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1 Introduction

In recent decades, there has been a proliferation of theoretical research that extends the

principles of incidence elucidated by Marshall (1890) to imperfectly competitive environ-

ments. In public economics, this effort has generated results on the distributional impacts of

taxation (e.g., Delipalla and Keen (1992); Anderson, de Palma, and Keider (2001); Weyl and

Fabinger (2013)). Within international trade, Krugman (1986) and Dornbusch (1987) show

that market power can explain incomplete exchange rate pass-through, which in turn has

motivated new theoretical work (e.g., Melitz and Ottaviano (2008); Atkeson and Burstein

(2008); Berman, Martin, and Mayer (2012); Auer and Schoenle (2013)). Further, within

industrial organization, it is now understood that pass-through is central to a wide range of

economic analyses, from price discrimination (e.g., Aguirre, Cowan, and Vickers (2010)) to

the unilateral effects of mergers (e.g., Jaffe and Weyl (2013)).1

The empirical literature has not kept pace, with some notable exceptions, in providing

estimates of pass-through that account for oligopoly interactions. The dearth of research

is unfortunate because policy debates increasingly involve concentrated markets in which

strategic interactions play an important role. An empirical understanding of pass-through

in such markets, if grounded in theory, could inform policy decisions.

In this paper, we develop estimates of pass-through based on nearly 40 years of price

data from a concentrated industry, and use the results to conduct counter-factual experi-

ments of immediate relevance to environmental and antitrust policy. We develop a general

empirical model of oligopoly interactions that allows us to disentangle the effects of firm-

specific cost changes from those that are industry-wide, even though the available price data

are aggregated to the regional level. We then apply new Bayesian regression techniques to

estimate the model in a way that fully preserves its microfoundations, including autocor-

relation and spatial correlations in plant-level pricing residuals. Our results indicate that

industry pass-through is complete, regardless of competitive conditions, but that the pass-

through of firm-specific cost changes is incomplete and decreases in the degree of competition.

Cross pass-through effects – how firms adjust prices with competitors’ costs – account for

this divergence in industry pass-through and own pass-through.2

1Many of these findings, across fields, are consolidated within the theoretical frameworks developed in
Weyl and Fabinger (2013).

2How competition affects pass-through has received substantial theoretical attention. Ambiguity arises
here due to the LeChatelier Principle (e.g., Samuelson (1947); Milgrom and Roberts (1996)). For example,
in Cournot models with strategic substitutes, own pass-through converges to zero as the number of firms
grows large, while industry pass-through converges to unity from below or above, depending on the curvature
of demand (Bergstrom and Varian (1985); ten Kate and Niels (2005)). However, with symmetric differenti-
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The industry in question, portland cement, is a major focus of environmental policy-

makers because it accounts for roughly five percent of global anthropogenic CO2 emissions

(Van Oss and Padovani (2003)) and is also a major source of local pollutants such as partic-

ulate matter and mercury (e.g., EPA (2009); EPA (2010)). These impacts have motivated

academic research that models the effects of environmental regulation taking into account

the market power held by cement firms (e.g., Ryan (2012); Fowlie, Reguant, and Ryan

(2014)). The prospect that this market power could be enhanced through the recently pro-

posed merger of Holcim and Lafarge – two of the industry’s largest manufacturers – also

places the cement industry at the forefront for antitrust policy-makers. Against this back-

drop, we use our pass-through estimates to analyze (i) the market-based regulation of carbon

dioxide emissions, (ii) recent EPA action to reduce local hazardous air pollutants, and (iii)

the magnitude and geographic location of merger price effects.

The setting conveys advantages in estimation. In the production of cement, fossil

fuels are burned in order to create extreme kiln temperatures. The procurement of fuel

comprises a substantial fraction of overall variables costs and revenues, and there are no

viable substitutes for fuel in the production process. Identification is supported by plant-

specific variation in fuel costs that arises from inter-temporal changes in fossil fuel prices

paired with observable heterogeneity in kiln efficiency. Lastly, differentiation in the industry

is predominately spatial in nature, due to regulatory standards that govern the production

process and the substantial cost of transportation (e.g., Miller and Osborne (2014)). This

allows us to evaluate how pass-through varies with the number and proximity of nearby

competitors.

The empirical model is quite general and could be applied in other economic envi-

ronments, including those where the sources of differentiation are not spatial. The starting

point is a linear approximation to the equilibrium price of each plant. The approxima-

tion aggregates cleanly to the regional-level, such that pass-through can be obtained by

regressing regional prices on fuel cost variables, provided that the fuel cost variables are

constructed in a manner that preserves the plant-level microfoundations. We estimate the

model with ordinary least squares (OLS), a feasible generalized least squares (FGLS) esti-

mator that accounts for autocorrelation at the region-level, and a Bayesian estimator that

allows for autocorrelation and spatial correlation in the underlying plant-level error terms.

We incorporate controls for demand and cost conditions, as well as plant and year fixed

effects. Identification survives aggregation in our application due to the substantial amount

ated Bertrand competition, oligopoly interactions increase both own and industry pass-through (Weyl and
Fabinger (2013)).
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of cross-sectional and time-series variation that exists among the region-year observations.

The obtained regression coefficients are precisely estimated and robust across a range of

specifications.

We apply the aforementioned estimation results to inform three policy questions. First,

we examine how market-based regulation of CO2 would affect producer and consumer sur-

plus, following the principles of incidence derived in Weyl and Fabinger (2013). We calculate

that consumers would bear 80 percent of the burden of regulation, given assumptions on

margins and demand elasticities that are based on the empirical literature.3 We show how

regulation affects plants differentially, and map the geographic dispersion of price effects

across the United States. Our calculations have direct bearing on the political economy

of regulation, and specifically on the question of whether cap-and-trade permits should be

allocated (or “grandfathered”) to incumbent producers, free of charge. Because consumers

appear likely to bear the greater burden of regulation, we conclude that it would be appro-

priate to auction permits from the outset and disburse the revenues broadly. The amount

of monies in question is substantial: based simply on 2012 production levels, pricing CO2 at

$40 per metric tonne would raise more than $2.5 billion from the cement industry alone.4

Second, we evaluate recent regulation promulgated by the EPA to reduce emissions

of hazardous air pollutants (HAPs), including particulate matter, mercury, hydrocarbons,

and hydrogen chloride. The regulation is scheduled to take effect in September 2015 after

more than two years of litigation and renegotiation. The EPA indicates that the monetized

health benefits of regulation outweigh economics costs (EPA (2009); EPA (2010)), the latter

of which can be first order in oligopoly models with market power (e.g., Buchanon (1969)).

Our analysis corroborates the simulation results developed by the EPA. The pass-through

estimates imply average price increases of $4.49 across 20 local markets, relative a simulation

average of $4.66. Further, there is a high degree of correlation in the predictions market-by-

market. We believe this is attributable to a fortuitous choice of functional forms in the EPA

simulation model, and would not occur with simulations generally.

3We believe that our calculation are likely to understate the proportion of burden that falls on consumers
because (i) we consider only short run effects, and (ii) we assume that regulation does not affect importers.
We discuss both of these considerations in the text.

4The preliminary publications of the USGS indicate that the industry produced 74 million metric tonnes
of portland cement in 2012. We use standard methods to obtain CO2 emissions per metric tonne of clinker.
Our work here complements the research of Fowlie, Reguant, and Ryan (2014), which examines the effects
market-based regulation of CO2 on abatement and welfare using a dynamic structural model. Our pass-
through estimates inform directly how the burden of regulation is distributed across producers and consumers,
whereas this split is largely predetermined in their structural model. This enables us to better address
questions related to the appropriate allocation of revenues.
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The third counterfactual analysis is of the recently proposed merger of Holcim and

Lafarge, which currently is under review by the antitrust authorities. We believe our work is

the first academic application of first order approximation to calculate merger price effects,

following the theoretical insights of Jaffe and Weyl (2013). Our calculations indicate price

elevations of 3%-7% at many plants, based on an industry snapshot in 2010, the final year of

our data. However, accounting for the merging firms’ recent plant divestitures and closures,

which just postdate our sample, eliminates most of these effects. Remaining price increases

are relatively modest, arise at only a handful of plants, and affect customers predominately

in the Northeast and Great Plains. These price elevations likely could be eliminated through

the divestiture of two plants, one for each geographic area.

Our research substantially advances the empirical literature on pass-through. The

reduced-form research on pass-through can be classified as follows.5 To start, a handful of

articles, arising from industrial organization, examine the relationship between firm-specific

prices and costs, often in retail markets (e.g., Ashenfelter, Ashmore, Baker, and McKernan

(1998); Peltzman (2000); Besanko, Dube, and Gupta (2005)) or in other settings with un-

usually rich data (e.g., Besanko, Dranove, and Shanley (2001); Fabra and Reguant (2014)).

These articles typically do not allow for cross pass-through effects in estimation. This can

create discord between the empirical estimate and theoretical notions of pass-through, with

the estimate falling somewhere between own pass-through and industry pass-through.6 In-

deed, this is precisely what happens in our application when we neglect cross pass-through

effects. The effect of competition on pass-through is not a focus of these articles.7

Another set of articles examines the relationship between market prices and costs,

exploiting variation from sources such as exchange rates (e.g., Campa and Goldberg (2005);

Gopinath, Gourinchas, Hsieh, and Li (2011)), sales taxes (e.g., Barzel (1976); Poterba (1996);

Besley and Rosen (1998); Marion and Muehlegger (2011)), input prices (e.g., Borenstein,

5A structural approach also is possible: a number of articles infer firm-specific pass-through from struc-
tural models of supply and demand (e.g., Villas-Boas (2007); Hellerstein (2008); Nakamura and Zerom (2010);
Bonnet, Dubois, and Villas-Boas (2013); Golberg and Hellerstein (2013)). Because inference is conditional
on the correct specifications of supply and demand, including both the first and second order properties, this
methodology is most valuable when empirical price-cost variation is insufficient to identify pass-through.

6This statement has a simple econometric intuition: competitor’s costs, which are omitted variables in
these articles, tend to be positively correlated with the included cost measure. Thus the estimate overstates
own pass-through but, unless the correlation is perfect, the estimate understates industry pass-through.
We are aware of two articles that incorporate cross pass-through effects: Ashenfelter, Ashmore, Baker, and
McKernan (1998) and Besanko, Dube, and Gupta (2005).

7However, Besanko, Dube, and Gupta (2005) finds that retail pass-through typically increases in the
market share of the product, and Fabra and Reguant (2014) finds that the pass-through of electricity
generation costs is higher during peak hours. Both of these results are consistent with our empirical result
that competition reduces own pass-through.
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Cameron, and Gilbert (1997) Genesove and Mullin (1998); Nakamura and Zerom (2010)),

and interest rates (e.g., Scharfstein and Sunderam (2013)). These articles develop useful

insights, but do not inform firm-specific pass-through rates, which are objects of obvious

interest in concentrated markets. Again, the effect of competition on pass-through is not a

point of focus.8

By contrast, several recent articles in the international trade literature emphasize the

role of competition in determining pass-through. The standard result is that pass-through

is negatively correlated with indicators of market power (e.g., Berman, Martin, and Mayer

(2012); Amiti, Itskhoki, and Konings (2012) Hong and Li (2013)). However, similar to

the reduced-form literature in industrial organization, this research does not account for

oligoply interactions in estimation, and therefore may conflate how competition affects own

pass-through with how it affects industry pass-through. Auer and Schoenle (2013) is an

exception, as they develop empirical results showing that competition affects industry pass-

through through both own pass-through and cross pass-through, and that those two channels

partially offset each other.9 This parallels our own findings.

The paper proceeds as follows. Section 2 sketches some relevant institutional details

of portland cement cement markets and describes the data that support our empirical work.

Section 3 presents the empirical model, details how we measure fuel costs, and provides

summary statistics on selected regressors. Section 4 discusses the estimation strategy and

identification. Section 5 presents the regression results, Section 6 provides the policy analysis,

and Section 7 concludes.

2 The Portland Cement Industry

2.1 Production technology

Portland cement is a finely ground dust that forms concrete when mixed with water and

coarse aggregates such as sand and stone. Concrete, in turn, is an essential input to many

construction and transportation projects. The production of cement involves feeding lime-

stone and other raw materials into rotary kilns that reach peak temperatures of 1400-1450◦

Celsius. Exposure to extreme heat transforms the raw materials into clinker – small semi-

fused modules, usually 3-25 millimeters in diameter – that subsequently is mixed with a

8The exception here is Scharfstein and Sunderam (2013), which finds evidence of lower industry pass-
through in concentrated financial markets.

9Auer and Schoenle (2013) refer to own pass-through as the “direct cost pass-through component” and
refer to cross pass-through as the “indirect price complementarity component.”
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Table 1: Plants and Kilns in the Cement Industry

Capacity Share

Number of Number of Total Wet Long Dry Dry with Dry with
Plants Kilns Capacity Kilns Kilns Preheater Precalciner

1975 157 396 79,938 57% 32% 11% 1%
1980 142 319 77,100 49% 27% 16% 8%
1990 109 208 72,883 32% 23% 19% 27%
2000 107 196 82,758 24% 20% 17% 39%
2010 101 153 103,482 8% 9% 14% 70%
Notes: Total capacity is in thousands of metric tonnes. All data are for the contiguous United States and are obtained
from the PCA Plant Information Survey.

small amount of gypsum and ground to form portland cement. Kilns operate at peak capac-

ity except for one or two maintenance periods a year, the duration of which can be adjusted

according to demand conditions. The energy and labor costs associated with shutting down

and restarting kilns are substantial.

