Competition Policy in Selection Markets

E. Glen Weyl

joint work with Neale Mahoney, Chicago, and André Veiga, Oxford

Microsoft Research New England and University of Chicago

Seventh Annual Microeconomics Conference
Federal Trade Commission
October 16, 2014
Motivation

1970’s: information challenges efficiency of competition
Motivation

1970’s: information challenges efficiency of competition
 - Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
- Old informal defense made by monopolists
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...

- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...

- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?

- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition
1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition
- Today: how should this influence competition policy?
1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...

- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?

- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition

- Today: how should this influence competition policy?
 - When do these effects undermine competition value?
Motivation

1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...

- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?

- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition

- Today: how should this influence competition policy?
 - When do these effects undermine competition value?
 - How to design competition and merger review?
1970’s: information challenges efficiency of competition

- Akerlof, Rothschild-Stiglitz formalize “cream-skimming”
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...

- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?

- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition

- Today: how should this influence competition policy?
 - When do these effects undermine competition value?
 - How to design competition and merger review?

The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality
Basic, classic model is Akerlof’s lemons: just quality

Einav and Finkelstein enrich to multidimensional
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

⇒ Let me begin by presenting, building on their model
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

• Einav and Finkelstein enrich to multidimensional
 • But also generate very simple, general exposition

⇒ Let me begin by presenting, building on their model

• Individuals described by multi-D type t, distribution $f(t)$
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model

- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
Basic, classic model is Akerlof’s lemons: just quality
- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model
- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
- Let $T(p) \equiv \{ t : u(t) \geq p \}$ *purchasers*
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model

- Individuals described by multi-D type \(t \), distribution \(f(t) \)
- Willing to pay \(u(t) \), cost of serving \(t \) is \(c(t) \)
- Let \(T(p) \equiv \{ t : u(t) \geq p \} \) purchasers
- \(\partial T(p) \equiv \{ t : u(t) = p \} \) marginals
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality
- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

⇒ Let me begin by presenting, building on their model
- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
- Let $T(p) \equiv \{ t : u(t) \geq p \}$ purchasers
- $\partial T(p) \equiv \{ t : u(t) = p \}$ marginals
- Demand $Q(p) = \int_{T(p)} f(t) dt$
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model

- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
- Let $T(p) = \{ t : u(t) \geq p \}$ purchasers
- $\partial T(p) = \{ t : u(t) = p \}$ marginals
- Demand $Q(p) = \int_{T(p)} f(t) dt$
- Inverse demand $P(q) = Q(P(q))$
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality
- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model
- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
- Let $T(p) \equiv \{ t : u(t) \geq p \}$ purchasers
- $\partial T(p) \equiv \{ t : u(t) = p \}$ marginals
- Demand $Q(p) = \int_{T(p)} f(t)dt$
- Inverse demand $P(q) = Q(P(q))$
- Cost $C(q) \equiv \int_{T(P(q))} c(t)f(t)dt$

Mahoney, Veiga and Weyl (2014)
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality
- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model
- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
- Let $T(p) \equiv \{t : u(t) \geq p\}$ purchasers
- $\partial T(p) \equiv \{t : u(t) = p\}$ marginals
- Demand $Q(p) = \int_{T(p)} f(t)dt$
- Inverse demand $P(q) = Q(P(q))$
- Cost $C(q) = \int_{T(P(q))} c(t)f(t)dt$
- Average cost $AC(q) = \frac{C(q)}{q}$, marginal cost $MC(q) = C'(q)$
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model

- Individuals described by multi-D type t, distribution $f(t)$
- Willing to pay $u(t)$, cost of serving t is $c(t)$
- Let $T(p) \equiv \{ t : u(t) \geq p \}$ purchasers
- $\partial T(p) \equiv \{ t : u(t) = p \}$ marginals
- Demand $Q(p) = \int_{T(p)} f(t)dt$
- Inverse demand $P(q) = Q(P(q))$
- Cost $C(q) \equiv \int_{T(P(q))} c(t)f(t)dt$
- Average cost $AC(q) \equiv \frac{C(q)}{q}$, marginal cost $MC(q) \equiv C'(q)$
- “Free entry” $AC(q) = P(q)$, just like average cost pricing
The Einav and Finkelstein model

