Anti-Competitive Effects of Common Ownership

José Azar Charles River Associates

Martin Schmalz University of Michigan Charles River Associates

Isabel Tecu

FTC Microeconomics Conference 2015

• **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no, because
 - Most shareholdings are undiversified

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no, because
 - Most shareholdings are undiversified
 - Diversified institutions are just small minority shareholders

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no, because
 - Most shareholdings are undiversified
 - Diversified institutions are just small minority shareholders
 - Vanguard etc. are "passive" investors

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no, because
 - Most shareholdings are undiversified
 - Diversified institutions are just small minority shareholders
 - Vanguard etc. are "passive" investors (i.e., they don't vote)

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no, because
 - Most shareholdings are undiversified
 - Diversified institutions are just small minority shareholders
 - Vanguard etc. are "passive" investors (i.e., they don't vote), so firms ignore diversified investors' interests

- **Theory**: Firms owned by overlapping sets of investors have reduced incentives to compete
 - Rotemberg (1984); Bresnahan & Salop (1986); Gordon (1990);
 Gilo (2000); O'Brien & Salop (2000); Gilo et al. (2006)
- History: JP Morgan, 19th century (voting) trusts
 - FTC as an antitrust agency
 - Could that also happen today?
- Strong (but unexamined) prior: no, because
 - Most shareholdings are undiversified
 - Diversified institutions are just small minority shareholders
 - Vanguard etc. are "passive" investors (i.e., they don't vote), so firms ignore diversified investors' interests
- This paper informs this debate with facts

This talk

- Facts about ownership of firms
- Overview of empirical setting and results
- Theory
 - Competition under common ownership (O'Brien & Salop, 2000)

Empirics

- Measure concentration due to common ownership
- 2 Identify effect of common ownership on prices
- Potential mechanisms & legal implications

Facts about corporate ownership

Technology

Appl	Apple	
Black	Rock	5.58
Vang	uard	4.95
State	Street gA	4.59
Fidel	ity	3.28
North	nern Trust Corp.	1.53

Microsoft	%
BlackRock	5.33
Capital Group	4.78
Bill Gates	4.52
Vanguard	4.49
State Street gA	4.39
Fidelity	3.08

Pharmacies

CVS	%
BlackRock	5.9
Fidelity	5.1
Vanguard	4.78
State Street gA	4.61
Wellington	4.21

Walgreens	%
Vanguard	5.26
State Street gA	4.49
BlackRock	4.44
Fidelity	3.07
Wellington	2.29

Banks

JPMorgan Chase	%
BlackRock	6.7
Vanguard Group	4.78
State Street gA	4.56
Fidelity	3.16
Capital Group	2.7

Bank of America	%
BlackRock	5.38
Vanguard Group	4.51
State Street gA	4.45
Fidelity	2.56

Citigroup	%
BlackRock	9.29
Capital Group	6.64
GIC Private Li	mited 5
State Street g/	4.4
Vanguard	4.4
Fidelity	3.83

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn
- **Growing:** Size doubled by acquiring BGI in 2009
 - Continued growth through index funds / ETFs (iShares)

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn
- Growing: Size doubled by acquiring BGI in 2009
 - Continued growth through index funds / ETFs (iShares)
- **Powerful:** largest shareholder of $\frac{1}{5}$ of all public US firms

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn
- Growing: Size doubled by acquiring BGI in 2009
 - Continued growth through index funds / ETFs (iShares)
- **Powerful:** largest shareholder of $\frac{1}{5}$ of all public US firms
 - Also largest shareholder of BNP Paribas, Deutsche Bank...

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn
- Growing: Size doubled by acquiring BGI in 2009
 - Continued growth through index funds / ETFs (iShares)
- **Powerful:** largest shareholder of $\frac{1}{5}$ of all public US firms
 - Also largest shareholder of BNP Paribas, Deutsche Bank...
 - Minority shareholder

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn
- Growing: Size doubled by acquiring BGI in 2009
 - Continued growth through index funds / ETFs (iShares)
- **Powerful:** largest shareholder of $\frac{1}{5}$ of all public US firms
 - Also largest shareholder of BNP Paribas, Deutsche Bank...
 - Minority shareholder
- Active in corporate governance