Capital investments over the last forty years have increased the industry’s capacity

and productive efficiency. Table 1 provides snapshots of the industry over 1975-2010. The

number of plants falls from 157 to 101 and the number of kilns falls from 394 to 151. Total

industry capacity, though, increases from 79 million metric tonnes per year to more than 100

million tonnes as older wet kilns are retired and replaced with higher-capacity dry kilns.10

Most cement now is produced in dry kilns equipped with gas-suspension preheaters and

precalciners. This auxiliary equipment uses exhaust gases to heat the raw material before it

enters the rotary kiln, allowing for calcination, one of the major chemical reactions required

in clinker production, to occur partially or fully outside the rotary kiln. The process is

supplemented with an additional combustion chamber if a precalciner is present.

The energy demands of cement production are substantial because plants burn fossil

fuels to produce extreme kiln temperatures.11 Figure 1 plots in Panel A the fraction of

industry capacity that uses bituminous coal, petroleum coke, fuel oil, and natural gas as its

primary fuel source. At the outset of the sample, capacity is roughly split between coal and

natural gas, with much less capacity using oil. Coal displaces natural gas, and, by then end

10Wet and dry kilns differ in how the raw material is prepared. With wet kilns, the raw material is
wet-ground with water to form a slurry whereas, with dry kilns, the raw material is dry-ground to form a
powder. Extra fuel is required in the wet process to evaporate the added water.

11Plants also use electrical power to grind raw materials into the kiln feed mix, to grind the clinker output
into cement, and to power the fans that blow exhaust gases from the kiln through preheaters.
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Figure 1: Primary Fuels and Fuel Prices
Notes: Panel A plots the fraction of kiln capacity that burns as its primary fuel (i) bituminous coal, (ii)
natural gas, (iii) fuel oil, (iv) petroleum coke, and (v) bituminous coal and petroleum coke. Data are obtained
from the PCA Plant Information Surveys. Panel B plots the average national prices for these fuel in real
2000 dollars per mBtu. Coal prices are obtained from the Coal Reports of the Energy Information Agency
(EIA); the remaining prices are obtained from the State Energy Data System of the EIA.

of the sample, all operational kilns are heated with coal, petroleum coke, or a mix of the

two. Panel B shows the cause of this shift: natural gas and oil prices increase relative to

those of bituminuous coal and petroleum coke in the late 1970s and, for the remainder of

the sample period, coal and coke are more economical on a per mBtu basis. The variation

in fuel choices and fuel prices, together with the heterogeneous kiln technologies, produces

variation in fuel costs that we exploit in the empirical analysis.

Manufacturers of cement sell predominately to ready-mix concrete plants and large con-

struction firms. Contracts are privately negotiated and relatively short term (often around

one year in duration). They specify a free-on-board price at which cement can be obtained

from the plant and discounts that reflect the ability of the customer to access the cement

of competing manufacturers.12 Most cement is trucked directly from the plant to the cus-

12While some cement manufacturers are vertically integrated into ready-mix concrete markets, Syverson
and Hortaçsu (2007) determine that this has little impact on plant- and market-level outcomes.
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Table 2: Cement Prices and Fuel Costs

Fuel Costs

Cement All Wet Long Dry Dry with Dry with
Price Kilns Kilns Kilns Preheater Precalciner

1975 117.43 29.91 31.73 28.07 22.77 ·
1980 130.33 27.88 31.52 25.47 22.27 18.67
1990 83.59 12.79 15.41 13.22 10.25 10.24
2000 100.86 8.91 11.09 9.63 7.54 7.29
2010 91.40 12.66 17.90 15.64 12.18 11.72
Notes: Cement prices and fuel costs are in real 2010 dollars per metric tonne. The cement
price data are obtained from the USGS Minerals Yearbooks. Fuel costs are calculated by
the authors and reflect the cost of marginal output.

tomer, though some cement is transported by barge or rail first to distribution terminals

and only then trucked to customers. Transportation accounts for a substantial portion of

purchasers’ total acquisition costs because because portland cement is inexpensive relative to

its weight. Miller and Osborne (2014) estimate transportation costs to be $0.46 per tonne-

mile, and determine that these costs create market power for spatially differentiated plants.

Accordingly, the academic literature commonly models the industry using a number of ge-

ographically distinct local markets (e.g., Ryan (2012); Fowlie, Reguant, and Ryan (2014)).

Aside from spatial considerations, cement is viewed as a commodity.

Table 2 shows average cement prices and fuel costs over 1975-2010, again using snap-

shots. The prices are obtained from published USGS data, while the fuel costs are based

on calculations that we detail later. As shown, fuel costs decline from $29.91 to $12.66 per

metric tonne, due to falling fossil fuel prices and the replacement of wet kilns with more fuel

efficient dry kilns. Prices also trend down. Indeed, the national average prices and fuel costs

over the sample period have a tight linear relationship, with a univariate correlation coeffi-

cient is 0.81, and a univariate OLS regression of the national average price on the national

average fuels costs yields a coefficient of 1.48. This evidences high industry pass-through

rates, though strict theoretical interpretation of the univariate coefficient is problematic.

2.2 Data sources

We draw data from numerous sources. Chief among these is the Minerals Yearbook, an annual

publication of the Unites States Geological Survey (USGS), which summarizes a census of

portland cement plants. The census response rate is typically well over 90 percent (e.g., 95
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percent in 2003), and USGS staff imputes missing values for the few non-respondents based

on historical and cross-sectional information. The Minerals Yearbook has long supported

academic research on cement markets (e.g., McBride (1983); Jans and Rosenbaum (1997);

Syverson and Hortaçsu (2007); Ryan (2012); Miller and Osborne (2014); Fowlie, Reguant,

and Ryan (2014)). A defining characteristic of the Minerals Yearbook is that the data are

aggregated to protect the confidentiality of census respondents. The price data we use reflect

the average free-on-board price obtained by plants located in distinct geographic regions. The

regions are not intended to approximate local markets, and the USGS frequently redraws

boundaries to ensure that each region includes at least three independently owned plants.13

The Minerals Yearbook also contains non-price information, including production by region

and consumption by state.

Our second source of data is the Plant Information Survey, an annual publication of the

Portland Cement Association (PCA), which provides information on the plants and kilns in

the United States. It also is featured frequently in academic research on cement markets. We

obtain the location, owner, and primary fuel of each plant, as well as the annual capacity of

each rotary kiln and the type of technology employed. Unlike the Minerals Yearbook, which

summarizes economic activity over the year, the Plant Information Survey is a snapshot of

the industry as it exists on December 31. In total, there are 4,416 plant-year observations over

1974-2010, of which 4,361 are active and 55 are idle. We also make use of the PCA’s U.S. and

Canadian Portland Cement Labor-Energy Input Survey, which is published intermittently

and contains information on the energy requirements of clinker production and the energy

content of fossil fuels burned in kilns. We have data for 1974-1979, 1990, 2000, and 2010.

We obtain data on the national average delivered bituminous coal price in the industrial

sector over 1985-2010 from the annual Coal Reports of the Energy Information Agency (EIA).

We backcast these prices to the period 1974-1984 using historical data on national average

free-on-board prices of bituminous coal published in the 2008 Annual Energy Review of the

EIA. We provide details on backcasting in Appendix A. We obtain national data on the

prices of petroleum coke, natural gas, and distillate fuel oil, again for the industrial sector,

from the State Energy Database System (SEDS) of the EIA.14 We obtain data on the national

13This “rule of three” prevents any one firm from backward engineering the business data of its competitors.
14The SEDS also includes data on coal prices, but no distinction is made between bituminous coal, sub-

bituminous coal, lignite, and anthracite, despite the wide price differences that arise between those fuels. We
also obtain state-level data on fossil fuel prices. There are many missing values at that level of aggregation,
and we impute them as described in Appendix A. When included together in regressions, fuel cost variables
based on national fossil fuel prices dominate fuel cost variables based on state-level prices. This could be a
statistical artifact due to noise introduced by the imputation of missing values in the state-level data.
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average price of unleaded gasoline over 1974-2010 from the Bureau of Labor Statistics, in

order to better model the spatial configuration of the industry. We convert this series to an

index that equals one in 2000. Lastly, to help control for demand, we obtain county-level

data from the Census Bureau on construction employees and building permits. We provide

details on data sources and related topics in Appendix A.

3 The Empirical Framework

Our econometric objective is to determine how the fuel costs of each portland cement plant

affect both the prices obtained by the plant and the prices obtained by the plant’s competi-

tors. The primary obstacle is that the available price data are aggregated to the regional

level. We therefore build a model of regional prices that has realistic microfoundations. In

this model, regional prices are a function of suitably aggregated plant fuel costs. We use

data on kiln efficiency and fossil fuel prices to measure the fuel costs of each plant. The

regression of regional prices on these fuel costs, once aggregated, obtains estimates of the

average pass-through rates in the range of the data.

3.1 Modeling regional prices

We take as given that single-plant cement firms set free-on-board prices according to some

pricing function that can be conceptualized as the equilibrium strategy for a consumer de-

mand schedule and a competitive game. The product of each cement plant is differentiated

due to geographic dispersion and transportation costs. Let there be j = 1 . . . Jt cement

plants in period t and let cjt denote fuel costs per unit of output. A linear approximation to

the equilibrium price of plant j is given by

pjt = ρjjtcjt +
∑
k 6=j

ρjktckt + x′jtγ + µj + τt + εjt, (1)

where xjt includes observable demand and cost variables, µj and τt are plant and year fixed

effects, respectively, and εjt is a pricing residual that summarizes unobservable demand and

cost conditions. The fuel cost coefficients are linear approximations to own and cross pass-

through. Industry pass-through is ρMjt =
∑

k ρjkt. We include among the controls nearby

construction employment and building permits (which account for demand), indicators for

the technology of the plant and the technology of nearby competitors (which account for

non-fuel cost differences between kilns), and nearby competitor capacity.
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Equation (1) is quite general but cannot be estimated, even with plant-level data, be-

cause the number of pass-through terms exceeds the number of observations. We impose

restrictions on pass-through in order to facilitate estimation, leveraging the reasonable as-

sumption that cross pass-through is greater between plants that are closer competitors.15 In

particular, we construct a “distance metric” that summarizes the closeness of competition

and impose that, for plants j 6= k, cross pass-through is given by

ρjkt =

{
β/djkt if j 6= k and djkt < d

0 otherwise
(2)

where djkt is the distance metric and d is a distance threshold that determines the maximum

distance at which one plant’s costs affect the other’s prices. This approach is attractive

for the cement industry because the product is a commodity, aside from spatial considera-

tions, so a distance metric can be constructed as the interaction of gasoline prices and the

miles between plants. It is analogous to the assumption of Pinske, Slade, and Brett (2002)

that the strategic complementarity of prices in wholesale gasoline markets decreases in the

geographic distance between terminals. Further, the approach generalizes to markets with

non-spatial differentiation provided that a reasonable Euclidean distance in attribute-space

can be calculated (e.g., as in Langer and Miller (2013)).

Next, we let heterogeneity in own pass-through be determined by the degree of spatial

differentiation, motivated by the theoretical result of ten Kate and Niels (2005) that own

pass-through diminishes with the number of competitors in Cournot oligopoly models. In

particular, we specify that

ρjjt = α0 + α1

∑
k 6=j, djkt<d

1/djkt (3)

If α1 is negative then the extent to which plants pass through plant-specific cost changes

to customers diminishes with the number and proximity of competitors; the opposite effect

arises if the parameter is positive. Together, restrictions (2) and (3) solve the dimensionality

problem by reducing the number of pass-through parameters, while still allowing for the

estimation of reasonable pass-through behavior.

The linear approximation in equation (1) makes aggregation to the regional level math-

ematically tractable. Suppose there exist m = 1 . . .M geographic regions. The regions need

15Cross pass-through is intrinsically linked to the concept of strategic complementarity in prices, in the
sense of Bulow, Geanakoplos, and Klemperer (1985), and in most standard demand systems the strength
of strategic complementarity depends on the degree to which consumer view products as substitutes (e.g.,
Miller, Remer, and Sheu (2013)).
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not comport to the local markets that commonly are used to model competition and instead

should be conceptualized as sets of plants loosely defined based on geographic criteria, for

data reporting purposes. Denote as Jmt the set of plants that are in region m in period t.

Then the average price that arises is Pmt =
∑

j∈Jmt
ωjmtpjt, where ωjmt is the fraction of

the region’s total production accounted for by plant j. We assume that production within

regions is proportional to capacity, which yields proxies for the weights. This assumption, ne-

cessitated by the lack of plant-level production data, also is used by the EPA in its economic

analysis of the industry (EPA (2010)).

Maintaining restrictions (2) and (3), a linear approximation to equilibrium prices at

the regional-level then is given by

Pmt = α0

∑
j∈Jmt

ωjmtcjt + α1

∑
j∈Jmt

ωjmtcjt
∑

k 6=j, djkt<d

1/djkt

+ β
∑
j∈Jmt

ωjmt
∑

k 6=j, djkt<d

ckt/djkt (4)

+
∑
j∈Jmt

ωjmtx
′
jtγ +

∑
j∈Jmt

ωjmt(µj + τt) + εmt

where the region-year pricing residual is εmt =
∑

j∈Jmt
ωjmtεjt. Many, but not all, of the

plant fixed effects are separately identifiable in our application due to frequency with which

the USGS redraws region boundaries.

Equation (4) provides the theoretical foundation for our reduced-form regression equa-

tion. The formulation, while novel in the empirical literature, remains quite general and

could be applied to other markets with spatial or non-spatial differentiation. We highlight

that the prices that arise in each region depend not only on the costs of plants in the region

but also on the costs of plants outside the region, via the cross pass-through terms. Lastly, if

autocorrelation or spatial correlations exist among the plant-level residuals, these manifest

in the variance structure of the region-year residuals, and we use a number of estimation

methodologies to account for that complication.