Basic, classic model is Akerlof’s lemons: just quality

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

Let me begin by presenting, building on their model

- Individuals described by multi-D type \(t \), distribution \(f(t) \)
- Willing to pay \(u(t) \), cost of serving \(t \) is \(c(t) \)
- Let \(T(p) \equiv \{ t : u(t) \geq p \} \) purchasers
- \(\partial T(p) \equiv \{ t : u(t) = p \} \) marginals
- Demand \(Q(p) = \int_{T(p)} f(t) \, dt \)
- Inverse demand \(P(q) = Q(P(q)) \)
- Cost \(C(q) \equiv \int_{T(P(q))} c(t) f(t) \, dt \)
- Average cost \(AC(q) \equiv \frac{C(q)}{q} \), marginal cost \(MC(q) \equiv C'(q) \)
- “Free entry” \(AC(q) = P(q) \), just like average cost pricing
 - Analyze, illustrate graphically
Visualizing adverse and advantageous selection

- Perfect Competition (P = AC)
- Monopoly Pricing (MR = MC)
- Social Optimum (P = MC)

Mahoney, Veiga and Weyl (2014)

Selection policy
Neale and I added imperfect competition to this:
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - \(MR = MC \); monopolist internalizes all industry-wide effects
Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - $MR = MC$; monopolist internalizes all industry-wide effects
- Between $\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC$; $\theta = \text{conduct}$
Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - $MR = MC$; monopolist internalizes all industry-wide effects
- Between $\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC$; $\theta = \text{conduct}$
- Weyl-Fabinger (13) in standard symmetric oligopoly
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 \[MR = MC; \] monopolist internalizes all industry-wide effects
- Between \(\theta MR + (1 - \theta) P = \theta MC + (1 - \theta) AC; \theta = \text{conduct} \)
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \((1/n)\), diff. Bertrand \((1 - D)\), conjectures, etc.
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - $MR = MC$; monopolist internalizes all industry-wide effects
- Between $\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC$; $\theta = \text{conduct}$
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot ($1/n$), diff. Bertrand ($1 - D$), conjectures, etc.
- We strengthened notion of symmetry for selection
Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - \(MR = MC \); monopolist internalizes all industry-wide effects
- Between \(\theta MR + (1 - \theta) P = \theta MC + (1 - \theta) AC; \theta = \text{conduct} \)
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \((1/n)\), diff. Bertrand \((1 - D)\), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - $MR = MC$; monopolist internalizes all industry-wide effects
- Between $\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC$; $\theta =$ conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot ($^{1/n}$), diff. Bertrand ($1 - D$), conjectures, etc.
- We strengthened notion of symmetry for selection
 1. At symmetric eq., random sample of purchasers
 2. “Switchers” attracted from rivals average purchasers
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - \(MR = MC \); monopolist internalizes all industry-wide effects
- Between \(\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC \); \(\theta \) = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \((1/n)\), diff. Bertrand \((1 - D)\), conjectures, etc.
- We strengthened notion of symmetry for selection
 1. At symmetric eq., random sample of purchasers
 2. “Switchers” attracted from rivals average purchasers
 - Immediate Cournot, \(t \perp \) to horizontal preference Bertrand
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 \[MR = MC \]; monopolist internalizes all industry-wide effects
- Between \[\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC \]; \(\theta = \) conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \(1/n \), diff. Bertrand \(1 - D \), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - “Switchers” attracted from rivals average purchasers
 - Immediate Cournot, \(t \perp \) to horizontal preference Bertrand
- Under these, interpolation accurate
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - \(MR = MC \); monopolist internalizes all industry-wide effects
- Btw \(\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC \); \(\theta = \) conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \(^{(1/n)} \), diff. Bertrand \((1 - D) \), conjectures, etc.
- We strengthened notion of symmetry for selection
 1. At symmetric eq., random sample of purchasers
 2. “Switchers” attracted from rivals average purchasers
 - Immediate Cournot, \(t \perp \) to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter

Mahoney, Veiga and Weyl (2014)
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - $MR = MC$; monopolist internalizes all industry-wide effects
- Between $\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC$; $\theta = \text{conduct}$
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot ($1/n$), diff. Bertrand ($1 - D$), conjectures, etc.
- We strengthened notion of symmetry for selection
 1. At symmetric eq., random sample of purchasers
 2. “Switchers” attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter
 1. Competition always beneficial under adverse
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - \(MR = MC \); monopolist internalizes all industry-wide effects
- Between \(\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC; \theta = \text{conduct} \)
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \((1/n)\), diff. Bertrand \((1 - D)\), conjectures, etc.
- We strengthened notion of symmetry for selection
 - 1. At symmetric eq., random sample of purchasers
 - 2. “Switchers” attracted from rivals average purchasers
 - Immediate Cournot, \(t \perp \) to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter
 - 1. Competition always beneficial under adverse
 - Market power only exacerbates under-supply

