Internalizing Behavioral Externalities: Benefit Integration, Health Insurance and Welfare

Amanda Starc (The Wharton School and NBER) Robert J. Town (The Wharton School and NBER)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

- Health insurance, while mititgating financial risk, can create moral hazard.
 - Consumers may not have enough information to distinguish between high and low value services.
 - RAND HIE shows an equal reduction of high and low value services
 - similar results in recent studies (Brot-Goldberg et al. 2015)
 - Underutilization of high-value services creates potential for value-based insurance design (Chernew et al. 2007).
- Profit maximizing behavior by plans may mitigate underconsumption.
 - Firms can exploit behavioral biases of consumers (Grubb et al. 2012, Grubb 2014).
 - evidence of consumer biases in drug utilization (Abaluck et al. 2015, Dalton et al. 2015) in Medicare Part D

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト ・ らへで

• New work on "behavioral hazard" creates an theoretical framework for thinking about equilibrium effects (Baicker et al. 2015).

Research Question and Overview of Results

- Do plans correct for externalities associated with underutilization of cost effective health care services? How do plans respond to both moral and "behavioral" hazard?
 - take utilization as given
- We'll explore this in the Medicare Part D setting by comparing stand-alone PDP (which cover only drugs) and MA-PD plans (which cover total medical expenditure)
 - interesting setting because of the potential for prescription drug offsets

- Policy relevant
 - broad insurance design
 - programs to improve adherence, including the Part D Enhanced medication Therapy Management (MTM) model

Overview of Results

- Reduced form: use exogenous variation to infer that MA-PD plans spend more on drugs than their PDP counterparts
 - driven by cost considerations, rather than demand
 - not driven by selection
- Stuctural model: estimate the implied offsets using insurer plan design decisions
 - important because we do not observe medical claims for MA plans

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

• estimates are similar to older results using demand side variation

Setting

- Broadly, Medicare enrollees can obtain drug coverage in one of two ways
 - through a Medicare Advantage plan that replaces Medicare Parts A and B
 - through a stand-alone Part D plan that supplements Medicare Parts A and B

ション ふゆ アメリア メリア しょうくの

- The standard Medicare Part D benefit is nonlinear
 - plans can increase generosity beyond the standard benefit
 - plans also have substantial discretion in designing formularies
- Evidence of non-optimal consumption in this setting (Abaluck et al. 2015, Dalton et al. 2015)

Data

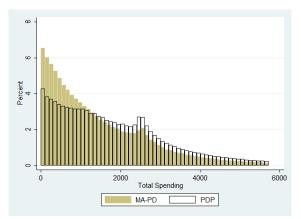
- Medicare Part D Event Files
 - 10% of beneficiaries
 - observe each fill
 - aggregate to the beneficiary-year level for 2007-2009
- Medicare Part D Plan files
 - allow us to merge in plan pricing and formulary information

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

• county-level demographic information

Summary Statistics: Plans

- MA-PD plans appear to have more generous cost-sharing that stand-alone PDPs.
- Table below describes means of premiums and a price index in multiple phases of the standard benefit.


	PDP	MA
1(Deductible)	.1912	.1655
P^{ICR}	.5026	.4608***
P^{Donut}	1.93	1.71^{***}
Premium	23.16	12.77***
Observations	381	1926

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

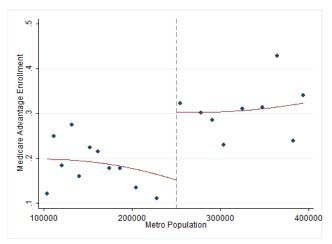
Summary Statistics: Consumers

• MA-PD plans are advantageously selected.

Figure: Histogram of Total Drug Spending by Plan Type, 2008

▲ロト ▲掃 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 오 ●

Identification Strategy


- Differential MA payment rates across counties lead to higher enrollment (Duggan, Starc, and Vabson 2014).
 - \$9,738 per enrollee per year in urban counties in 2009
 - \$8,811 per enrollee per year in rural counties in 2009
- Lawrence County (Ohio) is characterized as urban.
 - classified as being part of the Huntington-Ashland, WV metro area, population of 286k
- Washington County (Ohio) is characterized as non-urban.
 - classified as being part of the Parkersburg, WV metro area, population of 163k
- Estimating equations:

$$y_{itj} = X_{mt}^{1}\beta_{1} + X_{it}^{2}\beta_{2} + \beta_{3}1(MA) + g(pop_{mt}) + \mu_{itj},$$

$$1(MA) = X_{mt}^{1}\gamma_{1} + X_{it}^{2}\gamma_{2} + \gamma_{3}1(urban_{mt}) + g(pop_{mt}) + v_{itj}.$$

