Industrial Reorganization: Learning about Patient Substitution Patterns from Natural Experiments

Devesh Raval Ted Rosenbaum Nathan Wilson

Federal Trade Commission

November 2015

Disclaimer:

The opinions expressed here are those of the authors and not necessarily those of the Federal Trade Commission or any of its Commissioners.

"Industrial Disorganization"

Many new empirical industrial organization studies forecast counterfactual outcomes [...], without a clear foundation in experience. [...] We'd expect such a judgment to be based on evidence showing that the simulation-based approach delivers reasonably accurate predictions.

-Angrist and Pinske (JEP 2010)

Discrete Choice Demand - A Shaky Foundation?

• Cornerstone of empirical IO

- Models based on untestable assumptions
 - ► IIA
 - ► Limited differentiation among products

• Little exogenous variation in choice sets

Natural Disasters Randomly Change Choice Set

Hospitals destroyed/closed by natural disasters

• Internal Validity: Areas immediately surrounding relatively unaffected

External Validity: Disasters in range of environments

Hospitals Good Industry to Examine Demand Models

- Hospitals are important
 - Hospital care more than 5 percent of GDP
 - ▶ Hospital demand models used to address a variety of questions

Rich patient-level data helpful for identification

- Several critiques
 - Brennan and Guerin-Calvert, 2013; Doane, Froeb, and Van Horn, 2012;
 May, 2013

Experimental Validation in Other Settings

Vending Machines: Conlon and Mortimer (2013)

School Choice: Pathak and Shi (2014)

Schooling and Fertility: Todd and Wolpin (2006)

What you should take away from this talk

Heterogeneity in unobserved hospital quality is important

- We provide guidance on which models to use
 - Use combination of semiparametric and parametric models

- Widely used models lead to different policy conclusions
 - Model choice matters

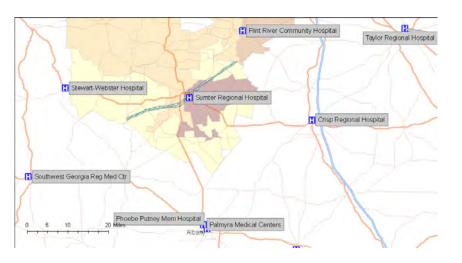
Overview

- Disasters
- 2 Discrete Choice Models
- Model Performance
- Welfare
- Conclusions

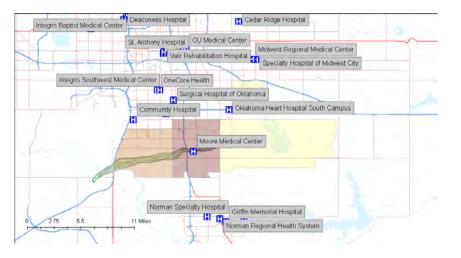
Natural Disasters

Location	Month/Year	Severe Weather	Hospital(s) Closed
Northridge, CA Americus, GA New York, NY	Jan-94 Mar-07 Oct-12	Earthquake Tornado Superstorm Sandy	St. John's Hospital Sumter Regional Hospital NYU Langone Bellevue Hospital Center Coney Island Hospital
Moore, OK	May-13	Tornado	Moore Medical Center

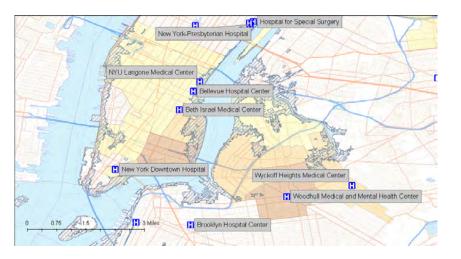
Tornado: Americus, GA



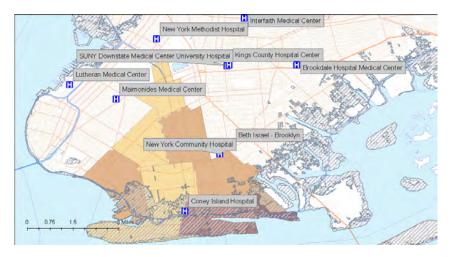
Tornado: Moore, OK



Superstorm Sandy: Manhattan, NY



Superstorm Sandy: Brooklyn, NY



Earthquake: Los Angeles, CA

Primitives

Hospitals j = 0, 1, ..., J, where 0 indexes the outside option.

Patients i = 1, ..., N

Primitives

Hospitals j=0,1,...,J, where 0 indexes the outside option. Patients i=1,...,N

- Patient's choice of hospital is denoted h_i
- Patients choose hospital one time

Focus is Prediction and Welfare

Probability of choosing j

$$Pr(h_{it} = j) = \frac{\exp(\delta_{ij})}{\sum_{k \in S} \exp(\delta_{ik})}$$

WTP for hospital j

$$WTP_i^j(S) = \log \left(\sum_{k \in S} \exp(\delta_{ik}) \right) - \log \left(\sum_{k \in S/j} \exp(\delta_{ik}) \right)$$

We examine wide set of models used in literature

Name	Travel Time	Hosp Characteristics	Hosp Indicators
Indic	X	×	\checkmark
Char (Garmon WP)	//	/ /	×
CDS (RAND '03)	√ √	///	×
Time (May WP)	✓	×	✓
Ho (JAE '06)	✓	///	✓
GNT (AER '15)	√ √	//	√ √
Inter	///	×	$\checkmark\checkmark\checkmark$

Semipar (Raval, Rosenbaum, Tenn WP)