3.2 Measuring fuel costs

We calculate the fuel costs of each plant based on (i) the energy requirements of the plant’s

least efficient kiln, (ii) the primary fuel burned at the plant, and (iii) the price of the primary
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fuel. Formally, the fuel costs per metric tonne of cement for plant j in year t equals

Plant Fuel Costjt = Primary Fuel Pricejt × Energy Requirementsjt ÷ 1.05,

where the fuel price is in dollars per mBtu and the energy requirements are those of the least

efficient kiln and are in mBtu per metric tonne of clinker. We scale down by five percent to

reflect that a small amount of gypsum is ground together with clinker to form cement.16

We calculate energy requirements from the labor-energy input surveys of the PCA.

There is no discernible change in the energy requirements of production, conditional on

the kiln type, over 1990-2010. We calculate the average mBtu per metric tonne of clinker

required in 1990, 2000, and 2010, separately for each kiln type, and apply these averages

over 1990-2010. These requirements are 3.94, 4.11, 5.28, and 6.07 mBtu per metric tonne of

clinker for dry precalciner kilns, dry preheater kiln, long dry kiln, and wet kilns, respectively.

A recent survey of the USGS accords with our calculations (Van Oss (2005)). By contrast,

technological improvements are evident over 1974-1990, conditional on kiln type. The labor-

energy surveys indicate that in 1974 the energy requirements were 6.50 mBtu per metric

tonne of clinker at dry kilns (a blended average across dry kiln types), and 7.93 mBtu per

metric tonne of clinker at wet kilns. We assume that technological improvements are realized

linearly over 1974-1990 and scale the energy requirements over that period appropriately.

We believe this to be the most reasonable methodology for calculating fuel costs, given

the data available, but accept that it is impossible to measure perfectly the fuel costs at every

kiln. Unobserved heterogeneity likely exists for a number of reasons, including variation in

energy requirements within kiln types and variation in the fossil fuel prices paid by plants.

We discuss two specific sources of possible measurement error, relating to supplementary

waste fuels and the geographic heterogeneity of state-level fuel prices, in Appendix A.

Figure 2 explores the empirical distributions of regional prices and fuel costs over the

sample period of 1974-2010. Panels A and B show the univariate distributions. The price

distribution is nearly symmetric around the mean of $102.39 per metric tonne. The fuel

cost distribution is tighter and features two peaks around $8 and $18 per metric tonne.

The relative tightness of the fuel cost distribution arises because fuel cost is one of many

determinants of prices. The source of the asymmetry is heterogeneity in kiln technology,

as illustrated in Panel C by the separate kernel density estimates for plants with wet and

16We focus on the least efficient kiln because it provides the most accurate measure of marginal fuel cost.
The coal price data are in dollars per metric tonne, and we use the conversion factor of 23 mBtu per metric
tonne, which we calculate to be the average energy content of bituminous coal obtained by cement plants,
based on the labor-energy input surveys of the PCA.
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Figure 2: Regional Prices and Fuel Costs over 1974-2010
Notes: Panels A and B show the empirical distributions of cement price and fuel costs, and are based on
933 region-year observations. Panel C shows the kernel density of fuel costs, separately for plants with wet
and dry kilns, and is based on 4,361 plant-year observations. Panel D shows a scatterplot of regional cement
prices and fuel costs, as well as a line of best fit, and is based on 933 region-year observations. All prices
and fuel costs are in real 2000 dollars per metric tonne of cement.

dry kilns. Panel D provides a scatterplot of the 933 region-year observations on prices and

fuel costs. Observations with higher fuel costs also have higher prices, all else equal. A

univariate regression of region-year prices on fuel costs yields a coefficient of 1.36 that, as

with the national-level regression, is suggestive of high levels of pass-through.

3.3 Regressors

In constructing region-level regressors, we aggregate plant-level data such that the micro-

foundations of the underlying model are preserved. Every regressor is constructed as a

weighted average of a corresponding plant-level variable, consistent with the empirical model

defined by equations (4). The weights are determined by region-specific capacity shares.

Table 3 defines these regressors explicitly, and provides summary statistics. We use

two variables to control for demand. Construction Employment and Building Permits are
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constructed by (i) calculating, for each plant, the total construction employment and building

permits among all counties with centroids that are within the distance threshold, and (ii)

aggregating to the region-level. Data on building permits and construction employment

that we employ are highly predictive of portland cement consumption. A regression of state-

level consumption data over 1974-2010, which is available from the Minerals Yearbook of the

USGS, on building permits and construction employment aggregated to the state level, yields

an R-squared value of 0.9354.17 Miller and Osborne (2014) use a similar data to calculate

county-level “market sizes” in the estimation of a structural model of the industry.

We use two variables to control for competitive conditions. Inverse Rival Distance

is constructed by calculating, for each plant, the count of competitors’ plants within some

distance threshold. In this calculation, we divide competitors’ plants by their distance from

the plant in question, so that closer competitors have greater influence. The variable in-

creases in both the number and proximity of competitors. Rival Capacity is constructed

by calculating, again for each plant, the total capacity at competitors’ plants within some

distance threshold. We omit from Table 3 our controls for non-fuel costs, which are rela-

tively straight-forward and seldom statistically significant in our regression analysis. The

controls are based on plant-level indicator variables for the technology of the marginal kiln,

i.e., whether the least efficient kiln at a plant is wet, long dry, dry with a preheater or dry

with a precalciner. These plant-level variables are aggregated to the region-level, again using

the capacity share weights. We also include as controls the count of competitor kiln types,

within the distance threshold from each plant, aggregated to the region-level.

We use three main variables to capture pass-through, based on how restrictions (2)

and (3) manifest in equation (4). Fuel Costs is constructed as the weighted average fuel cost

of plants in the region, where plant fuel costs are calculated as described in the previous

subsection and weights are by capacity share. Fuel Costs × Inverse Rival Distance is con-

structed based on the interactions of the fuel costs of each plant with the plant-level version

of the Inverse Rival Distance variable, and allows for own pass-through to change based

on the number and proximity of competitors. Rival Fuel Costs × Inverse Rival Distance

captures cross pass-through and is constructed by calculating, for each plant, the sum of

its competitors’ fuel costs normalized by distance. This captures cross pass-through. The

total influence of cross pass-through, summing across competitors, varies with the number

17In the regression, there are 2,070 observations from the contiguous United States. The observations are
at the state-year level, except for California, Pennsylvania and Texas each are split. The obtained regression
coefficients are positive and statistically significant at better than the one percent level even when standard
errors are clustered by state to account for auto-correlation.
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and proximity of competitors. The latter two regressors are highly correlated, yet their co-

efficients are separately identifiable because plants often have different fuel costs than their

nearby competitors. We extend the discussion of identification in Appendix B.

Our baseline specifications employ a distance metric defined by the interaction of the

gasoline price index and the miles between plants, and a distance threshold of 400. This

approach reflects the predominant role of trucking in distribution.18 Straight-line miles

are highly correlated with both driving miles and driving time and, consistent with this,

previously published empirical results on the industry are not sensitive to which of these

measures is employed (e.g., Miller and Osborne (2014)). The baseline threshold follows prior

findings that 80-90 percent of portland cement is trucked less than 200 miles (Census Bureau

(1977); Miller and Osborne (2014)), so that plants separated by more than 400 miles are

unlikely to compete for many customers. In robustness checks, we show that similar results

are obtained with a distance metric defined by miles (i.e., not interacted with the gasoline

price index), and with distance thresholds of 300 and 500.

We also have explored a more non-parametric approach to our specification of distance

in the control variables. It is possible to construct the control variables defined above using

many different distance thresholds, so that how impacts diminish with distance need not be

linear in inverse distance. However, relaxing the specification along these lines complicates

interpretation of the resulting coefficients, and it also has negligible effects on our pass-

through results. Thus, in Section 5, we report results only from the simpler specification.19

18A fraction of cement is shipped to terminals by train (6% in 2010) or barge (11% in 2010), and only
then is trucked to customers. Some plants may be closer than our metric indicates if, for example, both are
located on the same river system.

19We use thresholds of 150, 200, 300, 400 and 500. When all of the resulting control variables are
incorporated, the degree of autocorrelation in the pricing residuals explodes, creating instability in our
FGLS and Bayesian regressions. To solve the problem, we use a Big Data shrinkage method, known as
a “lasso,” that culls the number of explanatory variables. We implement the lasso in R using the glmnet
package. Although the package produces coefficient estimates, we use it only as a variable selection method,
i.e., we run our OLS, FGLS and Bayesion regression on those controls selected by the lasso. We refer
interested readers to Hastie, Tibshirani, and Friedman (2009) for an overview of the procedure.
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4 Estimation

4.1 Conceptual discussion

We estimate the model defined by equation (4). The objective is to obtain the average rela-

tionships between costs and prices that arises in the sample period. We maintain, through-

out, the assumption that the region-year pricing residuals are orthogonal to the regressors.

We believe this assumption is appropriate. For example, while bias could arise if fossil fuel

prices are correlated with unobserved components of cement demand, there are many reasons

this is unlikely: (i) year fixed effects control directly for unobservable nation-wide changes in

demand; (ii) the cement industry accounts for a small fraction of the fossil fuels consumed in

the United States; (iii) the data indicate that, indeed, bituminous coal and petroleum coke

prices do not follow the strongly pro-cyclical pattern of cement consumption. If anything,

we expect unobserved costs to dominate the residuals, rather than unobserved demand, due

to the predictive accuracy of our demand-side control variables. Unobserved costs should be

uncorrelated with fuel costs because we include fixed effects for kiln technology.

Our focus on the estimation of average pass-through warrants discussion for two rea-

sons. First, the literature emphasizes that pass-through is constant only for certain demand

systems (e.g., Bulow and Pfleiderer (1983); Fabinger and Weyl (2014)). Absent constant

pass-through, estimates of average pass-through can diverge from theoretical notions of

pass-through, especially if the cost distribution is asymmetric, as it is in our data (MacKay,

Miller, Remer, and Sheu (2014)). The data provide some support for constant pass-through.

We construct an additional variable, based on the quadratic of plant fuel costs aggregated

to the region level. The resulting coefficient is statistically insignificant, and the implied

pass-through behavior of plants is similar.

Second, even if the underlying economic environment generates constant pass-through,

it is possible that changes in demand and supply conditions create structural breaks within

the sample period. While documenting average effects is of academic interest and advances

substantially the existing empirical literature, more recent pass-through behavior is of greater

interest for the policy applications that we develop. The coarseness of the data aggregation

limits our ability to test for inter-temporal changes in pass-through (e.g, there are only 270

region-year observations over 2000-2011). That said, we develop some empirical evidence

indicating that recent pass-through is similar to average pass-through: (i) when we interact

fuel costs with an indicator variable for the 2000-2011 period, the variable has little explana-

tory power and its coefficient is statistically insignificant, and (ii) sub-sample regressions
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using the 2000-2011 period produce coefficients that are similar to what is produced using

the full sample.20 We return to this discussion with the results.

We conclude by making explicit our assumption, necessary for the analysis, that the

capacity and location of kilns are exogenous in their relationship to pricing decisions. We

observe 352 kiln retirements in our data, and the median kiln age at retirement is 37 years.

In contrast, prices adjust much more rapidly due to the prevalence of short-term supply con-

tracts, and we therefore consider it unlikely that capacity and the geographic configuration

of plants would be strongly correlated with the region-year pricing residual in equation (4),

especially in the presence of plant and year fixed effects.

4.2 Estimation methodologies

We employ three distinct econometric methodologies in estimation: ordinary least squares

(OLS), feasible generalized least squares (FGLS), and Bayesian regression. Each methodol-

ogy has its own strengths: OLS is transparent and has desirable small sample properties;

FGLS offers potential efficiency gains by accounting for autocorrelation within regions; and

Bayesian regression allows for estimation that is fully consistent with the microfoundations

of the model, including autocorrelation and spatial correlation at the plant-level, and also

has desirable small sample properties.

We start with OLS, which we motivate with the linearity of the empirical model and

the desirable small sample properties of the estimator. The coefficient estimates are unbi-

ased and consistent under the assumption of orthogonality between the regressors and the

region-year pricing residual, even in the presence of fixed effects (e.g., Lancaster (2000);

Baltagi (2005)). Following Breusch (1978) and Godfrey (1978), we test for the presence of

autocorrelation within regions, using our baseline specification, by regressing the residuals

on lagged residuals. The procedure finds support for modest first-degree autocorrelation.21

Accordingly, we report standard errors that are clustered at the region level to account for

within-region autocorrelation. We follow Wooldridge (2010) in implementing this correction,

in order to ensure consistency in the presence of fixed effects.22 We caution that, by treating

20The latter result requires that the control variables are omitted from the regressions because the empirical
variation that exists in the 2000-2011 subsample is insufficient to separately identify pass-through from other
demand and cost considerations.

21The coefficients from the baseline specification are shown in column (i) of Table 4. In the Breusch-
Godfrey regression, the coefficient on the lagged residuals is 0.29, and the t-statistic is 9.15. Additional lags,
if included, do not produce large or statistically significant coefficients.

22Our correction, which we describe in Appendix C, differs slightly from the standard correction used for
fixed effects models, which rely on a within estimator. Since we include plant-level fixed effects, and those

19



the residuals of different regions as independent, the correction accounts for neither spatial

correlations that exist among regions in the same year, nor autocorrelation across regions

that arises due to the (frequent) redrawing of regional boundaries.

Second, we estimate parameters with FGLS, under the assumptions that the residuals

within each region are characterized by first-degree autocorrelation, but that residuals across

regions are independent. This structure follows the results of the Breusch-Godfrey test

described above, and has the practical effect of placing greater weight on regions with fewer

observations, relative to OLS. It has the potential to improve the efficiency of the parameter

estimates. We again follow Wooldridge (2010) in implementing FGLS in order to ensure

consistency in the presence of fixed effects.23 As with OLS, independence is maintained

for observations in different regions, which simplifies estimation but is at odds with the

underlying empirical model.