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Identification Strategy

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Dependent Variable: I	Insurer Drug Costs		
1(MA)	-74.21***	-76.25***	-73.32***
	(3.969)	(3.973)	(3.972)
FFS 5 Year			0.430***
Avg. Spending			(0.0189)
R-Squared	0.217	0.219	0.221

- OLS results reflect advantageous selection into MA.
- first column controls for quintile of 2006 spending and year fixed effects

ション ふゆ アメリア メリア しょうくの

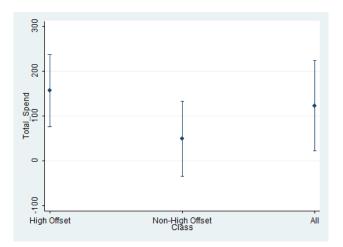
- second column also controls for demographics
- third column also controls for local FFS spending

First Stage, Dependen	t Variable: N	IA Enrollme	ent
1 (Urban)	0.168^{***}	0.170^{***}	0.177^{***}
	(0.00785)	(0.00785)	(0.00787)
FFS 5 Year			Х
R-squared	0.026	0.036	0.037

• County-level urban status is a strong predictor of MA enrollment.

◆□ > < 個 > < E > < E > E 9 < 0</p>

Dependent Variable: Insurer Drug Costs						
1(MA)	514.2^{***}	506.7^{***}	387.5***			
	(74.25)	(73.35)	(68.38)			
FFS 5 Year			0.506^{***}			
Avg. Spending			(0.0226)			
R-squared	0.114	0.119	0.159			


-

-

Dependent Variable: Insurer Drug Costs						
1(MA)	514.2^{***}	506.7^{***}	387.5***			
	(74.25)	(73.35)	(68.38)			
FFS 5 Year			0.506^{***}			
Avg. Spending			(0.0226)			
R-squared	0.114	0.119	0.159			

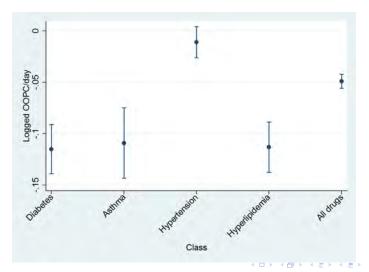
Dependent Variable: Total Drug Spending						
1(MA)	299.0^{***}	284.6^{***}	122.3***			
	(108.0)	(106.7)	(100.7)			
FFS 5 Year			0.688^{***}			
Avg. Spending			(0.0343)			
R-Squared	0.230	0.233	0.252			

Are firms correcting for underutilization?

 main effect of increased utilization is concentrated entirely in drugs with big offsets

Dependent Variable: To	tal Spending					
1(MA)	299.0^{***}	284.6^{***}	122.3^{***}	515.2^{***}	535.6^{***}	299.4^{*}
	(108.0)	(106.7)	(100.7)	(177.1)	(177.7)	(163.9)
FFS 5 Year			0.688^{***}			0.862^{***}
			(0.0343)			(0.0541)
R-Squared	0.230	0.233	0.252	0.133	0.132	0.172
Year Fixed Effects	Х	Х	Х	Х	Х	Х
Type Fixed Effects	Х	Х	Х	Х	X	Х
Demographic Controls		X	Х		X	Х
Observations	381921	381921	381921	163435	163435	163435
Sample	$100-400 { m K}$	$100-400 { m K}$	$100-400 { m K}$	$100-400 { m K}$	$100-400 { m K}$	$100-400 { m K}$
	all hyperlipidemics					

- first three columns are main results, last three columns restrict to hyperlipidemics
- main effect is larger for patients with chronic conditions
- main effect is larger in plans with lower attrition (see paper)


Are firms correcting for underutilization?

• MA-PD plans have lower OOPC for identical drugs in the same phase of the standard benefit.

	(1)	(2)
	Outcome: Log	ged OOPC/Day
1(MA)	-0.075***	-0.049***
	(0.0002)	(0.0001)
Constant	-1.028^{***}	-2.219^{***}
	(0.0001)	(0.0004)
Observations	$124,\!801,\!603$	$124,\!801,\!603$
Adjusted R-Squared	0.607	0.673
	Outcome	: 1(90 Day)
1(MA)	0.001^{***}	0.001***
	(0.0001)	(0.0001)
Constant	0.108^{***}	0.103^{***}
	(0.00005)	(0.0002)
Observations	$157,\!091,\!471$	$157,\!091,\!471$
Adjusted R-Squared	0.096	0.096
Product Fixed Effects	Х	Х
Phase Fixed Effects		X
All Products	X	Х

Are firms correcting for underutilization?