Hosp Indicators Interacted with Bins

Experimental Design

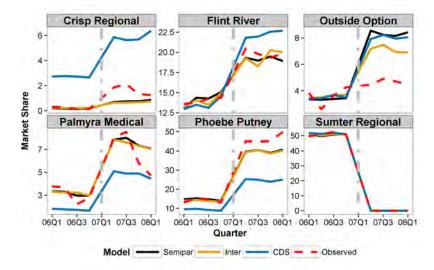
• Estimate models on period before disaster

- Examine performance on period after disaster
 - Out of sample in two dimensions

Drop all admissions and discharges in month of disaster

Some Models Match Market Shares Well

Sumter



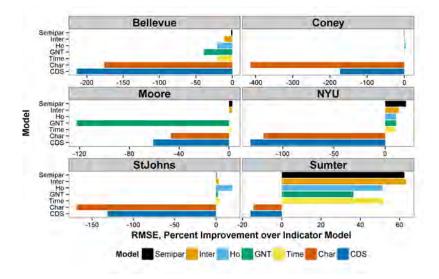
Examine Relative Model Performance

Examine Percent Improvement in RMSE over Indicator Model

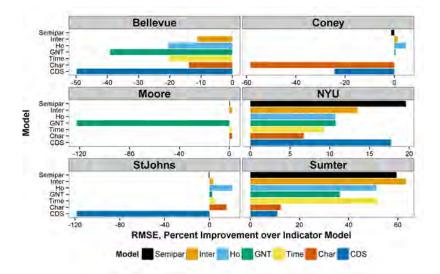
$$-1*(\frac{RMSE_{Model}}{RMSE_{India}}-1)$$

- Three Sets of Predictions:
 - Aggregate Shares
 - ► Aggregate Diversion Ratios: $\frac{y_{j,1}-y_{j,0}}{y_{dest,0}}$
 - Individual Predictions

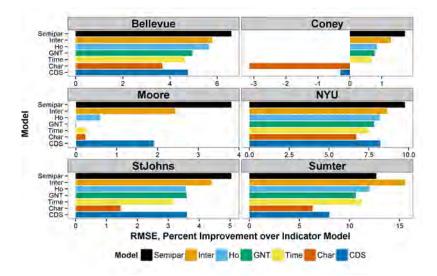
Comparing Models: Aggregate Shares



Comparing Models: Aggregate Diversion Ratio



Comparing Models: Individual Predictions



Optimal Model Combination

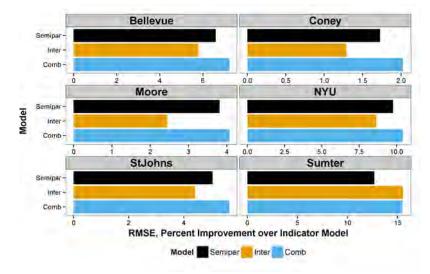
$$y_{ij} = \beta^{Semipar} \hat{y}_{ij}^{Semipar} + ... + \beta^{CDS} \hat{y}_{ij}^{CDS} + \epsilon$$

- Weights non-negative, sum to one (Timmerman (2006))
- Averaged across experiments

Model	Weight
=====	vveigiit
Semipar	51%
CDS	26%
Inter	16%
Но	7%

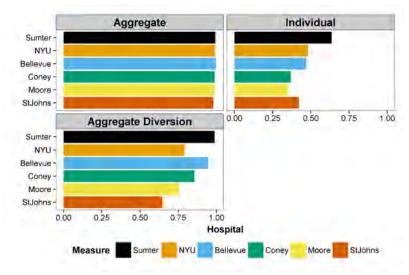
Comparing Models: Individual Predictions

Model Combination



How Well Do Discrete Choice Models Perform?

Correlation Coefficient



Robustness

- Changing Choice Set Patients
- Capacity Constraints
- Case Mix
- Medicare Insurance Only
- Removing Destroyed Areas
- Doctors

Counterfactual Hospital Mergers

- Hospitals with higher WTP have higher market power
 - Suppose hospital k and l are merging
 - ► Change in WTP

$$WTP_{(k,l)}(S) - WTP_k(S) - WTP_l(S)$$

approximates change in market power from merger

Counterfactual Hospital Mergers

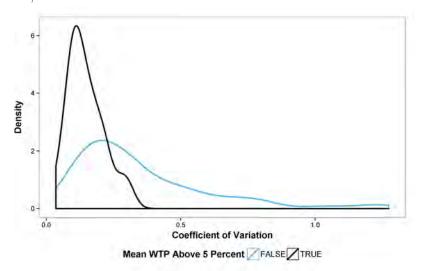
- Hospitals with higher WTP have higher market power
 - Suppose hospital k and l are merging
 - ► Change in WTP

$$WTP_{(k,l)}(S) - WTP_k(S) - WTP_l(S)$$

approximates change in market power from merger

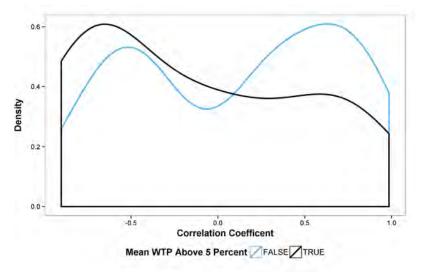
• We examine all possible counterfactual mergers (95 in total)

Meaningful Predicted Welfare Differences Across Models SD / Mean



Meaningful Predicted Welfare Differences Across Models

Correlation, RMSE and Percent Change in WTP



Conclusion

In general, structural analysis and credible identification are complements.

- [...] That this should not be an either-or proposition seems quite obvious to us.
- -Nevo and Whinston (JEP 2010)

Conclusion

In general, structural analysis and credible identification are complements.

[...] That this should not be an either-or proposition seems quite obvious to us.

-Nevo and Whinston (JEP 2010)

Future Work: Examining Machine Learning Models