### Mergers, Innovation, and Entry-Exit Dynamics

Mitsuru Igami Kosuke Uetake

Yale

November 2015

Igami & Uetake (Yale)

Mergers, Competition, & Innovation

Nov 2015 1 / 34

メロト メタト メヨト メヨ

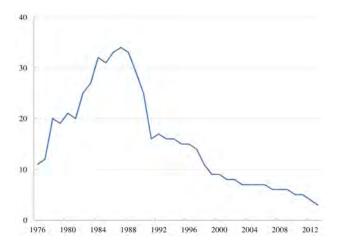
### Mergers, Competition, & Innovation

- How do mergers affect welfare?
  - Conventional analysis (e.g., Williamson '68, Werden & Froeb '94, Nevo '00)
    - Static tradeoff (market power vs. productivity)
    - OK if mergers were exogenous, with static competition & innovation
- Otherwise, analysis is incomplete (e.g., Gilbert '06, U.S. DOJ & FTC '10)
  - Ex-post impact
    - Incentives to innovate (+/□)
    - Incentives to merge (+)
  - Ex-ante impact
    - Option value  $(+) \Longrightarrow$  exit  $(\Box)$ , entry (+), R&D (+) $\Longrightarrow$  competition (+) & innovation (+)
  - Challenge: Everything is endogenous, strategic, & forward-looking
- This paper
  - Empirical model of mergers, innovation, & entry-exit dynamics
  - Data on the consolidation process of the hard disk drive (HDD) industry
  - Simulate welfare under a tougher antitrust regime

<ロ> (日) (日) (日) (日) (日)

### Context

- Endogenous horizontal merger in dynamic game
  - Gowrisankaran ('97, '99)
    - Computational theory, oligopoly
  - Mermelstein, Nocke, Satterthwaite, & Whinston ('14)
    - Computational theory, duopoly, entry-exit & investment
  - Jeziorski ('14)
    - Structural empirics, oligopoly, product portfolio management


### • This paper

- Structural empirics, oligopoly, entry-exit & investment
- Also related to empirical works on:
  - Bargaining
  - Entry-exit
  - Innovation

イロト イ団ト イヨト イヨト

### Consolidation of the Hard Disk Drive Industry (1 of 3)

• Entry, shakeout, & merger



### Figure 1: Number of HDD Manufacturers

Igami & Uetake (Yale)

Mergers, Competition, & Innovation

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Consolidation of the Hard Disk Drive Industry (2 of 3)

• Exit by merger

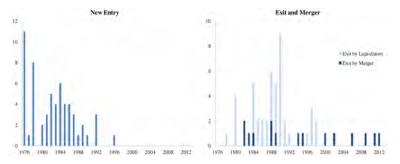
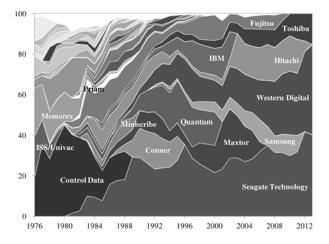



Figure 2: Mergers Have Become a Dominant Mode of Exit

### • HDD is not alone


- "Exits are dwarfed by mergers in the IT epoch" (Jovanovic & Rousseau '08)
- "M&As account for a large portion of firm turnover: between 1981 and 2010, approximately 4.5% of active public firms merged in a given year, while the exit rate due to poor performance was 3.7%" (Dimopoulos & Sacchetto '14)

Igami & Uetake (Yale)

Mergers, Competition, & Innovation

### Consolidation of the Hard Disk Drive Industry (3 of 3)

• Herfindahl-Hirschman Index (HHI): 806 ('85)  $\rightarrow$  2,459 ('11)  $\rightarrow$  3,832 ('13)



#### Figure 3: Market Share by Firm

Igami & Uetake (Yale)

