
Proceedings on Privacy Enhancing Technologies ; 2020 (2):129–154

Janus Varmarken†*, Hieu Le†, Anastasia Shuba, Athina Markopoulou, and Zubair Shafq

The TV is Smart and Full of Trackers:
Measuring Smart TV Advertising and Tracking
Abstract: In this paper, we present a large-scale mea-
surement study of the smart TV advertising and track-
ing ecosystem. First, we illuminate the network behav-
ior of smart TVs as used in the wild by analyzing net-
work traÿc collected from residential gateways. We fnd
that smart TVs connect to well-known and platform-
specifc advertising and tracking services (ATSes). Sec-
ond, we design and implement software tools that sys-
tematically explore and collect traÿc from the top-1000
apps on two popular smart TV platforms, Roku and
Amazon Fire TV. We discover that a subset of apps
communicate with a large number of ATSes, and that
some ATS organizations only appear on certain plat-
forms, showing a possible segmentation of the smart
TV ATS ecosystem across platforms. Third, we evaluate
the (in)e˙ectiveness of DNS-based blocklists in prevent-
ing smart TVs from accessing ATSes. We highlight that
even smart TV-specifc blocklists su˙er from missed ads
and incur functionality breakage. Finally, we examine
our Roku and Fire TV datasets for exposure of person-
ally identifable information (PII) and fnd that hun-
dreds of apps exfltrate PII to third parties and plat-
form domains. We also fnd evidence that some apps
send the advertising ID alongside static PII values, ef-
fectively eliminating the user’s ability to opt out of ad
personalization.

Keywords: Smart TV; privacy; tracking; advertising;
blocklists

DOI 10.2478/popets-2020-0021
Received 2019-08-31; revised 2019-12-15; accepted 2019-12-16.

*Corresponding Author: Janus Varmarken†: University
of California, Irvine, E-mail: jvarmark@uci.edu
Hieu Le†: University of California, Irvine, E-mail:
hieul@uci.edu. (†The frst two authors made equal contribu-
tions and share the frst authorship).
Anastasia Shuba: Broadcom Inc. (The author was a student
at the University of California, Irvine at the time the work was
conducted), E-mail: ashuba@uci.edu
Athina Markopoulou: University of California, Irvine, E-
mail: athina@uci.edu
Zubair Shafq: University of Iowa, E-mail: zubair-
shafq@uiowa.edu

1 Introduction
Smart TV adoption has steadily grown over the last few
years, with more than 37% of US households owning at
least one smart TV in 2018, a 16% increase over the
previous year [1]. This growth is driven by two trends.
First, over-the top (OTT) video streaming services such
as Hulu and Netfix have become popular, with more
than 28 million and 60 million subscribers in the US, re-
spectively [2]. Second, smart TV solutions are available
at relatively a˙ordable prices, with many of the external
smart TV boxes/sticks priced less than $50, while built-
in smart TVs now cost only a few hundreds dollars [3].
As a result, a diverse set of smart TV platforms have
emerged, and have been integrated into various smart
TV products. For example, Apple TV integrates tvOS,
and TCL and Sharp TVs integrate Roku.

Many of these platforms have their own respective
app store, where the vast majority of smart TV apps
are ad-supported [4]. OTT advertising, which includes
smart TV, is expected to increase by 40% to $2 billion in
2018 [5]. Roku and Fire TV are two of the leading smart
TV platforms in number of ad requests [6]. Despite their
increasing popularity, the advertising and tracking ser-
vices (“ATSes”) on smart TVs are currently not well
understood by users, researchers, and regulators. In this
paper, we present one of the frst large-scale measure-
ment studies of the emerging smart TV advertising and
tracking ecosystem.
In the Wild Measurements (§3). First, we analyze
the network traÿc of smart TV devices in the wild. We
instrument residential gateways of 41 homes and collect
fow-level summary logs of the network traÿc gener-
ated by 57 smart TVs from seven di˙erent platforms.
The comparative analysis of network traÿc by di˙er-
ent smart TV platforms uncovers similarities and di˙er-
ences in their characteristics. As expected, we fnd that
a substantial fraction of the traÿc is related to popular
video streaming services such as Netfix and Hulu. More
importantly, we fnd generic as well as platform-specifc
ATSes. Although realistic, the in the wild dataset does
not provide app-level visibility, i.e., we cannot deter-
mine which apps generate traÿc to ATSes. To address
this limitation, we undertake the following major e˙ort.

