Mergers in Innovative Industries: The Role of Product Market Competition*

Guillermo Marshall† Álvaro Parra‡

June 27, 2016

Abstract

We study how competition affects innovation (and welfare) when firms compete both in the product market and in innovation development. This relationship is complex and may lead to scenarios in which a lessening of competition increases R&D and consumer welfare in the long run, which is in contrast to arguments provided by antitrust agencies in recent merger cases. We provide conditions for when a merger increases industry innovation and when evaluating mergers based on static price effects is aligned with a fully dynamic merger evaluation. These conditions are based on properties of the product market payoffs.

JEL: D43, L40, L51, O31, O34, O38

Keywords: merger policy, sequential innovation, product market competition

*We thank Dan Bernhardt, Ken Corts, Federico Etro, Richard Gilbert, Mitsuru Igami, Jorge Lemus, Travis Ng, Thomas Ross, and Ralph Winter for comments and suggestions that have helped us improve this paper as well as a companion paper to this one. We also thank seminar and conference participants at CEA, CRESSE, IIOC, Miami, PUC-Chile, UBC, and Yale for helpful comments. The usual disclaimer applies.
†Department of Economics, University of Illinois at Urbana-Champaign, 214 David Kinley Hall, 1407 W Gregory St, Urbana, IL 61801. gmarshll@illinois.edu
‡Sauder School of Business, University of British Columbia, 2053 Main Mall, Vancouver, BC, V6T1Z2, Canada. alvaro.parra@sauder.ubc.ca
1 Introduction

Merger policy is based on the premise that a reduction in competition is likely to hurt consumers. In innovative industries, however, the role of competition on market outcomes is far less clear. For instance, Aghion et al. (2005) empirically find a non-monotonic relationship between competition and patenting, which raises the possibility that a lessening of competition may benefit consumers through enhanced innovation. In recent merger cases, however, the FTC and the DOJ have both argued that mergers would reduce incentives to innovate.\(^1\) Since innovation is the engine of a growing economy, understanding how mergers affect R&D and welfare is critical.

In this paper, we study the impact of a merger on incentives to innovate and consumer welfare. We address this question in the context of a model that allows for large firms that compete in developing and commercializing innovations and research labs that only compete in developing innovations. By understanding how the number of competitors affects R&D and product market outcomes, we are able to study the impact of a merger on consumer welfare. In doing so, we take a dynamic perspective, recognizing that a reduction in competition that increases R&D may benefit consumers in the long run, even when prices increase in the short run. The dynamic approach allows us to identify sufficient conditions for when a merger rejection (or approval) based on a static merger-review criterion—i.e., immediate price effects only—is aligned with a decision that incorporates dynamic effects on both prices and innovation.

In concrete terms, we develop a sequential extension to the classic patent-race models (Loury (1979), Lee and Wilde (1980), and Reinganum (1982)) by allowing firms to compete both in developing a series of innovations and in the product market. Through successful innovation, a large firm becomes the market leader, replacing the previous leader. When a research lab successfully innovates, it auctions the innovation to a large firm, which results in a new industry leader. Being the leader provides a firm with an advantage in the product market—for instance, due to a cost or quality advantage—which creates a positive profit gap between the leader and the other firms. The profit gap between the leader and the other firms is what creates incentives to innovate. A merger between large firms is

\(^1\)See, for instance, the complaint filed by the FTC concerning the merger between Pfizer Corporation and Wyeth Corporation, as well as the complaints filed by the DOJ concerning the merger between Regal Beloit Corporation and A.O. Smith Corporation and the merger between The Manitowoc Company, Inc. and Enodis plc.
allowed to affect product market profits and, consequently, the profit gap between the leader and the other firms.

Holding product market profits equal, a reduction in the number of firms reduces the industry R&D. A reduction in the number of large firms has a direct effect on the profit gap, changing the incentives to innovate. This creates a potentially countervailing effect on the incentives to innovate, which may lead to a net increase in R&D outcomes despite a smaller number of firms performing R&D. We find that the conjunction of these effects may generate a monotonic-increasing or non-monotonic relationship (e.g., inverted-U or N shaped) between R&D outcomes and the number of large firms. The potentially non-monotonic relationship between the number of large firms and R&D implies that rejecting a merger due to a lessening of product market competition may not be appropriate. For instance, reduced competition in the product market may increase the firms’ incentives to invest in R&D as well as the arrival rate of innovations. The increased arrival rate of innovations may more than compensate for the welfare loss that results from the static price effects created by a merger.

Using the profit gap between leaders and followers, we link the nature of product market competition with merger evaluation. We show that when the profit gap is weakly increasing in the number of large firms, a merger always reduces the industry’s innovation rate. In such a case, the negative impact of a merger on innovation reinforces any positive price effects created by the merger. Hence, rejecting a merger based on static price effects is aligned with a dynamic merger evaluation—which considers both price and innovation effects.\footnote{See Section 3 for examples where the profit gap is weakly increasing or decreasing.}

We find that a profit gap that is decreasing in the number of large firms is necessary but not sufficient for a merger to increase the industry’s innovation rate. When the number of research labs is sufficiently large, however, a profit gap that is decreasing in the number of large firms is sufficient for a merger to increase the industry’s innovation rate. Hence, when there are no concerns that a merger may increase prices, a decreasing profit—in the presence of a sufficiently large number of labs—is sufficient to establish that the merger is welfare improving, as it increases industry R&D. Thus, in this case, accepting a merger based on static price effects is aligned with a dynamic merger evaluation.

These results highlight the importance of product market competition on the impact of a merger on innovation outcomes. These results also show that the (com-
monly provided) argument that a merger reduces incentives to innovate does not always hold. Checking for whether a merger increases R&D and for the alignment of static and dynamic merger-review criteria requires only analyzing properties of the product market payoffs. Analyzing properties of the product market payoffs is simple, as it does not require solving nor estimating a dynamic model where firms compete along multiple dimensions. Moreover, an empirical assessment of these properties requires no more information than what is commonly used for standard merger simulations.

Finally, a merger may increase both the pace of innovation and prices in the short run, implying that evaluating a merger based on static price effects may not be aligned with a merger evaluation based on dynamic effects. For the merger to increase consumer surplus, the dynamic benefits of a greater rate of innovation must compensate for the short-run price effects created by the merger. To this end, we provide a necessary and sufficient condition for a merger to be consumer-surplus enhancing and provide numerical examples that show that a merger may enhance consumer surplus in the long run, even when prices increase in the short run.

The rest of the paper is organized as follows. Section 2 introduces the model and characterizes the equilibrium. Section 3 analyzes how market structure affects innovation and welfare outcomes and discusses implications for merger analysis. Section 4 provides numerical examples to illustrate the results. Lastly, Section 5 concludes.

1.1 Literature Review

The long-standing question of how competition affects the incentives to innovate stems from the work by Schumpeter (1942). Early work formalizing the ideas surrounding this question considered one-shot innovations, omitting both dynamic considerations and the role of product market competition (Loury (1979), Lee and Wilde (1980), and Reinganum (1982)). An exception is Vives (2008), who analyzes the connection between product market competition and innovation incentives in the context of a static model with a deterministic innovation technology.