イロト イヨト イヨト イヨト

### Theorists' Checklist

- 1. Market power
  - $N \downarrow \implies P \uparrow \implies \Pi \uparrow$
  - In static Cournot with symmetric firms
- 2. Free riding (Stigler '50)
  - $q^{IN} \downarrow \& q^{OUT} \uparrow \implies \pi^{IN} \downarrow \pi^{OUT} \uparrow \text{ (unless fc}^{IN} \downarrow \downarrow)$
  - In static Cournot with symmetric firms (Salant, Switzer, & Reynolds '83)
    - Not with heterogeneous firms (Perry & Porter '85)
    - Not in differentiated Bertrand (Deneckere & Davidson '85)
- 3. Efficiency gains
  - $mc^{IN} \downarrow$  (rationalization & synergies)
  - In static Cournot with *heterogeneous* firms (Farrell & Shapiro '90)
- 4. Mergers as strategic complements
  - $N\downarrow \implies v'^{N}\uparrow$
  - In dynamic Cournot with heterogeneous firms (Qiu & Zhou '07)
- Insights
  - Tug-of-war between free-riding & synergies
  - Cost-heterogeneity as a key determinant
  - Check how msit & mcit change with mergers

◆□> ◆圖> ◆国> ◆国>

# Static Analysis (1 of 9)

| Year    | Target     | Acquiror        | ms <sup>T</sup> | ms <sup>A</sup> | $ms^T + ms^A$ |       |
|---------|------------|-----------------|-----------------|-----------------|---------------|-------|
|         | name       | name            | Before          | Before          | Before        | After |
| 1982    | Burroughs  | Memorex         | 1.85            | 7.83            | 9.68          | 2.73  |
| 1983    | ISS/Univac | Control Data    | 0.75            | 27.08           | 27.83         | 19.85 |
| 1984    | Vertex     | Priam           | 0.93            | 2.52            | 3.45          | 2.78  |
| 1988    | Plus Dev.  | Quantum         | 0.89            | 1.41            | 2.30          | 4.64  |
| 1988    | Imprimis   | Seagate         | 13.92           | 18.16           | 32.08         | 29.23 |
| 1989    | MiniScribe | Maxtor          | 5.68            | 4.99            | 10.68         | 8.53  |
| 1994    | DEC        | Quantum         | 1.65            | 18.60           | 20.25         | 20.68 |
| 1995    | Conner     | Seagate         | 11.94           | 27.65           | 39.58         | 35.41 |
| 2001    | Quantum    | Maxtor          | 13.87           | 13.87           | 27.73         | 26.84 |
| 2002    | IBM        | Hitachi         | 13.86           | 3.64            | 17.50         | 17.37 |
| 2006    | Maxtor     | Seagate         | 8.19            | 29.49           | 37.67         | 35.27 |
| 2009    | Fujitsu    | Toshiba         | 4.41            | 10.32           | 14.72         | 11.26 |
| 2011    | Samsung    | Seagate         | 6.89            | 39.00           | 45.89         | 42.82 |
| 2012    | Hitachi    | Western Digital | 20.32           | 24.14           | 44.46         | 44.27 |
| Average |            |                 | 7.51            | 16.33           | 23.85         | 21.55 |

### Table 1: Market Shares before/after Mergers (%)

### Observations

- 1. Bigger firms acquire smaller firms:  $ms^T < ms^A$
- 2. Acquirors' market shares increase:  $ms^A \uparrow$
- 3. Combined market shares decrease:  $ms^T + ms^A \downarrow$
- Acquirors achieve expansion; some free-riding

A D > A B > A B

# Static Analysis (2 of 9)

Product characteristics



Figure 4: High-tech but Commodities

- Same capacity, same speed, similar reliability, & no luck in branding
- "Completely undifferentiated product" —Peter Knight
  - Former senior vice president of Conner Peripherals & Seagate Technology, former president of Conner Technology
  - From author's personal interview on June 30, 2015, in Cupertino, CA

# Static Analysis (3 of 9)

• HDDs are physically durable, but...