mailto:shafiq@uiowa.edu
mailto:athina@uci.edu
mailto:ashuba@uci.edu
mailto:hieul@uci.edu
mailto:jvarmark@uci.edu

130 The TV is Smart and Full of Trackers

Controlled Testbed Measurements (§4). We de-
sign and implement two software tools, Rokustic for
Roku and Firetastic for Amazon Fire TV, which sys-
tematically explore apps and collect their network traf-
fc. We use Rokustic and Firetastic to exercise the top-
1000 apps of their respective platforms, and refer to the
collected network traÿc as our testbed datasets. We an-
alyze the testbed datasets w.r.t. the top Internet des-
tinations the apps contact, at the granularity of fully
qualifed domain names (FQDNs), e˙ective second level
domains (eSLDs), and organizations. We use “domain”,
“endpoint”, and “destination” interchangeably in place
of FQDN and eSLD when the distinction is clear from
the context. We further separate destinations as frst,
third, and platform-specifc party, w.r.t. to the app that
contacts them.

First, we fnd that the majority of apps contact few
ATSes, while about 10% of the apps contact a large
number of ATSes. Interestingly, many of these more
concerning apps come from a small set of developers.
Second, we fnd what appears to be a segmentation of
the smart TV ATS ecosystem across Roku and Fire TV
as (1) the two datasets have little overlap in terms of
ATS domains; (2) some third party ATSes are among
the key players on one platform, but completely absent
on the other; and (3) apps that are present on both plat-
forms have little overlap in terms of the domains they
contact. Third, we compare the top third party ATS
domains of the testbed datasets to those of Android.
Evaluation of DNS-Based Blocklists (§5). Users
typically rely on DNS-based blocking solutions such as
Pi-hole [7] to prevent in-home devices such as smart
TVs from accessing ATSes. Thus, we evaluate the e˙ec-
tiveness of DNS-based blocklists, selecting those that
are most relevant to smart TVs. Specifcally, we ex-
amine and test four popular blocklists: (1) Pi-hole De-
fault blocklist (PD) [7], (2) Firebog’s recommended ad-
vertising and tracking lists (TF) [8], (3) Mother of all
Ad-Blocking (MoaAB) [9], and (4) StopAd’s smart TV
specifc blocklist (SATV) [10]. Our comparative analysis
shows that block rates vary, with Firebog having the
highest coverage across di˙erent platforms and StopAd
blocking the least. We further investigate potential false
negatives (FN) and false positives (FP). We discover
that blocklists miss di˙erent ATSes (FN), some of which
are missed by all blocklists, while more aggressive block-
lists can su˙er from false positives that result in break-
ing app functionality. We discuss two ways to discover
false negatives, through observing domains contacted

by multiple apps (“app prevalence”) and keyword search
(based on ATS related words like “ads” and “measure”).
PII Exposures (§6). We further examine the net-
work traces of our testbed datasets and fnd that hun-
dreds of apps exfltrate personally identifable informa-
tion (PII) to third parties and platform-specifc parties,
mostly for non-functional advertising and tracking pur-
poses. Alarmingly, we fnd that many apps send the ad-
vertising ID alongside static PII values such as the de-
vice’s serial number. This eliminates the user’s ability
to opt out of personalized advertisements by resetting
the advertising ID, since the ATS can simply link an old
advertising ID to its new value by joining on the serial
number. We evaluate the blocklists’ ability to prevent
exposures of PII and fnd that they generally perform
well for Roku, but struggle to prevent exfltration of the
device’s serial number and the device ID to third parties
and the platform-specifc party for Fire TV.
Contributions. In this paper, we analyze the network
behavior of smart TVs, both in the wild and in the lab.
Our contributions include the following: (1) providing
an in-depth comparative analysis of the ATS ecosystems
of Roku, Fire TV, and Android; (2) illuminating the
key players within the Roku and Fire TV ATS ecosys-
tems by mapping domains to eSLDs and parent orga-
nizations; (3) evaluating the e˙ectiveness and adverse
e˙ects of an extensive set of blocklists, including smart
TV specifc blocklists; (4) instrumenting long experi-
ments per app to uncover approximately twice as many
domains as [11]; and (5) making our tools, Rokustic and
Firetastic, and our testbed datasets available [12].
Outline. The structure of the rest of the paper is as fol-
lows. Section 2 provides background on smart TVs and
reviews related work. Section 3 presents the in the wild
measurement and analysis of 57 smart TVs from seven
di˙erent platforms in 41 homes. Section 4 presents our
systematic testing approach and comparative analysis
of the top-1000 Roku and Fire TV apps. Section 5 eval-
uates four well-known DNS-based blocklists and shows
their limitations through analysis of missed ATSes and
app breakage. Section 6 investigates exfltration of PII.
Section 7 concludes the paper, discusses limitations, and
outlines directions for future work. The appendix pro-
vides additional details and results, as well as an evalu-
ation and discussion of the limitations of our approach.