Mahoney, Veiga and Weyl (2014) Selection policy
Adding imperfect competition

Neale and I added imperfect competition to this

- Simplest case shown in graphs is monopoly
 - \(MR = MC \); monopolist internalizes all industry-wide effects
- Between \(\theta MR + (1 - \theta)P = \theta MC + (1 - \theta)AC \); \(\theta = \) conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot \((1/n) \), diff. Bertrand \((1 - D) \), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - “Switchers” attracted from rivals average purchasers
 - Immediate Cournot, \(t \perp \) to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter
 - Competition always beneficial under adverse
 - Market power only exacerbates under-supply
 - However, with advantageous, optimal \(\theta^* \)

Mahoney, Veiga and Weyl (2014)
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition
- Sounds sensible from standard perspective

Mahoney, Veiga and Weyl (2014)
Selection policy
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition
- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*

Mahoney, Veiga and Weyl (2014)
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

Mahoney, Veiga and Weyl (2014) Selection policy
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

⇒ Competition may have led to credit glut
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition
- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

⇒ Competition may have led to credit glut
- Could this have played significant role in 2000’s?
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition
- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

⇒ Competition may have led to credit glut
- Could this have played significant role in 2000’s?
- Identifying variation weak from the housing market

Mahoney, Veiga and Weyl (2014) Selection policy
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

→ Competition may have led to credit glut
 - Could this have played significant role in 2000’s?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random

Mahoney, Veiga and Weyl (2014)
Selection policy
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition
- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

⇒ Competition may have led to credit glut
- Could this have played significant role in 2000’s?
- Identifying variation weak from the housing market
- Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
- Just one firm, but if symmetric (as below) back out market
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

\[\implies \text{Competition may have led to credit glut} \]

- Could this have played significant role in 2000’s?

- Identifying variation weak from the housing market
- Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
- Just one firm, but if symmetric (as below) back out market
- Don’t know market power \(\theta \), so subsidy/tax for each

Mahoney, Veiga and Weyl (2014)
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

⇒ Competition may have led to credit glut

- Could this have played significant role in 2000’s?

- Identifying variation weak from the housing market
- Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
- Just one firm, but if symmetric (as below) back out market
- Don’t know market power θ, so subsidy/tax for each

⇒ If $\theta < .2$ (standard goal), $> $4400 = 41% subsidy!!
Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*
 - Average borrower better than marginal

→ Competition may have led to credit glut
 - Could this have played significant role in 2000’s?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
 - Just one firm, but if symmetric (as below) back out market
 - Don’t know market power θ, so subsidy/tax for each
 → If $\theta < .2$ (standard goal), $> $4400 = 41% subsidy!!

→ Pro-competitive reforms may have caused real harm

Mahoney, Veiga and Weyl (2014) Selection policy
Why and how beneficial is market power?

Mahoney, Veiga and Weyl (2014)
Product design in selection markets

With adverse selection (common in insurance) opposite result
Product design in selection markets

With adverse selection (common in insurance) opposite result

But Rothschild-Stiglitz saw other problem with competition

Calibrate using empirical data from Handel et al. (2014)
Mean negatively correlated with risk-aversion
Could offset adverse selection on mean but...
Variance very positively correlated, so worsens!
Market power dampens this cream-skimming however
Can it restore positive insurance, or even good outcome?
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance

Mahoney, Veiga and Weyl (2014)
Product design in selection markets

With adverse selection (common in insurance) opposite result
• But Rothschild-Stiglitz saw other problem with competition
 • Not number of individuals insured, but quality of insurance
 • Cream-skim by cutting quality and price
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price

- André and I address , using EF-style approach
Product design in selection markets

With adverse selection (common in insurance) opposite result
- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address, using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address, using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

⇒ Trade-off in competition: coverage ↑ but quality ↓

Calibrate using empirical data from Handel et al. (2014)

Mean negatively correlated with risk-aversion

Variance very positively correlated, so worsens!

Market power dampens this cream-skimming however

Could offset adverse selection on mean but...

Can it restore positive insurance, or even good outcome?

