# The Impact of Privacy Policy on the Auction Market for Online Display Advertising

Garrett Johnson

Kellogg School of Management, Northwestern University<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Note: Impact estimates are preliminary and should not be cited for policy purposes.

#### Advertisers track you online (Disconnect Chome Add-On) From a single visit to chicagotribune.com: dozens of tracking cookies



# Users are profiled by their browsing histories



Purpose: Market impact of privacy policy

• Motivation: US regulators seek privacy policy that balances

- Privacy concerns: enable privacy choice
- Industry surplus: revenues grew \$1.7 billion (2002) to \$7.9 billion (2013)
- Goal: Measure effect on advertiser and publisher profits
- Method: Empirical auction analysis using proprietary ad auction data
- Complication: User tracking profiles are unobserved
- Solution: Extend unobserved heterogeneity models in auctions
- Results: Ban on tracking causes industry surplus to fall 43.5%

► More

# Outline

### 1 Background

#### 2 Identification: Auction Model with Tracking

### 3 Theory



### 5 Follow-up Work

### 6 Conclusion

### Literature review

- Tracking policy: Goldfarb & Tucker (2011); Budak et al. (2015); Beales & Eisenach (2014); Aziz & Telang (2015)
- Privacy policy: Tucker (2011; 2012)
- Online display ad market:
  - Overview: Evans (2009)
  - Theory: Abraham, Athey, Babaioff & Grubb (2011); Levin & Milgrom (2010); Mahdian, Ghosh, McAfee & Vassilvitskii (2012)
  - Empirical: Celis, Lewis, Mobius & Nazerzadeh (2012)
- Unobserved auction heterogeneity: Krasnokutskaya (2011); Hu, McAdams & Shum (2009)



#### Figure : Online display ad market agents & operation • More



Figure : Online display ad auction operation & bidding methods

Real-Time bidders

- Evaluate & bid on individual ads
- Employ computer algorithms

Offline bidders

- Like *proxy* bidders, specify rules:
  - Target audience attributes
  - 2 Fixed bid
  - 8 Randomly submit bid (budget-smoothing)

BOTH bidders employ user tracking information

Outline: Auction Model with Tracking

### Background

#### 2 Identification: Auction Model with Tracking

#### 3 Theory

#### 4 Results

#### 5 Follow-up Work

#### 6 Conclusion

Model tracking as unobserved auction heterogeneity

- Unobserved Auction Heterogeneity: Bidders know more about attributes of item for sale than the modeler
- Here, we have
  - Observed heterogeneity: modeler & bidder observe some attributes of publisher site and ad slot
  - Unobserved auction heterogeneity: only bidders see user tracking attributes
- Problem: Existing models of unobserved auction heterogeneity require no reserve price & observe all bids
- Solution: Develop new models leveraging repeat user auctions (panel)
  - Offline bidders
  - 2 Real time bidders

# Target audience size key to offline bidder model

- Offline bidders choose target audience, fixed bid, and bid probability
- Want to measure size of target audience



Figure : Ad targeting within the space of users

Offline bidder counterfactual bid example Suppose  $B_i = \$1$  on Men and  $\Pr[Men] = \frac{1}{2}$ .

 $\implies$  In counterfactual, bid  $B_i^{cf} =$ \$0.50 on untargeted ads.

- Want to identify bidder *i*'s targeting prob. & random bidding prob.
- Challenge:
  - Random bidding means not all targeted users are observed
     Observe winning bid W<sub>ut</sub>, so competition censors i's bids



Solution: View as mixture model over users' true targeting type
Estimate mixture model using maximum likelihood • Offline MLE

- Want to identify bidder *i*'s targeting prob. & random bidding prob.
- Challenge:
  - Random bidding means not all targeted users are observed
    - Observe winning bid  $W_{ut}$ , so competition censors *i*'s bids



Solution: View as mixture model over users' true targeting type
Estimate mixture model using maximum likelihood • Offline MLE

- Want to identify bidder *i*'s targeting prob. & random bidding prob.
- Challenge:
  - Q Random bidding means not all targeted users are observed
  - 2 Observe winning bid  $W_{ut}$ , so competition censors *i*'s bids



Solution: View as mixture model over users' true targeting type
Estimate mixture model using maximum likelihood Office MLE

- Want to identify bidder *i*'s targeting prob. & random bidding prob.
- Challenge:
  - Q Random bidding means not all targeted users are observed
  - 2 Observe winning bid  $W_{ut}$ , so competition censors *i*'s bids



- Solution: View as mixture model over users' true targeting type
- Estimate mixture model using maximum likelihood Offline MLE