Figure 5: An I.O. Economist Knows His OS & CPU but Not HDD

• ...Wintel drives the PC cycle, not HDDs

・ロト ・回ト ・ヨト ・ヨ

### Static Analysis (4 of 9)

• Log-linear demand for data storage

$$\log Q_t = \alpha_0 + \alpha_1 \log P_t + \alpha_2 \log X_t + \varepsilon_t$$

- $Q_t$ : Total exabytes shipped (1EB = 1 billion GB)
- P<sub>t</sub>: Average HDD price per gigabytes (\$/GB)
- X<sub>t</sub> : PC shipments (in millions), as demand-shifter
- $Z_t$ : Average disk price ((GB), as instrument for  $P_t$

| (1)        | (2)                                                                             |  |
|------------|---------------------------------------------------------------------------------|--|
| OLS        | IV                                                                              |  |
| .8549***   | .8244***                                                                        |  |
| (.0188)    | (.0225)                                                                         |  |
| .8430***   | 1.0687***                                                                       |  |
| (.1488)    | (.1817)                                                                         |  |
| □1.6452*** | 2.4039***                                                                       |  |
| (.4994)    | (.6084)                                                                         |  |
| 78         | 78                                                                              |  |
| .9971      | .9971                                                                           |  |
|            |                                                                                 |  |
|            | 3009.80                                                                         |  |
|            | .9889                                                                           |  |
|            | OLS<br>.8549***<br>(.0188)<br>.8430***<br>(.1488)<br>1.6452***<br>(.4994)<br>78 |  |

#### Table 2: Demand Estimates

Note: Standard errors are in parentheses. \*\*\*, \*\*, and \* indicate significance at the 1%, 5%, and 10% levels; respectively? Q C

lgami & Uetake (Yale)

Nov 2015 11 / 34

# Static Analysis (5 of 9)

### • Data patterns underlying demand estimates

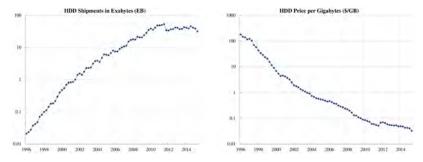



Figure 6: Shipments and Prices

・ロン ・回 と ・ ヨン・

# Static Analysis (6 of 9)

### • Data patterns underlying demand estimates

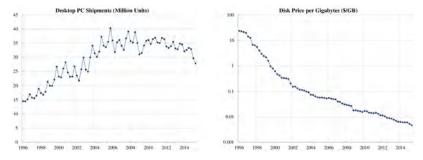



Figure 7: Market Size and Input Prices

• Use Cournot FOC to recover marginal costs

$$P_t + \frac{dP}{dQ}q_{it} = mc_{it}$$

• 
$$P_t \& q_{it}$$
 : observed  
•  $\frac{dP}{dQ}$  : estimated

Intuition

$$q_{it} > q_{jt} \iff mc_{it} < mc_{jt}$$

- In equilibrium, more efficient firms produce more
- Larger firms have lower marginal costs

メロト メポト メヨト メヨ

# Static Analysis (8 of 9)

- Informal assessment of fit
  - Model: Variable economic profit (excluding any fixed or sunk costs)
  - Data: Gross accounting profit (including some fixed & sunk costs)

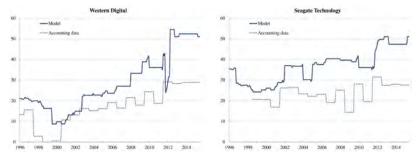



Figure 8: Profit Margins (%)

- Correlation between model & accounting data
  - Western Digital: .8398
  - Seagate Technology: .5407

Igami & Uetake (Yale)

