Enabling vs. Controlling

Andrei Hagiu (Harvard Business School)
Julian Wright (National University of Singapore)

8th Annual FTC Microeconomics Conference
November 12th 2015
Enabling vs. Controlling (Employing)

Sale of products or services

Suppliers — Platform — Customers

“ENABLE”

Suppliers — Reseller — Customers

“BUY”

Suppliers — V.I. firm — Customers

vertical integration (employment)

“CONTROL (“MAKE”)
Integrated firms (employees)

Platforms (indep. contractors)

Platforms

- Infosys
- BCG (The Boston Consulting Group)
- WM (Waste Management)
- Raffles Hospital (Singapore)

Integrated Firms

- Yellow Cab Co.
- Uber
- Upwork (formerly oDesk)
- HourlyNerd
- Rubicon

Extent of control by “agents”

(decisions not explicitly contracted upon)
Goal of the paper

- Tradeoffs between two modes of organization: employment (E) mode vs. platform (P) mode
 - Agents hold more control rights in P-mode than in E-mode
 - Complete information & two-part tariffs in both modes

- Extension of “classic” theory of the firm to platforms => some novel & counter-intuitive results
Literature review

• Theory of firm: make vs. buy => make vs. enable
 + Incentive systems (Holmstrom and Milgrom, 1994)
 + Novel elements (2-sided moral hazard, transferable action, spillovers)

• Distortions due to revenue-sharing and linear contracts:

• Hagiu and Wright (2015a) and (2015b)

• Vertical integration in the platform literature:
Outline

1. Introduction and motivation

2. Baseline: 1 firm + 1 agent

3. 1 firm + N agents (spillovers)

4. Extensions

5. Conclusions
Baseline: 1 firm + 1 agent
Set-up

- 1 firm & 1 agent. Profits generated by the relationship:

\[R(a, e, I) - c^a(a) - c^e(e) - c^I(I) \]

Two-sided moral hazard

- **E-mode** (employment): firm chooses \(a \) & incurs \(c^a \)
- **P-mode** (platform): agent chooses \(a \) & incurs \(c^a \)

non-contractible, transferable action:
- \(c^a > 0 \) (e.g. equipment)
- \(c^a = 0 \) (e.g. price)

firm’s non-contractible effort (non-transferable)

agent’s non-contractible effort (non-transferable)
Examples

<table>
<thead>
<tr>
<th></th>
<th>Transferable decisions (a)</th>
<th>Non-transferable investments by agents (e)</th>
<th>Non-transferable investments by the firm (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upwork vs. Infosys; HourlyNerd vs. BCG</td>
<td>training</td>
<td>service quality</td>
<td>quality of online system (monitoring, payment); advertising</td>
</tr>
<tr>
<td>Uber/Lyft vs. taxi co’s</td>
<td>car quality & maintenance</td>
<td>service quality</td>
<td>quality of app & back-end infrastructure; advertising</td>
</tr>
<tr>
<td>Coursera vs. U of Phoenix</td>
<td>curriculum design; advertising of individual & courses</td>
<td>quality of content & its delivery</td>
<td>quality of online infrastructure; advertising of the site</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th></th>
<th>Transferable decisions ((a))</th>
<th>Non-transferable investments by agents ((e))</th>
<th>Non-transferable investments by the firm ((I))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitals & their clinics</td>
<td>medical equipment; support staff; advertising of individual clinics</td>
<td>service quality</td>
<td>quality & maintenance of common facilities; advertising of hospital</td>
</tr>
<tr>
<td>Franchising</td>
<td>quality & maintenance of outlets; staff benefits & training</td>
<td>outlet manager’s effort</td>
<td>product quality (franchisor); national advertising</td>
</tr>
<tr>
<td>Producers and sales agents</td>
<td>training; promotion of individual agents</td>
<td>sales effort</td>
<td>quality of product/service; advertising</td>
</tr>
</tbody>
</table>
The example to remember!

