Insurer Competition in Health Care Markets

Kate Ho (Columbia & NBER) Robin S. Lee (Harvard & NBER)

November 12, 2015 8th Annual FTC Microeconomics Conference

Motivation

• Recent changes in US health insurance markets:

- State & federal exchanges [PPACA 2010]
- Employer sponsored markets:
 - 1. Increasing variety of insurance products
 - 2. Alleged non-compete agreements (e.g., BlueShield-BlueCross)
 - 3. Proposed mergers (e.g., Aetna-Humana, Centene-Health Net)
- Insurer Competition can increase the quality of care and reduce premiums & costs...

...but due to **imperfectly competitive** insurance and medical provider (hospital, physician) markets, other effects *may not be welfare improving*

This paper studies how insurer competition affects: welfare (consumer & firm), hospital prices and premiums

U.S. Commercial Health Care Market Overview

- Consumers enroll in an insurer (MCO) offered by their employer or exchange, and obtain access to its hospital network
 - ▶ 61% of non-elderly people in U.S. (2014)

 Hospital network and reimbursements (prices) are determined by bilateral negotiations

- Increased insurer competition can:
 - 1. Lead to premium competition (potentially depressing hospital prices)
 - 2. Provides hospitals with greater leverage to "play insurers off" one another and negotiate higher prices (mitigating premium reductions)

Net price effect is ambiguous and likely **heterogeneous** across markets

Objectives and Approach

1. Develop, specify, and estimate a (stylized) model of:

- (i) Hospital-insurer bargaining, (ii) insurer premium setting,
 (iii) household insurer demand, and (iv) individual hospital demand
- Decompose how insurer competition affects negotiated hospital prices (\$350 billion of annual U.S. health care expenditures)
- > Provide a framework for examining related issues in health care markets

2. Simulate the removal of an insurer from choice set

- California Public Employees' Retirement System (CalPERS)
- > 2004 CA admissions, claims & enrollment data for 1.2M individuals
- [Relevant for employer-sponsored markets & exchanges]

3. Preview of results from removing an insurer:

- Premiums rise by 4-10% (but depend on whether insurers are constrained)
- Hospital prices can both rise and fall by as much as 15-25% across markets, leading to a redistribution of rents across hospitals
- ("Countervailing Effect" is empirically plausible in some markets...)

Related Literature (Briefly)

- 1. Market concentration on hospital prices: [c.f. Gaynor Town 12]
 - Many rely on HHI-regression analyses (cross-section and panel)
 - ▶ Insurer Concentration: [Moriya et al 10, Melnick et al 10, Dafny et al 10, 12,...]
 - ▶ Hospital Concentration: [Burgess et al 05, Capps Dranove 04, Dafny 09,...]

→ Use formal model to decompose mechanisms, capture *heterogeneous effects*, and conduct *out-of-sample* counterfactuals and welfare evaluation

2. Structural Models of Hospital-Insurer Demand / Bargaining

- Many abstract away from insurer competition (focus on hospital mergers) [E.g., Town Vistnes 01, Capps Dranove Satterthwaite 03, Lewis Pflum 13, Gowrisankaran Nevo Town 14; exceptions: Ho 06/09, Lee Fong 13]
- Estimation & counterfactual simulation w/ multiple MCOs & hospitals; Control for selection of and demand by households for insurers

3. Broader IO literature on Bargaining in Vertical Markets:

- Methods: [Crawford Yurukoglu 12, Crawford Lee Whinston Yurukoglu 15, ...]
- Countervailing Power: [Galbraith 52, Chipty Snyder 99, Ellison Snyder 10, ...]

Roadmap

Theoretical Model

Empirical Analysis

Counterfactual Simulations

Conclusion

Model: (Simplified) Timing & Setup

- (a) Hospitals and MCOs **bargain** over prices **p** (b) MCOs set **premiums** ϕ
- Households **choose insurer**: D_j (household) and D_j^E (individual) demand for MCO j
- Individuals become sick and **choose a hospital:** D_{hj}^{H} is demand for hospital *h* on MCO *j*'s network

MCO j:
$$\pi_{j}^{M} = D_{j}\phi_{j} - D_{j}^{E}\eta_{j} - \sum_{h \in G_{j}} D_{hj}^{H}p_{hj}^{*}$$