Lastly, we use Bayesian regression techniques to estimate the model in a way that is

fully consistent with its microfoundations, including autocorrelation and spatial correlations

in the plant-level residuals, and also has desirable small sample properties. In modeling the

spatial correlations, we follow existing methodologies outlined in Gelfand (2012) and Bakar

and Sahu (2011). We let the plant-year pricing residual be given by

εit = ηit + εit (5)

The term εit is a “nugget effect” that is i.i.d across plants and years, and has a mean zero

normal distribution with variance σ2
ε . We let ηit generate first-degree autocorrelation and

spatial correlations among the plant-level pricing residuals:

ηit = κηi,t−1 + νit (6)

The term νit generates the spatial correlations. We assume that it is normally distributed

with a variance matrix variance matrix of Σν = σ2
νSν , such that the (i, j) element of Sν

equals

ψ(dij;φ, ϕ) = max

{
ϕ− dij
ϕ

, 0

}φ
(7)

fixed effects are weighted by plant capacities within a region, we multiply the dependent and independent
variables by the matrix that projects them onto a space that is orthogonal to the capacity shares. This
transformation removes the plant fixed effects and ensures that the estimated error variances are consistent.

23As with the construction of the clustered standard errors our FGLS estimator is based on projection of
the independent and dependent variables on a matrix orthogonal to plant shares. Our procedure is described
in Appendix C.
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This function is bounded weakly by zero and one. When the distance between plants (i.e.,

dij) exceeds ϕ, the spatial correlations are zero. The parameter φ determines how quickly the

spatial correlation approaches zero as the distance between plant increase: the larger is φ,

the faster correlation falls.24 In total, the Bayesian regression requires the estimation of five

addition parameters (κ, σ2
ε , σ

2
ν , φ, ϕ). We assume standard priors wherever possible and,

for most parameters, we choose the values of priors to be consistent with the default values

used in the univariate regression R code provided with Rossi, Allenby, and McCulloch (2005).

We develop the mathematical details of estimation in Appendix D. The Bayesian approach,

while more complicated than the simple OLS and FGLS estimators we use, provides a

conceptual advantage in that it correctly models the distribution of the error term. Classical

approaches (such as maximum likelihood) could be used to estimate the model where the

region-level errors are aggregates of the plant level errors, but they would be much more

cumbersome to implement. In particular, they would require us to specify the distribution

of the aggregate error term εmt conditional on past errors, εm,t−1, ... , εm1, which could get

quite complicated.25 In the Bayesian approach we draw the plant-level ηit’s and condition

on them when we take draws on the other parameters.

5 Regression Results

Table 4 provides results generated from OLS, FGLS, and Bayesian regression. With each,

we use a distance metric based alternately on (i) miles times the gasoline price index and

(ii) miles. The baseline specification is used throughout. Regressors include the main pass-

through variables, controls variables for demand, cost, and competitive conditions, and fixed

effects for plants and years. We report coefficients and standard errors for OLS and FGLS,

and averages and standard deviations of the posterior distributions for Bayesian regression.

We focus particularly on the pass-through regressors. The Fuel Cost parameter is pre-

cisely estimated and near unity in all six regressions. Strictly interpreted, this corresponds to

complete own and industry pass-through for plants with no competitors within the distance

threshold. The parameter on the interaction Fuel Costs × Inverse Rival Distance is negative

and, while less precisely measured, still meets the usual standards for statistical significance.

It follows that own pass-through typically is incomplete, as plants usually have competitors

24We restrict ϕ and φ to be positive. We use a distant metric based on the miles between plants, regardless
of the metric used to define the regression variables, because using a metric based on miles time the gasoline
price index creates instability in the estimation procedure.

25Note that we cannot apply the standard transformation with AR(1) errors, because εmt 6= κεm,t−1 + νit
due to the fact that capacity weights change over time.
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Table 4: Regression Results with the Baseline Specification

OLS FGLS Bayesian

(i) (ii) (iii) (iv) (v) (vi)

Pass-through variables

Fuel Costs 0.99 1.01 1.02 1.16 1.1 1.31
(0.23) (0.23) (0.15) (0.24) (0.17) (0.16)

Fuel Costs × Inverse
Rival Distance

-5.49 -4.14 -6.95 -5.09 -3.1 -3.75
(1.71) (1.70) (0.67) (0.97) (0.95) (1.01)

Rival Fuel Costs ×
Inverse Rival Distance

5.07 3.52 6.93 4.55 3.1 3.62
(2.07) (2.18) (0.77) (1.15) (1.03) (1.09)

Control variables

Construction
Employment

0.014 0.039 0.018 0.039 -0.000 0.010
(0.004) (0.001) (0.002) (0.003) (0.004) (0.005)

Building Permits
0.020 0.012 0.015 0.028 0.023 0.024

(0.016) (0.015) (0.008) (0.006) (0.011) (0.010)

Inverse Rival Distance
9.75 -0.90 -3.48 -10.19 0.09 0.82

(10.27) (23.47) (3.73) (7.26) (5.71) (6.24)

Rival Capacity
-0.54 0.04 -0.62 -0.15 -0.25 -1.03
(0.20) (0.50) (0.09) (0.25) (0.21) (0.29)

Distance Metric Miles Miles Miles Miles Miles Miles
× Gas × Gas × Gas

Notes: Regression results obtained with 933 region-year observations over 1974-2010. The dependent variable
is the cement price. All regressions include plant and year fixed effects, and aggregated indicators for kiln
type and competitor kiln types. The distance threshold is 400, in miles times the gasoline price index for
columns (i), (iii), and (v), and in miles for columns (ii), (iv) and (vi). OLS standard errors are calculated with
a clustering correction for observations within the same region. The FGLS regressions results account for
first-degree autocorrelation within regions. The Bayesian regressions account for first-degree autocorrelation
and spatial correlations, both at the plant-level.
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within the distance threshold, and that own pass-through diminishes in the number and

proximity of competitors. The parameter on the interaction Rival Fuel Costs × Inverse

Rival Distance, which determines the cross pass-through terms, is positive and statistically

significant. Because the magnitudes of the interaction terms are similar to each other within

each regression, industry pass-through is largely unaffected by competition. Further, given

the magnitude of the Fuel Cost parameter, industry pass-through should be roughly com-

plete across a range of competitive conditions.26 Lastly, we highlight that the magnitude

of the interaction terms varies noticeably across the regressions. This has the implication,

that we develop next, that own pass-through is more sensitive to specification choices and

estimation techniques than is industry pass-through.

Table 5 provides derived pass-through statistics that we calculate by applying the re-

gression coefficients to the 4,361 plant-year observations in the sample. The median industry

pass-through varies from 0.92 to 1.29 across the six regressions, though the differences do not

appear to be statistically significant. The median industry pass-through in the full sample

is similar to that in 2010 alone because changing competitive conditions (there are fewer

plants in 2010) matter little for industry pass-through. Median own pass-through ranges

from 0.01 to 0.76 across the regressions, reflecting the varying magnitudes of the Fuel Costs

× Inverse Rival Distance parameter. Further, the confidence intervals are wide due to the

(relative) imprecision with which that parameter is estimated. All of the regression models

imply some number of negative own pass-through rates, which is inconsistent with standard

economic theory. In our counterfactual exercises, we use the Bayesian regression results of

column (v), which we believe provides the most reasonable pass-through results.27

In Table 6, we explore alternative specifications to gain additional insight and explore

the robustness of our results. We estimate with OLS for simplicity.28 First, in column

26The pass-through patterns we develop are reconciled easily with economic theory. Consider the case of
Cournot competition among firms with constant (but possibly heterogeneous) marginal costs facing some
market demand schedule. It can be shown (e.g., ten Kate and Niels (2005)) that

ρjj =
1

N + 1− z
and ρM =

N

N + 1− z
(8)

where ρjj is own pass-through, ρM is industry pass-through, N is the number of firms, and z is pos-
itive with convex demand, negative with concave demand, and zero with linear demand. Specifically,

z = −
(
Q∂2P

∂2Q

)/(
∂P
∂Q

)
, where Q and P are the market quantity and price, respectively. Own pass-through

converges to zero as the number of firms grows large, while industry pass-through converges to unity from
below or above, depending on the curvature of demand.

27We normalize negative own pass-through rates to zero before conducting the counter-factual exercises
to be consistent with economic theory.

28We obtain similar results with FGLS, and have yet to run the corresponding Bayesian regressions.
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Table 5: Derived Pass-Through Statistics

OLS FGLS Bayesian

(i) (ii) (iii) (iv) (v) (vi)

Industry Pass-Through

Median 0.94 0.92 1.02 1.08 1.13 1.29
(0.47,1.37) (0.42,1.38) (0.74,1.30) (0.60,1.56) (0.83,1.45) (0.99,1.61)

Median, 2010 0.98 0.95 1.02 1.11 1.13 1.29
(0.51,1.39) (0.46,1.39) (0.75,1.31) (0.63,1.58) (0.84,1.46) (0.99,1.61)

Own Pass-Through

Median 0.19 0.41 0.01 0.42 0.67 0.76
(-0.46,0.79) (-0.22,0.98) (-0.29,0.30) (-0.06,0.81) (0.34,1.06) (0.43,1.12)

Negatives 39% 28% 49% 30% 20% 21%

Median, 2010 0.69 0.58 0.64 0.63 0.96 0.91
(0.21,1.12) (0.05,1.08) (0.37,0.92) (0.25,1.02) (0.67,1.29) (0.61,1.23)

Negatives, 2010 21% 23% 23% 23% 15% 20%

Notes: Pass-through in each column is calculated for 4,361 plant-year observations based on the corresponding regression
results. In parentheses are 95% confidence intervals. For OLS and FGLS, these are obtained by drawing out of the
asymptotic distribution of the regression coefficients. For the Bayesian regressions, the confidence intervals are the 2.5%
and 97.5% order statistics obtained by applying the posterior distributions.
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Table 6: Additional OLS Regression Results

(i) (ii) (iii) (iv) (v) (vi) (vii)

Fuel Costs 0.48 0.98 1.06 0.83 1.01 1.55 1.40
(0.29) (0.28) (0.27) (0.38) (0.29) (0.09) (0.26)

Fuel Costs2 0.004
(0.005)

Fuel Costs×1{Year ≥ 2000} -0.06
(0.64)

Fuel Costs × Inverse
Rival Distance

-5.00 -5.24 -5.60 -5.49 -4.94 -3.92
(1.59) (1.52) (1.53) (1.50) (1.00) (4.44)

Rival Fuel Costs ×
Inverse Rival Distance

4.71 4.83 5.11 5.07 4.34 2.66
(1.86) (1.78) (1.78) (1.76) (0.96) (4.25)

Distance Threshold 400 300 500 400 400 400 400

Control Variables yes yes yes yes yes no no
Fixed Effects yes yes yes yes yes no no

Sample Period Full Full Full Full Full Full 2000-2010

Notes: OLS regression results. The sample is composed of 933 region-year observations over 1974-2010 in columns
(i)-(vi) and 270 region-year observations over 2000-2010 in column (vii). The dependent variable is the cement price.
The distance metric in all regressions is miles times the gasoline price index. The standard errors are calculated with
a clustering correction for observations within the same region.

(i), we show that the Fuel Costs parameter drops to 0.48 if the fuel cost interaction terms

are excluded from the regression, roughly midway between the median own pass-through

and the industry pass-through that we calculate when the interaction terms are included

as regressors (see the same column in Table 5). This is precisely what econometric theory

would predict. The fuel cost of competitors, which is an omitted variable here, is positively

correlated with the fuel cost regressor. Thus, the estimate should overstates own pass-

through but, barring perfect correlation in plant costs, it should understate industry pass-

through. In general, where the coefficient falls between own and industry pass-through

should depend on the strength of the correlation between the costs of each plant and the

costs of its competitors, and the degree to which prices are strategic complements. Our

result highlights how accounting for oligopoly interactions in the empirical model can be

necessary to obtain results that can be mapped to theoretical concepts.
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The remainder of Table 6 shows the results of several robustness checks.29 Columns (ii)

and (iii) make clear that our results change little if we redefine regressors using a distance

threshold of 300 or 500. Column (iv) adds a regressor constructed by squaring the fuel

costs of each plant and then aggregating to the region level. The resulting parameter is not

statistically significant, and does not materially affect inferences on pass-through. Thus, the

data provide some support for constant pass-through, at least in the range of the data. This

results holds when we also incorporate nonlinear interaction terms. Column (v) shows the

results obtained when the Fuel Costs are interacted with an indicator variable for the years

2000-2010. There is no statistical support for a structural break in pass-through, and again

this result holds if we also interact the other fuel cost regressors.30 The empirical variation

in the data is insufficient to support estimation based only on 2000-2010. However, as we

show in columns (vi) an (vii), if the control variables and fixed effects are removed from the

model, then the pass-through parameters obtained from the full sample are similar to those

obtained from the subsample. This again provides little support for a structural break.

Lastly, we use our estimates to evaluate an implicit pass-through assumption that is

made in recent articles on the portland cement industry (e.g., Ryan (2012); Fowlie, Reguant,

and Ryan (2014)). The structural models used in those articles feature (i) Cournot com-

petition among firms in local markets and (ii) constant elasticity market demand curves.

Pass-through is determined by the number of firms and the elasticity of demand. In Table

7, we list the theoretical industry pass-through implied by the model, for selected local mar-

kets delineated by the EPA and used in Fowlie, Reguant, and Ryan (2014), over a range

of elasticities considered in that article.31 We also show our empirical estimates of industry

pass-through. The similarity between the theoretical predictions and the empirical estimates

is apparent. In our mind, this reinforces the robustness of the structural models in how they

project CO2 regulation would affect dynamic investment decisions in the industry.