# Static Analysis (9 of 9)

| Year | Target     | Acquiror        | Target   | A       | cquiror ( <i>mc</i> | A)            | Rivals               | Relative change                               |
|------|------------|-----------------|----------|---------|---------------------|---------------|----------------------|-----------------------------------------------|
|      | name       | name            | $(mc^T)$ | Before  | After               | $\nabla mc^A$ | $\nabla mc^{\Box A}$ | $\forall mc^A \square \forall mc^{\square A}$ |
| 1982 | Burroughs  | Memorex         | 2068.21  | 2044.52 | 1469.62             | 574.90        | 590.44               | 15.53                                         |
| 1983 | ISS/Univac | Control Data    | 1475.65  | 1395.39 | 1024.25             | 371.14        | 393.17               | 22.03                                         |
| 1984 | Vertex     | Priam           | 1081.94  | 1077.10 | 959.96              | 117.14        | 116.34               | 0.80                                          |
| 1988 | Plus Dev.  | Quantum         | 510.52   | 508.93  | 427.49              | 81.44         | 71.62                | 9.83                                          |
| 1988 | Imprimis   | Seagate         | 470.79   | 457.88  | 352.52              | 105.37        | 71.62                | 33.75                                         |
| 1989 | MiniScribe | Maxtor          | 424.29   | 426.40  | 362.50              | 63.91         | 53.12                | 10.79                                         |
| 1994 | DEC        | Quantum         | 239.96   | 188.30  | 165.19              | 23.10         | 16.76                | 6.35                                          |
| 1995 | Conner     | Seagate         | 191.85   | 143.95  | 116.45              | 27.51         | 3.84                 | 23.67                                         |
| 2001 | Quantum    | Maxtor          | 91.81    | 91.81   | 70.61               | 21.20         | 17.52                | 3.68                                          |
| 2002 | IBM        | Hitachi         | 67.35    | 70.27   | 59.53               | 10.73         | 6.79                 | 3.94                                          |
| 2006 | Maxtor     | Seagate         | 57.46    | 51.39   | 50.84               | 0.55          | 0.22                 | 0.76                                          |
| 2009 | Fujitsu    | Toshiba         | 48.69    | 47.01   | 44.56               | 2.44          | 2.42                 | 0.02                                          |
| 2011 | Samsung    | Seagate         | 54.15    | 45.01   | 39.29               | 5.72          | 3.74                 | 1.98                                          |
| 2012 | Hitachi    | Western Digital | 47.75    | 46.66   | 37.21               | 9.45          | 7.63                 | 1.81                                          |
|      | Averag     | ge              | 487.89   | 471.04  | 370.00              | 101.04        | 96.77                | □4.27                                         |

### Table 3: Marginal Costs before/after Mergers (US\$)

### Observations

- 1. Acquirors' marginal costs decrease:  $mc^A \downarrow$
- 2. Industry-wide trend:  $mc^{\Box A} \downarrow$
- 3. Acquirors out-perform industry trend:  $|\nabla mc^A| > |\nabla mc^{\Box A}|$  (synergies)

Goals

- Endogenizing competition & innovation with merger
- Tractable, estimable, & amenable for policy simulation

Setup

- Discrete time *t* = 1, 2, ...
- State:  $s_t = \{s_{it}\} = \{\omega_{it}\}$  or  $(n_{00}, n_0, n_1, n_2, \dots, n_M)$
- Actions
  - Incumbents:  $a_{it} \in \{exit, stay, invest, merge_1, merge_2, \dots, merge_M\}$
  - Potential entrants:  $a_{it}^0 \in \{enter, out\}$
- Payoff
  - Period profit  $\pi_{it}(\mathbf{s}_t)$
  - Fixed/sunk cost  $\overset{\bowtie'}{\kappa^{\kappa}}$ ,  $\kappa^{c}$ ,  $\kappa^{i}$ ,  $\kappa^{m}$ ,  $\kappa^{e}$ )
  - Private cost shock  $\overset{\Box}{\varepsilon}_{it}^{x}, \varepsilon_{it}^{c}, \varepsilon_{it}^{i}, \varepsilon_{it}^{m}, \varepsilon_{it}^{e}) \sim \text{i.i.d. } EV1$
  - Expected present value

<ロト <回ト < 回ト < 回ト

# Dynamic Model (2 of 6)

• Overview: Random-mover Dynamic Game

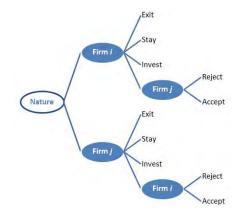



Figure 9: Game Tree within a Period (2-player Example)