Hosp i: $\pi_{i}^{H} = \sum_{n \in G_{i}} D_{in}^{H}(p_{in}^{*} - c_{i})$

Each MCO *j* and Hospital *i* engage in simultaneous bilateral Nash bargaining over "gains-from-trade". Implied F.O.C. yields:

[Horn Wolinsky 88, Crawford Yurukoglu 12; Collard-Wexler Gowrisankran Lee 14] [Generalized to system_bargaining in paper]

$$p_{ij}^* D_{ij}^H = (1 - \tau_j) \left[\left([\Delta_{ij} D_j] \phi_j - [\Delta_{ij} D_j^E] \eta_j \right) - \sum_{h \in G_j \setminus ij} p_{hj}^* [\Delta_{ij} D_{hj}^H] \right]$$

Total Payments from MCO j to Hospital i (i) Premium & Enrollment Effect:Change in MCO j's premium revenues(net of non-hospital costs) whenlosing hospital i

(ii) Price Reinforcement Effect:Change in MCO j's payments to other hospitals when losing hospital i

 $+\tau_{i}\left[D_{ii}^{H}c_{i} - [\Delta_{ii}D_{i,-i}^{H}](p_{h,-i}^{*}-c_{i})\right]$

(iii) Hospital Costs

(iv) Recapture Effect:Change in hospital i's "profits"from other insurer -j whendropping MCO j

Hospital "Gains-From Trade" (<0)	MCO "Gains-From-Trade" (>0)
(iii) Hospital Costs (iv) Recapture Effect	(i) Premium & Enrollment Effect(ii) Price Reinforcement Effect

Hospital "Gains-From Trade" (<0)	MCO "Gains-From-Trade" (>0)
(iii) Hospital Costs (iv) Recapture Effect	(i) Premium & Enrollment Effect(ii) Price Reinforcement Effect
Total Pmts if τ= I	

Hospital "Gains-From Trade" (<0)	MCO "Gains-From-Trade" (>0)
(iii) Hospital Costs (iv) Recapture Effect	(i) Premium & Enrollment Effect(ii) Price Reinforcement Effect

Total Pmts if $\tau = 0$

Roadmap

Theoretical Model

Empirical Analysis

- Setting & Data
- Model: Hospital and Insurer Demand, Premium-setting and Bargaining

Counterfactual Simulations

Conclusion

Empirical Analysis: Setting & Data

California (CalPERS 2004)

- Agency managing pension/health benefits for CA public employees (~1.2M covered lives, ~10% total CA commercial market)
- Markets: 14 HSAs (health service areas) defined by CA OSHPD
- Stable choice set of 3 insurers (2/3 of total CA commerical mkt):
 - BlueShield of CA HMO (BS) 45% of enrollees
 - Anthem Blue Cross PPO (BC) 16% of enrollees
 - Kaiser Permanente HMO (K) 39% of enrollees
- Data: Admissions, Claims, Enrollment, Networks, Plans
 - Admissions: 35.6K inpatient admissions
 - Claims: Observed prices per-admission (w/ DRG weight)
 - Enrollment: 163K HHs (426K indivs) w/ salary, fam. composition
 - Networks: 400 insurer-hospital pairs w/ > 10 admissions
 - Supplemental: AHA Hospital Data (Costs, Systems, Characteristics)

Table 1: Summary Statistics

		BS	BC	Kaiser
Premiums (\$/yr)	Single	3782.64	4192.92	3665.04
	2-Party	7565.28	8385.84	7330.08
	Family	9834.84	10901.64	9529.08
Insurer	# Hospitals in Network	187	220	27
Characteristics	# Hospital Systems in Network	119	147	-
	Avg. Hospital Prices	6741.54	6085.64	i i i i i i i i i i i i i i i i i i i
	Avg. Hospital Costs	3181.95	3271.36	-
Household	Single	19313	8254	20319
Enrollment	2-Party	16376	7199	15903
	Family	35058	11170	29127
	Avg. $\#$ Individuals/Family	3.97	3.99	3.94

- Households pay only 20% of annual premiums
- CalPERS constrains premiums: vary only by household size;
 2-party and family are fixed multiples of single party premium.