131 The TV is Smart and Full of Trackers

2 Background & Related Work
Background on Smart TVs. A smart TV is es-
sentially an Internet-connected TV that has apps for
users to stream content, play games, and even browse
the web. There are two types of smart TV products
in the market: (1) built-in smart TVs, and (2) exter-
nal smart TV boxes/sticks, also referred to as over-the-
top (OTT) streaming devices. Some TV manufacturers,
such as Samsung and Sony, o˙er TVs with built-in smart
TV functionality. While several others provide external
box/stick solutions, such as Roku (by Roku), Fire TV
(by Amazon), and Apple TV (by Apple), that convert a
regular TV into a smart TV. In addition, hybrid prod-
ucts exist, as some TV manufacturers now integrate ex-
ternal box/stick solutions directly into their smart TVs.
For example, TCL and Sharp o˙er smart TVs that inte-
grate Roku TV, while Insignia and Toshiba o˙er smart
TVs that integrate Fire TV. We use “smart TV” as an
umbrella term for TVs with built-in smart TV function-
ality and OTT streaming devices.

There is a diverse set of smart TV platforms, each
with its own set of apps that users can install on their
TVs. Many smart TVs use an Android-based operating
system (e.g., Sony, AirTV, Philips) or a modifed version
of it (e.g., Fire TV). Regular Android TVs have access
to apps from the Google Play Store, while Fire TV has
its own app store controlled by Amazon. In both cases,
applications for such TVs are built in a manner simi-
lar to regular Android applications. Likewise, Apple TV
apps are built using technologies and frameworks that
are also available for iOS apps, and both types of apps
can be downloaded from Apple’s App Store.

Some smart TV platforms are distinct as compared
to traditional Android or iOS. For example, Samsung
smart TV apps are built for their own custom platform
called Tizen and are downloadable from the Tizen app
store. Likewise, applications for the Roku platform are
built using a customized language called BrightScript,
and are accessible via the Roku Channel Store. Yet an-
other line of smart TVs such as LG smart TV and Hy-
brid broadcast broadband TV (HbbTV) follow a web-
based ecosystem where applications are developed using
HTML, CSS, and JavaScript. Finally, some smart TV
platforms, such as Chromecast, do not have app stores
of their own, but are only meant to “cast” content from
other devices such as smartphones.

As with mobile apps, smart TV apps can integrate
third-party libraries and services, often for advertising
and tracking purposes. Serving advertisements is one of

the main ways for smart TV platforms and app devel-
opers to generate revenue [4]. Roku’s advertising rev-
enue exceeded $250 million in 2018 and is expected to
more than double by 2020 [13]. Both Roku and Fire TV
take a 30% cut of the advertising revenue from apps on
their platforms [14]. The smart TV advertising ecosys-
tem mirrors many aspects of the web advertising ecosys-
tem. Most importantly, smart TV advertising uses pro-
grammatic mechanisms that allow apps to sell their ad
inventory in an automated fashion using behavioral tar-
geting [15, 16].