• the price effect is larger in drug categories typically targeted by value-based insurance designs

Structural Model

- Goal: estimate the impact of increased plan generosity on insurer costs to distinguish between cost and demand motives for MA-PD plans
- Hypothesis: MA-PD plans find it less costly to increase generosity on drug benefits
 - additional spending on drugs saves money elsewhere
 - MA-PD plans capture this savings
- Approach: estimate the offset using first order condition with respect to plan characteristics
 - firms set premiums and phase-level coinsurance, taking the structure of the standard benefit as given.

ション ふゆ アメリア メリア しょうくの

• use this to infer magnitude of the externality

Structural Model

- premiums, subsidies, drug costs, and shares are taken as given
- elasticities are take from plan demand system Demand
- medical costs are inferred from the first-order condition with respect to prices for MA-PD plans (FOC)
- take the first-order conditions with respect to premiums and phase-specific prices **FOC**
 - MA-PDP and stand-alone plans differ according to subsidies and the derivative of insurer costs with respect to phase-specific prices.

ション ふゆ アメリア メリア しょうくの

- this derivative is the parameter of interest.
- identification in the structural model is driven by differences in drug spending relative to subsidies. Identification

Structural Model

- the average stand-alone PDP would save \$91 per member by increasing out-of-pocket costs by \$100
- the average MA-PD plan would only save \$60 per member by increasing out-of-pocket costs by \$100 Results

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- the average stand-alone PDP would save \$91 per member by increasing out-of-pocket costs by \$100
- the average MA-PD plan would only save \$60 per member by increasing out-of-pocket costs by \$100 Results
- As plans spend more on drugs, some of the cost is offset by reductions in spending in other areas.

ション ふゆ くり くり くし くし

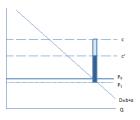
• Can use these estimates to quantify the size of the externality and drug offsets.

Counterfactuals I: Internalizing the Externality

• Set $\theta_{PDP} = \theta_{MA}$ and resolve the system of first-order conditions.

$\partial c / \partial OOPC$	Baseline		Internalize Offset		Internalize Offset	
	MA	PDP	MA	PDP	MA	PDP
Mean Premium	2.0754	4.0589	2.0754	4.0589	2.0602	4.1435
% Change from Baseline	-			- e	-0.0073	0.0208
Mean Insurer Spending	12.8522	12.1104	13.7607	13.6462	13.4580	13.6732
% Change from Baseline		-	0.0707	0.1268	0.0471	0.1291

• Stand-alone plans would increase spending by 13% if they had to internalize the externality.


ション ふゆ アメリア メリア しょうくの

• Supply model implies the the lighter rectangle can be written as:

$$rac{\partial c^{Medical}}{\partial \mathsf{P}} = heta_2 rac{\partial OOPC}{\partial \mathsf{P}},$$

• Demand theory implied the lighter rectangle can be written as:

(ロ) (型) (E) (E) (E) (O)

• Implied discount is 19%.

Counterfactuals II: Cost-Sharing Subsidies

• Can the federal government impose a broad cost sharing subsidy that is revenue neutral and improves consumer welfare?

ション ふゆ くり くり くし くし

- Calculation change in consumption given a subsidy and increase premiums by the amount of the subsidy net of the offset effect.
- No. Consumers do not appear to be "sophisticated" about the potential for underconsumption.

- The federal government impose a broad cost sharing subsidy that is revenue neutral and improves consumer welfare because consumers do not appear to be "sophisticated" about the potential for underconsumption.
 - Health insurers will design plans to correct for inefficient underutilization if they have an incentive to do so.
 - Private firms can be more nimble than public programs.
- Differences in incentives across plan types drive the generosity of the benefits.
- Consumers in MA-PD plans have (causally) higher utilization and lower out-of-pocket costs.
 - effect is concentrated in drugs with large offsets
- A structural model allows us to quantify the size of this effect.
 - stand-alone PDPs would spend 13% more if they internalized the externality
 - equivalent to a 19% discount on drugs for MA-PD plans
- Whether or not firms exploit consumer biases=on information frictions

• Profit for stand-alone plans is given by:

$$\Pi_{jmt} = \left(p_{jmt} + r_t^{PDP} - c_{jmt}^{Drug}\right) s_{jmt},$$

where p_{jmt} is the premium, r_t^{PDP} is the subsidy, and c_{jmt}^{Drug} are drug costs. • Profit for MA-PD plans is given by:

$$\Pi_{jmt} = \left(p_{jmt} + r_t^{PDP} + r_{mt}^{MA} - c_{jmt}^{Drug} - c_{jmt}^{Medical}\right) s_{jmt},$$

where r_{mt}^{MA} is the (separate) MA subsidy and $c_{jmt}^{Medical}$ are non-drug medical costs.