Recent work has incorporated dynamics by assuming the existence of a sequence of innovations to answer various questions. Aghion et al. (2001) and Aghion et al. (2005) study the impact of product market competition (and imitation, in the former paper) on R&D. These papers model the product market as a duopoly,
where the intensity of competition is captured either by the degree of collusion or the degree of product substitution. That is, they focus on how competition affects innovation through the product market, while ignoring the direct effect of competition on innovation (i.e., a change in the number of firms performing R&D). Segal and Whinston (2007) study how antitrust regulation shapes R&D outcomes by affecting the profit division between an innovating entrant and a stagnant incumbent. Acemoglu and Akcigit (2012) study the benefits of an IP policy that is contingent upon firms’ relative progress in a step-by-step innovation framework. Parra (2016) studies optimal patent policy considering the nonstationary incentives of an incumbent who faces increased incentives to innovate as the patent expiration date approaches.

Our paper also relates to the horizontal merger literature. Farrell and Shapiro (1990) extend the ideas presented in Williamson (1968) and find sufficient conditions for mergers to enhance consumer surplus in a static framework. Nocke and Whinston (2010) study conditions under which applying a static merger-review policy is optimal for a sequence of endogenous mergers. In contrast, we introduce innovation competition into the model and examine conditions under which a merger evaluation based on a static-price-effects criterion is aligned with a criterion considering both price and innovation effects from a dynamic standpoint. Nocke and Whinston (2013) study the optimal merger-review policy when the antitrust authority observes the characteristics of proposed mergers but cannot observe the characteristics nor the feasibility of mergers that are not proposed. Mermelstein et al. (2015) analyze the endogeneity between merger policy and investment decisions in a model where firms grow—either by accumulating capital or through mergers—to reduce their marginal cost of production.

In a companion paper to this one, Marshall and Parra (2015) analyze how the trade-offs isolated in this paper are affected by allowing for an endogenous market structure and merger-specific R&D efficiencies. It is shown that allowing for entry and exit creates a tension, as a merger with efficiencies may magnify market concentration by inducing non-merging firms to exit, resulting in amplified post-merger price effects. Finally, Igami and Uetake (2015) empirically study the impact of mergers on innovation in the hard-drive industry, while Hollenbeck (2015) incorporates innovation into the model developed in Mermelstein et al. (2015) and simulates the impact of mergers on R&D outcomes.
2 A Model of Sequential Innovations with Product Market Competition

Consider a continuous-time infinitely lived industry where \( n + m + 1 \) firms compete in developing new innovations (or products). Among these, \( n + 1 \) firms are large in the sense that they also compete in the product market commercializing the innovations. The remaining \( m \) firms auction their innovations to the large firms. We call the latter set of firms research labs.

Competition in the product market is characterized by one technology leader and \( n > 0 \) symmetric followers (or competitors). For tractability purposes, we assume that the market leader is always one step ahead of the followers in terms of the technology to which they have access.\(^3\) The market leader obtains a profit flow \( \pi^1_n > 0 \), whereas each follower obtains a profit flow \( \pi^f_n \in [0, \pi^1_n) \). Both \( \pi^f_n \) and \( \pi^1_n \) are weakly decreasing in the number of product market competitors in the industry (i.e., large firms), \( n \), capturing that more intense product market competition decreases firm profits. For the purpose of reducing the dimensionality of the state space, we assume that the profit flows are stationary in the number of innovations. These assumptions allow for general forms of product market competition. For instance, firms could compete through prices, quantities, or qualities. They also allow for competition in various types of innovations. Firms may compete in developing process innovations, quality improvements, or products that leave previous vintages obsolete.\(^4\)

Research labs do not compete in the product market and their only source of profits is the revenue they derive from selling their innovations to large firms. We assume that research labs sell their innovations using a second-price auction. In case of a tie, we assume that the innovation is randomly assigned to one of the tying followers.\(^5\) All firms discount their future payoffs at a rate of \( r > 0 \).

At each instant in time, each follower and research lab invests in R&D in order to achieve an innovation. Firm \( i \) chooses a Poisson innovation rate \( x_i \) at a cost of \( c(x_i) \). We assume that \( c(x_i) \) is strictly increasing, twice differentiable, strictly

---

\(^3\)More precisely, this common assumption in the literature can be distilled as the conjunction of two independent assumptions about the nature of patent protection: a) a patent makes full disclosure of the patented technology, which allows followers to build upon the latest technology, leap-frogging the leader once they achieve an innovation; b) the legal cost of enforcing older patents more than exceeds the benefits of enforcing the patent.

\(^4\)Sections 3 and 4 provide examples where all assumptions of the model are satisfied.

\(^5\)This assumption simplifies exposition and does not affect the results of the paper.
convex (i.e., $c''(x) > 0$ for all $x \geq 0$), and satisfies $c'(0) = 0$. We also assume that the Poisson processes are independent among firms, generating a stochastic process that is memoryless.

We focus on symmetric and stationary Markov perfect equilibria by using a continuous-time dynamic programming approach. Our assumptions guarantee the concavity of the value functions, implying equilibrium uniqueness.

Let $V_{n,m}$ represent the value of being the market leader, $W_{n,m}$ the value of being a follower, and $L_{n,m}$ the value of being a research lab when there are $n$ followers and $m$ labs in the industry. At time $t$, we can write the payoffs of the different types of firms as follows:

$$V_{n,m} = \int_t^{\infty} (\pi^l_n + \lambda_{n,m} W_{n,m}) e^{-(r+\lambda_{n,m})(s-t)} ds,$$

$$W_{n,m} = \max_{x_i} \int_t^{\infty} (\pi^f_n + x_i V_{n,m} + x_{-i} W_{n,m} - c(x_i)) e^{-(r+\lambda_{n,m})(s-t)} ds,$$

$$L_{n,m} = \max_{y_i} \int_t^{\infty} (y_i (V_{n,m} - W_{n,m} + L_{n,m}) + y_{-i} L_{n,m} - c(y_i)) e^{-(r+\lambda_{n,m})(s-t)} ds,$$

where $\lambda_{n,m} = \sum_i^n x_i + \sum_j^m y_j$ is the industry-wide pace or speed of innovation, $x_{-i} = \lambda_{n,m} - x_i$, and $y_{-i} = \lambda_{n,m} - y_i$. To understand the firms’ payoffs, fix any instant of time $s > t$. With probability $\exp(-\lambda_{n,m}(s-t))$, no innovation has arrived between $t$ and $s$. At that instant of time, the leader receives the flow payoff $\pi^l_n$ and the expected value of becoming a follower, $\lambda_{n,m} W_{n,m}$. Each follower receives the flow payoff $\pi^f_n$, innovates at rate $x_i$, earns an expected payoff of $x_i V_{n,m}$, pays the flow cost of its R&D, $c(x_i)$, and faces innovation by other firms at rate $x_{-i}$. Note that since all large firms are symmetric, they value an innovation in $V_{n,m} - W_{n,m}$. These valuations, in conjunction with the auction format, imply that labs sell their innovations at price $V_{n,m} - W_{n,m}$ in equilibrium.\(^6\) Labs obtain this revenue at rate $y_i$, pay the flow cost of their R&D, $c(y_i)$, and face innovation by other firms at rate $y_{-i}$. All of these payoffs are discounted by $\exp(-r(s-t))$.