・ロト ・回ト ・ヨト ・ヨ

# Dynamic Model (3 of 6)

- Timeline
  - 1. Nature chooses proposer i
    - $\bullet$  With recognition probability  $\rho_{i}\left(s_{t}\right)=1/\mathit{n_{\max}}$
  - 2. Firm *i* draws  $\varepsilon_{it}$ , and chooses action  $a_{it}$  (or  $a_{it}^0$ )
    - If  $a_{it} = merge_j$ , proposes acquisition price  $p_{ij}(s_t)$  (take-it-or-leave-it offer)
    - Firm *j* chooses between {*accept*, *reject*}
    - Firm i sets p<sub>ij</sub> (s<sub>t</sub>) slightly above j's stand-alone expected value
  - 3. Active firms earn period profits  $\pi_{it}(s_t)$
  - 4. State transits from  $s_t$  to  $s_{t+1}$ 
    - Dynamic actions implemented
    - Synergy & stochastic depreciation realize
  - "Hard to know where skeletons are from the outside. You have to dive into it and swim in the water" Finis Conner
    - Co-founder of Seagate Technology, founder of Conner Peripherals & Conner Technology
    - From author's personal interview on April 20, 2015, in Corona del Mar, CA

イロト イヨト イヨト イヨト

# Dynamic Model (4 of 6)

• State transition (i.e., how productivity changes with choice)

- Incumbents
  - Exit:  $\omega_{i,t+1} = \bar{\omega}_{00}$  (dead)
  - Stay:  $\omega_{i,t+1} = \omega_{it}$
  - Invest:  $\omega_{i,t+1} = \omega_{it} + 1$
  - Merge with *j*:

$$\begin{cases} \omega_{i,t+1} = \max \left\{ \omega_{it}, \omega_{jt} \right\} + \Delta_{ijt} & (\text{acquirer}) \\ \omega_{j,t+1} = \bar{\omega}_{00} & (\text{target}) \end{cases}$$

where synergy draw  $\Delta_{ijt} \sim i.i.d.$  Poisson  $(\lambda)$ 

• Stochastic depreciation (exogenous):

$$ilde{\omega}_{i,t+1} = \left\{ egin{array}{cc} \omega_{it+1} & ext{with probability 1} \square \delta \ \omega_{it+1} \square 1 & ext{with probability } \delta \end{array} 
ight.$$

### Potential entrants

- Enter:  $\omega_{i,t+1} = \bar{\omega}_1$  (lowest level)
- Out:  $\omega_{i,t+1} = \bar{\omega}_0$  (potential entrant)

イロト イ団ト イヨト イヨト

# Dynamic Model (5 of 6)

- Proposer *i*'s value (after drawing  $\varepsilon_{it}$ )
  - Incumbent

$$\begin{aligned} V_{it}\left(s_{t},\varepsilon_{it}\right) &= \pi_{i}\left(s_{t}\right) \\ &+ \max\left\{\bar{V}_{it}^{x}\left(s_{t},\varepsilon_{it}^{x}\right),\bar{V}_{it}^{c}\left(s_{t},\varepsilon_{it}^{c}\right),\bar{V}_{i}^{i}\left(s_{t},\varepsilon_{it}^{i}\right),\left\{\bar{V}_{ijt}^{m}\left(s_{t},\varepsilon_{ijt}^{m}\right)\right\}_{j}\right\}\end{aligned}$$

• Alternative-specific values

$$\begin{split} \bar{V}_{i}^{\kappa}\left(s_{t},\varepsilon_{it}^{\kappa}\right) &= \quad \Box \kappa^{\kappa} + \varepsilon_{it}^{\kappa} + \beta E\left[\Lambda_{i,t+1}\left(s_{t+1}\right) \mid s_{t}, a_{it} = exit\right] \\ \bar{V}_{i}^{c}\left(s_{t},\varepsilon_{it}^{c}\right) &= \quad \Box \kappa^{c} + \varepsilon_{it}^{c} + \beta E\left[\Lambda_{i,t+1}\left(s_{t+1}\right) \mid s_{t}, a_{it} = stay\right] \\ \bar{V}_{i}^{i}\left(s_{t},\varepsilon_{it}^{i}\right) &= \quad \Box \kappa^{c} \ \Box \kappa^{i} + \varepsilon_{it}^{i} + \beta E\left[\Lambda_{i,t+1}\left(s_{t+1}\right) \mid s_{t}, a_{it} = invest\right] \\ \bar{V}_{ij}^{m} \overset{\Box}{s_{t}}\varepsilon_{ijt}^{m}\right) &= \quad \Box \kappa^{c} \ \Box \kappa^{m} + \varepsilon_{ijt}^{m} \ \Box p_{ij}\left(s_{t}\right) + \beta E\left[\Lambda_{i,t+1}\left(s_{t+1}\right) \mid s_{t}, a_{it} = merge j\right] \end{split}$$