<table>
<thead>
<tr>
<th>Hair salons</th>
<th>Transferable decisions ((a))</th>
<th>Non-transferable investments by agents ((e))</th>
<th>Non-transferable investments by the firm ((l))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>price ((c^a = 0)); hair products; promotion of individual hair dressers ((c^a > 0))</td>
<td>service quality</td>
<td>maintenance & advertising of salon</td>
</tr>
</tbody>
</table>
Set-up & timing

1 firm & 1 agent. Profits generated by the relationship:

\[R(a, e, I) - c^a(a) - c^e(e) - c^I(I) \]

1. Firm chooses **E-mode** or **P-mode** & offers contract \((t, T)\):
 - agent will get \((1 - t)R(a, e, I) - T\)
 - firm will get \(tR(a, e, I) + T\)

2. **E-mode**: firm chooses \(a\) and \(I\), agent chooses \(e\)
 - **P-mode**: firm chooses \(I\), agent chooses \(a\) and \(e\)

3. Revenues are realized
Optimal profits

- E-mode:
 \[\Pi^E = \max_{t,a,e,I} \{ R(a, e, I) - c^a(a) - c^e(e) - c^l(I) \} \]
 subject to:
 \[
 \begin{align*}
 tr_{a}(a, e, I) &= c^a_{a}(a) \\
 (1 - t)r_{e}(a, e, I) &= c^e_{e}(e) \\
 tR_{l}(a, e, I) &= c^l_{l}(I)
 \end{align*}
 \]

- P-mode:
 \[\Pi^P = \max_{t,a,e,I} \{ R(a, e, I) - c^a(a) - c^e(e) - c^l(I) \} \]
 subject to:
 \[
 \begin{align*}
 (1 - t)r_{a}(a, e, I) &= c^a_{a}(a) \\
 (1 - t)r_{e}(a, e, I) &= c^e_{e}(e) \\
 tR_{l}(a, e, I) &= c^l_{l}(I)
 \end{align*}
 \]
Optimal profits

• E-mode:
\[
\Pi^E_* = \max_{t,a,e,I} \{R(a, e, I) - c^a(a) - c^e(e) - c^I(I)\}
\]
subject to:
\[
\begin{align*}
tr_a(a, e, I) &= c^a_a(a) \\
(1 - t)r_e(a, e, I) &= c^e_e(e) \\
tr_l(a, e, I) &= c^I_l(I)
\end{align*}
\]

• P-mode:
\[
\Pi^P_* = \max_{t,a,e,I} \{R(a, e, I) - c^a(a) - c^e(e) - c^I(I)\}
\]
subject to:
\[
\begin{align*}
(1 - t)r_a(a, e, I) &= c^a_a(a) \\
(1 - t)r_e(a, e, I) &= c^e_e(e) \\
tr_l(a, e, I) &= c^I_l(I)
\end{align*}
\]

• Two-sided moral hazard \((e, l)\) + distortion of \(a\)
General results

- **Proposition 1:** In both modes, linear contract is optimal.

- **Proposition 2:**
 - If a is contractible or costless (e.g. price) then $\Pi^E = \Pi^P$
 - If e is contractible or $R_e = 0$ then $\Pi^E > \Pi^P$
 - If l is contractible or $R_l = 0$ then $\Pi^P > \Pi^E$

- **Proposition 3:** Suppose $R(a, e, E)$ is super-modular.
 - If $t^E < 1/2$ then $\Pi^E < \Pi^P$
 - If $t^P > 1/2$ then $\Pi^P < \Pi^E$
Linear example

• Suppose
 – \(R(a, e, E) = \theta a + \gamma e + \delta I \)
 – \(c^a(a) = \frac{1}{2} a^2, c^e(e) = \frac{1}{2} e^2 \) and \(c^I(I) = \frac{1}{2} I^2 \)

• Proposition 4: Firm prefers P-mode to E-mode iff \(\gamma > \delta \)

• i.e. agent’s moral hazard > firm’s moral hazard
1 firm + N agents
Set-up and timing

• 1 firm & \(N \) agents (symmetric). Total profits generated:

\[
\sum_{i=1}^{N} (R(a_i, a_{-i}, e_i, I) - c^a(a_i) - c^e(e_i)) - c^I(I)
\]

Spillovers across transferable actions
=> services can be complements or substitutes

• E-mode – firm chooses all \(a_i \)'s
• P-mode – agent \(i \) chooses \(a_i \) for \(i = 1, \ldots, N \)
General results

• Proposition 7: *In both modes, linear contract is optimal.*

• Proposition 8:
 – If a_i’s are contractible then $\Pi^E^* = \Pi^P^*$
 – If a_i’s are costless (e.g. price) then $\Pi^E^* \neq \Pi^P^*$ due to spillovers
 • If $R(a_i, a_{-i}, e_i, I)$ is additively separable then $\Pi^E^* > \Pi^P^*$
 – If I is contractible or $R_I = 0$ then $\Pi^P^* \neq \Pi^E^*$ due to spillovers