Model Data & Inputs Outputs		Data & Inputs	Outputs
-----------------------------	--	---------------	---------

Model	Data & Inputs	Outputs
III. Hospital Demand	Admissions (age-sex-diag-zip)	 Patient flows for any
(Individual)	Hospital Networks	network EU of hospital network

Model	Data & Inputs	Outputs
III. Hospital Demand (Individual)	Admissions (age-sex-diag-zip) Hospital Networks	 Patient flows for any network EU of hospital network
II. Insurer Demand (Household)	Household Enrollment, Family Characteristics, Premiums, Networks, [Hospital Demand]	 Insurer premium & network "elasticities" Enrollment for any CF network

Model	Data & Inputs	Outputs
III. Hospital Demand (Individual)	Admissions (age-sex-diag-zip) Hospital Networks	 Patient flows for any network EU of hospital network
II. Insurer Demand (Household)	Household Enrollment, Family Characteristics, Premiums, Networks, [Hospital Demand]	 Insurer premium & network "elasticities" Enrollment for any CF network
Ia. Premium Setting Ib. Hospital-Insurer Bargaining	Premiums, Prices, Networks, [Hospital + Insurer Demand]	 Estimates of MCO (non-hospital) MCs "Bargaining Weights" CF premiums and negotiated prices

Model	Data & Inputs	Outputs
III. Hospital Demand (Individual)	Admissions (age-sex-diag-zip) Hospital Networks	 Patient flows for any network EU of hospital network
II. Insurer Demand (Household)	Household Enrollment, Family Characteristics, Premiums, Networks, [Hospital Demand]	 Insurer premium & network "elasticities" Enrollment for any CF network
Ia. Premium Setting Ib. Hospital-Insurer Bargaining	Premiums, Prices, Networks, [Hospital + Insurer Demand]	 Estimates of MCO (non-hospital) MCs "Bargaining Weights" CF premiums and negotiated prices

 Detailed demand systems (I+II) restrict the sensitivity of results to particulars of bargaining specification

Stage III: Hospital Demand

Utility of individual *k* with diagnosis *l* from hospital *i*:

- Estimate: MLE using 35,570 inpatient admissions for BS & BC [Control for choice set (network of hospitals on each plan)]
- **Output**: patient flows for any potential hospital network
- Identification: unobservable preference shocks uncorrelated with observable hospital characteristics (including location) [c.f., Ho (2006)]
- **WTP** (in utils): Individual k of age-sex type κ(k) for MCO j's network:

$$WTP_{k.m}(G_{j,m}) = \gamma^{a}_{\kappa(k)} \sum_{l} \gamma_{\kappa(k),l} E_{\varepsilon}[\max_{h \in G_{j,m}} u^{H}_{k,h,l,m}]$$

Prob that typeK(k) is admitted and diagnosed with I

Stage II: Insurer Demand (1/2)

Utility of family *f* for insurer *j*:

$$u_{f,j,m}^{M} = \partial_{j,m} + \alpha_{f}^{\phi} \phi_{\lambda(f),j} + \sum_{\kappa} \alpha_{\kappa}^{W} \sum_{k \in f, \kappa(k) = \kappa} WTP_{k,m}(G_{j,m}) + \varepsilon_{f,j,m}^{M}$$

Insurer-market fixed effects

bremiums

indiv network utility (hospital demand) (coeff varies by income) (coeff varies by age-sex category)

- **Details**: λ(f) {single, 2-party, family}; Kaiser is "outside option"
- Estimate: MLE on 163K households (426K indivs), 14 markets
- Identification:
 - WTP: within-plan, within-market variation across zip codes in distance to hospitals within networks
 - Premiums: within-plan variation across household types
 - □ (Premiums for 2-party and families are fixed multiple of single premium)
 - □ Cond'l on income, premium sensitivities do not vary across household types

Stage II: Insurer Demand (2/2)

• **Output:** WTP & premium elasticities, insurer market shares (for every family type, any hospital network, any level of premiums)

	Single	2-Party	Family
BS	-1.25	-2.18	-2.56
BC	-1.62	-2.50	-2.94
Kaiser	-1.20	-2.04	-2.41

- Recovered premium elasticities in-line with previous estimates: Royalty and Solomon (1998): -1.02 to -3.5; Cutler and Reber (1996): -2.0; Ho (2006): -1.24; Shepard (2015): -1.35
- Selection on [age-sex-zip, family type, income] across insurers; insurers internalize this and face ``cream-skimming" incentives

Stage I: Premium Setting and Bargaining (1/2)