29Due to space constraints, we are unable to enumerate the full list of robustness checks that we have
conducted. However, our work thus far indicates that the results shown in this section are not driven by
specific modeling choices, variable selections, outliers, or other peculiarities in the data.

30We are interesting in testing for structural breaks because, in our counter-factual analyses, current
pass-through behavior is what is most relevant.

31The authors can provide results for all 20 EPA markets upon request.
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Table 7: Industry Pass-Through in Selected EPA Markets

Theoretical Predictions Empirical 95% Confidence
N εD = 1.0 εD = 1.5 εD = 2.0 Estimate Interval

Atlanta 6 1.20 1.13 1.09 1.11 (0.80,1.44)
Birmingham 5 1.25 1.15 1.11 1.13 (0.84,1.46)
Chicago 4 1.33 1.20 1.14 1.13 (0.84,1.46)
Cincinnati 3 1.50 1.29 1.20 1.13 (0.84,1.46)
Detroit 2 2.00 1.50 1.33 1.14 (0.84,1.47)
Notes: Theoretical predictions are derived from a model of Cournot competition among firms with constant but heterogenous
marginal costs and a constant elasticity market demand schedule. We denote the number of firms with active plants in the
EPA market in 2010 as N and the market elasticity as εD. The empirical estimate of industry pass-through is a capacity-
weighted average of industry pass-through, as derived from the regression results, among plants in the EPA market.

6 Counterfactual Exercises

6.1 Market-based regulation of CO2 emissions

We combine our pass-through results with estimates of margins and industry-wide demand

elasticities, which we cull from the existing literature on portland cement, to evaluate how

market-based regulation of CO2 would affect producer and consumer surplus. Our calcu-

lations have direct bearing on the political economy of regulation and specifically on the

question of how revenues obtained from regulation should be redistributed. Throughout, we

model market-based regulation as a uniform carbon tax, which is economically equivalent to

a cap-and-trade program in which permits are allocated with a uniform price auction. Our

quantitative focus is on the short run and, in our calculations, we assume that the carbon

tax is imposed only on domestic producers – this best utilizes our pass-through estimates,

which relate domestic costs to domestic prices. We then discuss qualitatively how results

would change in the long run and if importers are subject to the tax.

To motivate our calculations, first consider a model of symmetric oligopoly, and let

total producer surplus be given by PS = Q × (P − C), where Q is total industry output,

P is the industry price, and C is a constant marginal cost. Denote industry pass-through

as ρM , the industry elasticity of demand as εD, and the price-cost margins of firms as m.

Normalize the demand elasticity to be positive. The change in producer surplus due to an

arbitrarily small output tax t is given by

∂π

∂t
=
[
ρM
(
1−mεD

)
− 1
]
Q (9)
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This equation is derived in Atkin and Donaldson (2014) and appears as a “principle of

incidence” in Weyl and Fabinger (2013). It is useful because it expresses the change in

producer surplus in terms of industry pass-through, which we estimate, together with margins

and the industry elasticity of demand, which have been estimated elsewhere in the literature.

Assuming substitutes, it must be that mεD ∈ [0, 1] with zero representing price-taking

behavior and one representing monopoly.32 We translate the output tax into a CO2 tax

using standard conversion methods.33

We report short run results based on margins of 0.20, 0.30, 0.35, 0.40 and 0.50. The

middle of this range is the most consistent with the available evidence. The demand estimates

of Miller and Osborne (2014) imply to a margin of 31% when applied to single-plant firms.

Further, a recent analysis conducted by the EPA constructed kiln-specific variables costs

for each of 20 local markets; the costs imply an average margin of 43% when paired with

the reported market prices (EPA (2009)). Similarly, we use a range of demand elasticities,

reporting results for a domestic elasticity of demand of 0.60, 0.80, 1.00, 1.20, 1.40 and

1.60. Estimates in the literature range from roughly 0.87 to 2.03. Jans and Rosenbaum

(1997) report an estimate of 0.87, Miller and Osborne (2010) report an estimate of 1.11, and

Fowlie, Reguant, and Ryan (2014) report estimates ranging between 0.89 and 2.03. We find

the lower portion of this range to be most plausible because cement comprises only a small

fraction of overall construction costs, and for most projects, alternatives such as lumber,

steel or asphalt are not economical.34 Indeed, the existing evidence indicates that consumer

32The product mεD is mathematically equivalent to the Rothschild Index (Rothschild (1942)), a measure
of monopoly power based on the ratio of the industry elasticity to the firm-specific elasticity. The Rothschild
index equals 1/N with Cournot competition, where N is the number of firms, so that calculating the change
in producer surplus does not require knowledge of margins or the industry demand elasticity. We prefer to
treat margins and elasticities independently because it allows for general inferences that are untethered from
any specific model of competition. However, when we apply the Cournot framework and average over the
20 EPA local markets discussed in Section 5, we obtain results that are nearly identical to those obtained
with our preferred methodology, assuming a margin of 0.35 and a domestic elasticity of 0.80. This conveys
an additional robustness to our results.

33We calculate that CO2 emissions, in metric tonnes per metric tonne of cement, are 1.05, 0.98, 0.87, and
0.86 for wet, long dry, dry preheater and dry precalciner kilns, respectively. Our methodology is consistent
with the Cement CO2 Protocol, developed by leading cement firms for the Cement Sustainability Initiative
of the World Business Council for Sustainable Development. We assume that 0.51 metric tonnes of CO2

per metric tonne of clinker are produced from the chemical conversion of calcium carbonate, contained in
limestone, into lime and carbon dioxide. We scale this up to 0.525 to account for CO2 emitted during the
calcination of cement kiln dust. We add to this the CO2 emitted from the burning of coal, based on a
emissions factor of 0.095 metric tonnes per mBtu and the kiln energy requirements reported in Section 3.2.
Finally, we scale down by five percent to convert units of clinker to units of cement. Similar calculations
underly the analysis in Fowlie, Reguant, and Ryan (2014). The capacity-weighted industry average in 2010
is 0.88 metric tonnes of CO2 per metric tonne of cement.

34Syverson (2004) documents that ready-mix concrete accounts for two percent of total construction costs
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substitution away from domestic cement is captured predominately by cement importers

(Miller and Osborne (2014)).

Table 8 shows the changes in short run producer surplus, per dollar of carbon tax, that

we calculate over the ranges of margins and demand elasticities considered. Panel A uses

an industry pass-through rate of 1.10, which is selected based on the median 2010 industry

pass-through that we estimate from Bayesian regression. Panels B and C use an industry

pass-through of 0.90 and 1.30, respectively, reflecting the statistical error that arises with

the Bayesian regression. Producer surplus loss increases mechanically with margins and

the elasticity of demand, and decreases mechanically with industry pass-through.35 With

margins of 0.35, an elasticity of 1.00, and industry pass-through of 1.10, the loss is $17.12

million. While this is small relative to industry revenues (about $8 billion in 2010), the loss

becomes appreciable for larger carbon taxes. For example, the loss becomes $685 million

with a $40 dollar carbon tax, assuming a constant pass-through rate. Official estimates of the

social cost of carbon range from $12 to $129 per metric tonne for the year 2020, depending

on the social discount rate (Working Group on Social Cost of Carbon (2013)).

The loss of consumer surplus typically is much larger. Following the methodology of

Weyl and Fabinger (2013), we calculate consumer surplus to be $66 million per dollar of

carbon tax with industry pass-through of 1.10. If instead industry pass-through is 0.90 or

1.30, the loss of consumer surplus is $54 million and $78 million, respectively. Table 9 shows

the resulting incidence, i.e., the ratio of consumer surplus loss to producer surplus loss.

Incidence decreases mechanically with margins and the elasticity of demand, and increases

mechanically with industry pass-through. With margins of 0.35, an elasticity of 1.00, and

industry pass-through of 1.10, the burden on consumers is 3.86 times larger than the burden

on producers. Equivalently, consumers bear 79% of the tax burden. While the magnitude

of incidence varies over the plausible ranges of margins and elasticities, consumer burden

always exceeds producer burden, and the discrepancy is substantial in nearly every instance.

The result that the burden of market-based regulation largely would fall on consumers

is immediately relevant to policy discussions regarding the proper disbursement of taxation

revenues. We highlight that our calculations likely understate the consumer burden for

reasons alluded to above. First, reductions in demand due to the carbon tax predominately

reflect substitution to imported cement (“leakage”). Market-based regulation, if it is to be

politically palatable, would almost certainly be designed in a manner that mitigates leakage.

based on the 1987 Benchark Input-Output Tables.
35For some combinations of margins, elasticities and pass-through, producer surplus increases with the

carbon tax (see Panel C). This is recognized as a theoretical possibility, but one that cannot be true globally.
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Table 8: Change in Producer Surplus ($MM) Per Dollar of Carbon Tax

Panel A: Industry Pass-through of 1.10

Domestic Elasticity of Demand

Margins 0.60 0.80 1.00 1.20 1.40 1.60

0.20 -1.92 -4.56 -7.21 -9.85 -12.49 -15.14
0.30 -5.89 -9.85 -13.81 -17.78 -21.74 -25.71
0.35 -7.87 -12.49 -17.12 -21.74 -26.37 -30.99
0.40 -9.85 -15.14 -20.42 -25.71 -30.99 -36.28
0.50 -13.81 -20.42 -27.03 -33.64 -40.24 -46.85

Panel B: Industry Pass-through of 0.90

Domestic Elasticity of Demand

Margins 0.60 0.80 1.00 1.20 1.40 1.60

0.20 -12.49 -14.66 -16.82 -18.98 -21.14 -23.31
0.30 -15.74 -18.98 -22.22 -25.47 -28.71 -31.95
0.35 -17.36 -21.14 -24.93 -28.71 -32.50 -36.28
0.40 -18.98 -23.31 -27.63 -31.95 -36.28 -40.60
0.50 -22.22 -27.63 -33.04 -38.44 -43.85 -49.25

Panel C: Industry Pass-through of 1.30

Domestic Elasticity of Demand

Margins 0.60 0.80 1.00 1.20 1.40 1.60

0.20 8.65 5.53 2.40 -0.72 -3.84 -6.97
0.30 3.96 -0.72 -5.41 -10.09 -14.78 -19.46
0.35 1.62 -3.84 -9.31 -14.78 -20.24 -25.71
0.40 -0.72 -6.97 -13.21 -19.46 -25.71 -31.95
0.50 -5.41 -13.21 -21.02 -28.83 -36.64 -44.45

Notes: Calculations are based on a general model of symmetric oligopoly. Units
are in millions of real 2010 dollars. We aggregate to the industry level based on the
2011 industry output of 67.90 million metric tonnes. We use the industry average
ratio of 0.88 metric tonnes of CO2 per metric tonne of cement to convert from an
output tax to a carbon tax. Margins refer to (P −C)/P where P is price and C is
marginal cost. The domestic elasticity of demand is the percentage change in total
domestic cement output with respect to a one percent increase in the domestic
price. The ranges shown for margins and domestic elasticity reflect the existing
literature on the portland cement industry.
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Table 9: Incidence of a Carbon Tax

Panel A: Market Pass-through of 1.10

Domestic Elasticity of Demand

Margins 0.60 0.80 1.00 1.20 1.40 1.60

0.20 34.38 14.47 9.17 6.71 5.29 4.37
0.30 11.22 6.71 4.78 3.72 3.04 2.57
0.35 8.40 5.29 3.86 3.04 2.51 2.13
0.40 6.71 4.37 3.24 2.57 2.13 1.82
0.50 4.78 3.24 2.44 1.96 1.64 1.41

Panel B: Market Pass-through of 0.90

Domestic Elasticity of Demand

Margins 0.60 0.80 1.00 1.20 1.40 1.60

0.20 4.33 3.69 3.21 2.85 2.56 2.32
0.30 3.44 2.85 2.43 2.12 1.88 1.69
0.35 3.11 2.56 2.17 1.88 1.66 1.49
0.40 2.85 2.32 1.96 1.69 1.49 1.33
0.50 2.43 1.96 1.64 1.41 1.23 1.10

Panel C: Market Pass-through of 1.30

Domestic Elasticity of Demand

Margins 0.60 0.80 1.00 1.20 1.40 1.60

0.20 -9.03 -14.13 -32.50 108.33 20.31 11.21
0.30 -19.70 108.33 14.44 7.74 5.28 4.01
0.35 -48.15 20.31 8.39 5.28 3.86 3.04
0.40 108.33 11.21 5.91 4.01 3.04 2.44
0.50 14.44 5.91 3.71 2.71 2.13 1.76

Notes: Calculations based on a general model of symmetric oligopoly. We use the
industry average ratio of 0.88 metric tonnes of CO2 per metric tonne of cement to
convert from an output tax to a carbon tax. Margins refer to (P−C)/P where P is
price and C is marginal cost. The domestic elasticity of demand is the percentage
change in total domestic cement output with respect to a one percent increase in
the domestic price. The ranges shown for margins and domestic elasticity reflect
the existing literature on the portland cement industry.
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This would limit the demand losses of domestic firms, and it also would increase the relevant

pass-through rate, as the costs of importers increase with the costs of domestic firms. Both

effects shift burden from producers to consumers. Second, our quantitative analysis captures

only short run effects. In the long run, profit loss likely could be reduced by the elimination

of excess kiln capacity, which would increase market power and consumer prices. Predicting

the magnitude of this long run effect requires a dynamic model along the lines of Fowlie,

Reguant, and Ryan (2014). Indeed, as we develop in Section 5, our results corroborate the

model employed there, along with its implicit assumptions on pass-through.

