). Suppose  that  the  first-price  bidders  face  

m = 1  second-price bidders with B > r and Pr [B] = α > 0 (Pr [0] = 1 − α). Then 

we can rewrite the maximization problem as 

I[b=B]αn−1 I[b<B]max (x− b) F (η (b)) (1− α)
b≤x 2 

Note that the objective function for b > B is the same as the problem with first-price 

bidders alone π (b, x) = (x− b) F (η (b))n−1 . For  b < B, the  optimization  problem  is  

the same because the objective function is scaled by the constant (1− α). 
By taking first order conditions, we can see that optimal bid function is the solu­

tion to the ordinary differential equation 

f (x) f (x)
β� (x) + (n− 1) β (x) = (n− 1) x 

F (x) F (x) 

Solving this, we have the optimal bidding function 

´ x n−1F (u) du− c 
β (x; c) = x− (A.1) 

F (x)n−1 

The initial condition satisfies β (r; c) = r, so  c = 0. See  Paarsch  and  Hong  (2006)  for  

a detailed proof.  

From Proposition 2, we know the solution will satisfy β∗ (x) =  β (x; c = 0)  until 
some threshold x� such that β∗ (x) > B  for x > x� . 13 Proposition 2 tells us we also 

�13No such x exists if B is sufficiently large so as to not affect the real-time bidders behaviour. 
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expect a gap in the bid support at (bL, B] for some bL. This threshold is determined 

by a indifference condition that equates payoffs for bids above and below B. The 

indifference condition equates the payoff at x� for bL with the limiting payoff for 
b = B + ε as ε → 0+: 

n−1 n−1(x � − bL) (1− α) F (x �) = lim (x � − B − ε) F (x � + ε)
ε→0+ 

n−1 n−1(x � − bL) (1− α) F (x �) = (x � − B) F (x �)

Solving, we have 
�B − αx

bL = 
1− α 

This provides a downward sloping relationship between bL and x�. We  intersect  this  

with the increasing relationship between x and b given by β∗ (x) = β (x : c1 = 0) to 

pin down bL and x�. Above  the  threshold  x�, the  first  order  conditions  tell  us  the  

solution still has the form β∗ (x) =  β (x; c). To  solve  for  c2, we  use  the  ‘limiting’  

initial condition limδ→0+ β (x� + δ; c2) =  B. I  use  the  word  ‘limiting’  to  remind  us  

that the bidder does not actually optimally submit a bid at B, but  just  above  it.  

From (A.1), this means that 

c2 = (B − x �) F (x �)n−1 

The equilibrium first-price bidding function therefore has the form 

β (x) = 
  


 


 

β (x; c1 = 0)  x ≤ x� 

β (x; c2) x > x� 

� 

as desired. 
Finally, consider the case with m > 1 offline bidders that submit an ordered vector 

of bids B = [B1, B2, · · ·Bm] satisfying r < B1 < B2 < ... < Bm with the associated 

probability vector Pr [B] = α = [α1, α2, · · ·αm] > 0. Then first-price bidder’s problem 

is given by 
m

I[Bj =b]αjn−1 I[Bj >b]max (
x− b) F (η (b))
 (1− αj )
2
b≤x 

j 

In the simplest case, the logic of the single bid carries forward and the first-price 

equilibrium bid function has m + 1  components and a vector x� of m indifference 

B−αXLet X denote the x’s support maximum. No such x� exists if β 
�
X, 0

� 
< .1−α 
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valuations that govern the thresholds where the bid function is discontinuous
 

	 
�β (x; c1 = 0)  x ≤ x1


β (x; c2) x > x	 

1 
� 

β (x) =  . .. .. .	
�

β (x; cm+1) x > xm 

However, the discontinuities in the bid function can sometimes overlap for B com­
ponents and form a single discontinuity. Appendix B outlines the structure of the 

problem and how the possibility of overlapping bid gaps can create multiple equilib­
ria. 