- Large: BlackRock has \$4.7trn Assets under Management
 - NYSE market capitalization: pprox \$19trn
- Growing: Size doubled by acquiring BGI in 2009
 - Continued growth through index funds / ETFs (iShares)
- **Powerful:** largest shareholder of $\frac{1}{5}$ of all public US firms
 - Also largest shareholder of BNP Paribas, Deutsche Bank...
 - Minority shareholder
- Active in corporate governance

Verbatim quotes

- Vanguard's CEO & Chairman F. William McNabb
 - Passive investor, not passive owner
 - Some have mistakenly assumed that our predominantly passive management style suggests a passive attitude with respect to corporate governance. Nothing could be further from the truth.
 - By involvement in hundreds of direct discussions every year ... we can accomplish much more than through voting ... we put issues on the table that aren't on the proxy ballot.

Verbatim quotes

- Vanguard's CEO & Chairman F. William McNabb
 - Passive investor, not passive owner
 - Some have mistakenly assumed that our predominantly passive management style suggests a passive attitude with respect to corporate governance. Nothing could be further from the truth.
 - By involvement in hundreds of direct discussions every year ... we can accomplish much more than through voting ... we put issues on the table that aren't on the proxy ballot.

Passive investment, active ownership

- Most large mutual fund companies
 - Have central corporate governance & proxy voting offices that "engage" with portfolio firms "behind the scenes"
 - Pool votes across funds in family (few within-family fights)

Passive investment, active ownership

- Most large mutual fund companies
 - Have central corporate governance & proxy voting offices that "engage" with portfolio firms "behind the scenes"
 - Pool votes across funds in family (few within-family fights)
- All of the large asset managers are active in corporate governance – even if they have passive investment strategies

Facts on corporate ownership: summary

- Corporate ownership by institutional investors
 - Is not small
 - Is not undiversified
 - Is not passive

Facts on corporate ownership: summary

- Corporate ownership by institutional investors
 - Is not small
 - Is not undiversified
 - Is not passive
- We therefore find it not entirely absurd to ask...

Questions

- Do current levels of common ownership significantly increase market concentration?
 - How to quantify?
- Ooes higher common ownership concentration cause higher product prices?
 - How to **identify**?

What we do

What we do

What we do

What we find

Measure market ownership-adjusted concentration

- Anti-competitive incentives due to common ownership in the average US airline route: 2,200 HHI points
- 10 times larger than what DoJ/FTC horizontal merger guidelines presume "likely to enhance market power"
- Identify price effect
 - ▶ Prices 3-11% higher, compared to separate ownership
 - ▶ Single merger of asset managers causes 0.6% price increase
 - ★ Compares to 1-4% profit margins (IATA)

Theory

(Salop & O'Brien, 2000)

• **Assumption**: firm *j* maximizes a weighted average of its owners' economic interests

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

• Weights: control rights
$$\gamma_{ij}$$
, cash flow rights β_{ik}
$$\max_{x_j} \Pi_j = \sum_{i=1}^M \gamma_{ij} \sum_{k=1}^N \beta_{ik} \pi_k$$

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

• Weights: control rights
$$\gamma_{ij}$$
, cash flow rights β_{ik}

$$\max_{x_j} \Pi_j = \sum_{i=1}^M \gamma_{ij} \sum_{k=1}^N \beta_{ik} \pi_k \propto \pi_j + \sum_{k \neq j} \frac{\sum_i \gamma_{ij} \beta_{ik}}{\sum_i \gamma_{ij} \beta_{ij}} \pi_k$$

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

• Weights: control rights
$$\gamma_{ij}$$
, cash flow rights β_{ik}

$$\max_{x_j} \Pi_j = \sum_{i=1}^M \gamma_{ij} \sum_{k=1}^N \beta_{ik} \pi_k \propto \pi_j + \sum_{k \neq j} \frac{\sum_i \gamma_{ij} \beta_{ik}}{\sum_i \gamma_{ij} \beta_{ij}} \pi_k$$

• **Result**: Cournot \Rightarrow markup \propto MHHI

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

• Weights: control rights
$$\gamma_{ij}$$
, cash flow rights β_{ik}

$$\max_{x_j} \Pi_j = \sum_{i=1}^M \gamma_{ij} \sum_{k=1}^N \beta_{ik} \pi_k \propto \pi_j + \sum_{k \neq j} \frac{\sum_i \gamma_{ij} \beta_{ik}}{\sum_i \gamma_{ij} \beta_{ij}} \pi_k$$