We jointly estimate insurer marginal costs { η_{BS} , η_{BC} , η_{K} } and Nash bargaining parameters { τ_{BS} , τ_{BC} } via GMM using 3 sets of moments:

(i) Premium Setting:

- Insurers compete via Nash Bertrand premium setting
- Variants (competition for inclusion on choice set):
 - a) A "scaled" elasticity of demand wrt premiums
 - b) Included by an employer w/ some prob. z():
 - c) Fixed markups (MLR regulations)

$\max_{\varphi} z(\varphi) \pi_j^M(\varphi, \cdot)$

(ii) Insurer Margins: (for alternatives to Nash Bertrand)

- Match 2004 CA DMHC data on [total medical costs / total revenues]
- ► Lower margins than implied by premium elasticities → interpreted as constraints on premium setting behavior

Stage I: Premium Setting and Bargaining (2/2)

(iii) Hospital-Insurer Bargaining:

$$p_{ij}^{e} D_{ij}^{H} = (1 - \tau_{j}) \left([\Delta_{ij} D_{j}] \phi_{j} - \sum_{h \in G_{j} \setminus ij} p_{hj}^{e} [\Delta_{ij} D_{hj}^{H}] \right) - (1 - \tau_{j}) \eta_{j} [\Delta_{ij} D_{j}^{E}]$$

Total Payments (DRG adjusted)

(i) & (ii) Premium, Enrollment, Price Reinforcement Effects

$$+\tau_{j} \left[D_{ij}^{H} c_{i} - \left[\Delta_{ij} D_{i,-j}^{H} \right] \left(p_{h,-j}^{e} - c_{i} \right) \right] + \omega_{ij}$$

(iii) Hospital Costs

(iv) Recapture Effect

Residual Function of price errors and demand objects

(Paper adapts equation to account for hospital systems bargaining jointly)

- Moments: $E[\omega_{ij} Z] = 0$ where instruments are constructed from equation, replacing prices with costs and $\Delta WTP_{h,i}$ of other hospitals.
- Identification: correlation of prices w/ costs, enrollment changes

Estimates: Cost and Bargaining Parameters

		(iv)	
Insurer	η_{BS}	$1,\!645.18$	Non-Hosp Marginal Costs:
Marginal Costs		(94.13)	KFF (CA '14): \$1,836 pp/pv on
	η_{BC}	$2,\!113.84$	physician & clinical services
		(69.36)	 MA APCD ('10-'12): \$1,644 pp/py or
(Kaiser includes hospital costs)	η_K	2,507.22	prof services (3 largest commercial
		(46.09)	payers)
Nash Bargaining	$ au_{BS}$	0.13	Bargaining Parameters:
Parameters		(0.03)	Hospitals are able to capture a
	$ au_{BC}$	0.17	significant share of insurers' GFTs
		(0.04)	Electicity Scaling
Elasticity Scaling	ρ	2.85	F Elasticity Scalling.
		(0.20)	Insurers perceive ~3x larger
System Bargaining		Y	 Alternative Model: insurers perceiv
Use Margin Moments		Y	a \$100 increase in premiums
Number of Observations		266	dropped by 9.5%

Roadmap

Theoretical Model

Empirical Analysis

Counterfactual Simulations

Discussion & Conclusion

Removing an Insurer from the Choice Set

- Recompute Equilibrum: negotiated prices, premiums, enrollment, utilization (in all markets, for all households and individuals)
- Hold Fixed: Non-premium characteristics of remaining insurers (e.g., networks), characteristics of hospitals, entry/exit of providers
- Presentation: Focus only Counterfactual #1 (Remove BC)

Counterfactual #1: Remove BC

		Baseline	(i) Rei	move BC
		Amount	Amount	% Change
Premiums	BS	3.69	3.85	4.35%
		[3.49, 4.02]	[3.62, 4.27]	[3.6%, 6.2%]
(Single, \$000/yr)	\mathbf{BC}	3.99		
		[3.74, 4.15]		
	Kaiser	3.90	3.97	1.65%
		[3.87, 3.93]	[3.95, 4.04]	[.9%, 4.4%]
Avg Hosp Prices	BS	6.87	6.78	-1.37%
		[5.76, 8.80]	[5.58, 8.92]	[-3.9%, 1.7%]
(\$000 / Admission)	\mathbf{BC}	5.39		
		[4.86, 6.69]		
Surplus	Insurer	0.48	0.59	22.91%
		[.42, .54]	[.54, .66]	[18.5%, 35.2%]
(\$000 / Capita)	Hospitals	0.21	0.23	5.36%
	(Non-K)	[.18, .23]	[.18, .29]	[-4.3%, 24.5%]
	Δ Cons.		-0.05 [07,04]	