• Object to estimate is:

$$\theta = \begin{cases} \frac{\partial c_{jmt}^{Drug}}{\partial P_{jmt}^{Phase}} + \frac{\partial c_{jmt}^{Medical}}{\partial P_{jmt}^{Phase}} & \text{if } MA = 1\\ \frac{\partial c_{jmt}}{\partial P_{jmt}^{Phase}} & \text{if } MA = 0 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• First-order conditions for stand-alone plans are given by:

$$\left(p_{jmt} + r_t^{PDP} - c_{jmt} \right) \frac{\partial s_{jmt}}{\partial p_{jmt}} + s_{jmt} = 0$$

$$p_{jmt} + r_t^{PDP} - c_{jmt} \right) \frac{\partial s_{jmt}}{\partial P_{jmt}^{Phase}} + \left(1 - \frac{\partial c_{jmt}^{Drug}}{\partial P_{jmt}^{Phase}} \right) s_{jmt} = 0$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

for P_{jmt}^{ICR} , P_{jmt}^{Donut} .

• First-order conditions for MA-PD plans are given by:

$$\begin{split} \left(p_{jt} + r_t^{PDP} + r_{mt}^{MA} - c_{jmt}^{Drug} - c_{jmt}^{Medical}\right) \frac{\partial s_{jmt}}{\partial p_{jmt}} + s_{jmt} = 0 \\ \left(p_{jt} + r_t^{PDP} + r_{mt}^{MA} - c_{jmt}^{Drug} + c_{jmt}^{Medical}\right) \frac{\partial s_{jmt}}{\partial P_{jmt}^{Phase}} \\ + \left(1 - \overbrace{\left(\frac{\partial c_{jmt}^{Drug}}{\partial P_{jmt}^{Phase}} + \frac{\partial c_{jmt}^{Medical}}{\partial P_{jmt}^{Phase}}\right)}_{for P_{jmt}^{ICR}, P_{jmt}^{Donut}}\right) s_{jmt} = 0 \end{split}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Back

Plan Demand

- Estimate separate nested logits (Berry 1994) for each quintile of enrollees (based on 2006 drug spending)
 - instrument using our urban dummy and Hausman instruments
- Plan demand is given by:

$$u_{qjt} = X_{jt}\beta_q - \alpha_{p,qjt}p_{jtm} - \alpha_{P,qjt}OOPC_{qjtm} + \xi_{qjmt} + (1 - \sigma)\varepsilon_{ijtm},$$

Quintile of 2006 Spending	(1)	(2)	(3)	(4)	(5)
Premium	-0.231**	-0.224***	-0.242***	-0.230***	-0.191***
	(0.0149)	(0.0135)	(0.0122)	(0.0112)	(0.0102)
OOPC	-0.0978***	-0.0695***	-0.0472^{***}	-0.0287^{***}	-0.0142^{***}
	(0.00848)	(0.00608)	(0.00442)	(0.00311)	(0.00191)
Log(Inside Share)	0.229^{***}	0.162^{***}	0.203^{***}	0.163^{***}	0.0712^{***}
	(0.0243)	(0.0264)	(0.0254)	(0.0263)	(0.0274)
Observations	$81,\!553$	82,423	83,958	84,767	85,812
Adjusted R-Squared	0.421	0.408	0.402	0.381	0.355

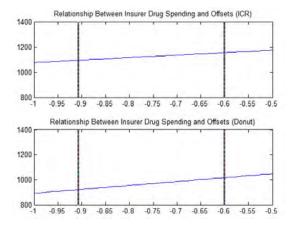
Empirical Implementation of Supply Model

 Infer MA medical costs from first order condition with respect to premium:

$$c_{jmt}^{Medical} = \left(p_{jmt} + r_{mt}^{MA}
ight) + \sum_{q} rac{s_{qjmt}/Q}{rac{\partial s_{qjmt}}{\partial p_{jt}}},$$

• Estimate the relation between OOPC and insurer total costs using first order conditions with respect to cost-sharing.

ション ふゆ アメリア メリア しょうくの


Back

∂c/∂OOPC	(1)	(2)	(3)
Constant	-0.8761	-0,9069	-0.9069
	(0.0102)	(0.0092)	(0.0102)
MA		0.3063	0.1861
		(0.0335)	(0.0351)
MA*Normalized Non-Drug Costs			0.1259
			(0.0203)
Plan-Market-Year Obs.	34,431	34,431	34,431

(ロ)、(型)、(E)、(E)、 E のQで

Identification

・ロト ・個ト ・モト ・モト

Ξ.

Back