• **Result**: Cournot \Rightarrow markup \propto MHHI = HHI + MHHI delta

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

• Weights: control rights
$$\gamma_{ij}$$
, cash flow rights β_{ik}

$$\max_{x_j} \Pi_j = \sum_{i=1}^M \gamma_{ij} \sum_{k=1}^N \beta_{ik} \pi_k \propto \pi_j + \sum_{k \neq j} \frac{\sum_i \gamma_{ij} \beta_{ik}}{\sum_i \gamma_{ij} \beta_{ij}} \pi_k$$

• **Result**: Cournot \Rightarrow markup \propto MHHI = HHI + MHHI delta

$$\eta \sum_{j} s_{j} \frac{P - C_{j}'(x_{j})}{P} = \sum_{j} s_{j}^{2} + \sum_{j} \sum_{k \neq j} s_{j} s_{k} \frac{\sum_{i} \gamma_{ij} \beta_{ik}}{\sum_{i} \gamma_{ij} \beta_{ij}}$$

(Salop & O'Brien, 2000)

• Assumption: firm *j* maximizes a weighted average of its owners' economic interests: their **portfolio** profits

• Weights: control rights
$$\gamma_{ij}$$
, cash flow rights β_{ik}

$$\max_{x_j} \Pi_j = \sum_{i=1}^M \gamma_{ij} \sum_{k=1}^N \beta_{ik} \pi_k \propto \pi_j + \sum_{k \neq j} \frac{\sum_i \gamma_{ij} \beta_{ik}}{\sum_i \gamma_{ij} \beta_{ij}} \pi_k$$

• **Result**: Cournot \Rightarrow markup \propto MHHI = HHI + MHHI delta

$$\eta \sum_{j} s_{j} \frac{P - C_{j}'(x_{j})}{P} = \sum_{j} s_{j}^{2} + \sum_{j} \sum_{k \neq j} s_{j} s_{k} \frac{\sum_{i} \gamma_{ij} \beta_{ik}}{\sum_{i} \gamma_{ij} \beta_{ij}}$$

• Unilateral effects \Rightarrow no coordination or communication

Symmetric example: 2 firms, 50/50 market share

- Separate ownership: fund A owns firm 1, fund B owns firm 2
 - ► *HHI* = 5,000; *MHHI* = 5,000; *MHHI delta* = 0

Symmetric example: 2 firms, 50/50 market share

- Separate ownership: fund A owns firm 1, fund B owns firm 2
 - ► *HHI* = 5,000; *MHHI* = 5,000; *MHHI delta* = 0

- Funds diversify (or **A** buys **B**)
 - ► *HHI* = 5,000; *MHHI* = 10,000; *MHHI delta* = 5,000

Distribution of MHHI delta across routes

 Horizontal merger guidelines: +200 "presumed likely to enhance market power" & shifts burden of proof

- Horizontal merger guidelines: +200 "presumed likely to enhance market power" & shifts burden of proof
- 2,200 additional HHI points due to common ownership: worse than going from 4 \rightarrow 2 competitors

- Horizontal merger guidelines: +200 "presumed likely to enhance market power" & shifts burden of proof
- 2,200 additional HHI points due to common ownership: worse than going from 4 \rightarrow 2 competitors, w/o DoJ/FTC involvement

Price effect of common ownership

Empirical hypotheses

• H0: Common ownership concentration (MHHI delta) does not affect prices

Empirical hypotheses

- H0: Common ownership concentration (MHHI delta) does not affect prices
 - Corporate governance frictions
 - Informational frictions (too complex)

Empirical hypotheses

▶ ...

- H0: Common ownership concentration (MHHI delta) does not affect prices
 - Corporate governance frictions
 - Informational frictions (too complex)

- H1: MHHI delta has a positive effect on ticket prices
 - Economic incentives matter for economic outcomes
 - Firms act (to some extent) in their owners' economic interest

• Route i, carrier j, quarter t

 $\log\left(p_{ijt}
ight)=eta\cdot$ MHHI delta $_{it}$

 $+\gamma \cdot HHI_{it} + \theta \cdot X_{ijt} + \alpha_t + \nu_{ij} \left(+\nu_{jt}\right) + \varepsilon_{ijt}$

• Route i, carrier j, quarter t

 $\log (p_{ijt}) = \beta \cdot MHHI \ delta_{it}$ $+\gamma \cdot HHI_{it} + \theta \cdot X_{ijt} + \alpha_t + \nu_{ij} (+\nu_{jt}) + \varepsilon_{ijt}$