We now analyze the differential effects of market-based regulation, relaxing the assump-

tion of symmetry used to derive equation (9). We focus on markup and price effects, rather

than producer and consumer surplus. The plant-specific demand elasticities that would be

required for surplus statements are not readily available in the literature.36

Table 10 shows summary statistics regarding the change in markups that arise per

dollar of carbon tax. Markups increase with the carbon tax on average because, in our

baseline Bayesian regression, industry pass-through just exceeds unity. Plants that utilize less

efficient kiln technology see smaller markup increases, though the differences are not large.

Thus, unless inefficient plants face more elastic demand than other plants, our calculations

provide little support for the notion that market-based regulation impacts substantially the

distribution of producer surplus among technology classes. There also is some heterogeneity

within technology classes. The inefficient plants that experience markup decreases are near

efficient competitors, and the precalciner plants that experience the largest markup increases

are near inefficient competitors.

Figure 3 maps the county-level price changes that arise per dollar of carbon tax. These

are not informed directly from our regression results, so we approximate the geographic

dispersion of effects by calculating the weighted average of the plant-level price changes,

with weights that are proportional to the inverse miles between the plant and the county

centroid. Counties with larger price increases are shown with deeper shades of blue. The

distribution of price increases exhibits a modest degree of dispersion – nearly all counties

experience increases between $0.90 and $1.30. The counties with larger price increases

typically are near relatively inefficient cement plants. Smaller price increases arise in the

southwest and southeast, where cement is produced in kilns that utilize modern technology.

36In principle, one could obtain plant-specific elasticities by applying the structural estimates of Miller and
Osborne (2014), which are obtained based on data from the U.S. Southwest over 1983-2003, to the entire
country based on the geographic configuration in 2010.
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Table 10: Change in Markup Per Dollar of Carbon Tax

Change in Markup

Kiln Type Mean 5% 25% 50% 75% 95%

Wet 0.07 -0.19 0.10 0.11 0.13 0.14
Long Dry 0.08 -0.12 0.10 0.12 0.13 0.13
Dry with Preheater 0.11 0.07 0.11 0.12 0.13 0.13
Dry with Precalciner 0.13 0.10 0.11 0.12 0.12 0.22
Notes: Calculations are obtained from a general model of symmetric
oligopoly that is calibrated to a industry pass-through of 1.326 and
the 2011 industry output of 67.90 million metric tonnes. The indus-
try pass-through is the in 2010 generated in the baseline regression
specification. Markup refer to (P − C) where P is price and C is
marginal cost.

6.2 NESHAP Amendments

We turn now to an economic analysis of recent regulation promulgated by the EPA that

reduces dramatically the legally permissible emissions of hazardous air pollutants (HAPs)

including particulate matter, mercury, hydrocarbons, and hydrogen chloride. EPA analysis

indicates that monetized health benefits, which it predicts exceed $7-$18 billion, far outweigh

economic costs (EPA (2009); EPA (2010)). We revisit the price predictions of the EPA using

our pass-through estimates.

The EPA relies on a Cournot model of competition to simulate the effect of regulation

in each of 20 local markets based on conditions in 2005. The model incorporates a constant

elasticity market demand curve and, for markets that are adjacent to a customs office, a

constant elasticity import supply curve. It is calibrated to elasticity estimates in the existing

literature. Details on the model and calibration are provided in Appendix F. We are able to

fully replicate the EPA modeling results, up to the restriction that the EPA makes compliance

costs public only at the market-average level. We then update the analysis to 2010, the most

recent year of our sample, and compare the price predictions to an alternative based on our

pass-through estimates. Because the economic costs of concern result from the pass-through

of compliance costs to customers, empirical estimates of pass-through usually provide more

accurate short run predictions than model-based simulations (Miller, Remer, Ryan, and

Sheu (2013)). While the EPA approach is grounded in modeling techniques and functional

forms that are standard in the literature of industrial organization (e.g., Fowlie, Reguant,

and Ryan (2014)), the drawback is that pass-through is fully determined by functional forms

and the first order properties of the system. Relying on empirical estimates of pass-through
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Figure 3: County-Level Price Changes per Dollar of Carbon Tax
Notes: County-level price changes are calculated as a weighted average of the plant-level price changes, with
weights that are proportional to the inverse miles between the plant and the county centroid.

relaxes these assumptions and allows the data to inform predictions more directly.

Figure 4 provides a scatter-plot of market-specific predictions from the EPA’s Cournot

model (on the vertical axis) and the predictions from our pass-through estimates (on the

horizontal axis). Across the 20 local markets, the Cournot model yields average price in-

creases of $4.66 per metric tonne and the pass-through calculations yield average increases of

$4.49. The predictions are highly correlated, with a univariate correlation statistic of 0.88.37

The similarity between the two methodologies arises because the industry pass-through that

is implicit in the EPA model is close to the industry pass-through that estimate (e.g., see

Table 7). To our knowledge, the quality of this match between the EPA model and empiri-

cal pass-through is coincidental. Interpreted in that light, our results allow us to confirm a

previously untestable assumption on demand curvature that has first order implications for

pass-through and the price effects of regulation.

37The exceptions are Pittsburgh, for which the EPA under-predicts by $3.30 relative to the pass-through
calculation, and Cincinnati, for which the EPA over-predicts by $2.70 relative to the pass-through calculation.
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Figure 4: Price Effects of NESHAP Amendments for Portland Cement
Notes: Each dot represents the price predictions based on (i) the EPA model of Cournot competition between
firms facing a constant elasticity demand curve and (ii) our estimates of pass-through. Also shown is a 45-
degree line.

6.3 Analysis of the Holcim/LaFarge merger

Here we predict the price effects of the proposed merger of Holcim and Lafarge, currently

under review by the antitrust authorities. We believe this represents the first academic

application of first order approximation (FOA) in the study of merger price effects. The

methodology is grounded in oligopoly theory. The core logic is that horizontal mergers

generate opportunity costs because, for each merging firm, a lower price requires it to forgo

some profit that otherwise would be earned by its merging partner (Farrell and Shapiro

(2010)). It follows that price changes can approximated by multiplying these opportunity

costs by a relevant notion of pass-through (Jaffe and Weyl (2013)), and Monte Carlo evidence

supports the accuracy of this calculation in the merger context (Miller, Remer, Ryan, and

Sheu (2013)).38

In the final year of our data, the merging parties were the first and third largest cement

38We provide mathematical details on FOA in Appendix E. In our application, the approach has notable
advantages over most simulation methodologies. Modeling the industry based on Cournot competition
in local markets would be inappropriate because mergers are not profitable, except to monopoly, unless
additional complicating factors are invoked. The alternative of modeling the industry based on Bertrand
competition with spatial differentiation, as in Miller and Osborne (2014), is computationally difficult and
requires an assumption on the functional form of demand that partially determines the magnitude of the
merger effects. By contrast, our present calculations are both simple and consistent with profitable mergers,
spatial differentiation, and arbitrary demand functions.
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firms in the United States, by clinker capacity. In the wake of the Great Recession, however,

both firms divested and closed unprofitable plants. Thus, we provide predictions based on

(i) an industry snapshot in 2010, where we have complete data; and (ii) a 2014 snapshot in

which the status of Holcim and Lafarge plants is updated from press releases, but the status

of other plants is left as in 2010. These two sets of results indicate interesting contrasts in

the spatial distribution of price effects due to the merger.

The requisite inputs for FOA are pass-through and what is known as “upward pricing

pressure” or “UPP” among antitrust economists. UPP equals the opportunity cost created

by the merger and can be calculated from diversion – the fraction of sales lost by each merg-

ing firm, due to a price increase, that shift to the other merging firm – and the margins of

the merging firms. Diversion and margins often are available to antitrust agencies through

confidential business data, but we must rely on publicly available data and informed assump-

tions. Namely, we let diversion be proportional to the inverse distances between plants, we

set margins to 30 percent, and we obtain measures of pre-merger prices based on the USGS

regions in which plants are located, following Fowlie, Reguant, and Ryan (2014).39

Table 11 shows results for each the 16 Holcim and Lafarge plants with a nonzero

predicted price change in either the pre-divestiture and post-divestiture samples. Our calcu-

lations indicate that, but for the post-recession divestitures and closures, the merger would

have resulted in substantial price elevations, on the order of 5%-7% at many Holcim plants

and 3%-7% at many Lafarge plants. Accounting for changes in plant status, the predicted

effects are more modest, at 3%-4%, and these exist only for five plants.

In Figure 5, we map the county-level distribution of price effects, both pre-divestiture

(map A) and post-divestiture (map B). We calculate these county-level price changes based

on a weighted-average of the plant-level price changes, with weights that are proportional

to the inverse distance between the plants and the county centroids. While this a crude

correspondence, we nonetheless consider it a useful way to examine the geographic dispersion

of effects. The pre-divestiture map shows substantial price elevations in the Northeast,

Southeast, and Great Plains. These effects arise due to Holcim and Lafarge plants, shown

in orange circles and red diamonds, that are in close proximity to each other. The post-

divestiture map, however, shows that price elevations are confined to the Northeast and

the Great Plains, and that these elevations are smaller in magnitude. Although we do not

39To illustrate the diversion assumption, consider a simple model with three firms. The distances between
firm A and its competitors, firms B and C, is 50 and 150 miles, respectively. Our working assumption is
that 75% of firm A’s customers view firm B as their next best option and 25% view firm C as their next best
option. The same diversion rates emerge if distance instead is measured in miles times the gasoline price
because the gasoline price affects both distances proportionally.
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Table 11: Predicted Price Effects of a Holcim/Lafarge Merger

Pre-Merger Pre-Divestiture Post-Divestiture
City State Capacity Price Price Effects Price Effects

Holcim Plants

Bloomsdale MO 3,720 82.50 5.42 6.6% 3.88 4.70%
Midlothian TX 2,126 91.00 0.06 0.0% · ·
Holly Hill SC 1,860 86.78 5.48 6.3% · ·
Theodore AL 1,503 83.00 6.84 8.2% · ·
Catskill NY 572 83.00 7.42 8.1% · ·
Ada OK 524 97.38 7.02 7.2% · ·
Hagerstown MD 512 84.16 3.83 4.5% 3.57 4.2%
Mason City IA 363 103.13 0.08 0.0% · ·

Lafarge Plants

Ravena NY 1,680 91.72 6.82 7.4% 2.30 2.5%
Calera AL 1,403 83.00 3.09 3.7% · ·
Grand Chain IL 1,014 89.07 2.72 3.1% 2.67 3.0%
Harleyville SC 978 86.78 2.38 2.7% · ·
Buffalo IA 975 103.13 6.84 6.6% 3.08 3.0%
Sugar Creek MO 943 82.50 3.30 4.0% · ·
Whitehall PA 702 95.00 1.27 1.3% 0.61 0.1%
Tulsa OK 580 97.38 4.75 4.9% · ·
Notes: Predicted price effects are obtained from first order approximation. Prices are in real 2010 dollars. Capacity
is in thousands of metric tonnes of clinker per year. Plants for which no price change is predicted do not appear,
including Holcim plants in Florence CO, Morgan UT and Three Forks MT, and Lafarge plants in Alpena MI,
Paulding OH and Seattle WA. The divestitures are based on Holcim’s and Lafarge’s consummated plant sales
over 2011-2013.
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Figure 5: County-Level Predicted Price Effects of a Holcim/Lafarge
Notes: County-level price changes are calculated as a weighted-average of the plant-level price changes
obtained from first order approximation. The weights are proportional to inverse distance. The distance
metric employed is the log of one plus the miles between the plant and the county centroid. The distance
threshold is 400. Price changes are in real 2010 dollars.

investigate the matter formally, we suspect that each remaining pocket of harm could be

remedied with a single divestiture.40

7 Conclusion

Our objectives in conducting the research described herein are twofold: First, we have in-

tended to demonstrate that the estimation of pass-through is feasible, even without access

to large quantities of price data at the firm/product level, and in a manner consistent with

the oligopoly interactions of concentrated markets. Second, we have intended to reinforce

theoretical findings about how pass-through can be used to better understand markets. In

our view, the value of empirical research on pass-through is great, and we hope that our

40Our calculations also do not inform whether these price effects could be mitigated by cost efficiencies or
other factors, and we leave such considerations to the antitrust authorities.
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own work helps spur endeavors elsewhere. With that in mind, we offer some caveats that

are relevant to our own research, and that are likely to generalize to other settings.

Estimates of pass-through typically are obtained with reduced-form regressions of price

on a cost shifter. These regressions are vulnerable to bias from measurement error and omit-

ted variables. Care must be taken in constructing the regressors, and in considering factors

that correlate with both price and the cost shifter. In our application, the electricity price

stands out as one such factor, but bringing it into the regression does not affect infer-

ence. Regression coefficients, even if unbiased, provide information on the average short

run pass-through that arises in the data. These can diverge from long run pass-through,

which typically is more interesting from a policy standpoint, if menu costs exist or if firms

use simple rule-of-thumb pricing rules. Further, because equilibrium pass-through depends

on higher order properties of the cost and demand functions, whether average pass-through

corresponds to a theoretical notion of pass-through, at any equilibrium point, is unclear.

It is possible to investigate this latter point, as we do in our application, but tests can be

limited by the amount of empirical variation present.