Proposition 5 

Proof. Fix an offline bidder i with effective competition C. Given  that  we  only  

observe the winning bid, consider the following three possible events for the winning 

bid. Denote i’s positive bid by Bi, the winning bid by Wut with the winning bidder’s 
identity Iut, user  u and t denotes that user’s tth auction: 

1.	 Wut < Bi (includes Wut < r): i’s bid is known with certainty to be 0 since it 
can only take 2 values. 

2.	 Wut = Bi, Iut = i: Bi is known with certainly 

3.	 Wut ≥ Bi, Iut ∈ C: This is the case where Bi is censored. 

The probability of a realization of the winning bid can be written as the following 

sum: 
Pr [Wut] =  

� 
Pr [Wut|u ∈ T ] Pr [u ∈ T ] 

T ∈{Ti\C ,Ti∩C ,TC\i,T∅ } 

This expression uses the law of total probability Pr [Wut] into its conditional proba­
bility given the targeting criteria that a user satisfies. The probability of the three 

above cases is then given by 

Pr [Wut < Bi] =  (1− αi) τi + (1− αi) (1− αi∩C ) τi∩C +
�
1− αC\i

� 
τC\i + τ∅ 

Pr [Wut = Bi, Iut = i] =  αiτi\C + αi (1− αi∩C ) τi∩C 

Pr [Wut ≥ Bi, Iut ∈ C] =  αi∩C τi∩C + αC\iτC\i 

where αC\i denotes the probability that C submits a bid on the overlapping sub­
set of targeted users Pr [bC ≥ Bi|u ∈ Ti∩C ], and  αi∩C denotes the equivalent for C’s 
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∈ C}

exclusively targeted users Pr [bC ≥ Bi|u ∈ Ti∩C ]. Thus, the two need not be equal. 
However, by Assumption 5.1.2, i’s bidding probability does not vary by C’s targeting 

criteria: 
αi = Pr [bi = Bi|u ∈ Ti∩C ] = Pr

�
bi = Bi|u ∈ Ti\C 

� 

The probabilities of the winning simplify because observed bids can rule out certain 

targeting criteria. For instance, the event [Wut = Bi, Iut = i] implies u /∈ TC\i, T∅ so 

that Pr
�
Wut = Bi, Iut = i|u ∈ TC\i ∪ T∅

� 
= 0. 

Now, suppose we see two auctions per user. Here as well, some combinations of ob­
served winning bids rule out certain user types. For instance, the event {Wu1 = Bi, Iu1 = i, Wu2 > Bi, Iu2 

implies u ∈ τi∩C . Consider the probabilities of the six possible events when we observe 

two auctions (t and t�) per user. To economize on notation, I rule out the case where 

multiple bidders submit bids equal to bi, so  that the identity of  Wit is self-evident: 

Pr [Wut < bi, Wut� < bi] =  (1− αi)
2 τi\C + ((1− αi) (1− αi∩C ))

2 τi∩C 
�2 

+
�
1− αC\i τC\i + 1− τ 

Pr [Wut = bi, Wut� = bi] =  αi 
2τi\C + (αi (1− αi∩C ))

2 τi∩C 

Pr [Wut > bi, Wut� > bi] =  αi
2 
∩C τi∩C + α2 

C\iτC\i 

Pr [Wut < bi, Wut� = bi] = 2 · 
�
(1− αi) αiτi\C + (1− αi) (1− αi∩C )

2 αiτi∩C 

� 

Pr [Wut < bi, Wut� > bi] = 2 · 
�
(1− αi) (1− αi∩C ) αi∩C τi∩C +

�
1− αC\i

� 
αC\iτC\i

� 

Pr [Wut = bi, Wut� > bi] = 2αi (1− αi∩C ) αi∩C τi∩C 

Since these six probabilities sum to 1, we have a system with 5 equations and 6 un­
knowns 

�
αi, αi∩C , αC\i, τi\C , τi∩C , τC\i

�
. However,  we  have  assumed  that  we  observe  

a fraction of users who appear only once. Thus, we can add the 2 additional equa­
tions from above for a total of 7 equations. Thus, the parameters are over-identified 

provided that the system of equations admits a unique solution. 