Results

• $\beta > 0$: 5% higher prices compared to *MHHI delta* = 0

• Route i, carrier j, quarter t

- Results
 - $\beta > 0$: 5% higher prices compared to *MHHI delta* = 0
 - $\beta \approx \gamma$

• Route i, carrier j, quarter t

- Results
 - $\beta > 0$: 5% higher prices compared to *MHHI delta* = 0
 - $\beta \approx \gamma$
 - $\star\,$ Magnitude driven by large MHHI delta, not by a high $\beta\,$

• Route i, carrier j, quarter t

- Results
 - $\beta > 0$: 5% higher prices compared to *MHHI delta* = 0
 - $\beta \approx \gamma$
 - $\star\,$ Magnitude driven by large MHHI delta, not by a high $\beta\,$
 - Quantity (# passengers) is *lower* (eta < 0)

• Route i, carrier j, quarter t

- Results
 - $\beta > 0$: 5% higher prices compared to *MHHI delta* = 0
 - $\beta \approx \gamma$
 - $\star\,$ Magnitude driven by large MHHI delta, not by a high $\beta\,$
 - Quantity (# passengers) is *lower* ($\beta < 0$)

• Implied
$$\eta = -1.3$$
 (IATA: -1.4)

Price effect of MHHI delta

	Dependent Variable: Log(Average Fare)							
	Market-carrier level			Market-level				
	(1)	(2)	(3)	(4)	(5)	(6)		
MHHI delta	0.201***	0.128***	0.129***	0.299***	0.165***	0.212***		
	(0.0251)	(0.0232)	(0.0232)	(0.0283)	(0.0249)	(0.0246)		
ННІ	0.208***	0.150***	0.152***	0.342***	0.260***	0.279***		
	(0.0209)	(0.0182)	(0.0182)	(0.0262)	(0.0206)	(0.0216)		
Controls		(√)	\checkmark		(√)	\checkmark		
Year-Quarter FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Market-Carrier FE	\checkmark	\checkmark	\checkmark					
Market FE				\checkmark	\checkmark	\checkmark		
Observations	1,115,482	1,089,818	1,089,818	228,890	222,347	222,347		
R-squared	0.095	0.144	0.146	0.160	0.263	0.279		
Number of Market-Carrier Pairs	50,659	49,057	49,057					
Number of Markets				7,391	7,081	7,081		

Price effect of MHHI delta

	Dependent Variable: Log(Average Fare)							
	Market-carrier level			Market-level				
	(1)	(2)	(3)	(4)	(5)	(6)		
MHHI delta	0.201***	0.128***	0.129***	0.299***	0.165***	0.212***		
	(0.0251)	(0.0232)	(0.0232)	(0.0283)	(0.0249)	(0.0246)		
нні	0.208***	0.150***	0.152***	0.342***	0.260***	0.279***		
	(0.0209)	(0.0182)	(0.0182)	(0.0262)	(0.0206)	(0.0216)		
Controls		(√)	\checkmark		(√)	\checkmark		
Year-Quarter FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Market-Carrier FE	\checkmark	\checkmark	\checkmark					
Market FE				\checkmark	\checkmark	\checkmark		
Observations	1,115,482	1,089,818	1,089,818	228,890	222,347	222,347		
R-squared	0.095	0.144	0.146	0.160	0.263	0.279		
Number of Market-Carrier Pairs	50,659	49,057	49,057					
Number of Markets				7,391	7,081	7,081		

Panel-IV: BlackRock buys BGI

Testing for reverse causality with panel-IV

• BlackRock announces acquisition of BGI in 2009:Q2, consummated in 2009:Q4

Testing for reverse causality with panel-IV

- BlackRock announces acquisition of BGI in 2009:Q2, consummated in 2009:Q4
- Airlines a small fraction of both firms' portfolios
 - Assume acquisition was not caused by differences across routes in expected ticket price changes
Testing for reverse causality with panel-IV

- BlackRock announces acquisition of BGI in 2009:Q2, consummated in 2009:Q4
- Airlines a small fraction of both firms' portfolios
 - Assume acquisition was not caused by differences across routes in expected ticket price changes
- Route-level treatment variable:

