The Impact of Privacy Policy on the Auction Market for Online Display Advertising

Garrett Johnson

Kellogg School of Management, Northwestern University

1Note: Impact estimates are preliminary and should not be cited for policy purposes.
Advertisers track you online (Disconnect Chrome Add-On)
From a single visit to chicagotribune.com: dozens of tracking cookies
Users are profiled by their browsing histories
Purpose: Market impact of privacy policy

- **Motivation**: US regulators seek privacy policy that balances
 - Privacy concerns: enable privacy choice
 - Industry surplus: revenues grew $1.7 billion (2002) to $7.9 billion (2013)

- **Goal**: Measure effect on advertiser and publisher profits
- **Method**: Empirical auction analysis using proprietary ad auction data
- **Complication**: User tracking profiles are unobserved
- **Solution**: Extend unobserved heterogeneity models in auctions
- **Results**: Ban on tracking causes industry surplus to fall 43.5%

More
Outline

1 Background

2 Identification: Auction Model with Tracking

3 Theory

4 Results

5 Follow-up Work

6 Conclusion
Literature review

- Tracking policy: Goldfarb & Tucker (2011); Budak et al. (2015); Beales & Eisenach (2014); Aziz & Telang (2015)
- Privacy policy: Tucker (2011; 2012)
- Online display ad market:
 - Overview: Evans (2009)
 - Theory: Abraham, Athey, Babaioff & Grubb (2011); Levin & Milgrom (2010); Mahdian, Ghosh, McAfee & Vassilvitskii (2012)
- Unobserved auction heterogeneity: Krasnokutskaya (2011); Hu, McAdams & Shum (2009)
User Generates Impression Opportunity

Publisher Chooses Sales Channel & Advertiser

Guaranteed Contract

Ad Exchange

Advertisers
Buy ads targeted at users

Figure: Online display ad market agents & operation
Auctions run in <0.1 seconds.

Real-Time bidders
- Evaluate & bid on *individual* ads
- Employ computer algorithms

Offline bidders
- Like *proxy* bidders, specify rules:
 1. Target audience attributes
 2. Fixed bid
 3. Randomly submit bid (budget-smoothing)

BOTH bidders employ user tracking information.

Figure: Online display ad auction operation & bidding methods
Outline: Auction Model with Tracking

1. Background

2. Identification: Auction Model with Tracking

3. Theory

4. Results

5. Follow-up Work

6. Conclusion
Model tracking as unobserved auction heterogeneity

- **Unobserved Auction Heterogeneity**: Bidders know more about attributes of item for sale than the modeler
- Here, we have
 - Observed heterogeneity: modeler & bidder observe some attributes of publisher site and ad slot
 - Unobserved auction heterogeneity: only bidders see user tracking attributes
- Problem: Existing models of unobserved auction heterogeneity require no reserve price & observe all bids
- Solution: Develop new models leveraging repeat user auctions (panel)
 - 1 Offline bidders
 - 2 Real time bidders
Target audience size key to offline bidder model

- Offline bidders choose target audience, fixed bid, and bid probability
- Want to measure size of target audience

![Diagram of offline bidder's target audience](image)

Figure: Ad targeting within the space of users

Offline bidder counterfactual bid example

Suppose $B_i = $1 on Men and $Pr[Men] = \frac{1}{2}$.

\implies In counterfactual, bid $B_i^{cf} = $0.50 on untargeted ads.
Want to identify bidder i’s targeting prob. & random bidding prob.

Challenge:
1. Random bidding means not all targeted users are observed
2. Observe winning bid W_{ut}, so competition censors i’s bids

Solution: View as mixture model over users’ true targeting type

Estimate mixture model using maximum likelihood

Offline MLE
Offline unobs. hetero. model identified as mixture model

- Want to identify bidder i’s targeting prob. & random bidding prob.
- **Challenge:**
 1. Random bidding means not all targeted users are observed
 2. Observe winning bid W_{ut}, so competition censors i’s bids

Solution: View as mixture model over users’ true targeting type
- Estimate mixture model using maximum likelihood

![Diagram showing Offline Bidder i's Target Audience and Observed data](image)
Offline unobs. hetero. model identified as mixture model

- Want to identify bidder i’s targeting prob. & random bidding prob.
- **Challenge:**
 1. Random bidding means not all targeted users are observed
 2. Observe winning bid W_{ut}, so competition censors i’s bids

Solution: View as mixture model over users’ true targeting type
Estimate mixture model using maximum likelihood
Offline unobs. hetero. model identified as mixture model

- Want to identify bidder i’s targeting prob. & random bidding prob.
- **Challenge:**
 1. Random bidding means not all targeted users are observed
 2. Observe winning bid W_{ut}, so competition censors i’s bids

Solution: View as mixture model over users’ true targeting type
- Estimate mixture model using maximum likelihood
Real-Time bidder unobserved heterogeneity model

- M symmetric bidders with valuation (conditional on observables)

$$v_{iut}^{RT} = x_{it}y_u$$

- Recall notation: bidder i, user u, auction t
- x_{it}: idiosyncratic taste term (bidder-auction level)
- y_u: unobserved heterogeneity term (common, user-level)

- Assume: a) $y_u \perp x_{it}$ b) y_u, x_{it} are i.i.d.