The rapidly growing smart TV advertising and asso-
ciated tracking ecosystem has already warranted privacy
and security investigations into di˙erent smart TV plat-
forms. Consumer Reports examined privacy policies of
various smart TV platforms including Roku, LG, Sony,
and Vizio [17]. They found that privacy policies are of-
ten challenging to understand and it is diÿcult for users
to opt out of di˙erent types of tracking. For instance,
many smart TVs use Automatic Content Recognition
(ACR) to track their users’ viewing data and use it to
serve targeted ads [18]. Vizio paid $2.2 million to settle
the charges by the Federal Trade Commission (FTC)
that they were using ACR to track users’ viewing data
without their knowledge or consent [19]. While smart
TV platforms now allow users to opt out of such track-
ing, it is not straightforward for users to turn it o˙ [20].
Further, even with ACR turned o˙, users still must
agree to a basic privacy policy that asks for the right to
collect data about users’ location, choice of apps, etc.
Related Work. While the desktop [21–23] and mo-
bile [24–26] ATS ecosystems have been thoroughly stud-
ied, the smart TV ATS ecosystem has not been exam-
ined at scale until recently.

Three concurrent papers studied the network be-
havior and privacy implications of smart TVs [11, 27,
28]. Ren et al. [27] studied a large set of IoT de-
vices, spanning multiple device categories. Their re-
sults showed that smart TVs were the category of de-
vices that contacted the largest number of third parties,
which further motivates our in-depth study of the smart
TV ATS ecosystem. Huang et al. [28] used crowdsourc-
ing to collect network traÿc for IoT devices in the wild
and showed that smart TVs contact many trackers by
matching the contacted domains against the Disconnect
blocklist. Finally, Moghaddam et al. [11] also instru-
mented the Roku and Fire TV platforms to map the
ATS endpoints and the exposure of PII. Our work in-
dependently confrms the fndings of these works w.r.t.
the smart TV ATS ecosystem, both by analyzing seven

132 The TV is Smart and Full of Trackers

di˙erent smart TV platforms in the wild and by per-
forming systematic tests of two platforms (Roku and
Fire TV) in the lab. In addition, we further contribute
along two fronts. First, we show that even the same app
across di˙erent smart TV platforms contact di˙erent
ATSes, which shows the fragmentation of the smart TV
ATS ecosystem. Second, we evaluate the e˙ectiveness of
di˙erent sets of blocklists, including smart TV specifc
blocklists, in terms of their ability to prevent ads and
their adverse e˙ects on app functionality. We also sug-
gest ways to aid blocklist curation through analysis of
domain usage across apps and PII exposures.

Earlier work in this space includes [29] by Ghiglieri
and Tews, who studied how broadcasting stations could
track viewing behavior of users in the HbbTV plat-
form. In contrast to the rich app-based platforms we
study, the HbbTV platform studied in [29] contained
only one HbbTV app that uses HTML5-based overlays
to provide interactive content. Related to our work, they
found that the HbbTV app loaded third-party tracking
scripts from Google Analytics. Malkin et al. [30] sur-
veyed 591 U.S. Internet users about their expectations
on data collection by smart TVs. They found that users
would rather enjoy new technology than worry about
privacy, and users thus over rely on existing laws and
regulations to protect their data.

2.1 Labeling Methodology

Throughout this paper, we provide insight into the
smart TV ATS ecosystems by labeling a domain ac-
cording to (1) its purpose (ATS or non-ATS); (2) its
parent organization (i.e., the domain owner); and (3) its
relation to the app that uses it (frst, third, or platform-
specifc party). We detail this methodology below.
ATS Domains. We identify ATS domains as follows.
For fgures that denote top domains, we check if the
FQDN is labeled as ads or tracking by VirusTotal,
McAfee, OpenDNS [31–33], or if it is blocked by any
of the blocklists considered in Sec. 5. For fgures and
tables that involve entire datasets, we only consider the
blocklists due to the impracticality of manually labeling
thousands of data points.
Parent Organizations. To understand the presence of
di˙erent organizations on smart TV platforms, we map
each FQDN to its e˙ective second level domain (eSLD)
using Mozilla’s Public Suÿx List [34, 35], and use
Crunchbase [36]’s acquisition and sub-organization in-
formation to fnd the parent company of the eSLD. For

example, hulu.com belongs to the Walt Disney Com-
pany and youtube.com belongs to Alphabet.
App-Level Party Categorization. The app-level vis-
ibility in our testbed experiments (Sec. 4) enables cate-
gorization of an Internet destination as a frst party or a
third party w.r.t. app generating the traÿc. We provide
an overview of the technique here and defer details to
Appendix C.1.