2009:Q1-Implied change in MHHI delta_i

= Hypothetically-combined $MHHI_{2009:Q1,i}$ - Separate $MHHI_{2009:Q1,i}$

Treatment: Implied change in MHHI delta

Treatment: Implied change in MHHI delta

• H0: constant relative price across treated & control routes

Treatment vs. control prices

Treatment vs. control prices

- β^{IV} : up to 11% higher prices due to <u>total</u> common ownership
- BlackRock-BGI-implied increase in common ownership <u>alone</u> caused 0.6% higher prices

Panel-IV first stage

	Dependent Variable: MHHI delta								
	Discrete Treatment				Continuous Treatment				
Post-period:	2011Q1	2012Q1	2013Q1	2011-2013 Q1	2011Q1	2012Q1	2013Q1	2011-2013 Q1	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Treat \times Post	0.0651***	0.0885***	0.0879***	0.0749***					
	(0.00504)	(0.00508)	(0.00519)	(0.00447)					
Impl Chg (MHHI delta)	()	()	()	· · · ·	4.050***	5.756***	5.740***	4.742***	
× Post					(0.291)	(0.295)	(0.313)	(0.273)	
HHI	-0.365***	-0.377***	-0.376***	-0.354***	-0.365***	-0.372***	-0.372***	-0.354***	
	(0.0273)	(0.0213)	(0.0225)	(0.0162)	(0.0214)	(0.0156)	(0.0159)	(0.0113)	
Controls	 Image: A set of the set of the	1	1	1	1	 Image: A set of the set of the	1	1	
Year FE		√	√	√ √	√			√	
Market-Carrier FE	1	\checkmark	\checkmark	1	1	1	1	\checkmark	
Observations	14,828	14,828	14,828	29,656	23,334	23,334	23,334	46,668	
Within-R-squared	0.562	0.659	0.710	0.590	0.534	0.647	0.715	0.584	
# of Market-Carrier Pairs	7,414	7,414	7,414	7,414	11,667	11,667	11,667	11,667	

Panel-IV second stage: price effect

	Dependent Variable: Log(Average Fare)								
	Discrete Treatment				Continuous Treatment				
Post-period:	2011Q1	2012Q1	2013Q1	2011-2013 Q1	2011Q1	2012Q1	2013Q1	2011-2013 Q1	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
MHHI delta	-0.0150	0.519***	0.521***	0.299**	-0.149	0.483***	0.440***	0.245*	
	(0.174)	(0.143)	(0.147)	(0.141)	(0.173)	(0.131)	(0.141)	(0.138)	
HHI	0.0632	0.296***	0.299***	0.226***	0.0118	0.260***	0.254***	0.206***	
	(0.0822)	(0.0672)	(0.0697)	(0.0605)	(0.0768)	(0.0573)	(0.0617)	(0.0553)	
Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Market-Carrier FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Observations	14,828	14,828	14,828	29,656	23,334	23,334	23,334	46,668	
R-squared	0.375	0.432	0.414	0.321	0.351	0.411	0.395	0.305	
# of Market-Carrier Pairs	7,414	7,414	7,414	7,414	11,667	11,667	11,667	11,667	

Panel-IV second stage: price effect

	Dependent Variable: Log(Average Fare)								
	Discrete Treatment				Continuous Treatment				
Post-period:	2011Q1	2012Q1	2013Q1	2011-2013 Q1	2011Q1	2012Q1	2013Q1	2011-2013 Q1	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
MHHI delta	-0.0150	0.519***	0.521***	0.299**	-0.149	0.483***	0.440***	0.245*	
	(0.174)	(0.143)	(0.147)	(0.141)	(0.173)	(0.131)	(0.141)	(0.138)	
HHI	0.0632	0.296***	0.299***	0.226***	0.0118	0.260***	0.254***	0.206***	
	(0.0822)	(0.0672)	(0.0697)	(0.0605)	(0.0768)	(0.0573)	(0.0617)	(0.0553)	
Canturala	/	/	/	/	/	/	/	/	
Controls	v	v	V	V	v	v	v	v	
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Market-Carrier FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Observations	14,828	14,828	14,828	29,656	23,334	23,334	23,334	46,668	
R-squared	0.375	0.432	0.414	0.321	0.351	0.411	0.395	0.305	
# of Market-Carrier Pairs	7,414	7,414	7,414	7,414	11,667	11,667	11,667	11,667	