Mahoney, Veiga and Weyl (2014)
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address, using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

⇒ Trade-off in competition: coverage ↑ but quality ↓
 - Calibrate using empirical data from Handel et al. (2014)
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address, using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

→ Trade-off in competition: coverage ↑ but quality ↓
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
Product design in selection markets

With adverse selection (common in insurance) opposite result
 - But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
 - André and I address , using EF-style approach
 - Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

⇒ Trade-off in competition: coverage ↑ but quality ↓
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price

- André and I address, using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

⇒ Trade-off in competition: coverage ↑ but quality ↓
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
 - Variance very positively correlated, so worsens!
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

⇒ Trade-off in competition: coverage ↑ but quality ↓
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
 - Variance very positively correlated, so worsens!
 - Market power dampens this cream-skimming however
With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

Trade-off in competition: coverage ↑ but quality ↓
- Calibrate using empirical data from Handel et al. (2014)
- Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
- Variance very positively correlated, so worsens!
- Market power dampens this cream-skimming however
 - Can it restore positive insurance, or even good outcome?
Surprising benefit of market power in insurance

Mahoney, Veiga and Weyl (2014)

Selection policy
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

Natural place to look for competition policy implications
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

=> Natural place to look for competition policy implications

- Four principles in guidelines (partly) reversed:
 1. Price-raising incentives are harmful
 New standard is to measure this "upward pricing pressure"
 But this may also arise from advantageous selection
 2. Worst when reduces competition by most
 Under advantageous selection, more beneficial larger
 \(D \)
 3. Marginal cost should be used to calculate mark-up
 To predict price rise, mark-up over average cost correct
 4. Demand data more important than administrative data
 Administrative data only gives average, not marginal cost
 But this is what you want with selection
 First-order condition backs out incorrect cost for UPP

Mahoney, Veiga and Weyl (2014)
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

- Four principles in guidelines (partly) reversed:
 1. Price-raising incentives are harmful
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

• Four principles in guidelines (partly) reversed:
 1. Price-raising incentives are harmful
 • New standard is to measure this “upward pricing pressure”
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

- Four principles in guidelines (partly) reversed:
 - 1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

- Four principles in guidelines (partly) reversed:
 1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection
 2. Worst when reduces competition by most
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

Natural place to look for competition policy implications

Four principles in guidelines (partly) reversed:

1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection

2. Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

Natural place to look for competition policy implications

Four principles in guidelines (partly) reversed:

1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection

2. Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is

3. Marginal cost should be used to calculate mark-up
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

- Four principles in guidelines (partly) reversed:

 1. Price-raising incentives are harmful
 * New standard is to measure this “upward pricing pressure”
 * But this may also arise from advantageous selection

 2. Worst when reduces competition by most
 * Under advantageous selection, more beneficial larger D is

 3. Marginal cost should be used to calculate mark-up
 * To predict price rise, mark-up over average cost correct
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

Four principles in guidelines (partly) reversed:

1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection

2. Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is

3. Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct

4. Demand data more important than administrative data

Mahoney, Veiga and Weyl (2014)
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

⇒ Natural place to look for competition policy implications

- Four principles in guidelines (partly) reversed:
 1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection
 2. Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 3. Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct
 4. Demand data more important than administrative data
 - Administrative data only gives average, not marginal cost

Mahoney, Veiga and Weyl (2014)
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

Natural place to look for competition policy implications

Four principles in guidelines (partly) reversed:

1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection

2. Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is

3. Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct

4. Demand data more important than administrative data
 - Administrative data only gives average, not marginal cost
 - But this is what you want with selection

Mahoney, Veiga and Weyl (2014)
Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

Natural place to look for competition policy implications

Four principles in guidelines (partly) reversed:

1. Price-raising incentives are harmful
 - New standard is to measure this “upward pricing pressure”
 - But this may also arise from advantageous selection

2. Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is

3. Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct

4. Demand data more important than administrative data
 - Administrative data only gives average, not marginal cost
 - But this is what you want with selection
 - First-order condition backs out incorrect cost for UPP

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse

⇒ Selection challenges competition policy

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse

⇒ Selection challenges competition policy
 - Makes us think more carefully about how, when

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse

⇒ Selection challenges competition policy

- Makes us think more carefully about how, when
- But it is not a carte blanche counter-argument

Mahoney, Veiga and Weyl (2014)
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse

⇒ Selection challenges competition policy

- Makes us think more carefully about how, when
- But it is not a carte blanche counter-argument
- Framework allows us to measure, and if wrong to rebut
What types competition are really harmful?

Note that message is not harmful competition overall

- Some dimensions, cases competition dangerous
 1. Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 2. Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 3. Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse

⇒ Selection challenges competition policy
 - Makes us think more carefully about how, when
 - But it is not a *carte blanche* counter-argument
 - Framework allows us to measure, and if wrong to rebut
 - Currently not formal, hard to say much about it!

Mahoney, Veiga and Weyl (2014)