We adopt a technique similar to prior work [24], and
we augment it to also include a platform-specifc party
for traÿc to platform-related destinations. We match
tokenized eSLDs with tokenized package/app names
and developer names. If the tokens match, we label the
domain as frst party. Otherwise, if the traÿc originated
from platform activity rather than app activity, we la-
bel it as platform-specifc party: for Fire TV, AntMoni-
tor [37] labels connections with the responsible process;
for Roku, we check if the eSLD contains “roku”. Other-
wise, if the domain is contacted by at least two di˙erent
apps from di˙erent developers, we label it as third party.
Lastly, we resort to labeling it as other to capture do-
mains that are only contacted by a single app.

3 Smart TV Traÿc in the Wild
In this section, we study the network behavior of smart
TV devices when used by real users by analyzing a
dataset collected at residential gateways of tens of
homes (we refer to this dataset as the in the wild
dataset). We compare the number of fows and traÿc
volumes generated by smart TVs from seven di˙erent
platforms. We analyze the most frequently used domains
of each platform by identifying ATS domains and map-
ping each domain to its parent organization.
Data Collection. To study smart TV traÿc character-
istics in the wild, we monitor network traÿc of 41 homes
in a major metropolitan area in the United States. We
sni˙ network traÿc of smart TV devices at the resi-
dential gateways using o˙-the-shelf OpenWRT-capable
commodity routers. We collect fow-level summary in-
formation for network traÿc. For each fow, we collect
its start time, FQDN of the external endpoint (using
DNS), and the internal device identifer. We identify
smart TVs using heuristics that rely on DNS, DHCP,
and SSDP traÿc and also manually verify the identi-
fed smart TVs by contacting users. Our data collection
covers a total of 57 smart TVs across 41 homes over
the duration of approximately 3 weeks in 2018. Note
that we obtained written consent from users, informing