Summary and conclusions

Ommon ownership is ubiquitous

- Common ownership is ubiquitous
- Portfolio firms lack incentives to compete
 - More than 10 times larger than what DoJ/FTC horizontal merger guidelines presume "likely to enhance market power"

- Common ownership is ubiquitous
- Portfolio firms lack incentives to compete
 - More than 10 times larger than what DoJ/FTC horizontal merger guidelines presume "likely to enhance market power"
- When firms lack incentives to compete, they don't
 - ▶ 3 11% higher prices, compared to separate ownership
 - Magnitudes & timing similar to unregulated mergers

- Common ownership is ubiquitous
- Portfolio firms lack incentives to compete
 - More than 10 times larger than what DoJ/FTC horizontal merger guidelines presume "likely to enhance market power"
- When firms lack incentives to compete, they don't
 - ▶ 3 11% higher prices, compared to separate ownership
 - Magnitudes & timing similar to unregulated mergers
- Consolidation in the asset management industry affects portfolio firms' product market competition
 - ▶ 0.6% on the average route, from one acquisition alone

- Neo-classical economics is internally inconsistent. It is impossible to design an economic system in which
 - Shareholders are diversified (e.g., CAPM)
 - Irims act in shareholders' interest (good governance)
 - Product market competition prevails (efficiency)

- Neo-classical economics is internally inconsistent. It is impossible to design an economic system in which
 - Shareholders are diversified (e.g., CAPM)
 - Irims act in shareholders' interest (good governance)
 - Product market competition prevails (efficiency)
- Quantitative question: can we improve welfare by
 - Reducing within-industry diversification (which potentially improves governance and competition, but is it feasible)?

- Neo-classical economics is internally inconsistent. It is impossible to design an economic system in which
 - Shareholders are diversified (e.g., CAPM)
 - Irims act in shareholders' interest (good governance)
 - In Product market competition prevails (efficiency)
- Quantitative question: can we improve welfare by
 - Reducing within-industry diversification (which potentially improves governance and competition, but is it feasible)?
 - Reducing voting power of "passive" investors (or is separation of ownership and control a bigger concern)?

- Neo-classical economics is internally inconsistent. It is impossible to design an economic system in which
 - Shareholders are diversified (e.g., CAPM)
 - Pirms act in shareholders' interest (good governance)
 - Product market competition prevails (efficiency)
- Quantitative question: can we improve welfare by
 - Reducing within-industry diversification (which potentially improves governance and competition, but is it feasible)?
 - Reducing voting power of "passive" investors (or is separation of ownership and control a bigger concern)?
 - Or is there just enough competition with present-day ownership structures (but what about the future)?

Potential mechanisms and legal implications

"What is the mechanism?"

• Showed incentives and outcomes, as typical in IO

"What is the mechanism?"

- Showed incentives and outcomes, as typical in IO
- Comforting to know plausible mechanisms exist
 - Direct channel
 - Indirect channel

"What is the mechanism?"

- Showed incentives and outcomes, as typical in IO
- Comforting to know plausible mechanisms exist
 - Direct channel
 - Indirect channel

How do institutional investors affect corporate policies?

• Just as we teach it

- Just as we teach it
 - They elect directors

- Just as we teach it
 - They elect directors (sometimes themselves)

- Just as we teach it
 - They elect directors (sometimes themselves)
 - ► Set pay/turnover: industry-sensitive (Bebchuk & Fried; Jenter & Kanaan)

- Just as we teach it
 - They elect directors (sometimes themselves)
 - ► Set pay/turnover: industry-sensitive (Bebchuk & Fried; Jenter & Kanaan)
 - "Engagement is the carrot, voting is the stick."

- Just as we teach it
 - They elect directors (sometimes themselves)
 - ► Set pay/turnover: industry-sensitive (Bebchuk & Fried; Jenter & Kanaan)
 - "Engagement is the carrot, voting is the stick."
- What is discussed in engagement meetings? We don't know.
- But even in earnings calls, investors openly discuss capacity decisions with airlines

- Direct discussion of capacity
 - "Southwest dials back on growth to appease investors" (Bloomberg)

- Direct discussion of capacity
 - "Southwest dials back on growth to appease investors" (Bloomberg)
 SWA jumps 2.2%, airline index jumps 3.2%

- Direct discussion of capacity
 - "Southwest dials back on growth to appease investors" (Bloomberg)
 SWA jumps 2.2%, airline index jumps 3.2%
 - ► At the 2014Q3 earnings call of Delta Air Lines, JP Morgan representative (#2 shareholder) "asks":
 - "When you add capacity, particularly into other airlines' hubs, it diminishes shareholder confidence; jeopardizes the likelihood of earning a multiple closer to that of high-quality industrial transport. [...] in fairness, I'm going to ask others this season. So this is not uniquely directed."