Potential entrant

$$V_{it}^{0}\left(s_{t},\varepsilon_{it}^{0}\right) = \max\left\{\bar{V}_{i}^{e}\left(s_{t},\varepsilon_{it}^{e}\right),\bar{V}_{i}^{o}\left(s_{t},\varepsilon_{it}^{o}\right)\right\}$$

• Alternative-specific values

$$\bar{V}_{i}^{e}\left(s_{t},\varepsilon_{it}^{e}\right) = \Box \kappa^{e} + \varepsilon_{it}^{e} + \beta E\left[\Lambda_{i,t+1}\left(s_{t+1}\right)|s_{t},a_{it}=enter\right]$$

$$\bar{V}_{i}^{o}\left(s_{t},\varepsilon_{it}^{o}\right) = \varepsilon_{it}^{o} + \beta E\left[\Lambda_{i,t+1}\left(s_{t+1}\right)|s_{t},a_{it}=out\right]$$

$$= O(1)$$

### Dynamic Model (6 of 6)

- Non-proposer *i*'s value (*before* proposer *j*'s action  $\varepsilon_{it}$ )
  - When both *i* & *j* are incumbents

$$W_{it}^{j}(s_{t}) = \pi_{i}(s_{t}) \square \kappa^{c} + \sigma_{it} \square a_{jt} = exit) \beta E \left[\Lambda_{i,t+1}(s_{t+1}) | s_{t}, a_{jt} = exit\right] \\ + \sigma_{it} \square a_{jt} = stay) \beta E \left[\Lambda_{i,t+1}(s_{t+1}) | s_{t}, a_{jt} = stay\right] \\ + \sigma_{it} \square a_{jt} = invest) \beta E \left[\Lambda_{i,t+1}(s_{t+1}) | s_{t}, a_{jt} = invest\right] \\ + \sigma_{it} \square a_{jt} = merge \ i) \ p_{ji}(s_{t}) \\ + \sum_{k \neq i,j} \sigma_{it} \square a_{jt} = merge \ k) \beta E \left[\Lambda_{i,t+1}(s_{t+1}) | s_{t}, a_{jt} = merge \ k$$

- $\sigma_{it}$  ( $a_{jt} = action$ ) is non-proposer's belief on proposer's choice
- Simpler if proposer and/or non-proposer are potential entrants

• Anyone's value (before nature picks a proposer for time t + 1)

$$\Lambda_{i,t+1}(s_{t+1}) = \rho_i(s_{t+1}) EV_{i,t+1}(s_{t+1}) + \sum_{j \neq i} \rho_j(s_{t+1}) W_{i,t+1}^j(s_{t+1})$$

(日) (同) (三) (三) (三)

### Estimation (1 of 6): Preparing Data

### • De-trending & discretizing the state space

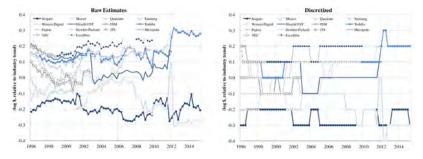



Figure 10: Marginal Cost Estimates by Firm (Relative to Kryder's Law)

### Estimation (2 of 6): Approach

- Full-solution approach with nested fixed-point algorithm
  - Outer loop: Maximum likelihood estimation
    - Contribution (of firm *i* at time *t*)

$$I_{it}(a_{it}|s_t;\kappa) = \rho_i(s_t) \prod_{\substack{action \in A_{it}(s_t)}} \Pr(a_{it} = action)^{1\{a_{it} = action\}}$$