We solve the problem above by making use of the principle of optimality, which

\(^6\)Since the winning bidder of an auction held by a lab earns zero surplus, we do not include auction payoffs in the value functions of the leader and followers.
implies that, at every instant of time, the values must satisfy

\[ rV_{n,m} = \pi^*_n - \lambda_{n,m}(V_{n,m} - W_{n,m}), \]  
\[ rW_{n,m} = \max_{x_i} \pi^*_n + x_i(V_{n,m} - W_{n,m}) - c(x_i), \]  
\[ rL_{n,m} = \max_{y_i} y_i(V_{n,m} - W_{n,m}) - c(y_i). \]

In words, the flow value of being the market leader at any instant of time, \( rV_n \), is equal to the profit flow obtained at that instant plus the expected loss if an innovation occurs, \( \lambda_{n,m}(W_{n,m} - V_{n,m}) \). The instantaneous value of being a follower, \( rW_{n,m} \), is equal to the profit flow plus the expected incremental value of becoming the leader, \( x_i(V_{n,m} - W_{n,m}) \), minus the flow cost of R&D. Finally, the flow value of being a research lab is equal to the expected payoff of successfully innovating and selling an innovation, \( y_i(V_{n,m} - W_{n,m}) \), minus the flow cost of R&D.

In the context of this model, the infinitely long patent protection and the assumption that a new innovation completely replaces the old technology implies that the incumbent has no incentives to perform R&D. That is, the leader not performing R&D is an implication of our modeling choices rather than an assumption. See Parra (2016) for a formal proof. This also implies that a merger to monopoly—i.e., the market leader is the only firm in the industry—reduces the pace of innovation to zero.

Maximizing value functions (2) and (3) and imposing symmetry among followers and research labs, we obtain \( x_i = y_i = x^*_{n,m} \), where

\[ c'(x^*_{n,m}) = V_{n,m} - W_{n,m} \]  

or \( x^*_{n,m} = 0 \) if \( c(0) > V_{n,m} - W_{n,m} \), where the subindices \( n \) and \( m \) capture how market structure affects R&D decisions. Equation (4) tells us that, at every instant of time, the followers and research labs invest until the marginal cost of increasing their arrival rate is equal to the incremental rent of achieving an innovation. Strict convexity implies that condition (4) can be inverted so that \( x^*_{n,m} = f(V_{n,m} - W_{n,m}) \), where \( f(z) \) is a strictly increasing function of \( z \).\(^7\) By replacing \( x^*_{n,m} \) into equations (2) and (3), we can solve the game and prove the following proposition.

**Proposition 1** (Market equilibrium). There is a unique symmetric equilibrium, which is determined by the solution of the system of equations (1–4).

\(^7\)This function is further characterized in Lemma 1 in the Appendix.
It can be easily verified that the payoffs in this model possess the expected comparative statics for given values of $n$ and $m$. For instance, the value functions increase with larger profit flows or a lower interest rate (all else equal).

3 Mergers and Market Outcomes

To identify and characterize the basic trade-offs that arise when a merger in an innovative industry takes place, we study how a change in market structure affects R&D outcomes and, more generally, consumer welfare.

In the context of this model, a merger between large firms is interpreted as a lessening of product market competition and as a decrease in the number of firms performing R&D. While we recognize that merged firms may benefit from synergies when coordinating their research activities, the purpose of this work is to explore how product market competition affects firms’ incentives to invest in R&D. Since the role of product market competition is independent of the existence of synergies, we abstract away from this source of efficiency as a means of keeping the analysis tractable. We note, however, that the lack of R&D synergies does not affect the desirability of mergers. As illustrated by our examples in Section 4, the existence of (duplicated) R&D fixed costs is enough to motivate firms to merge.

In what follows, we define a merger as being desirable in the static sense if it increases (the flow of) consumer surplus at the very moment when the merger takes place. A merger is not desirable in the static sense, for instance, if prices increase immediately after the merger. We define a merger as desirable in the dynamic sense if it increases the expected discounted consumer surplus. Likewise, we define a static (dynamic) merger-review criterion as one that approves a merger if and only if it is desirable in the static (dynamic) sense.

When two firms merge, we find that it affects dynamic incentives to invest in R&D through two channels: product market competition and innovation competition. We explore how these two forms of competition interact in determining the pace of innovation in the industry. We provide sufficient conditions under which a merger would decrease (increase) the pace of innovation, so that the rejection (approval) of a merger using a static merger-review criterion is further justified due to a lower (higher) pace of innovation. In such circumstances, we say that the static and dynamic merger-review criteria are aligned. The sufficient conditions for the static and dynamic merger-review criteria to be aligned are based on prod-
uct market competition payoffs and, consequently, only require information for the estimation of a (static) demand. Finally, we provide a necessary and sufficient condition that guarantees that a merger is consumer-surplus enhancing from a dynamic standpoint. This last condition is of use when the sufficient conditions for the alignment of the static and dynamic merger-review criteria are not satisfied.

3.1 Pace of Innovation

We begin our analysis by considering how an isolated change in innovation competition or product market competition affects innovation outcomes. While, in practice, mergers between large firms affect both forms of competition simultaneously, this exercise gives us a first approach to understanding how each form of competition affects R&D outcomes. A key element in our analysis is the profit gap between the leader and a follower, $\Delta \pi_n = \pi^l_n - \pi^f_n$.

Proposition 2 (Product market and innovation competition). Competition affects innovation outcomes through two channels:

i) Product market competition: Fixing the number of firms, an increase in the profit gap, $\Delta \pi_n$, increases each firm’s R&D investment, $x^*_{n,m}$, and the pace of innovation in the industry, $\lambda_{n,m}$.

ii) Innovation competition: A decrease in the number of research labs, $m$, decreases the overall pace of innovation in the industry, $\lambda_{n,m}$, but increases each firm’s R&D investment, $x^*_{n,m}$.

Firms’ incentives to invest in R&D are driven by the incremental rent obtained from an innovation (see equation (4)). Proposition 2 tells us that a key object behind the incremental rent is the profit gap that exists between a technology leader and its followers: a larger profit gap increases the pace of innovation. Because a merger between large firms leads to product market concentration, the merger affects the relative profit earned by a market leader and its followers. This change in profits alters the profit gap and, ultimately, the incentives to invest in R&D. As we shall see later, understanding how a merger affects the profit gap by changing product market competition is key to understanding the impact of a merger on the pace of innovation in the industry.

From Proposition 2 we also learn that innovation competition affects the pace of innovation in the industry directly, through the number of firms performing R&D, and indirectly by altering the incremental rent of an innovation. To understand
this last effect, suppose two research labs merge into one. Since research labs do not compete in the product market, the profit flows of the leader and followers are unaltered. This reduction in the number of firms performing R&D has a direct negative effect on the pace of innovation in the industry, \( \lambda_{n,m} \) (i.e., fewer firms performing R&D). However, this reduction in \( \lambda_{n,m} \) increases the expected time between innovations, extending the lifespan of a leader and raising the value of being a market leader, \( V_{n,m} \). This increase in value induces the incremental rent of an innovation to rise, leading firms to invest more in R&D, which partially reverses the impact of the decrease in the number of firms performing R&D on the pace of innovation.\(^8\) The following corollary is immediate from the previous discussion.

**Corollary 1.** A merger between research labs decreases the pace of innovation.

Proposition 2 illustrates how product market competition and innovation competition affect the incentives to innovate in isolation. As noted above, a merger involving large firms affects both forms of competition simultaneously. The interaction between these forms of competition is quite complex. For instance, depending on how firms compete in the product market, these effects may either reinforce or collide with each other, making merger evaluation difficult. However, we can summarize the conjunction of these effects by studying the elasticity of a follower’s R&D with respect to the number of large firms, 

\[
e_{x_{n,m}^*,n} = -(dx_{n,m}^*/dn)(n/x_{n,m}^*).
\]

**Proposition 3** (Pace of innovation). The pace of innovation, \( \lambda_{n,m} \), decreases with a merger between two large large firms if

\[
e_{x_{n,m}^*,n} < n/(n + m),
\]

and increases otherwise.