hulu.com
youtube.com

133 The TV is Smart and Full of Trackers

0 10k 20k 30k

Number of Flows
insights-collector.newrelic.com

api-global.netflix.com
vortex.hulu.com
home.hulu.com

aeg-personalization.quickplay.com
uwp-aeg-hbs.quickplay.com

http-v-darwin.hulustream.com
occ-1-1736-999.1.nflxso.net

d2lkq7nlcrdi7q.cloudfront.net
cws-us-east.conviva.com

cws-110*57.[2].amazonaws.com
init-p01st.push.apple.com

giga.logs.roku.com
liberty.logs.roku.com

occ-0-1736-999.1.nflxso.net
ichnaea.netflix.com

dtvn-live-sponsored.akamaized.net
midland.logs.roku.com

cws-eu-west-1.conviva.com
cdn-0.nflximg.com

http-e-darwin.hulustream.com
occ-2-1736-999.1.nflxso.net

atv-ext.amazon.com
oca-api.geo.netflix.com

b.scorecardresearch.com
cws.conviva.com

stream.nbcsports.com
tp.akam.nflximg.com
scribe.logs.roku.com

pubads.g.doubleclick.net

0 10k 20k 30k

Number of Flows
vortex.hulu.com

api-global.netflix.com
cws-us-east.conviva.com
api-global.[1].netflix.com

time-ios.apple.com
e673.e9.akamaiedge.net

play.hulu.com
home.hulu.com

http-v-darwin.hulustream.com
occ-1-1736-999.1.nflxso.net

time-ios.g.aaplimg.com
1-courier.push.apple.com

http-e-darwin.hulustream.com
e1042.b.akamaiedge.net

occ-0-1736-999.1.nflxso.net
itunes.apple.com.edgekey.net

occ-2-1736-999.1.nflxso.net
pt.hulu.com

cws-110*57.[2].amazonaws.com
cws-189*47.[2].amazonaws.com

d2hzeyj6b557bu.cloudfront.net
http-v-[3].footprint.net

t2.hulu.com
init-p01st.push.apple.com

xp.itunes-apple.com.akadns.net
auth.hulu.com

e1042.e12.akamaiedge.net
mt-ingestion-[4].akadns.net

nrdp.nccp.netflix.com
a1910.b.akamai.net

(a) Roku (b) Apple

0 2k 4k

Number of Flows
api-global.netflix.com

mobile-collector.newrelic.com
feed.theplatform.com
hh.prod.sony[6].com

android.clients.google.com
www.fox.com

flingo.tv
ichnaea.netflix.com

pubads.g.doubleclick.net
clients3.google.com

www.lookingglass.rocks
i.ytimg.com

clients4.google.com
play.googleapis.com

artist.api.lv3.cdn.hbo.com
js-agent.newrelic.com
www.googleapis.com

mtalk.google.com
comet.api.hbo.com

profile.localytics.com
occ-0-586-590.1.nflxso.net

connectivitycheck.gstatic.com
occ-1-586-590.1.nflxso.net

assets.fox.com
sp.auth.adobe.com

occ-2-586-590.1.nflxso.net
api.meta.ndmdhs.com

api.fox.com
youtubei.googleapis.com

cdn.meta.ndmdhs.com

0 50k 100k

Number of Flows
log-ingestion.samsungacr.com

www.youtube.com
api-global.netflix.com

lcprd1.samsungcloudsolution.net
android.clients.google.com

log-2.samsungacr.com
i.ytimg.com

vortex.hulu.com
occ-1-1736-999.1.nflxso.net

youtube-ui.l.google.com
api.twitter.com

clients1.google.com
ypu.samsungelectronics.com

i9.ytimg.com
occ-0-1736-999.1.nflxso.net

nrdp.nccp.netflix.com
ytimg.l.google.com

s.youtube.com
clients4.google.com

video-stats.l.google.com
occ-2-1736-999.1.nflxso.net

osb.samsungqbe.com
t2.hulu.com

ichnaea.netflix.com
http-v-darwin.hulustream.com
upu.samsungelectronics.com

tv.deezer.com
dpu.samsungelectronics.com

ocfconnect-[7].samsungiotcloud.com
googleads.g.doubleclick.net

(c) Sony (d) Samsung

Fig. 1. Top-30 fully qualifed domain names in terms of number of fows per device for a subset of the smart TVs in the “in the wild”
dataset. See Appendix C.2 for the other brands. Domains identifed as ATS are highlighted with red, dashed bars.

them of our data collection and research objectives, in
accordance with our institution’s IRB guidelines.
Dataset Statistics. Table 1 lists basic statistics of
smart TV devices observed in our dataset. Overall, we
note 57 smart TVs from 7 di˙erent vendors/platforms
using a variety of technologies.

Devices can be built-in smart TVs such as Samsung
and Sony, others like Chromecast and Apple TV can
be external stick/box solutions, while devices like Roku
can have both forms. For example, 7 out 9 Roku devices
in our dataset were built-in Roku smart TVs, while the
remaining two were external Roku sticks. Note that a
smart TV platform such as Roku supports the same
set of apps and a similar interface for both built-in and

external smart TV devices. Thus, we do not di˙erentiate
between built-in vs. external Roku smart TV devices.

We expect smart TV devices to generate signifcant
traÿc because they are typically used for OTT video
streaming [38]. Chromecast devices generate the highest
number of fows (exceeding 200 thousand fows) on aver-
age, while Samsung, Apple, and Roku devices generate
nearly 50 thousand fows on average. Roku devices gen-
erate the highest volume of fows (exceeding 80 GB) on
average, with one Roku generating as much as 283 GB.
Except for LG and Sony devices, all smart TV devices
generate at least tens of GBs worth of traÿc on aver-
age. Finally, we note that smart TV devices typically
connect to hundreds of di˙erent endpoints on average.

134 The TV is Smart and Full of Trackers

Smart
TV

Platform

Device
Count

Average
Flow
Count
/Device
(x 1000)

Average
Flow

Volume
/Device
(GB)

Average
eSLD
Count
/Device

Apple
Samsung

Chromecast
Roku
Vizio
LG
Sony

16
11
10
9
6
4
1

49.3
62.6
201.9
48.1
43.4
10.9
33.1

46.6
33.2
26.3
83.0
63.4
0.9
0.1

536
369
354
543
278
1893
186

Table 1. Traÿc statistics of 57 smart TV devices observed across
41 homes (“in the wild” dataset).