- Direct discussion of capacity
 - "Southwest dials back on growth to appease investors" (Bloomberg)
 SWA jumps 2.2%, airline index jumps 3.2%
 - ► At the 2014Q3 earnings call of Delta Air Lines, JP Morgan representative (#2 shareholder) "asks":
 - "When you add capacity, particularly into other airlines' hubs, it diminishes shareholder confidence; jeopardizes the likelihood of earning a multiple closer to that of high-quality industrial transport. [...] in fairness, I'm going to ask others this season. So this is not uniquely directed."
 - Route-specific comments
 - "What is funding growth initiatives in certain regions, like the trans-Atlantic, like in Seattle, and perhaps like in LA?"

- Direct discussion of capacity
 - "Southwest dials back on growth to appease investors" (Bloomberg)
 SWA jumps 2.2%, airline index jumps 3.2%
 - ► At the 2014Q3 earnings call of Delta Air Lines, JP Morgan representative (#2 shareholder) "asks":
 - "When you add capacity, particularly into other airlines' hubs, it diminishes shareholder confidence; jeopardizes the likelihood of earning a multiple closer to that of high-quality industrial transport. [...] in fairness, I'm going to ask others this season. So this is not uniquely directed."
 - Route-specific comments
 - "What is funding growth initiatives in certain regions, like the trans-Atlantic, like in Seattle, and perhaps like in LA?"
 - * "... Will you cut some of those new routes? Or will allocating more capacity to places like Miami - Frankfurt have the effect of reducing service here?" (American)

- Direct discussion of capacity
 - "Southwest dials back on growth to appease investors" (Bloomberg)
 SWA jumps 2.2%, airline index jumps 3.2%
 - ► At the 2014Q3 earnings call of Delta Air Lines, JP Morgan representative (#2 shareholder) "asks":
 - "When you add capacity, particularly into other airlines' hubs, it diminishes shareholder confidence; jeopardizes the likelihood of earning a multiple closer to that of high-quality industrial transport. [...] in fairness, I'm going to ask others this season. So this is not uniquely directed."
 - Route-specific comments
 - "What is funding growth initiatives in certain regions, like the trans-Atlantic, like in Seattle, and perhaps like in LA?"
 - * "... Will you cut some of those new routes? Or will allocating more capacity to places like Miami - Frankfurt have the effect of reducing service here?" (American)

2. Indirect channel

• Firms need to be pushed to compete hard, or they will enjoy a "quiet life" with high margins, profits (Bertrand & Mullainathan, 2003)

2. Indirect channel

- Firms need to be pushed to compete hard, or they will enjoy a "quiet life" with high margins, profits (Bertrand & Mullainathan, 2003)
 - Large diversified investors don't have the incentives
2. Indirect channel

- Firms need to be pushed to compete hard, or they will enjoy a "quiet life" with high margins, profits (Bertrand & Mullainathan, 2003)
 - Large diversified investors don't have the incentives
 - Small undiversified "activists" don't have the power

2. Indirect channel

- Firms need to be pushed to compete hard, or they will enjoy a "quiet life" with high margins, profits (Bertrand & Mullainathan, 2003)
 - Large diversified investors don't have the incentives
 - Small undiversified "activists" don't have the power
- The Trian / Dupont Case Details

2. Indirect channel

- Firms need to be pushed to compete hard, or they will enjoy a "quiet life" with high margins, profits (Bertrand & Mullainathan, 2003)
 - Large diversified investors don't have the incentives
 - Small undiversified "activists" don't have the power
- The Trian / Dupont Case Details
- Same conclusion
 - Institutional investors actively influence product pricing
 - Common ownership causes higher product prices

- Collusion case (Sherman Act Sec 1) requires communication
- Clayton Act Sec 7 doesn't require communication/mechanism
 - Prohibits stock acquisitions that lessen competition.