Proposition 3 tells us that we can summarize the total effect of a merger on R&D by comparing the relative importance of large firms in the market, \( n/(n+m) \), with a firm’s sensitivity to changes in R&D incentives, \( e_{x_{n,m}^*,n} \) (see Figure 1). In markets dominated by large firms or in markets where the incentives to innovate are not very responsive to changes in the number of product market competitors—for instance, due to long-term capacity constraints in R&D—a merger between large firms is likely to reduce the pace of innovation.

\(^8\)Note, of course, that the net effect of a decrease in the number of research labs on \( \lambda_{n,m} \) must be negative, as it was the initial decrease in the pace of innovation that triggered the increase in the incremental rent of an innovation in the first place.
Figure 1: Industry’s pace of innovation vs. number of competitors in the industry

To better understand how product market competition and innovation competition interact, decompose $e_{x,n,m,n} = e_{x,z} e_{z,n}$ as the product of two elasticities,

$$e_{x,z} = \frac{z_n}{f(z_n)} \frac{df(z_n)}{dz_n} \text{ and } e_{z,n} = -\frac{n}{z_n} \frac{dz_n}{dn},$$

where $z_n \equiv V_n - W_n$ represents the incremental rent of an innovation. In the same spirit of the Lerner index, condition (5) relates fundamental objects of the model with endogenous variables. The term $e_{x,z}$ captures how changes in the incremental rent of an innovation translate into different levels of R&D. This elasticity is determined by the shape of R&D cost technology.\(^9\) The second term, $e_{z,n}$, measures how the incremental rent of an innovation changes with respect to the number of large firms. This latter object is intrinsically linked with the incremental rent of an innovation and, therefore, with product market competition through the profit gap. We can use this link to further explore the connection between product market competition and the impact of mergers on the pace of innovation.

In what follows, we say that the product market payoffs have a decreasing (increasing) profit gap when an increase in the number of large firms, $n$, decreases (increases) $\Delta \pi_n$.

**Proposition 4** (Sufficiency of static desirability). *A weakly increasing profit gap is sufficient to guarantee that $e_{x,n,m,n} < n/(n + m)$; i.e., a weakly increasing profit gap is sufficient for a merger rejection based on a static merger-review criterion to be aligned with a dynamic merger-review criterion.*

**Proposition 4** delivers a heuristic rule based on observable market characteristics, such as the nature of market competition, to determine whether a merger

\(^9\)For example, if $c(x) = \gamma^{-1} x^\gamma$, then $e_{x,z} = (\gamma - 1)^{-1}$.\)
rejection based on a static merger-review criterion is aligned with rejecting the merger using a dynamic merger-review criterion. The logic behind the result is as follows: if the profit gap between the leader and followers, \( \Delta \pi_n \), increases with the number of competitors, then a merger reduces the incentives to perform R&D both by reducing the profit gap in the product market and by reducing innovation competition. This effect is in addition to potential price effects caused by the merger. Thus, a rejection based on a static-merger review criterion is further justified by lower innovation outcomes. An example of product market competition with a weakly increasing profit gap is Bertrand competition in a market for homogeneous goods with symmetric followers and process innovations. In this context, increasing the number of followers (beyond one) does not affect the profit gap, as the market price equals the followers’ marginal cost.

In general, the profit-gap analysis has to be performed on a case-by-case basis and needs no further information than that currently required for most merger simulations. Table 1 shows examples of different forms of market competition and the behavior of the profit gap. For instance, a constant-elasticity demand in a quantity competition game can deliver a profit gap that is increasing or decreasing in the number of firms depending on the value of the demand elasticity. Also, generally speaking, Cournot and Bertrand competition can be associated with both an increasing or decreasing profit gap.

**Proposition 5** (Necessity of a decreasing profit gap). A decreasing profit gap is necessary for \( e_{x, \pi_n, n} > n/(n + m) \). If the number of research labs is large enough, a decreasing profit gap is also sufficient. In such a case, approving a merger using a static merger-review criterion is aligned with approving it using a dynamic merger-review criterion.

When the profit gap decreases with competition, a merger between large firms creates a tension between the effects of product market competition and innovation competition. On the one hand, the decrease in product market competition increases the profit gap and, consequently, increases the incentives to perform R&D. On the other hand, the decrease in innovation competition has a negative effect on the pace of innovation. Although this tension may not always result in an increased pace of innovation, **Proposition 5** shows that in industries in which research labs play an important role in total R&D, a decreasing profit gap is sufficient to increase the pace of innovation.\(^{10}\) The intuition for this result follows from observing that

\(^{10}\)The proof that a decreasing profit gap is sufficient for a merger to increase the pace of
Table 1: Product market competition and the slope of the profit gap: examples

<table>
<thead>
<tr>
<th>Differentiation</th>
<th>Bertrand</th>
<th>Cournot I</th>
<th>Cournot II</th>
<th>Logit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation type</td>
<td>Process</td>
<td>Process</td>
<td>Process</td>
<td>Quality ladder</td>
</tr>
<tr>
<td>Leader advantage</td>
<td>$mc_q = \beta mc_f, \beta \in (0, 1)$</td>
<td>Marginal cost advantage:</td>
<td>Quality gap: $\kappa &gt; 0$</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>$Q = Q(P)$</td>
<td>$Q = a/P^{1/\sigma}$</td>
<td>$Q = a/P^{1/\sigma}$</td>
<td>$s_l = \frac{\exp[(a-\sigma)\sum_{j=1}^n \exp(-p_{j,l})]}{\exp(-\sigma)\sum_{j=1}^n \exp(-p_{j,l})}$</td>
</tr>
<tr>
<td>Restrictions</td>
<td>None</td>
<td>$(1+\beta) \sigma (n-\sigma)/(1-\beta) (n-1) &lt; 1$</td>
<td>$(1+\beta) \sigma (n-\sigma)/(1-\beta) (n-1) &gt; 1$</td>
<td>Firm-level horizontal differentiation</td>
</tr>
<tr>
<td>Profit gap</td>
<td>Weakly increasing</td>
<td>Increasing</td>
<td>Decreasing</td>
<td>Decreasing</td>
</tr>
</tbody>
</table>

Notes: Subscripts $l$ and $f$ denote leader and follower, respectively. For simplicity, we assume that the horizontal differentiation in the logit model (i.e., the idiosyncratic taste shocks) is at the firm rather than the product level. The advantage of this assumption in this context is that same-firm products are homogeneous, eliminating a firm’s incentives to keep separate products after a merger. See Marshall (2015) for an application with a closely related model.

research labs possess the same R&D incentives than large firms (see equation (4)). When market concentration increases R&D incentives, research labs magnify this effect, as more firms are affected by the enhanced incentives. This reduces the negative effect of having fewer firms performing R&D and potentially overcomes it, increasing the overall pace of innovation. As shown by our examples in Section 4, the number of research labs necessary to increase the pace of innovation can be quite small.

In summary, Proposition 4 and Proposition 5 show a direct link between product market competition and the impact of a merger on innovation outcomes. These results are encouraging in the sense that they provide conditions based on product market payoffs for when a merger may either increase or decrease the pace of innovation and for whether static and dynamic merger-review criteria are aligned. Since these conditions are only based on product market payoffs, they require the same information than what is commonly used for merger simulations.