- *Counterfactual*: Shut down tracking by fixing $y_u = \overline{y_u}$ at mean

$$v_{it}^{cf} = x_{it}\overline{y_u}$$
Real-Time model identified by support variation

- **Challenge**: Past approaches rule out censoring, ordered bids, or non-separable unobserved heterogeneity
- **Solution**: Identify component distribution by support variation
 - Within-user bid variation: idiosyncratic taste component \(F_x \)
 - Between-user bid variation: user-level unobserved heterogeneity component \(F_y \)

\[
\begin{align*}
\beta(X; Y) & \quad \beta(X; Y_u) \\
\beta(X; Y) & \quad \beta(\bar{X}; Y_u) \\
\beta(X; \bar{Y}) & \quad \beta(X; \bar{Y}) \\
Y & \quad Y_u & \quad \bar{Y}
\end{align*}
\]

Figure: Identification by support variation

- ML estimation exploits long panel: Observe \(>500 \) auctions for some users
Outline

1. Background
2. Identification: Auction Model with Tracking
3. Theory
4. Results
5. Follow-up Work
6. Conclusion
Two classes of bidders play by different rules

Hybrid auction mechanism
- Offline bidders play by Second Price rules
 - Offline winner pays second highest bid (regardless of bidder type) or the binding reserve price
- Real-Time bidders play by First Price Rules
 - Real-Time winner pays its bid
Theorem

Assume bidder valuations are conditionally independent & private. In equilibrium, the following bid functions $\beta^{\text{type}}(v)$ maps valuations v into bids b.

1. **Second price bidder** bids its valuation, $\beta^{\text{SP}}(v) = v$
2. **First price bidder** shades its bid below its valuation, $\beta^{\text{FP}}(v) \leq v$
3. When the distribution of competitor bids has a mass point (competitor bids B with $\Pr[B] > 0$), $\beta^{\text{FP}}(v)$ is discontinuous. That is, the first price bidder avoids bidding in some interval, $\beta^{\text{FP}}(v) \notin (b_L, B)$
Simple first price bidder example

- 2 Symmetric $U[0,1]$ bidders
- Bid function: $\beta(v) = \frac{v}{2}$
Example (cont.): Introducing 'Offline bid' creates bid gap

- Two $U[0,1]$ bidders facing bid $B = 0.25, \Pr[B] = \frac{1}{2}$

\[
\begin{align*}
B(v) &= \frac{v}{2} \\
B(v) &= \frac{v}{2} + \frac{1}{36v}
\end{align*}
\]

Indifference Line

Bid Gap

Valuation vs. Bid

0.0 0.2 0.4

0.00 0.25 0.50 0.75 1.00

Valuation vs. Valuation

0.0 0.2 0.4

0.00 0.25 0.50 0.75 1.00

Bid

b_L

Bid

0.0

0.0

0.00 0.25 0.50 0.75 1.00

Valuation
Privacy Counterfactual Results (Preliminary)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Total</th>
<th>Publisher</th>
<th>Advertisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ban</td>
<td>-43.5%</td>
<td>-38.5%</td>
<td>-45.5%</td>
</tr>
</tbody>
</table>

- Scope of results: U.S. users on top 3 website (50% of revenues)
- Back of the envelope: Ban: -$523 Million loss
 - $6.8B Ad Revenues * 20% Auction Share * Publisher Impact
Privacy Choice in Internet Advertising: Who Opt Out and at What Cost to Industry?

Digital Advertising Alliance AdChoices program
- Industry self regulation program enables user opt-out of 'personalized' advertising
- ‘Revealed preference’ study of user privacy
- Proprietary ad exchange dataset

Research questions:
- How many opt out?
- Who opts out?
- How do marketplace outcomes differ for opt-out users?
- Who in industry is impacted and how much?
Conclusion

- Policy: Add impact estimate to discussion
- Privacy: Novel structural auction approach
- Marketing: Growing trend towards programmatic bidding requires auction toolkit
- Empirical Auction: New opportunities with large-scale ad exchange panel data
 - Extend unobserved heterogeneity in auctions with 2 models
 - Highly censored bid distribution
 - Ordered bid data
Thank you!
Possible Extensions

1 Supply-side adjustment
 ▶ Adjust reserve price to maintain auction sell-through rate
 ▶ Mitigate revenue collapse

2 Demand-side adjustment
 ▶ Advertisers reallocate budgets towards publishers that host more target users
The Impact of Privacy Policy on the Auction Market for Online Display Advertising

Garrett Johnson

Kellogg School of Management, Northwestern University

¹Note: Impact estimates are preliminary and should not be cited for policy purposes.