Discussion of 'Selling Cookies' by Bergemann & Bonatti

Emir Kamenica

University of Chicago

4 points

- Inference on A^C
 - interpretation of the model
- Linear pricing
 - model misspecification
- Dynamic price discrimination
 - consumer surplus
- Comparison of monopoly and fragmentation
 - increasing returns to scale and double marginalization

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Model

- Firm's profits are: vq m(q)
 - optimal q depends on v

Model

- Firm's profits are: vq m(q)
 - optimal q depends on v
- Firm buys information on v
 - for a set of consumers (those with $v \in A$), tell me v exactly

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- inference on A^C
- pay for the consumers with $v \in A$; inference is free

Model

- Firm's profits are: vq m(q)
 - optimal q depends on v
- Firm buys information on v
 - for a set of consumers (those with $v \in A$), tell me v exactly

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- inference on A^C
- pay for the consumers with $v \in A$; inference is free
- Inference on A^C central to the analysis

Inference on A^C: simple example

◆□ > < 個 > < E > < E > E 9 < 0</p>

•
$$\pi = vq - cq$$
;
• $v \sim Unif [0, 1]$
• $q \in \{0, 1\}$
• $q = 1 \iff E[v] \ge c$

- $\pi = vq cq;$
 - $v \sim Unif [0, 1]$

•
$$q \in \{0,1\}$$

- $q = 1 \iff E[v] \ge c$
- Efficient partition: $[0,1] = [0,c] \cup [c,1]$

- $\pi = vq cq;$
 - v \sim Unif [0,1]
 - $q \in \{0,1\}$
 - $q = 1 \iff E[v] \ge c$
- Efficient partition: $[0,1] = [0,c] \cup [c,1]$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Firm pays for the smaller set

- $\pi = vq cq;$
 - v \sim Unif [0,1]

•
$$q \in \{0,1\}$$

- $q = 1 \iff E[v] \ge c$
- Efficient partition: $[0,1] = [0,c] \cup [c,1]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Firm pays for the smaller set

• If
$$c < \frac{1}{2}$$
: $A = [0, c - p]$

- $\pi = vq cq;$
 - $\bullet~v\sim$ Unif [0,1]

•
$$q \in \{0,1\}$$

- $q = 1 \iff E[v] \ge c$
- Efficient partition: $[0,1] = [0,c] \cup [c,1]$

(ロ) (型) (E) (E) (E) (O)

- Firm pays for the smaller set
- If $c < \frac{1}{2}$: A = [0, c p]
- If $c \ge \frac{1}{2}$: A = [c + p, 1]

- $\pi = vq cq;$
 - $v \sim \textit{Unif} [0,1]$

•
$$q \in \{0,1\}$$

- $q = 1 \iff E[v] \ge c$
- Efficient partition: $[0,1] = [0,c] \cup [c,1]$
- Firm pays for the smaller set
- If $c < \frac{1}{2}$: A = [0, c p]
- If $c \geq \frac{1}{2}$: A = [c + p, 1]
- Non-monotone relationship between c and demand for cookies

ション ふゆ く 山 マ チャット しょうくしゃ

• Inference on A^C matters because those consumers are reachable

• Inference on A^{C} matters because those consumers are reachable

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Email marketing

• Inference on A^{C} matters because those consumers are reachable

- Email marketing
 - c low: give me addresses of people who don't like me...

• Inference on A^{C} matters because those consumers are reachable

- Email marketing
 - c low: give me addresses of people who don't like me...
 - ... so I can send an email to everyone else

• Inference on A^{C} matters because those consumers are reachable

- Email marketing
 - c low: give me addresses of people who don't like me...
 - ... so I can send an email to everyone else
 - ... but do I have everyone else's email address?

• Inference on A^{C} matters because those consumers are reachable

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Email marketing
 - c low: give me addresses of people who don't like me...
 - ... so I can send an email to everyone else
 - ... but do I have everyone else's email address?
- Not a shortcoming of the model

• Inference on A^{C} matters because those consumers are reachable

- Email marketing
 - c low: give me addresses of people who don't like me...
 - ... so I can send an email to everyone else
 - ... but do I have everyone else's email address?
- Not a shortcoming of the model
 - shortcoming of the exposition

- Inference on A^{C} matters because those consumers are reachable
- Email marketing
 - c low: give me addresses of people who don't like me...
 - ... so I can send an email to everyone else
 - ... but do I have everyone else's email address?
- Not a shortcoming of the model
 - shortcoming of the exposition
 - emphasize how cookies are *different* from email marketing lists

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• rather than emphasizing the reach of the model

Linear pricing

- Some take-aways driven by linear pricing
- Justification: linear pricing is an institutional feature

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Linear pricing

- Some take-aways driven by linear pricing
- Justification: linear pricing is an institutional feature

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• But, linear pricing suboptimal in the model

Linear pricing

- Some take-aways driven by linear pricing
- Justification: linear pricing is an institutional feature
- But, linear pricing suboptimal in the model
- Use of linear pricing might indicate a missing ingredient

ション ふゆ く 山 マ チャット しょうくしゃ

Dynamic price discrimination

• Skirt issue of consumer welfare

Dynamic price discrimination

- Skirt issue of consumer welfare
- Important question
 - links to dynamic price discrimination

Dynamic price discrimination

- Skirt issue of consumer welfare
- Important question
 - links to dynamic price discrimination

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Institutional details

• Whenever firms sell complementary goods

- Whenever firms sell complementary goods
- Is that what is going on here?
- Complementarity of cookies not obvious

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Whenever firms sell complementary goods
- Is that what is going on here?
- Complementarity of cookies not obvious
- Suppose $v \in \{1, 2, 3, 4, 5\}$
 - Value of cookie v = 1
 - optimization on v = 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• inference on A^C

- Whenever firms sell complementary goods
- Is that what is going on here?
- Complementarity of cookies not obvious
- Suppose $v \in \{1,2,3,4,5\}$
 - Value of cookie v = 1
 - optimization on v = 1
 - inference on A^C
- Suppose $v \in \{1, 3, 4, 5\}$
 - Value of cookie v = 1
 - optimization on v = 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• inference on A^{C}

- Whenever firms sell complementary goods
- Is that what is going on here?
- Complementarity of cookies not obvious
- Suppose $v \in \{1,2,3,4,5\}$
 - Value of cookie v = 1
 - optimization on v = 1
 - inference on A^C
- Suppose $v \in \{1, 3, 4, 5\}$
 - Value of cookie v = 1
 - optimization on v = 1: same as before

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• inference on A^{C} : greater

- Whenever firms sell complementary goods
- Is that what is going on here?
- Complementarity of cookies not obvious
- Suppose $v \in \{1,2,3,4,5\}$
 - Value of cookie v = 1
 - optimization on v = 1
 - inference on A^C
- Suppose $v \in \{1, 3, 4, 5\}$
 - Value of cookie v = 1
 - optimization on v = 1: same as before

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- inference on A^C : greater
- Increasing returns to scale in inference

Thank you

・ロト ・御ト ・モト ・モト

æ