Finally, our results also suggest the importance of using a flexible demand specification when performing an empirical assessment of a merger. A lack of flexibility innovation for a sufficiently large $m$ uses strict convexity of the cost function (i.e., $c''(x) > 0$ for all $x \geq 0$). We note, however, that the result applies for a broader set of cost functions. For instance, the result also applies for all cost functions satisfying $c(x) = x^\gamma/\gamma$ with $\gamma > 1$. 

---

---
in the demand model may prevent the data from showing the true relationship between the profit gap and the number of firms, which may lead the researcher to erroneously conclude that a merger will decrease (or increase) the pace of innovation.

3.2 Welfare Analysis

We have already provided sufficient conditions for instances when the rejection (approval) of a merger between large firms using a static merger-review criterion is aligned with the rejection (approval) using a dynamic criterion. However, the static and dynamic merger-review criteria are not always aligned, as a merger may increase both the pace of innovation and prices in the short run. Evaluating whether a merger between large firms is welfare enhancing requires understanding how it affects both the path of prices faced by consumers and the pace of innovation. For this reason, we provide a sufficient condition for a merger between large firms to be consumer-surplus enhancing. To this end, we incorporate price effects into the analysis and study the trade-off between the price and innovation effects caused by a merger.

To establish conditions for the dynamic desirability of a merger, we impose further structure to the model.

**Assumption 1.** Each innovation increases the consumer-surplus flow by $\delta_n > 0$.

The term $\delta_n$ represents the increment in consumer surplus due to an innovation. If, for instance, firms compete in developing process innovations (i.e., cost-saving technologies), $\delta_n$ represents the decrease in cost that is passed on to consumers through lower prices and, consequently, higher consumer surplus. Table 2 provides examples of different demands with their respective expressions for the consumer surplus under different forms of competition. In all these examples, a stronger version of Assumption 1 is satisfied: the increment in consumer-surplus flow $\delta_n$ is independent of the number of firms competing in the product market, $n$.

Given Assumption 1, the discounted expected consumer surplus, $CS_n$, which incorporates the dynamic benefits of future innovations, is given by

$$rCS_n = cs_n + \lambda_{n,m}\delta_n/r,$$

where $cs_n$ is the consumer-surplus flow at the moment when the merger takes place
Table 2: Product market competition and consumer surplus: examples

<table>
<thead>
<tr>
<th>Differentiation</th>
<th>Bertrand</th>
<th>Cournot</th>
<th>Logit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation type</td>
<td>Process</td>
<td>Process</td>
<td>Quality ladder</td>
</tr>
<tr>
<td>Leader advantage</td>
<td>Marginal cost advantage: $mc_l = \beta mc_f, \beta \in (0, 1)$</td>
<td>Quality gap: $\kappa &gt; 0$</td>
<td></td>
</tr>
<tr>
<td>Demand</td>
<td>$Q = a/P$ if $P &lt; \bar{P}$</td>
<td>$s_l = \frac{\exp(\kappa-p_l)}{\exp(\kappa-p_f) + \sum_{j=1}^{n} \exp(-p_{f,j})}$</td>
<td>$s_{f,k} = \frac{\exp(\kappa-p_f)}{\exp(\kappa-p_{f,k}) + \sum_{j=1}^{n} \exp(-p_{f,j})}$</td>
</tr>
<tr>
<td>Consumer-surplus flow ($cs_n$)</td>
<td>$a \log \bar{P} - a \log p_n$</td>
<td>$\log(\exp(\kappa - p_l) + n \exp(-p_f)) + \gamma$</td>
<td></td>
</tr>
<tr>
<td>Innovation effect on CS ($\delta_n$)</td>
<td>$-a \log \beta$</td>
<td>$\kappa$</td>
<td></td>
</tr>
<tr>
<td>Restrictions</td>
<td>None</td>
<td>None</td>
<td>Firm-level horizontal differentiation</td>
</tr>
</tbody>
</table>

Notes: Subscripts $l$ and $f$ denote leader and follower, respectively. The $\gamma$ parameter in the logit-model consumer surplus is Euler’s constant.

and when there are $n$ product market competitors.\textsuperscript{11} Observe that the discounted expected consumer surplus is greater than $cs_n$ and that it is increasing in both the pace of innovation and the magnitude with which each innovation enhances consumer surplus, $\delta_n$. The discounted expected consumer surplus also decreases with the interest rate, as future breakthroughs are discounted at a higher rate.

From equation (6), we can note that a merger affects the discounted expected consumer surplus through three mechanisms. First, market concentration has a direct effect on spot prices, affecting the consumer surplus $cs_n$ from the very moment when the merger takes place and into the future. Concentration also affects the discounted expected consumer surplus by changing the pass-through of innovations on consumer welfare, $\delta_n$. As with the profit gap, the behavior of the pass-through will depend on the nature of product market competition. In general, however, it is expected that less competitive markets have a lower pass-through rate. Finally, as discussed in the previous subsection, market concentration has an effect on the pace of innovation, $\lambda_{n,m}$. Therefore, it is not ex-ante clear that a merger that increases the pace of innovation will necessarily increase consumer welfare, as the merger also has an effect on the path of prices by reducing competition.

\textsuperscript{11}See Lemma 2 for the derivation of equation (6).
Proposition 6 (Dynamic-merger analysis). A merger is desirable in the dynamic sense iff
\[
ψ_{n,m} \equiv \frac{r n}{\delta_n} \frac{dcs_n}{dn} + \frac{d\delta_n}{dn} \frac{n}{n + m} > \frac{e_{x^*,m,n} \cdot n}{n + m},
\]
where \(dcs_n/dn\) is the derivative of the consumer-surplus flow (at the moment when the merger takes place) with respect to \(n\), and \(d\delta_n/dn\) the derivative of the effect of an innovation on the consumer-surplus flow with respect to \(n\).

Recall from Proposition 3 that \(e_{x^*,m,n} > n/(n+m)\) is necessary and sufficient for a merger to increase the pace of innovation. When a merger increases the market price—i.e., \(dcs_n/dn > 0\)—and reduces the innovation pass-through on consumer surplus—i.e., \(d\delta_n/dn \geq 0\)—the left-hand side of inequality (7) is larger than \(n/(n+m)\), meaning that an increase in the speed of innovation is not sufficient for the merger to increase welfare. To understand condition (7) further, rewrite it as
\[
\lambda_{n,m} \left( e_{x^*,m,n} - \frac{n}{n + m} - \frac{d\delta_n}{dn} \frac{n}{\delta_n} \right) \frac{\delta_n}{r} > \frac{cs_n}{e_{cs,n,m}} \cdot \text{change in cs}
\]
where \(e_{cs,n,m}\) is the elasticity of \(cs_n\) with respect to \(n\). From this expression, we can see that for a merger to increase consumer welfare, the net increase in the pace of innovation adjusted by the pass-through rate, weighted by the discounted benefits of an innovation, \(\delta_n/r\), must be larger than the effect of reduced competition on product market outcomes, \(cs_n\). That is, the discounted innovation effects must more than compensate for the price effects of a merger.

In is interesting to observe that condition (7) summarizes the main objects of interest when performing an empirical assessment of the impact of a merger in an innovative industry. For instance, both the pass-through rate \(\delta_n\) and the elasticity of consumer surplus \(e_{cs,n,m}\) are naturally linked to the price elasticity of demand. It is also necessary to determine the pre-merger pace of innovation \(\lambda_{n,m}\) and the elasticity of a follower’s R&D with respect to the number of large firms, \(e_{x^*,m,n}\). As with traditional merger-review analysis, it is also important to determine the relevant firms in the market. For instance, a permissive definition for which research labs are part of the industry will bias the results in favor of the merger.