Premiums increase by ~4% for BS (11% if unconstrained)

- Average hospital prices and payments relatively unchanged for BS
- Surplus higher for insurers, lower for consumers (\$50/capita)

	Avg. Hospital Price (\$ / admission)			Decomposition of Change (\$ / admission)				
	Baseline	Remove BC	% Change	(ia) Prem Effect	(ib) Enroll Effect	(ii) Price Reinforce	(iii) Cost Effect	(iv) Re- Capture
ADJUSTING PREMIUMS				2	211000		2	capture
All Mkts	6,873.35	6,913.26	0.58%	190.15	-302.91	156.11	0.06	-3.49
2. Sacramento	7,868.21	8,415.18	6.95%	178.12	-73.12	445.14	0.05	-3.23
4. SF Bay W.	8,932.39	9,320.72	4.35%	178.57	-155.32	365.79	0.82	-1.54
5. E. Bay	7,125.87	7,716.08	8.28%	209.42	-41.08	427.26	0.24	-5.64
9. C. Valley	6,313.49	$5,\!357.35$	-15.14%	178.57	-744.53	-378.64	0.16	-11.70
10. S. Barbara	7,917.27	6,756.13	-14.67%	134.56	-965.57	-320.48	-0.19	-9.46
11. LA	5,430.24	5,580.30	2.76%	192.46	-243.63	206.29	0.06	-5.11
14. SD	6,400.68	6,353.75	-0.73%	139.31	-283.17	100.38	0.01	-3.46
FIXING PREMIUMS			· · · · · · · · · · · ·				1.1.1.1.1	
All Mkts	6,873.35	6,281.69	-8.61%	- -	-312.05	-274.17	0.05	-5.48
2. Sacramento	7,868.21	7,697.85	-2.17%		-144.32	-22.83	0.03	-3.23
4. SF Bay W.	8,932.39	8,684.86	-2.77%	-	-231.57	-15.32	0.90	-1.54
5. E. Bay	$7,\!125.87$	6,929.21	-2.76%		-124.19	-66.92	0.09	-5.64
9. C. Valley	6,313.49	4,909.07	-22.24%	2	-697.79	-695.05	0.11	-11.70
10. S. Barbara	7,917.27	6,527.35	-17.56%		-885.28	-495.05	-0.14	-9.46
11. LA	$5,\!430.24$	4,823.52	-11.17%	-	-311.31	-290.34	0.04	-5.11
14. SD	6,400.68	5,770.17	-9.85%		-306.46	-320.59	0.01	-3.46

Table 9: Remove BC Counterfactual: Blue Shield Hospital Price Changes & Decomposition

- Premiums fixed: hospital prices fall (enrollment effect dominates)
- Premiums adjust: heterogeneous effect. Hospital prices rise in most markets when BC exits, but fall in some areas. Zero effect on avg.

Discussion: Removing an Insurer

- Higher premiums overall, higher hospital prices in many markets
 - Premiums rise by 4-10% depending on insurer that is removed (and 10-20% w/o constraints); consumer welfare harmed
 - Can be mitigated if significant constraints on premium setting behavior
- However, removal of BC allows BS to negotiate *lower* prices in some markets (particularly where BC was a stronger competitor)
 - ▶ Hospital prices fall by ~15% in certain markets (but rise in most others)
 - Redistribution of rents across hospitals and potential long-term implications (*can identify markets that are most likely to be affected*)
- Key Caveat: holds fixed (non-premium) provider characteristics
- Suggests that countervailing power effects are empirically relevant and can constrain spending in certain markets