- Collusion case (Sherman Act Sec 1) requires communication
- Clayton Act Sec 7 doesn't require communication/mechanism
 - Prohibits stock acquisitions that lessen competition.
- Elhauge (HLR 2016)

Appendix

Robustness checks

- Quantity as dependent variable
 - ► 6%*** given current level of MHHI delta
- Include carrier-year fixed effects v_{jt}
 - Effect remains highly significant
- Instrument market shares with lagged s_i
 - Coefficients double

More robustness checks

- Consider only top 10/5/3/1 owners for control
 - ****, progressively smaller point estimate
- Consider only < 0.5% for control (Placebo)
 - Effect of MHHI delta disappears
- Add $f^2(HHI)$, $f^5(HHI)$ as controls
 - Similar coefficient on MHHI delta

Open Questions

- Other industries (horizontal)
- Vertical common ownership
- Efficiency stories in vertical or horizontal common ownership
- Mechanism, incl. pay structures, turnover
- Endogeneity of ownership
- Relationship to mergers
- Monopsony power
- Inequality

• ...

Driven by more concentrated markets

Common ownership of banks

- 938/3206 counties have MHHI delta > 200 (raw)
- 76% of deposits face MHHI delta > 200 (weigh.)
- Average deposit-weighted MHHI delta = 1232

Bankruptcies mitigate the effect

- Isn't that implausibly complicated?
 - ► No more complex than known from IO literature Example

- Isn't that implausibly complicated?
 - ► No more complex than known from IO literature Example
 - No more than in history

- Isn't that implausibly complicated?
 - No more complex than known from IO literature Example
 - No more than in history
- Aren't the ownership stakes too small to matter?
 - United Airlines: top 5 = 49.5%

- Isn't that implausibly complicated?
 - No more complex than known from IO literature Example
 - No more than in history
- Aren't the ownership stakes too small to matter?
 - United Airlines: top 5 = 49.5%
 - An activist hedge fund needs 2% to matter

- Isn't that implausibly complicated?
 - No more complex than known from IO literature Example
 - No more than in history
- Aren't the ownership stakes too small to matter?
 - United Airlines: top 5 = 49.5%
 - An activist hedge fund needs 2% to matter
 - How much ownership do you think you need to matter, over and above being the largest shareholder?

- Isn't that implausibly complicated?
 - No more complex than known from IO literature Example
 - No more than in history
- Aren't the ownership stakes too small to matter?
 - United Airlines: top 5 = 49.5%
 - An activist hedge fund needs 2% to matter
 - How much ownership do you think you need to matter, over and above being the largest shareholder?
 - How much common ownership are you comfortable with?

- Isn't that implausibly complicated?
 - No more complex than known from IO literature Example
 - No more than in history
- Aren't the ownership stakes too small to matter?
 - United Airlines: top 5 = 49.5%
 - An activist hedge fund needs 2% to matter
 - How much ownership do you think you need to matter, over and above being the largest shareholder?
 - How much common ownership are you comfortable with?
 - Who matters for governance if not the largest shareholders? ("[BlackRock, the] 800-pound gorilla in the room")

Dupont and Monsanto

Rank	Company	Seed Sales, 2011 US\$ millions	% Market Share
1	Monsanto	8,953	26
2	DuPont Pioneer (USA)	6,261	18.2
3	Syngenta (Switzerland)	3,185	9.2
4	Vilmorin (France) (Groupe Limagrain)	1,670	4.8
5	WinField (USA) (Land O Lakes)	1,346 (est.)	3.9
6	KWS (Germany)	1,226	3.6

Dupont and Monsanto

Rank	Company	Seed Sales, 2011 US\$ millions	% Market Share
1	Monsanto	8,953	26
2	DuPont Pioneer (USA)	6,261	18.2
3	Syngenta (Switzerland)	3,185	9.2
4	Vilmorin (France) (Groupe Limagrain)	1,670	4.8
5	WinField (USA) (Land O Lakes)	1,346 (est.)	3.9
6	KWS (Germany)	1,226	3.6

Dupont (DD)	%	Mon
Vanguard	5.5	Vang
BlackRock	5.0	Black
State Street global Advisors	4.9	Fideli
Capital Research & Management Co.	4.0	State
Trian Fund Management LP	2.7	Capit
Fidelity	2.5	Sand

Monsanto (MON)	
Vanguard	6.4
BlackRock	5.5
Fidelity	4.7
State Street global Advisors	4.6
Capital Research & Management Co.	3.3
Sands Capital Management LLC	2.7