In summary, we have shown that when the profit gap is weakly increasing in the number of product market competitors, a merger that is consumer-surplus de-
creasing in the static sense will also be consumer-surplus decreasing in the dynamic sense. It is not always true that a profit gap that is decreasing in the number of product market competitors will imply that a merger is consumer-surplus increasing in the dynamic sense. While a profit gap that is decreasing in the number of competitors combined with a sufficiently large number of research labs is sufficient for a merger to increase the pace of innovation, condition (7) must hold for the merger to be consumer-surplus increasing in the dynamic sense.

4 An Illustrative Example

In this section we parameterize the model and simulate the effect of mergers on market outcomes. The purpose of this exercise is to show, first, that the relationship between market structure and the pace of innovation is complex and, second, that mergers can enhance consumer surplus despite short-run price effects. In many of the examples we provide, reduced competition and the elimination of duplicated R&D fixed costs make mergers profitable for the merging parties.\footnote{That is, in the numerical examples it will often be true that $W_{n-1} > 2W_n$ or $V_{n-1} \geq W_n + V_n$, which are necessary conditions for a merger to be incentive compatible for the firms.} We consider the case without labs, $m = 0$, unless otherwise noted. Henceforth, we drop the $m$ subscript for ease of notation.

4.1 Parameters

We consider a market for a homogeneous good, where firms compete in quantity (Cournot competition), and market demand is given by $Q = a/P$, with $a > 0$ and $P \leq \bar{P}$. Firms also compete developing a sequence of cost-saving innovations. Each innovation provides the innovating firm with a marginal cost advantage, reducing the leader’s marginal cost by a factor of $\beta \in (0, 1)$. The R&D cost function is given by $c(x_i) = \gamma_0 + \gamma_1^{-1} x_i^{\gamma_1}$, where $\gamma_0 \geq 0$ represents the fixed costs of performing R&D and $\gamma_1 > 1$.

We denote, at any instant in time, the marginal cost of the followers by $mc$ and the marginal cost of the leader by $\beta \cdot mc$. The equilibrium market price is $p_n = mc(\beta + n)/n$, which depends on the follower’s marginal cost of production, the size of the leader’s cost advantage, and the number of followers in the market. As expected, the equilibrium market price is decreasing in $n$ and increasing in both
Table 3: Market-outcome comparison for different numbers of followers and parameter values

<table>
<thead>
<tr>
<th>n</th>
<th>εx,1</th>
<th>ψn</th>
<th>λn</th>
<th>CSn</th>
<th>Vn</th>
<th>Wn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.877</td>
<td>1.019</td>
<td>4.543</td>
<td>39.050</td>
<td>415.999</td>
<td>414.887</td>
</tr>
<tr>
<td>2</td>
<td>1.117</td>
<td>1.012</td>
<td>4.527</td>
<td>39.363</td>
<td>165.853</td>
<td>164.794</td>
</tr>
<tr>
<td>3</td>
<td>1.202</td>
<td>1.010</td>
<td>4.237</td>
<td>36.725</td>
<td>83.333</td>
<td>82.309</td>
</tr>
<tr>
<td>4</td>
<td>1.235</td>
<td>1.008</td>
<td>3.977</td>
<td>34.285</td>
<td>46.244</td>
<td>45.264</td>
</tr>
<tr>
<td>5</td>
<td>1.246</td>
<td>1.007</td>
<td>3.768</td>
<td>32.312</td>
<td>26.482</td>
<td>25.501</td>
</tr>
<tr>
<td>6</td>
<td>1.247</td>
<td>1.006</td>
<td>3.602</td>
<td>30.738</td>
<td>16.900</td>
<td>15.725</td>
</tr>
<tr>
<td>7</td>
<td>1.242</td>
<td>1.006</td>
<td>3.468</td>
<td>29.470</td>
<td>7.097</td>
<td>6.145</td>
</tr>
<tr>
<td>8</td>
<td>1.234</td>
<td>1.005</td>
<td>3.360</td>
<td>28.435</td>
<td>1.919</td>
<td>0.978</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>εx,1</th>
<th>ψn</th>
<th>λn</th>
<th>CSn</th>
<th>Vn</th>
<th>Wn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.573</td>
<td>1.030</td>
<td>2.865</td>
<td>22.682</td>
<td>443.416</td>
<td>441.940</td>
</tr>
<tr>
<td>2</td>
<td>0.807</td>
<td>1.016</td>
<td>3.531</td>
<td>29.645</td>
<td>180.412</td>
<td>179.178</td>
</tr>
<tr>
<td>3</td>
<td>0.893</td>
<td>1.011</td>
<td>3.747</td>
<td>31.939</td>
<td>92.445</td>
<td>91.360</td>
</tr>
<tr>
<td>4</td>
<td>0.929</td>
<td>1.008</td>
<td>3.842</td>
<td>32.971</td>
<td>52.601</td>
<td>51.616</td>
</tr>
<tr>
<td>5</td>
<td>0.944</td>
<td>1.007</td>
<td>3.896</td>
<td>33.562</td>
<td>31.198</td>
<td>30.286</td>
</tr>
<tr>
<td>6</td>
<td>0.949</td>
<td>1.006</td>
<td>3.934</td>
<td>33.977</td>
<td>18.366</td>
<td>17.511</td>
</tr>
<tr>
<td>7</td>
<td>0.948</td>
<td>1.005</td>
<td>3.965</td>
<td>34.314</td>
<td>10.059</td>
<td>9.248</td>
</tr>
<tr>
<td>8</td>
<td>0.944</td>
<td>1.004</td>
<td>3.994</td>
<td>34.617</td>
<td>4.365</td>
<td>3.591</td>
</tr>
</tbody>
</table>

Notes: Fixed parameter values are \( r = 0.03 \), \( a = 60 \), and \( mc = 10 \). \( n \) is the number of followers, \( εx,1 \) is the elasticity of a firm's R&D level with respect to \( n \), \( ψn \) is defined in (7), \( λn \) is the pace of innovation, \( CSn \) is the expected discounted consumer surplus, \( Vn \) is the value of being the leader, and \( Wn \) is the value of being a follower.

\( \beta \) and \( mc \). Similarly, profits are given by

\[
π^l_n = a \frac{(n(1 - \beta) + \beta)^2}{(\beta + n)^2},
\]

\[
π^f_n = a \frac{β^2}{(β + n)^2},
\]

which do not depend on the current marginal cost, nor the number of innovations that have taken place. Profits do depend, however, on the number of followers and the size of the leader’s cost advantage, \( β \). These equilibrium profits imply that the profit gap is positive, \( Δπ_n ≡ π^l_n - π^f_n > 0 \); decreasing in the number of followers, \( dΔπ_n/dn < 0 \); and increasing in the cost advantage of the leader, \( dΔπ_n/db > 0 \). As discussed above, a decreasing profit gap suggests that a merger may potentially increase consumer surplus if it increases the pace of innovation by a sufficient amount (see Proposition 5 and Proposition 6).