Real-Time bidder unobserved heterogeneity model

• *M* symmetric bidders with valuation (conditional on observables)

$$v_{iut}^{RT} = x_{it}y_u$$

- Recall notation: bidder i, user u, auction t
- x<sub>it</sub>: idiosyncratic taste term (bidder-auction level)
- ► *y<sub>u</sub>*: unobserved heterogeneity term (common, user-level)
- Assume: a)  $y_u \perp x_{it}$  b)  $y_u, x_{it}$  are i.i.d.
- Counterfactual: Shut down tracking by fixing  $y_u = \overline{y_u}$  at mean

$$v_{it}^{cf} = x_{it}\overline{y_u}$$

# Real-Time model identified by support variation

- *Challenge*: Past approaches rule out censoring, ordered bids, or non-separable unobserved heterogeneity
- Solution: Identify component distribution by support variation
  - Within-user bid variation: idiosyncratic taste component F<sub>x</sub>
  - Between-user bid variation: user-level unobserved heterogeneity component F<sub>y</sub>



Figure : Identification by support variation

 ML estimation exploits long panel: Observe >500 auctions for some users

# Outline

### 1 Background

2 Identification: Auction Model with Tracking



### 4 Results

5 Follow-up Work

#### 6 Conclusion

Two classes of bidders play by different rules

Hybrid auction mechanism

- Offline bidders play by Second Price rules
  - Offline winner pays second highest bid (regardless of bidder type) or the binding reserve price
- Real-Time bidders play by First Price Rules
  - Real-Time winner pays its bid

# Equilibrium bid function: valuations to bids

#### Theorem

Assume bidder valuations are conditionally independent & private. In equilibrium, the following bid functions  $\beta^{type}(v)$  maps valuations v into bids b.

- Second price bidder bids its valuation,  $\beta^{SP}(v) = v$
- **2** First price bidder shades its bid below its valuation,  $\beta^{FP}(v) \leq v$
- When the distribution of competitor bids has a mass point (competitor bids B with Pr[B] > 0), β<sup>FP</sup>(v) is discontinuous. That is, the first price bidder avoids bidding in some interval, β<sup>FP</sup>(v) ∉ (b<sub>L</sub>, B]

▶ 1;2 Proof

### Simple first price bidder example

- 2 Symmetric U[0,1] bidders
- Bid function:  $\beta(v) = \frac{v}{2}$



# Example (cont.): Introducing 'Offline bid' creates bid gap

• Two U[0,1] bidders facing bid B = 0.25,  $\Pr[B] = \frac{1}{2}$  • U[0,1] Ex.



# Outline

### 1 Background

#### 2 Identification: Auction Model with Tracking

### 3 Theory



### 5 Follow-up Work

#### 6 Conclusion

Privacy Counterfactual Results (Preliminary)

| Policy | Total  | Publisher | Advertisers |
|--------|--------|-----------|-------------|
| Ban    | -43.5% | -38.5%    | -45.5%      |

- Scope of results: U.S. users on top 3 website (50% of revenues)
- Back of the envelope: Ban: -\$523 Million loss
  - \$6.8B Ad Revenues \* 20% Auction Share \* Publisher Impact

Privacy Choice in Internet Advertising: Who Opts Out and at What Cost to Industry?

- Digital Advertising Alliance AdChoices program
  - Industry self regulation program enables user opt-out of 'personalized' advertising

D

- 'Revealed preference' study of user privacy
- Proprietary ad exchange dataset
- Research questions:
  - How many opt out?
  - Who opts out?
  - How do marketplace outcomes differ for opt-out users?
  - Who in industry is impacted and how much?

### Conclusion

- Policy: Add impact estimate to discussion
- Privacy: Novel structural auction approach
- Marketing: Growing trend towards programmatic bidding requires auction toolkit
- Empirical Auction: New opportunities with large-scale ad exchange panel data
  - Extend unobserved heterogeneity in auctions with 2 models
    - ★ Highly censored bid distribution
    - ★ Ordered bid data



### Thank you!

### Possible Extensions

- Supply-side adjustment
  - Adjust reserve price to maintain auction sell-through rate
  - Mitigate revenue collapse
- 2 Demand-side adjustment
  - Advertisers reallocate budgets towards publishers that host more target users

# The Impact of Privacy Policy on the Auction Market for Online Display Advertising

Garrett Johnson

Kellogg School of Management, Northwestern University<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Note: Impact estimates are preliminary and should not be cited for policy purposes. <sup>1</sup>Note: Impact estimates are preliminary and should not be cited for policy purposes.