Proposition 7 

Proof. The real-time bidder’s valuation is given by 

viut = xityu 

We wish to identify the distributions of xit and yu, Fx (·) , Fy (·) from the distributions 
of observed bids G (·). Since  xit and yu are continuously distributed with bounded 

support, we denote supp (x) =
�
X, X

� 
and supp (y) =

�
Y , Y

�
. Let  β (x; y) denote the 

optimal bidding function delivered by Proposition 3. 
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I identify  Fx (·) using the within user variation in observed bids. Fixing user u 

fixes the corresponding yu realization Yu. User  u’s bids are denoted bids are denoted 

by the random variable bu = β (xit; Yu), which is a function of the random variable 

xit. Then, denote u’s bid support maximum by bu = β 
�
X; Yu 

�
. Finally,  let  U denote 

the set of users with Yu = Y . Users  u ∈ U can be identified from the bid data because 

they satisfy bu = β 
�
X; Y 

� 
= maxu b (Yu). Fix  this  set  of  users,  we  can  identify  the  

valuations xit from the bids bu = β 
�
xit; Y 

� 
using the relationship , 

η 
�
bu; Y 

� 

x = 
Y 

where η 
�
b; Y 

� 
= β−1 

�
b; Y 

� 
is delivered by Proposition 3. Fx (·) is then identified by 

rthe distribution of the recovered x for x ≥ . 
Y 

To recover Fy (·), I  exploit  the  between  user  variation  in  observed  bid  quantiles.  I  

begin by showing that β (X; y) is strictly increasing in y when β (X; y) is continuous 
at y. With  this,  I  can  define  the  inverse  correspondence  for  a  user’s  bid  support  

maximum y ∈ γ 
�
β 

�
X; y

��
. Then, I will show that we can use another quantile of 

G (·; y) to pin down y when this correspondence is not unique. 
When we add the unobserved heterogeneity component, the symmetric first-price 

bidding function from Proposition 3 has K segments of the form 

´ x n−1Fx (u) du + ck (y)x� (y)
βk (x; y) = xy − y k

n−1Fx (x)

where xk 
� (y) is the indifference point between segments k for k >  1 as a function of 

� 
�

r 
� 

y. For  k = 1, x1 (y) = r and c1 (y) = 0, because  β y ; y = r. For  k >  1, 

� 
� Bk 

� 
� n−1 ck (y) =  xk (y)− F (xk (y))

y 

which satisfies the initial condition βk (x� k (y) ; y) = Bk. Thus, the bidding function 

can be written for k >  1 as 
´ x 

� Fx (u)n−1 du � � n−1 
x (y) (yxk (y)− Bk) Fx (xk (y))

βk (x; y) = xy − y k − n−1 n−1Fx (x) Fx (x)
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For X ∈ [r, x2 
� (y)), I  show  that  ∂β1

∂
(
y
x;y) is positive: 

x=X 

´ X 
� �

− r 
� 

Fx 

� 
r 
�n−1

� 

y2(u)n−1 −
Fx du + y
r 
y∂β1 (x; y) y 

= X −
 
(X)n−1∂y x=X Fx 

X 
� 

r 
�n−1 

XFx (X)n−1 −
 ́

 

(u)n−1 du − rFx Fxr 
y y y 

=
 

=
 

(X)n−1Fx �
Fx (X)n−1 − Fx (u)n−1� 

du 
´
 X 

r 
y 

(X)n−1Fx 

r 

� 

(X)n−1 
� 

r 
�n−1

� 

y Fx − Fx y 

= +  
(X)n−1Fx 

≥ 0 

rand the inequality is strict for X >  y . 
� �For k >  1, I  also  show  that  we  can  show  that  ∂β1(x;y) > 0 for X ∈ 

�
x (y) , x (y)

�
:∂y k k+1x=X 

� 
kdx (y) 
dy Fx (x� k (y))n−1X 

∂βk (x; y) 
=
 

XFx (X)n−1 −
 ́

 

(y) Fx (u)n−1 du + y
� 
kx

∂y x=X Fx (X)n−1 

�
 � 
Fx(y) +  y
 

� 
kdx (y) 
dy (x
� k (y))n−1�x
k 

−
 

−


(X)n−1Fx 

� � �(yx (y) − Bk) (n − 1) Fx (x (y))n−2 fx (x (y)) dx� (y)k k k k 

Fx (X)n−1 dy 

=
 

X´ 
� 
kx (y) 