Concluding Remarks

- 1. Establish the empirical plausibility of insurer concentration leading to a countervailing effect on hospital prices
 - a) Plausible mechanism by which insurance mergers can lead to "cost savings"
 - b) Though premiums are likely to increase, we also provide conditions under which both premiums + hospital prices can fall
 - c) Highlights important details to consider in policy evaluation
- 2. Quantify the heterogeneity of price impacts across hospitals
 - a) Decompose hospital prices into estimable components
 - b) Longer-term hospital incentives [investment, entry, exit, merger]
- 3. Provide a framework to analyze equilibrium changes in markets with competing insurers and non-overlapping networks
 - a) Implications for employer-sponsored markets, insurance exchanges
 - **b)** Costs and benefits more nuanced than simple models might predict

Empirical Analysis: Setting & Data (2/2) - Prices

- We observe the payment for every hospital-MCO-admission:
 - We assume each hospital i and MCO j bargain over a "DRG-adjusted" price p^{*}_{ii} per admission *a*, approximated by:

$$p_{ij}^{e} = \frac{1}{\#A_{ij}} \sum_{a \in A_{ij}} \frac{p_{a}^{o}}{DRG_{a}} = p_{ij}^{*} + \mathcal{E}_{ij}^{A}$$

[DRG weights control for resource utilization / severity per admission]

 ε^A_{i,j}: average of unanticipated admission-specific payment shocks (mean 0, independent of insurer and hospital observed characteristics)
 Source of "unobservable" in bargaining and premium-setting equations

Estimates: Hospital Price Decomposition

Table 6: Estimates: Negotiated Hospital Price Decomposition

		(i) Premium &	(ii) Price	(iii) Hospital	(iv) Recapture
	Price	Enrollment	Reinforcement	Costs	Effect
BS	7417.17	31.9%	50.3%	17.3%	0.5%
		[28.2%, 32.7%]	[45.0%, 51.3%]	[14.4%, 18.3%]	[0.4%,0.5%]
BC	6235.84	34.4%	38.2%	24.6%	2.7%
		[30.9%, 35.8%]	[34.5%, 39.5%]	[22.3%, 26.5%]	[2.4%, 3.0%]

Stage II: Insurer Demand (3/3)

Table 3: Admission Probabilities and DRG Weights

	Admiss	Admission Probabilities				DRG Weights		
	OSHPD CalPERS		PERS	CalPERS				
Age-Sex Category	All	BS	BC	BS	BC	All		
0-19 Male	2.05%	1.78%	2.08%	1.78	1.49	1.70		
20-34 Male	2.07%	1.66%	2.07%	1.99	1.77	1.92		
35-44 Male	3.11%	2.79%	3.21%	1.95	1.89	1.93		
45-54 Male	5.58%	5.29%	5.32%	2.07	2.05	2.07		
55-64 Male	10.49%	10.13%	9.70%	2.25	2.25	2.25		
0-19 Female	2.28%	1.95%	2.04%	1.31	1.39	1.32		
20-34 Female	11.19%	11.75%	10.22%	0.84	0.87	0.85		
35-44 Female	7.91%	7.31%	7.73%	1.32	1.33	1.32		
45-54 Female	6.87%	6.16%	6.82%	1.90	1.83	1.87		
55-64 Female	9.74%	9.01%	9.26%	2.03	2.02	2.03		

Recall Predictions of Theory

- The effect of removing an insurer on negotiated prices p_{ii}:
 - ► *Ia. Premium effect*: softer premium competition, higher p_{ii}
 - Ib. Enrollment effect: dropping a hospital causes smaller loss in insurer j's enrollment, improves j's outside option, lower p_{ij}
 - IV. Recapture effect: when hospital i dropped, fewer consumers may switch plans to keep access to hospital i; i's outside option worsens, lower p_{ij}
 - II. Price reinforcement effect: changes in both enrollment and other hospital prices; ambiguous effect on pij
- We predict the net effects across markets and hospitals

Recap: Estimation & Identification of Model

- Premiums, hospital prices and costs, consumer and household choices of hospital and insurance plan are all observed in the data
- Hospital and insurer demand identified from individual-level data on observed choices over observed product choice sets (MLE)
 - Exogenous variation in premiums by construction
 - > Assume exogenous variation in consumer location
- Insurer premium-setting & margin moments identify non-hosp costs
 - We assume premiums set to maximize insurer profits given costs
 - Demand estimates provide premium elasticities a crucial input
 - Also utilize observed insurer markups important tie to reality
 - We perform multiple robustness tests re: assumptions here
- Remaining piece is bargaining equation:
 - To estimate bargaining weights

D

• And provide structure to predict price effects of removing an insurer