• Recognition:  $\hat{\rho}_i(s_t) = \begin{cases} 1 & \text{if some } a_{it} \in \{\text{exit, merger, enter}\} \\ 1/n_{\max} \times \Pr(a_{it} = \text{stay/out}) & \text{if all } a_{it} \in \{\text{stay, out}\}. \end{cases}$ 

• Max joint log likelihood:  $\hat{\kappa} = \arg \max_{\kappa} \frac{1}{T} \frac{1}{I} \sum_{t} \sum_{i} \ln \left[ I_{it} \left( a_{it} | s_t; \kappa \right) \right]$ 

- Inner loop: Solving the game (given parameter values)
  - Terminal values:  $\Lambda_{i,T}(s_T) = \sum_{t=T}^{\infty} \beta^{t \Box T} \pi_{it}(s_T)$
  - Backward induction to solve for PBE/SE
  - Equilibrium choice probabilities:

$$\Pr(a_{it} = action) = \frac{\exp \left[ \tilde{V}_{it}^{action} \right]}{\exp \left[ \tilde{V}_{it}^{x} \right] + \exp \left[ \tilde{V}_{it}^{c} \right] + \exp \left[ \tilde{V}_{it}^{i} \right] + \sum_{j \neq i} \exp \left( \tilde{V}_{ijt}^{m} \right)} \right]}$$
$$\Pr\left[ a_{it}^{0} = action \right] = \frac{\exp \left[ \tilde{V}_{it}^{action} \right]}{\exp \left[ \tilde{V}_{it}^{a} \right] + \exp \left[ \tilde{V}_{it}^{o} \right]} \right]}$$

### Estimation (3 of 6): Results

- Parameter estimates
  - Sunk costs of innovation & merger

Table 4: ML Estimates of the Dynamic Parameters (Billion US\$)

| Parameter      | Estimate | Confidence Interval  |  |  |  |
|----------------|----------|----------------------|--|--|--|
| κί             | 3.5250   | (under construction) |  |  |  |
| κ <sup>m</sup> | 6.4214   | (under construction) |  |  |  |

Note: The confidence intervals are constructed from the likelihood-ratio tests.

- $\kappa^i pprox \mathsf{R\&D}$  expenditure over 12 quarters (\$2  $\sim$  \$3 billion)
- $\kappa^m \approx$  Acquisition price of a medium-productivity firm
- Setting
  - Time period: 2000 Q1 through 2014 Q1 (earlier years to be included)
  - Discount factor (per quarter):  $\beta = .975$
- Other sunk costs
  - Exit cost (sell-off value):  $\kappa^{x} = 0$
  - Entry cost:  $\kappa^e = \infty$  (for now)
  - Operating fixed cost:  $\kappa^c = \{\kappa^c_t\}$  in SGA+CAPEX data  $\in (0.1, 0.5)$
- Transition probabilities
  - Stochastic depreciation:  $\delta = .0634$
  - Synergy (Poisson):  $\lambda = 1.1667$

<ロ> (日) (日) (日) (日) (日)

# Estimation (4 of 6): Fit

### • Number of firms & productivity distribution

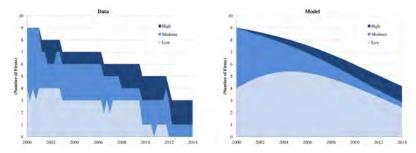



Figure 11: Fit of the Estimated Model (Mean of 10,000 simulations)

メロト メタト メヨト メヨ

### Estimation (5 of 6): Sanity Check

Acquisition prices

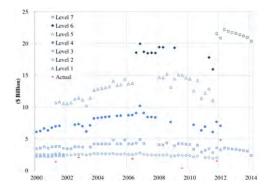



Figure 12: Firm Values in Estimated Model & Data

• Implied prices (target firms' reservation values) match actual transaction values

Image: A math a math

### Estimation (6 of 6): Incentives to Innovate

• More competition, more (less) innovation?