• Two cases of interest:
 – Costly a_i’s and additively separable $R(a_i, a_{-i}, e_i, I)$ (investments)
 – Costless a_i’s and non-additively separable $R(a_i, a_{-i}, e_i, I)$ (prices)
Costly a_i’s and additively separable R

- Suppose
 $$R(a_i, a_{-i}, e_i, I) = \theta a_i + x(\bar{a}_{-i} - a_i) + \gamma e_i + \delta I$$

 $$c^a(a) = \frac{1}{2} a^2, c^e(e) = \frac{1}{2} e^2 \text{ and } c^l(I) = \frac{1}{2} I^2$$

- **Proposition 9:** Firm prefers P-mode over E-mode iff
 $$\left| x \frac{\gamma^2}{\theta} + \theta^2 + N\delta^2 \right| < \sqrt{\theta^2(\theta^2 + \gamma^2 + N\delta^2)} + \gamma^4$$

- **Proposition 10:** A larger γ (resp. δ) shifts the tradeoff in favor of the P-mode (resp. E-mode) iff $t^E_* > t^P_*$.
Costly a_i’s and additively separable R

Counter-intuitive results (opposite of “classic” theory of firm):

• Moderately negative $x =⇒$ larger $|x|$ shifts trade-off towards P-mode
 — negative spillovers $⇒$ over-invest in a_i in P-mode $⇒$ offset under-investment due to revenue-sharing $⇒$ closer to first-best

• Very negative $x =⇒$ agents’ (resp. firm’s) moral hazard shifts tradeoff towards E-mode (resp. P-mode)
 — offsetting effect $⇒ t^{P*} > t^{E*} =⇒$ agents’ incentives less distorted in E-mode
Costless a_i’s and non-additively separable R

- Suppose

$$R(a_i, a_{-i}, e_i, I) = p_i(d + \theta p_i + x(\bar{p}_{-i} - p_i) + \gamma e_i + \delta I)$$

$$c^e(e) = \frac{1}{2} e^2 \text{ and } c^I(I) = \frac{1}{2} I^2$$

- **Proposition 9**: Firm prefers P-mode over E-mode iff

$$- \frac{4k(k + \theta)}{k + 2\theta} < x < 0$$

where $k \equiv \frac{N\delta^2\gamma^2}{N\delta^2 + \gamma^2}$ (combined importance of moral hazard)
Costless a_i’s and non-additively separable R

- Substitutes or strong complements $\Rightarrow \Pi^{E^*} > \Pi^{P^*}$
 - E-mode internalizes spillovers

- Weak complements $\Rightarrow \Pi^{P^*} > \Pi^{E^*}$
 - Complements \Rightarrow prices too high in P-mode \Rightarrow offset 2-sided moral hazard (strategic complementarity btw. prices and efforts)

- Agents’ and firm’s moral hazard have same effect on E vs. P tradeoff
 - Revenue-sharing does not distort price \Rightarrow both modes balance 2-sided moral hazard in the same way
Extensions

• Private benefits

• Timing
 – Ex-ante commitment to I (e.g. infrastructure) => shift in favor of P-mode

• Cost asymmetries

• Hybrid modes:
 – Across services/agents
 • Can be optimal
 – Across transferable actions
 • Cannot be optimal when revenue function is super-modular
Conclusions

• Important strategic choices: positioning between platform (independent agents) and traditional firm (employees)

• Control rights over non-contractible decisions => extend theory of the firm to incorporate platforms
Enabling vs. Controlling (Employing)

- **Enable**
 - Suppliers → Platform → Customers
 - Sale of products or services

- **Buy**
 - Suppliers → Reseller → Customers
 - Sale of products

- **Control ("Make")**
 - Suppliers → V.I. firm → Customers
 - Vertical integration (employment)
 - Sale of products or services
Conclusions

• Important strategic choices: positioning between platform and integrated firm

• Control rights over non-contractible decisions => extend theory of the firm to incorporate platforms

• New “style of modeling” (multi-sided) platforms => novel economic tradeoffs + empirical predictions

• Current/future work:
 – Partial delegation as intermediate mode between P-mode and E-mode
 – Competition between different modes
Thank you for your attention.