�
Fx (X)n−1 − Fx (u)n−1� 

du
 

(X)n−1
Fx
 

x� k (y) 
�
Fx (X)n−1 − Fx (x� k (y))n−1�
 

+ 
(X)n−1Fx 

� � �(yx (y) − Bk) (n − 1) Fx (x (y))n−2 fx (x (y)) dx� (y)k k k k−
(X)n−1 dyFx 

≥ 0 

� 
k(y) if dx (y) 

dy 
(y) 

< 0 by induction when β (X; y) is continuous in y at Y . β (X; y) 

which is strict for X > x� k < 0.
dy
� 
kI will show dx

is continuous at Y when the same components B∗ of B below Y are activated, meaning  

that Bj 
∗ ∈ B∗ defines a βk segment that avoids the offline bid Bj 

∗. I  show  this  for  x2 
� (y) 

using the implicit function theorem. Towards this, I define the function ζ (x, y) =  
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B∗−(1−
Qj (1−αi))xyj i=1β1 (x; y)− bL 

2 (x, y) =  Qj Then, by application of 2 (x, y) = 0 where bL . 
(1−αi)i=1

the implicit function theorem, there is a x� 2 (y) such that ζ (x� 2 (y) , y) = 0 and 

dx� 2 (y) ζx = |(x,y)dy ζy 

∂β1 − ∂bL 
2 

∂x ∂x= |(x,y)∂bL∂β1 − 2 
∂y ∂y 

> 0 

∂β1 ∂β1 ∂bL ∂bL ∂β2(x;y)2 2since we have shown that , > 0 and , < 0. Consequently, > 0.∂x ∂y ∂x ∂y ∂y 

An analogous argument shows that ∂β3

∂
(
y
x;y) > 0 and the rest follows by induction. 

Hence, I have shown that β (X; y) is increasing in y whenever β (X; y) is continuous 
in y for a given ‘regime’ of activated B∗ . Changes in y can change the regime to say 

B∗∗ but the increasing nature of β (X; y) on continuous segments will still hold. We 

can show however that β (X; y) can sometimes fall in y at a discontinuity brought 
on by a regime change. For instance, suppose that two first-price bidders with Fx ∼ 

Beta (2, 2) face two offline bids B = (0.25, 0.3) with Pr [β] =  α = (0.1, 0.15) and 

reserve price r = 0. As  we  vary  Y from 0 to 1, we see a discontinuous decrease 

in β 
�
X; y

� 
near y = 0.511 (using the equilibrium selection algorithm defined in 

Appendix B.2). 
Thus, in some cases, the inverse correspondence for a user’s bid support maximum 

y ∈ γ 
�
β 

�
X; y

�� 
will not return a unique y. However, the correspondence will return 

finite such y because β 
�
X; y

� 
is increasing in y except for finite discontinuity points. 

We can pin down the correct y however using bid quantiles on the increasing segment 
β1 (·; ·). Suppose  for  example  that  {y1, y2} = γ (b) (generalizing to finite such y is 
straightforward). We can choose a sufficiently small bid quantile Q� with associated 

ixQ� such that r < bi ≡ β (xQ� ; yi) =  β1 

�
x

� 
for i = 1, 2 meaning that bi liesQ� Q� ; yi Q� 

on the first β (·; ·) segment. Then, the user’s empirical bid quantile bQ� identifies the 

correct yi since β (xQ� ; y1) < β (xQ� ; y2) if and only if y1 < y2. 
Finally, we can identify Fy (·) from the distribution of the recovered y across users 

rfor y ≥ . 
X 

B Multiple Equilibria  

In this section of the appendix, I describe in greater detail how the equilibrium real-
time bid function works with multiple offline bids. I also include real time bids in the 

gap with probability δ uniformly distributed on the total interval of the gap. First, I 
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show in a simple example that multiple equilibria can exist with multiple offline bids. 
Second, I define my selection algorithm that chooses a unique bid function. 

We can also conceive of alternate equilibria of the form in Chapter 8 of Krishna 

(2009) in which the second-price bidders do not bid their valuation. However, in the 

data, we the observed first-price bids are typically distributed with positive probability 

on their entire support. This rules out equilibria where the second-price bidders do 

not bid their valuations—at least on the support of first-price bids. 