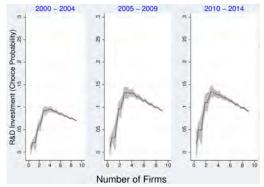



Figure 13: Equilibrium R&D Strategies

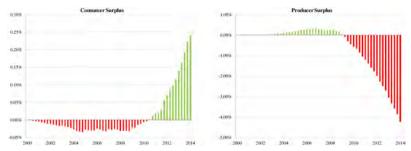
- "Inverted U", dynamic structural version
  - Plateaus at  $n \in \{3, 4, 5\}$
  - Nonstationarity (1): Demand growth  $(M_t \uparrow in t)$
  - Nonstationarity (2): Industry consolidation  $(n_t \downarrow in t)$

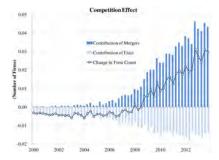
- How far should the industry consolidate?
  - Baseline/reality: Authorities block mergers whenever  $n_t \leqslant 3$
  - Counterfactual: Authorities block mergers whenever  $n_t\leqslant 5$
- More sophisticated version (under construction)
  - Baseline/reality: Authorities block mergers whenever  $HHI_{t+1} > 4000$
  - Counterfactual: Authorities block mergers whenever  $HHI_{t+1} > 2500$

イロト イヨト イヨト イヨ

# Counterfactual (2 of 5): Welfare





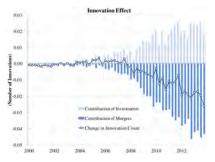


Figure 14: Counterfactual Welfare Outcomes

- CS: underperform  $\rightarrow$  outperform (turning point in 2010)
- PS: outperform → underperform (turning point in 2009)
- SW: slight underperformance throughout  $(\Box 0.02\% \sim \Box 0.10\%)$

< □ > < <sup>[]</sup> >

### Counterfactual (3 of 5): Decomposition 1

- Decompose  $\Delta p$  ( $\Delta CS$ ) into  $\Delta m \& \Delta mc$  (i.e., market power & productivity)
  - Further decompose  $\Delta m$  (or  $\Delta n$ ) into exits & mergers




- Ex-ante policy impacts
  - Exit-promotion: Less competition early on
  - Value destruction: Less merger opportunities in future  $\Rightarrow$  lower  $\Lambda$
- Ex-post policy impacts
  - Pro-competitive effect of actually blocking mergers

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Counterfactual (4 of 5): Decomposition 2

- Decompose  $\Delta p$  ( $\Delta CS$ ) into  $\Delta m \& \Delta mc$  (i.e., market power & productivity)
  - Further decompose  $\Delta mc$  (or count of  $\omega_{it}$   $\uparrow$ ) into investments & mergers



- Ex-ante policy impacts (cont.)
  - Investment-discouragement: Slightly less R&D at the beginning
  - Value destruction: Less merger opportunities in future  $\Rightarrow$  lower  $\Lambda$
- Ex-post policy impacts (cont.)
  - In-house R&D substitutes for forgone synergies (but only imperfectly)
  - Incentives to innovate do not change much between n ∈ {3, 4, 5}

# Counterfactual (5 of 5): Optimal Merger Policy

• 3 is about right

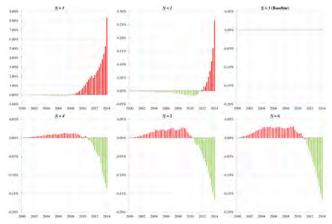



Figure 15: Counterfactual HDD Prices Relative to Baseline Regime

• 2 are few; 6 are many

Igami & Uetake (Yale)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Mergers have become a dominant mode of exit (consolidation)
- Mergers often generated productivity improvement (synergies)
- Policy faces dynamic tradeoff (:: value-destruction side effects)
  - 1. Ex-ante impact (  $\Box$  ) vs. ex-post impact (+)
  - 2. Higher exit rate partially offsets (ex-post) pro-competitive effect
  - 3. In-house R&D does not fully make up for forgone synergies
- $\bullet$  Optimal threshold is 4 firms  $(\pm 1)$  for HDDs
- Framework applicable to other high-tech (e.g., computers & semiconductors)

イロト イ団ト イヨト イヨト