Caution also must be taken when applying pass-through to analyze counter-factual

scenarios. It is an open question whether historical pass-through are helpful in evaluation

events that increase marginal costs well above historical levels. Yet this concern should

not be overly limiting. In counter-factual scenarios, some assumptions must be made, and

the existing Monte Carlo evidence indicates that using pass-through to inform predictions

typically improves accuracy (Miller, Remer, Ryan, and Sheu 2013). Finally, the theoretical

ambiguities that exist with respect to pass-through make external validity challenging, absent

careful consideration of institutional details. With these caveats in mind, we reiterate our

belief in the value of empirical pass-through research.
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Appendix

A Details on the Data Collection

We discuss details of the data collection process here in order to assist replication. We

start with the Plant Information Survey (PIS) of the PCA. Our sample includes annual

observations over 1974-2010. The PIS is published annually over 1974-2003 and also semi-

annually in 2004, 2006, 2008 and 2010. We make use of all of the publications with the

exception of 1978 and 1981. We impute values for the capacity, technology, and primary

fuel of each kiln in the missing years based on the preceding and following data. In most

instances, imputation is trivial because capacity, technology and fuel are persistent across

years. When the data from the preceding and following years differ, we use the data from

the preceding year. We are able to identify kilns that are built in the missing years because

the PIS provides for each kiln the year of construction. We remove from the analysis 198

kiln-year observations for which the kiln is identified in the PIS as being idled. These occur

mostly in the late 1980s and over 2009-2010. There are 55 plant-year observations – out

of 4,416 – for which all kilns at a plant are observed to be idled. A handful of kilns drop

out of the PIS and then reappear in later years. We treat those observations on a case-

by-case basis, leveraging detailed qualitative and quantitative information provided in the

Minerals Yearbook of the USGS. We detail the available evidence and the selected treatment

in our annotated Stata code. Lastly, we remove from the analysis a small number of kilns

that produce white cement, which takes the color of dyes is used for decorative purposes.

Production requires higher kiln temperatures and iron-free raw materials, and the resulting

cost differential makes it a poor substitute for gray cement in most instances.

We obtain data on delivered bituminous coal prices for the industrial sector from the

annual Coal Reports of the Energy Information Agency (EIA). Averages are available at

the national, regional and state levels over 1985-2012. We convert prices from dollars per

short ton to dollars per metric tonne using the standard conversion factor. Roughly 40%

of the state values are withheld and must be imputed. We first use linear interpolation to

fill in missing strings no longer than three years in length. We then calculate the average

percentage difference between the observed data of each state and the corresponding national

data, and use that together with the national data to impute missing values. For 14 states,

all or nearly all of the state-level data are withheld, and we instead set the state price equal

to the regional price.41 We backcast the coal price data to the period 1974-1984 using data on

41These states are Connecticut, Delaware, Louisiana, Massachusetts‘, Maine, Mississippi, Montana, North
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the national average free-on-board (FOB) price of bituminous coal over 1974-2008 published

in the 2008 Annual Energy Review of the EIA. Backcasting is based on (1) the state-specific

average percentage differences between the delivered state and national prices; and (2) the

percentage differences between the delivered national prices and the FOB national prices over

the 1985-1990. The coal price data are reported in dollars per metric tonne. We convert

to dollars per mBtu using the conversion factor of 23 mBtu per metric tonne of bituminous

coal, which we calculate based on the labor-energy input surveys of the PCA.

The USGS Minerals Yearbook publishes average prices per region. In total, there are

61 regions, fully contained in the contiguous United States, that appear at least once.42 In

Table A.1, we list the number times we observe each region over the sample period 1974-

2010. Only five regions are observed in every year – Alabama, Illinois, Maine/New York,

Missouri, and Ohio. Regions more commonly are observed for a portion of the sample. The

median number of observations for a region is nine. The regions exhibit numerous features

that make it difficult to interpret them as local markets. We highlight two here. First,

regions are not always contiguous. An example is Georgia, which in 14 years is grouped

with Virginia and West Virginia but not with South Carolina. Second, the regions exhibit

little constancy over the sample period. An example is Nevada, which in 19 years is grouped

with Idaho, Montana and Utah and in nine years is grouped with Arizona and New Mexico.

Nonetheless, the data provide useful information on prices throughout the United States and

serve to motivate our empirical framework, which we develop to accommodate such data.

We obtain state-level data on the prices of petroleum coke, natural gas, and distillate

fuel oil, again for the industrial sector, from the State Energy Database System (SEDS) of

the EIA. The imputation of missing values is required only for petroleum coke. To perform

the imputation, we first calculate average percentage difference between the observed data of

each state and the corresponding national data, and use that together with the national data

to impute missing values. In five states with active kilns, all or nearly all of the state-level

data are withheld so we base imputation instead on the average petroleum coke prices that

arise in adjacent states and nationwide.43 The SEDS data are in dollars per mBtu.

Dakota, New England, New Jersey, New Mexico, Nevada, Oregon and Vermont.
42We do not include regions that incorporate states and territories outside the contiguous United States.

For example, we exclude Oregon/Washington/Alaska/Hawaii, which exists over 1983-1985.
43We use the national price here because the prices in many adjacent states similarly are withheld. We

impute the price of Maine using the national price because data for adjacent states are withheld (there are
no kilns in adjacent states). We impute the price of Iowa using the arithmetic mean of the Illinois price and
the national price. We impute the price of Nevada and Arizona using the arithmetic mean of the California
price and the national price. We impute the price of Kansas using the arithmetic mean of the Oklahoma
price, the Missouri price, and the national price.
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Table A.1: Number of Observations and Active Plants by USGS Region

Region Observations Plants Region Observations Plants

AL 37 5.41 ID/MT/WY 9 4.00
IL 37 3.84 MD/WV 9 4.00
ME/NY 37 5.19 OK 9 3.00
MO 37 5.41 GA 8 3.00
OH 37 3.54 LA/MS 8 4.00
FL 36 4.74 OR/NV 8 3.00
East PA 36 7.47 TN 9 5.33
West PA 36 3.72 TX 8 18.00
North CA 35 4.26 AR/MS/LA 7 3.57
South CA 35 7.34 KY/VA/WV 6 3.00
KS 34 4.29 SD 10 1.00
IN 30 4.03 ID/MT 5 3.00
SC 30 3.00 ID/MT/UT 5 5.60
North TX 29 5.62 KY/NC/VA 5 3.00
South TX 29 5.52 MD/VA/WV 6 5.00
AR/OK 28 4.32 NE/WI 5 2.00
CO/WY 27 3.89 IN/KY/WI 4 6.25
MI 26 3.69 VA/NC/SC 4 5.00
MD 20 3.00 AR/MS 2 3.00
AZ/NM 19 3.05 GA/SC 3 5.00
IA/NE/SD 19 5.00 IN/KY 3 3.00
ID/MT/NV/UT 19 6.47 KS/NE 3 7.00
KY/MS/TN 19 3.89 UT 3 2.67
IA 18 4.11 CA 2 8.00
GA/VA/WV 14 3.79 GA/MD/VA/WV 2 5.00
OR/WA 13 3.00 MN/SD/NE 2 3.50
WA 12 3.83 SD/NE 2 3.00
MI/WI 11 3.30 CO/NE/WY 1 5.00
AZ/NM/NV 9 4.00 PA 1 8.00
CO/AZ/UT/NM 9 8.11
GA/TN 9 4.00

Notes: The table provides the number of observations and the mean number of active plants for each USGS region
over the period 1974-2010. In total there are 61 regions and 933 region-year observations. We do not include regions
that incorporate states and territories outside the continental United States. The mean number of plants is calculated
based on the Plant Information Survey of the PCA and includes only plants with active active kiln capacity.
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Plants sometimes list multiple primary fuels in the Plant Information Survey. There is

little data available on the mix of primary fuels in those instances, however, and we allocate

such plants based on a simple decision rule. We calculate fuel costs with the price of coal

if coal is among the primary fuels. If not, we use petroleum coke prices if coke is among

primary fuels. Otherwise we use natural gas prices if natural gas is among the multiple

fuels. We use oil prices only if oil is the only fossil fuel listed. The exception to the above

decision rule is when plants use a mix of coal and petroleum coke – there we assign equal

weights to coal and petroleum coke prices. We have experimented with more sophisticated

methodologies, leveraging data published in the Minerals Yearbook of the USGS on the total

amounts of each fossil fuel burned by cement plants nationally. These methodologies are

not fully satisfactory because, among other reasons, the USGS numbers include fuel burned

(especially natural gas) to reheat kilns after maintenance periods. Our regression results are

not sensitive to methodology on this subject and, given this, we prefer the simple rule.

Our methodology does not incorporate secondary fuels, the most popular of which are

waste fuels such as solvents and used tires. The labor-energy input surveys of the PCA

indicate that waste fuels account for around 25% of the energy used in wet kilns and 5% of

the energy used in dry kilns. We do not have data on the prices of waste fuels but understand

them to be lower on a per-mBtu basis than those of fossil fuels. Accordingly, we construct

an alternative fuel cost measure in which we scale down the fossil fuel requirements of wet

and dry kilns in accordance with the survey data. Whether this adjustment better reflects

the fuel costs of marginal output depends in part on (i) the relative prices of waste and fossil

fuels and (ii) whether the average fuel mix reported in the survey data reflect the marginal

fuel mix. On the latter point, if marginal clinker output is fired with fossil fuels then our

baseline measurement should reflect marginal fuel costs more closely than the alternative

measurement. Regardless, our regression results are not very sensitive to the adjustment for

waste fuels.

We obtain county-level data from the Census Bureau on construction employees and

building permits to help control for demand. Construction employment is part of the County

Business Patterns data. We identify construction as NAICS Code 23 and (for earlier years)

as SIC Code 15. The data for 1986-2010 are available online.44 The data for 1974-1985

are obtained from the University of Michigan Data Warehouse. The building permits data

are maintained online by the U.S. Department of Housing and Urban Development.45 We

base the permits variable on the number of units so that, for example, a 2-unit permits

44See http://www.census.gov/econ/cbp/download/, last accessed April 16, 2014.
45See http://socds.huduser.org/permits/, last accessed April 16, 2014.
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counts twice as much as a 1-unit permit. For both the construction employment and building

permits, it is necessary to impute a small number of missing values. We calculate the average

percentage difference between the observed data of each county and the corresponding state

data, and use that together with the state data to fill in the missing values.

B Identification

We highlight here the sources of empirical variation that separately identify the own and

cross pass-through parameters. We highlight here the sources of empirical variation that

separately identify the own and cross pass-through parameters. The empirical variation we

use to disentangle the own pass-through heterogeneity parameters (i.e., α1) from the cross

pass-through parameter (i.e, β), is straightforward – plants often have different fuel costs

then their nearby competitors – and needs no further explanation. Instead, we focus on

the empirical variation that distinguishes the baseline fuel cost parameter (i.e., α0) from the

cross pass-through parameter. There we can identify four distinct sources of identification

(i) time-series variation in the distance metric, (ii) heterogeneity of capacity shares within a

region, (iii) variation in fuel costs of plants in neighboring regions, and (iv) variation in the

spatial composition of regions. We illustrate each source with simple examples below.

First, suppose that data consist of a single region and two plants with equal capacity.

The linear approximation to regional prices then can be expressed

Pt = (α0 + β/d12t)
c1t + c2t

2
+ εt, (B.1)

where we have normalized α1 = γ = 0, without loss of generality. Absent inter-temporal

variation in the distance metric, the coefficients α0 and β are not separately identifiable. This

remains true if more firms are incorporated, provided that plant capacity is homogeneous.

However, time-series variation in the distance metric is sufficient for identification. Periods

with greater effective plant dispersion (i.e., a bigger d12t) exhibit lower rates of industry

pass-through due to more muted cross pass-through. We introduce time-series variation in

the distance metric by interacting the miles between plants with the gasoline price index.

Second, suppose that the distance metric is constant over time, but that capacities

differ for the two plants in the single region. Regional prices then take the form

Pt = α0(ω1c1t + ω2c2t) + β/d12(ω2c1t + ω1c2t) + εt, (B.2)
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The higher-capacity plant exercises greater influence on the own pass-through regressor,

while the lower-capacity plant exercises greater influence on the cross pass-through regres-

sor.46 This is sufficient for identification, provided non-collinearity in the plants’ fuel costs,

which exists in regions containing plants that utilize different kiln technology. Identification

through this channel becomes stronger with the inter-temporal changes in capacity weights

that occurs with the retirement and introduction of kilns.

Third, the fuel costs of a plant can affect prices in a region even if the plant is not

located in that region. Suppose that capacity shares of our two plants are equal, and the

distance measure does not vary over time. Suppose further that we observe costs and distance

for a third plant, denoted as plant 3, which is outside the region in the data. In this case,

regional prices take the form:

Pt = α0(c1t + c2t) + β((1/d12)c1t + (1/d12)c2t + (1/d13 + 1/d23)c3t) + εt (B.3)

The third plant’s fuel costs affect the cross pass-through regressor but not the own pass-

through regressor, and this is sufficient for identification if the fuel costs of the third plant

are not collinear with the fuel costs of the first two plants. Identification through this channel

becomes stronger, the closer is the third plant to the first and second plants.

Turning to the final source of variation in the data, identification is assisted by having

multiple regions in the data. Consider a case with two regions and four plants. Plants 1 and

2 are in region A and plants 3 and 4 are in region B. Stripping away all other sources of

identifying variation, assume that capacity is homogeneous and constant, there is no inter-

temporal variation in the distance metric, plants do not affect prices outside their region,

and the fuel costs of all plants are equal and collinear. Regional prices then take the form[
PAt

PBt

]
=

[
α0 + β/d12

α0 + β/d34

]
c+

[
εAt

εBt

]
. (B.4)

Identification is possible if d12 6= d34, as regions with greater plant dispersion exhibit lower

rates of industry pass-through. Having multiple regions also amplifies the identifying varia-

tion available through the other channels enumerated above.

46If capacity shares are equal then the two data vectors will be 0.5c1t + 0.5c2t and (0.5c1t + 0.5c2t)/d12,
respectively, and collinearity causes identification to fail.
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C Estimation Details for OLS and FGLS

Our approach to estimating clustered standard errors follows Wooldridge (2010), with small

modifications to account for the fact that we use plant rather than region fixed effects.