Finally, to capture the role of the pace of innovation on the path of prices faced by consumers, we make use of the expected discounted consumer surplus defined in equation (6). The flow of consumer surplus when the market price is \( pn \) is given by \( cs_n = a \log P_n - a \log pn \), and an innovation increases the flow of consumer surplus by \( δ \equiv -a \log β > 0 \).
Figure 2: Market-outcome comparison for different numbers of followers and parameter values

a) $\beta = 0.85$, $\gamma_0 = 0.55$, $\gamma_1 = 1.07$, $m = 0$

b) $\beta = 0.85$, $\gamma_0 = 0.55$, $\gamma_1 = 1.37$, $m = 0$

c) $\beta = 0.21$, $\gamma_0 = 0.095$, $\gamma_1 = 1.0125$, $m = 0$

d) $\beta = 0.85$, $\gamma_0 = 0.55$, $\gamma_1 = 1.37$, $m = 2$

Notes: Fixed parameter values are $r = 0.03$, $a = 60$, and $mc = 10$. “n” is the number of large firms, “Pace” is the pace of innovation ($\lambda_n$), “Elasticity” is the elasticity of a firm’s R&D level with respect to $n$ ($e_{x^*_n,n}$), and “Consumer Surplus” is the discounted expected consumer surplus ($CS_n$).
Figure 3: Elasticity of R&D: a comparative static analysis

Notes: Common parameters: $a = 30$, $m = 0$ and $mc = 10$. Parameters in panel a): $n = 1$, $r = 0.3$, and $\gamma_0 = 0$. Parameters in panel b): $n = 5$, $r = 0.03$, and $\gamma_0 = 0.2$.

4.2 Results

Using this setup, we provide four numerical examples to illustrate our results. In Table 3.a (see Figure 2.a) we show market outcomes for a set of parameters that create an inverted-U relationship between the pace of innovation and the number of followers. A similar inverted-U relationship is found for the expected discounted consumer surplus. This example shows that a merger may enhance consumer surplus by increasing the pace of innovation—for instance, when going from $n = 3$ to $n = 2$—even though the merger reduces competition in the product market and, consequently, increases prices in the short run. The gains in consumer surplus arise from consumers enjoying more frequent price reductions caused by the impact of the merger on the pace of innovation. The positive effect of a merger on consumer surplus implies that the increased frequency of these price reductions more than compensates for the short-run price effects due to reduced product market competition.

Result 1. A merger may enhance consumer surplus even if it increases prices in the short run.

In Tables 3.b and 3.c (see Figures 2.b and 2.c, respectively), we show examples where the pace of innovation varies monotonically (Table 3.b) or non-monotonically (N-shaped in Table 3.c) with respect to the number of followers. These examples illustrate the complex relationship that exists between the number of firms and the pace of innovation. As discussed in section 3, the shape of this relationship is given by the relative importance of two separate effects created by a merger.
On the one hand, a merger may increase the profit gap between the leader and followers—increasing the incentives to innovate—and, on the other hand, it reduces the number of firms performing R&D. Figures 2.b and 2.c show that the dominance of one effect over the other may change as a function of the number of firms, creating an inverted-U- or even an N shaped relationship between the pace of innovation and the number of firms.

**Result 2.** *The relationship between the pace of innovation and the number of firms can be monotonic or non-monotonic (e.g., inverted-U or N shaped).*

Table 3.b shows an example where a profit gap that decreases in the number of firms is insufficient for a merger to increase the pace of innovation. In Proposition 5, however, we argue that for a sufficiently large number of research labs, $m$, a decreasing profit gap becomes sufficient for a merger to increase the pace of innovation. Using the same parameters as in Table 3.b, we find that $m = 2$ research labs are sufficient for a merger to increase the pace of innovation whenever the number of large firms ranges between 2 and 8. We report these results in Table 3.d (see Figure 2.d). This result suggests that even a small number of labs may transform the relationship between the number of firms and the pace of innovation. Therefore, even in concentrated industries, a decreasing profit gap may be sufficient to invalidate the argument that a merger will reduce the pace of innovation.

**Result 3.** *A small number of labs may be sufficient for a profit gap that decreases in the number of firms to increase the pace of innovation with a merger.*

Finally, Figure 3 shows the relationship between the elasticity of a firm’s R&D curve and some of the key parameters of the model, $\beta$ and $\gamma_1$. Even though the profit gap increases with the cost advantage of the leader $\beta$, the elasticity of a follower’s R&D with respect to the number of firms, $e_{x^*,n}$, does not have a monotone comparative static in $\beta$. Similarly, more inelastic R&D cost technologies (i.e., a higher $\gamma_1$) also affect $e_{x^*,n}$ non-monotonically. This non-monotonicity captures the complex interaction that exists between the different components of the model and further highlights the value of our conditions for the alignment of the static and dynamic merger-review criteria.
5 Concluding Remarks

We studied the impact of mergers in innovative industries. We found that a merger between two large firms affects R&D outcomes both directly by reducing the number of firms performing R&D and indirectly by changing the product market profits. The relationship among these effects is complex and may lead to scenarios where a merger increases an industry’s pace of innovation and consumer surplus in the long run.

Based on properties of the product market competition game, we provide conditions for when a merger increases or decreases the pace of innovation. These conditions are based on product market payoffs and provide valuable information on whether the (common) argument that a merger reduces incentives to innovate really applies.\textsuperscript{13} Moreover, these conditions are simple to check—in the sense that they only require information that is commonly used for merger simulations or demand estimation. Based on these results, we provide conditions for when rejecting or approving a merger using a static merger-review criterion (i.e., based on static price effects) is aligned with a dynamic merger-review criterion, which considers effects on both the price and innovation processes. Finally, we provide a necessary and sufficient condition for when a merger benefits consumers in the long run despite any short run price effects. This latter condition is helpful when the above conditions suggest that the static and dynamic merger-review criteria may be unaligned.

Our theoretical results together with empirical evidence suggesting that reduced product market competition may increase innovation rates—e.g., see Aghion et al. (2005)—stress the relevance and importance of analyzing the dynamic effects of mergers in innovative industries. As mentioned above, checking our sufficient conditions for whether a merger increases innovation rates does not require estimating or solving a dynamic model. We believe these conditions are simple enough to be easily brought into merger evaluation.

Finally, our results also highlight the importance of product market payoffs for the analysis of the impact of mergers on R&D outcomes. For this reason, empirical studies should carefully specify demand models and the rules of the product market competition game. A lack of flexibility in the model may prevent the data from showing the true relationship between the profit gap and the number of firms, which may lead the researcher to erroneously conclude that a merger will decrease

\textsuperscript{13}See footnote 1.
(or increase) the pace of innovation.

References


Appendix

A Preliminary Results

Lemma 1. The function \( f(z) \) implicitly defined by \( c'(f(z)) = z \) satisfies:
1. \( f(z) > 0 \) for all \( z > 0 \) and \( f(0) = 0 \).
2. \( f'(z) > 0 \) for all \( z \geq 0 \).
3. Let \( h(z) = (n+1)zf(z) - c(f(z)) \) for \( z \geq 0 \). Then \( h'(z) = (n+1)f(z) + nzf'(z) > 0 \) for all \( z \geq 0 \).

Proof. 1. \( c(x) \) being strictly increasing and differentiable implies \( c'(x) > 0 \) for all \( x > 0 \). \( c(x) \) being strictly convex implies \( c''(x) > 0 \) for all \( x \geq 0 \). Thus, \( c'(x) \) is unbounded above and for each \( z \) there exists a unique value of \( x = f(z) > 0 \) such that \( c'(x) = z \). Moreover, because \( c'(0) = 0 \), then \( f(0) = 0 \).
2. The result follows from the derivative of the inverse function being equal to \( f'(z) = 1/c''(f(z)) \) in conjunction with the strict convexity of \( c(x) \).
3. Differentiating \( h \) and using \( c'(f(z)) = z \) delivers \( h'(z) = (n+1)f(z) + nzf'(z) \), which is positive by claims 1 and 2.