B.1 Multiple Equilibria Example 

Suppose that two uniform first-price bidders face competition of the form B = 

(0.25, 0.3) and α = Pr [B] = (0.1, 0.15). This has a symmetric equilibrium with 

two gaps given by the bid function 


 

x if x ≤ 5 
2 11 

β ∗ (x) = x 
2 + 5 if 1

3 < x ≤ 0.4906484x 

x 
2 

 + 0.0268x if x > 0.4906
 

with the gaps ( 5 , 0.25] and (0.2664, 0.3]. It also has a symmetric equilibrium with a22 

single gap given by the bid function 

β ∗ (x) =  


 


 

x if x ≤ 120 
2472 

x + 0.0278x if x > 120 
2472 

with the gap ( 60 , 0.3] where 60 = 0.2430. All decimals are approximations shown to247 247 

four digits. Note that the algorithm described above selects the second of these two 

equilibria. 

B.2 Equilibrium Selection Algorithm 

I define my equilibrium bid function selection mechanism below. The conditions of 
Proposition 3 are assumed to hold including the presence of n >  1 symmetric real-
time (first-price) bidders. The distribution of their bids is denoted by G (·) . Denote 

the vector of positive offline bids by the ordered B = [B1 . . . Bm] with associated
 

probability vector α = [α1 . . . αm]. Denote  the  jth bid gap (the dominated bid in­
tervals) by (b
Lj , Bj ] with corresponding indifference valuation x� . Multiple equilibria
j

are possible because bid gaps for consecutive offline bids may overlap. My algorithm 

selects a single equilibrium by moving sequentially through B and choosing for each 
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component Bi the highest possible Bj such that the bid gaps overlap. That is, Bj 

dominated interval is given by (bL
j , Bj ] and Bi ∈ (bL

j , Bj ]. The algorithm selects the 

location of the gaps, but the form of the equilibrium bid function is otherwise given 

by Proposition 3. 
Specifically, for each ordered component Bi in B, I apply the following algorithm: 

1. Define j = i. 

2. While j ≤ m 

(a) Suppose δ = 0. If the indifference valuation xj 
� implies that the bL

j = 
�β 

�
xj 

� 
≤ Bi, then the indifference valuation is given by 

j�
x � − bL

� � 
(1 − αk) F (x �)n−1 = 

�
x � − Bj 

� 
F (x �)n−1 

j j x j x 

k=i 

which again implies a decreasing relationship between bL
j and xj 

� 

Bj − 
�
1 − 

�j (1 − αk)
� 

x� k=i j 
bL = j �

k
j 
=i (1 − αk) 

Now, if δ > 0, the indifference equation is instead given by 

j�
x � j − bL

j 

� � 
(1 − αk) G

�
bL
j 

�n−1 
= 

�
x � j − Bj 

� 
G (Bj )

n−1 

k=i 

which implies the bid gap 

n−1 

� 
��j G(bL

j )
� 

Bj + x (1 − αk) − 1j k=i G(Bj )
n−1 

bL = j 
j )

n−1 
G(bL�j

k=i (1 − αk) G(Bj )
n−1 

where G (·) depends on δ. 14 

14Specifically, �n−1 �n−1 
G

�
bL G

�
bL 

j j= 
G (Bj)

n−1 Bj −bL �n−1 
j

�
G

�
bL
j 

� 
+ (1  − F (r)) δ P

Bk −bL 
k k 

since G
�
bL

� 
= (1  − F (r)) ((1 − δ) G∗ (b) +  δGgap (b)). Since  Ggap (b) is assumed to be uniform, the j 

Bj −bL
jadditional weight accrues to a assuming the equilibrium bid gaps (bL, Bk] are known. P

Bk−bL k 
k k 

Since this information is unknown, I solve for this using a fixed point loop initiated with δ = 0. 
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(b) Redefine j = j + 1.
 

3. Collect all the b
 that satisfy b
 < Bi. L
j

L
j

Note that if the set of b
Lj are satisfy b
Lj < B 
i are unique, then the equilibrium is
 
unique. If not, we can potentially have multiple equilibria as in the example below.
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