Note that if we used region fixed effects, then a standard within estimator could be used

to consistently estimate the variance of the non fixed-effects coefficients. The logic of the

within estimator is that one can apply a transformation to the data which removes the fixed

effects, and then use standard techniques to consistently estimate a heteroskedasticity and

autocorrelation consistent variance matrix for the remaining parameters. To see how this

works denote ω as the matrix of plant-level capacity shares, where each row corresponds to

an observation in our region level data. Similarly denote P as the matrix of prices and X

as the matrix of non-fixed effects regressors from our regression equation (4). We apply the

transformation

P ω = I − ω(ω′ω)−1ω′

to the P and X matrices to obtain

Ẍ = P ωX

Ÿ = P ωY .

A regression of Ÿ on Ẍ will yield the OLS estimates of the X coefficients by the Frisch-

Waugh-Lovell theorem. One can construct robust standard errors using Ẍ and Ÿ in the

same manner one does using the within estimator. FGLS proceeds in a similar manner to

that outlined in Chapter 10 of Wooldridge (2010); rather than using the within projection

matrix one uses P ω.

D The Bayesian Regression Model

Our approach for Bayesian estimation of the spatial error structure is based on previous

work outlined in Gelfand (2012) and Bakar and Sahu (2011). To start we assume a plant

level model that looks like the following:

pit = X ′itθ + ηit + εit,

where
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ηit = κηi,t−1 + νit,

and θ is a vector of all the regression parameters from equation (4). Following the spatial

literature, the nugget effect, εit, is i.i.d across plants and time and has a normally distribution

with variance σ2. As in our prior work the νit is a spatially correlated error term. The spatio-

temporal effects νit are assumed to be normally distributed and have a variance matrix of

Σν = σ2
νSν . The elements of Sν are specified as

ψ(dij;φ, ϕ) = max

{
ϕ− dij
ϕ

, 0

}φ
,

where φ and ϕ are restricted to be positive. This function will always be between 0 and

1, and when the distance is above ϕ is will be 0. The parameter ϕ determines when the

correlation becomes 0. The parameter φ determines how quickly the correlation approaches

zero as distance rises: the larger is φ, the more quickly the correlation drops off.

The regression equations we will be estimating will be the region level aggregates of

the plant level equations. In particular the region level nugget effect will be

εmt = ω′mtεmt,

and the spatial effect will be

ηmt = ω′mtηmt,

where the bolded η’s and ε’s contain the errors of all the plants in region m, and ω is the

vector of capacities.

We allow period 0 spatial errors to follow a different process than errors in periods 1

through T , and specify the period 0 variance matrix as σ2
0Sν .

An attractive feature of Bayesian estimation relative to classical approaches is that we

can treat the η’s as random effects and draw them alongside our other parameters.47 The

steps will be

1. Draw θ given the data and draws on σ2
ε , and ηit’s.

2. Draw κ given σ2
ν , φ, ϕ and ηit’s.

3. Draw σ2
ε given data, β, and ηit’s.

47Note that if we took a classical approach such as Maximum Likelihood we would have to work with the
distributions of ε, which would be quite messy.
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4. Draw σ2
ν given κ, φ, ϕ and ηit’s.

5. Draw ηit given other period ηit’s, σ
2
ν , φ, and ϕ.

6. Draw σ2
0 given η0.

7. Draw η0 given σ2
0, κ, and η1

8. Draw φ given everything, using Metropolis-Hastings.

9. Draw ϕ given everything, using Metropolis-Hastings.

We assume standard priors wherever possible (normal for β and κ, and inverse gamma

for σ2
ε and σ2

ν). For most parameters, we choose the values of priors to be consistent with

the default values used in the univariate regression R code provided with the book Rossi,

Allenby, and McCulloch (2005).

Below we describe the conditional posteriors for each parameter and describe how we

draw from them.

D.1 Posterior for θ

Here we will use standard Bayesian regression. We assume a prior mean of θ = 0 and

variance of δ2
θ is set to be 0.01 times the dimensionality of θ. The posterior distribution is

N(∆χ,∆) where

∆−1 =
M∑
m=1

∑
t∈Tm

X
′
mtXmt

ω′mtωmt

1

σ2
ε

+ IN/δ
2
θ

χ = θ/δ2
θ +

M∑
m=1

∑
t∈Tm

X
′
mt(pmt − ηmt)
ω′mtωmt

1

σ2
ε

Note that we compute ηit from plant level draws on ηit.

D.2 Posterior for κ

A Bayesian regression can also be used to construct a posterior for κ. To do this, we stack

up the plant level ηit’s into vectors ηt. Assuming prior parameters on κ are κ and δ2
κ, the

posterior will be N(∆χ,∆) where
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∆−1 =
T∑
t=1

η′tΣ
−1
ν ηt + IN/δ

2
κ

χ = κ/δ2
κ +

T∑
t=2

η′t−1Σ
−1
ν ηt

We set the prior mean and variance for κ to 0.5 and 0.01, respectively.

D.3 Posterior for σ2
ε

Assuming an inverse gamma prior with parameters a and b we obtain an inverse gamma

posterior

π(1/σ2
ε ; ...) = G

(
N

2
+ a, b+

1

2

M∑
m=1

∑
t∈Tm

(pmt − ηmt −X
′
mtθ)

2

ω′mtωmt

)
.

The prior parameters a and b are both set to 0.001.

D.4 Posterior for σ2
ν

This case is a lot like the previous one, except we treat the η’s like data. Assuming prior

parameters of a and b (both set to 0.001) we obtain an inverse gamma posterior

π(1/σ2
ν ; ...) = G

(
N

2
+ a, b+

1

2

T∑
t=1

(ηt − κηt−1)′S−1
ν (ηt − κηt−1)

)
.

D.5 Posterior for ηit’s

To derive this posterior we will begin by writing down the part of the joint posterior likelihood

that depends on ηit. Note that we can write the aggregate variables in period t as a matrix of

capacity shares, ωt, times the variable (which could be plant level prices, pt, spatial effects,

ηt, etc.). This will be helpful when we compute the kernel of the distribution for ηt. The

part of the posterior that depends on ηit can then be written
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L = − 1

2σ2
ε

T∑
t=1

(pt −X ′tθ − ηt)′ω′tDω,tωt(pt −X ′tθ − ηt)

− 1

2σ2
ν

T∑
t=1

(ηt − κηt−1)′S−1
ν (ηt − κηt−1)− ...

The matrix Dω,t is a diagonal matrix where each diagonal entry corresponds to the inverse

of the sum of squared capacity shares for region m in period t. To compute the posterior

for ηit we have to consider three cases. The first, and simplest case is when t = T , the last

period. To solve for the posterior for ηiT we will complete the square on the posterior as

follows:

(v −Wηt)′(v −Wηt) = (ηt − η̂t)′W ′W (ηt − η̂t) + ...

where

v =

[
1
σε
D

1/2
ω,tωt(pt −X ′tθ)
κΣ−1/2

ν ηt−1

]
W =

[
1
σε
D

1/2
ω,tωt

Σ−1/2
ν

]
.

The mean η̂t can be expressed as

(W ′W )−1W ′v = (
1

σ2
ε

ω′tDω,tωt + κ2Σ−1
ν )−1(

1

σ2
ε

ω′tDω,tωt(pt −X ′tθ) + κΣ−1
ν ηt−1)

and the variance of the ηt will be

(W ′W )−1W ′v = (
1

σ2
ε

ω′tDω,tωt + κ2Σ−1
ν )−1.

The second case, for t < T , is more involved because ηt shows up more than once in

the lag equation. In this case the variance should be

(W ′W )−1W ′v = (
1

σ2
ε

ω′tDω,tωt + (1 + κ2)Σ−1
ν )−1,

and the mean should be
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(
1

σ2
ε

ω′tDω,tωt + (1 + κ2)Σ−1
ν )−1(

1

σ2
ε

ω′tDω,tωt(pt −X ′tθ) + κΣ−1
ν ηt−1 + κΣ−1

ν ηt+1).

The third case is t = 0. The variance of η0 will be equal to Σν/(1/σ
2
0 + 1/σ2

ν), and the mean

will be κη1(1/σ2
ν)/(1/σ

2
0 + 1/σ2

ν).

D.6 Posteriors for φ and ϕ

We draw these parameters using the Metropolis-Hastings algorithm, assuming uninformative

priors for each parameter. We use a random walk Metropolis-Hastings algorithm with a

normal proposal distribution. Given last iteration’s draw on φ, which we denote φ0, we draw

a candidate φ1 ∼ N(φ0, σ
2
φ). Then we compute the posterior log likelihood at both φ0 and

φ1, where this log-likelihood is (suppressing terms that don’t depend on φ or ϕ):

L(φ, ϕ) = −1

2

T∑
t=1

log |Σν(φ, ϕ)| − 1

2σ2
ν

T∑
t=1

(ηt − κηt−1)′Sν(φ, ϕ)−1(ηt − κηt−1)

−1

2
log |σ2

0Sν(φ, ϕ)| − 1

2

1

σ2
0

η′0Sν(φ, ϕ)η0.

We then accept the candidate draw with probability

min

{
1,

exp(L(φ1, ϕ))

exp(L(φ0, ϕ))

}
.

The parameter σ2
φ is set so that the acceptance rate is about 50%. We perform a similar

Metropolis-Hastings step for ϕ. Additionally, since φ and ϕ are constrained to be positive

we reject any draws that are below zero.

E First Order Approximation

We sketch in this appendix the mathematics of first order approximation (FOA) as it pertains

to merger price effects. Greater detail is provided in Jaffe and Weyl (2013) and Miller,

Remer, Ryan, and Sheu (2013). The starting point for FOA is the first order condition that

characterizes profit-maximization. Let cement firms set free-on-board prices to maximize
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profit, taking as given the prices of other firms. Then the first order conditions of any firm

i can be expressed

fi(P ) ≡ −

[
∂Qi(P )

∂Pi

T
]−1

Qi(P )− (Pi −MCi) = 0, (E.1)

where Pi is a vector of firm i’s plant prices, P is a vector of all prices, Qi(P ) is a demand

schedule and MCi is a vector of firm i’s plant marginal costs. The post-merger first order

conditions then can be expressed

hi(P ) ≡ fi(P ) + gi(P ) = 0, (E.2)

where, for a merger of firms j and k,

gj(P ) = −
(
∂Qj(P )T

∂Pj

)−1(
∂Qk(P )T

∂Pj

)
︸ ︷︷ ︸

Diversion from j to k

(Pk −MC1
k)︸ ︷︷ ︸

Markup of k

, (E.3)

the form of gk(P ) is analogous, and gi(P ) = 0 for i 6= j, k. The g function captures the

opportunity costs, or “upward pricing pressure,” created by the merger.48 Notice that it

enters the post-merger first order conditions in the same way as a cost shock. To a first

order approximation, the resulting price changes equal

∆P = −
(
∂f(P )

∂P
+
∂g(P )

∂P

)−1
∣∣∣∣∣
P=P 0

g(P 0), (E.4)

where P 0 is the vector of pre-merger equilibrium prices. In this expression, the Jacobian of

the post-merger first order conditions – “merger pass-through” – depends on the first and

second derivatives of demand. Given knowledge of the first derivatives, it is possible to infer

the second derivatives from cost pass-through based on the formula

ρ = −
(
∂f(P )

∂P

)−1

(E.5)

48Each firm in the merger, when making a sale, forgoes with some probability a sale by the other firm.
The diversion matrix represents the fraction of sales lost by firm j’s products that shift to firm k’s products
due to an increase in firm j’s prices. When multiplied by firm k’s markups, this yields the value of diverted
sales; the more these sales are worth, the greater incentive a firm has to raise price following a merger.
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Merger pass-through then can be calculated with the first and second demand derivatives.

In our application, the large number of plants makes it numerically difficult to identify the

second derivatives. We instead use cost pass-through to proxy merger pass-through. Price

predictions then are based on the matrix multiplication of the pass-through matrix and the

vector of upward pricing pressure. This simplification is proposed in Jaffe and Weyl (2013)

and shown in Miller, Remer, Ryan, and Sheu (2013) to cause little loss of predictive accuracy.

F EPA Analysis of NESHAP Ammendments

The EPA relies on a Cournot model of competition to simulate the effect of regulation in each

of 20 local markets based on conditions in 2005. The model incorporates a constant elasticity

market demand curve and, for markets that are adjacent to a port, a constant elasticity

import supply curve. It is calibrated to elasticity estimates in the existing literature. We

provide details on the model here. After the implementation of regulation, the first order

conditions of firm i can be expressed

dMCi = dP

[
1 +

si
η

]
+ dqi

[
P

η

1

Q

]
− dQ

[
P

η

qi
Q2

]
, (F.1)

P is the market price, si is the share of sales for plant i, qi is the quantity sold by plant i,

Q is market consumption including imports, MC is marginal cost, and η is the elasticity

of consumption with respect to price. Thus the object dMC is the compliance cost of

regulation. Equation F.1 governs how compliance costs, represented by dMCi, affect output

and, in turn, market price. Imports are supplied according to an elasticity φ, such that

dI = φ

(
dP

P

)
I, (F.2)

where I is the quantity of imports. Total consumption in a market (again including imports)

evolves according to

dQ = η

(
dP

P

)
Q. (F.3)

Finally, the model is closed with supply equaling demand,

dQ =
∑
i

dqi + dI. (F.4)
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The EPA calibrates the model with a price elasticity of consumption of 0.88, based on EPA

(1998), an import elasticity of 2.0, based on Broda, Limao, and Weinstein (2008). Prices

and plant-level production are calculated by manipulating the region-level data published in

the Minerals Yearbook of the USGS, following a methodology that is detailed in Section A.1

of EPA (2009). We are able to replicate the calibration process exactly so that discrepancies

between our predictions and those of the EPA are due solely to the decision of the EPA not

to publish plant-level compliance costs.
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