Lemma 2. The discounted expected consumer surplus is given by equation (6).

Proof. Consider an asset that pays the consumer surplus flow at every instant of time. Starting from a consumer surplus \( cs_n \), the value of this asset is given by
\[
ra(cs_n) = cs_n + \lambda_{n,m}(A(cs'_n) - A(cs_n)) \tag{8}
\]
where \( cs'_n \) is the consumer surplus after an innovation arrives. Using the condition that \( cs'_n = cs_n + \delta_n \), we guess and verify that equation (6) solves equation (8), i.e.,
\( A(cs_n) = CS_n \), proving the result.

B Proofs

Proof of Proposition 1 Using the first order condition (see equation (4)), we find that the equilibrium values for the leader and followers are given by
\[
ra_v = \pi'_n - (n + m)(V_{n,m} - W_{n,m})f(V_{n,m} - W_{n,m})
\]
\[
ra_w = \pi'_n + (V_{n,m} - W_{n,m})f(V_{n,m} - W_{n,m}) - c(f(V_{n,m} - W_{n,m})).
\]
Subtracting these equations and defining \( Z_{n,m} \equiv V_{n,m} - W_{n,m} \) we obtain
\[
ra_z = \Delta \pi_n - (n + m + 1)Z_{n,m}f(Z_{n,m}) + c(f(Z_{n,m})). \tag{9}
\]
To prove existence and uniqueness of an equilibrium with \( Z_{n,m} > 0 \), note that the left-hand side of equation (9) is strictly increasing in \( Z_{n,m} \) and ranges from 0 to \( \infty \). Lemma 1.1 implies that the right-hand side of equation (9) is strictly decreasing in
Z_{n,m}, taking the value of \(\Delta \pi_n + c(0) > 0\) when \(Z_{n,m} = 0\). Thus, the two functions intersect once at a positive value of \(Z_{n,m}\), proving the result.

**Proof of Proposition 2** Using implicit differentiation in equation (9), we reach the following results:

i) The derivative of \(Z_{n,m}\) with respect to \(\Delta \pi_n\) is given by

\[
\frac{dZ_{n,m}}{d\Delta \pi_n} = \frac{1}{r + (n + m + 1)f(Z_{n,m}) + (n + m)Z_{n,m}f'(Z_{n,m})} > 0.
\]

Since \(x^*_{n,m} = f(Z_{n,m})\) and \(\lambda_{n,m} = (n + m)f(Z_{n,m})\), Lemma 1.2 implies that both are increasing in \(\Delta \pi_n\).

ii) The derivative of \(Z_{n,m}\) with respect to \(m\) is given by

\[
\frac{dZ_{n,m}}{dm} = \frac{-Z_{n,m}f(Z_{n,m})}{r + (n + m + 1)f(Z_{n,m}) + (n + m)Z_{n,m}f'(Z_{n,m})} < 0.
\]

Thus, an increase in \(m\) decreases a firm’s R&D investment. The derivative of the pace of innovation with respect to \(m\) is

\[
\frac{d\lambda_{n,m}}{dm} = f(Z_{n,m}) + (n + m)f'(Z_{n,m}) \frac{dZ_{n,m}}{dm} = \frac{rf(Z_{n,m}) + (n + m + 1)f(Z_{n,m})^2}{r + (n + m + 1)f(Z_{n,m}) + (n + m)Z_{n,m}f'(Z_{n,m})} > 0,
\]

proving that the pace of innovation increases with \(m\).

**Proof of Proposition 3** Using implicit differentiation in equation (9), we find that the derivative of the pace of innovation with respect to \(n\) is

\[
\frac{d\lambda_{n,m}}{dn} = f(Z_{n,m}) + (n + m)f'(Z_{n,m}) \frac{dZ_{n,m}}{dn}.
\]

This derivative is positive when

\[
\frac{n}{n + m} < -\frac{n}{f(Z_{n,m})} \frac{df(Z_{n,m})}{dZ_n} \frac{dZ_{n,m}}{dn} = -\frac{dx^*_n}{dx^*_n} \equiv \epsilon_{x^*_n, n},
\]

which proves the result.

**Proof of Proposition 4** Using implicit differentiation in equation (9) we obtain \(dZ_{n,m}/dn\). Replacing it in (10), we find

\[
\frac{d\lambda_{n,m}}{dn} = \frac{rf(Z_{n,m}) + (n + m + 1)f(Z_{n,m})^2 + (n + m)f'(Z_{n,m}) \frac{d\Delta_n}{dn}}{r + (n + m + 1)f(Z_{n,m}) + (n + m)Z_{n,m}f'(Z_{n,m})}.
\]

29
If \( \Delta_n \) satisfies \( d\Delta_n/dn > 0 \) (i.e., if \( \Delta_n \) has an increasing profit gap), then the derivative is positive. Hence, a reduction in the number of large firms leads to a reduction in the pace of innovation.

**Proof of Proposition 5** A necessary condition for equation (12) to be negative is \( d\Delta_n/dn < 0 \). For sufficiency, we need to show that there exists an \( \tilde{m} \) such that \( m > \tilde{m} \) implies \( d\lambda_{n,m}/dn < 0 \). Since the denominator of (12) is positive, \( d\lambda_{n,m}/dn < 0 \) is equivalent to

\[
\frac{r}{n + m} \frac{f(Z_{n,m})}{f'(Z_{n,m})} + \frac{n + m + 1}{n + m} \frac{f(Z_{n,m})^2}{f'(Z_{n,m})} < -\frac{d\Delta\pi_n}{dn}.
\]

\( d\Delta\pi_n/dn < 0 \) guarantees that right-hand side of the inequality is always positive. Given that \( f(0) = 0 \) and \( f'(0) > 0 \) (see Lemma 1), and \( dZ_{n,m}/dm < 0 \), it is sufficient to show that \( \lim_{m \to \infty} Z_{n,m} = 0 \) for the inequality to hold.

For any small \( \epsilon > 0 \), pick \( Z_\epsilon \in (0, \epsilon) \). By Proposition 1, equation (9) has a unique solution. Using (9), define \( m_\epsilon \) to be

\[
m_\epsilon = \frac{\Delta\pi_n + c(f(Z_\epsilon)) - (r + (n + 1)f(Z_\epsilon))Z_\epsilon}{f(Z_\epsilon)Z_\epsilon},
\]

which is always well defined (but possibly negative). Thus, take any decreasing sequence of \( Z_\epsilon \) converging to zero. For each element of the sequence, there exists an increasing sequence \( m_\epsilon \) that delivers \( Z_\epsilon \) as an equilibrium. Thus, \( \lim_{m \to \infty} Z_{n,m} = 0 \) and the result follows.

**Proof of Proposition 6** The derivative of \( CS_n \) with respect to \( n \) is given by

\[
\frac{dCS_n}{dn} = \frac{dcs_n}{dn} + \frac{1}{r} \frac{d\lambda_{n,m}}{dn} \delta_n + \lambda_{n,m} \frac{d\delta_n}{dn}.
\]

Using equation (12), we note that

\[
(n + m) \frac{d\lambda_{n,m}}{dn} = \lambda_{n,m} \left( 1 - \frac{m + n}{n} e_{x_n}^\ast \right).
\]

By replacing this expression into \( dCS_n/dn \), we find that a merger increases consumer surplus if and only if condition (7) holds.