Endpoint Analysis. Fig. 1 plots the top-30 FQDNs in
terms of fow count for Roku, Apple, Sony, and Samsung
smart TV platforms. The plots for the remaining smart
TV platforms are in Appendix C.2.

We note several similarities in the domains accessed
by di˙erent smart TV devices. First, video streaming
services such as Netfix and Hulu are popular across the
board, as evident from domains such api-global.netfix.
com and vortex.hulu.com. Second, cloud/CDN services
such as Akamai and AWS (Amazon) also appear for
di˙erent smart TV platforms. Smart TVs likely connect
to cloud/CDN services because popular video stream-
ing services typically rely on third party CDNs [39, 40].
Third, we note the prevalence of well-known adver-
tising and tracking services (ATSes). For example,
*.scorecardresearch.com and *.newrelic.com are third
party tracking services, and pubads.g.doubleclick.net is
a third party advertising service.

We notice several platform-specifc di˙erences in
the domains accessed by di˙erent smart TV platforms.
For example, giga.logs.roku.com (Roku), time-ios.apple.
com (Apple), hh.prod.sonyentertainmentnetwork.com
(Sony), and log-ingestion.samsungacr.com (Samsung)
are unique to di˙erent types of smart TVs. In addition,
we notice platform-specifc ATSes. For example, the fol-
lowing advertising-related domains are not in the top-30
(and therefore not pictured in Fig. 1), but are unique to
di˙erent smart TV platforms: p.ads.roku.com (Roku),
ads.samsungads.com (Samsung), and us.info.lgsmartad.
com (LG).
Organizational Analysis. Figure 2 illustrates the mix
of di˙erent parent organizations contacted by the seven
smart TV platforms in our dataset. It shows the preva-
lence of Alphabet in smart TV platforms like Chrome-
cast, Sony, and LG, while revealing competing organi-

Apple TV

Chromecast

LG

Roku

Samsung

Sony Bravia

Vizio

Adobe Systems

AEG

Alphabet

Amazon

Apple

AT&T

Comcast

comScore

Conviva

Deezer

Flingo

Fox

Kodi
LG

Localytics

NBCUniversal Media

Netflix

New Relic

NFL

Roku

Samsung

Sony

Time Warner

Twitter

Unknown/CDN

Verizon
Vizio

Walt Disney Company

Fig. 2. Mapping of platforms measured in the wild to the par-
ent organizations of the endpoints they contact (for the top-30
FQDNs of each platform). The width of an edge indicates the
number of distinct FQDNs within that organization that was ac-
cessed by the platform.

zations such as Apple on the other end of the spectrum.
Furthermore, it reveals the presence of organizations like
Conviva, comScore, and Localytics, whose main busi-
ness is in the advertising and tracking space. We note
that Samsung, Deezer, Roku, LG, and Flingo have the
majority of their domains labeled as ATSes while Net-
fix and Walt Disney Company have less than half of
their domains labeled as ATSes.
Takeaway & Limitations. Traÿc analysis of di˙er-
ent smart TV platforms in the wild highlights interest-
ing similarities and di˙erences. As expected, all devices
generate traÿc related to popular video streaming ser-
vices. In addition, they also access ATSes, both well-
known and platform-specifc. While our vantage point
at the residential gateway provides a real-world view of
the behavior of smart TV devices, it lacks granular in-
formation beyond fows (e.g., packet-level information)
and does not tie traÿc to the app that generate it. An-
other limitation of this analysis is that the fndings may
be biased by the viewing habits of users in these 41
households. It is unclear how to normalize to provide
a fair comparison of endpoints accessed by the di˙er-
ent smart TV platforms. We address these limitations

api-global.netflix.com
api-global.netflix.com
vortex.hulu.com
*.scorecardresearch.com
*.newrelic.com
pubads.g.doubleclick.net
giga.logs.roku.com
time-ios.apple.com
time-ios.apple.com
hh.prod.sonyentertainmentnetwork.com
log-ingestion.samsungacr.com
p.ads.roku.com
ads.samsungads.com
us.info.lgsmartad.com
us.info.lgsmartad.com

135 The TV is Smart and Full of Trackers

next by systematically analyzing two popular smart TV
platforms in a controlled testbed.

4 Systematic Testing of the Roku
and Fire TV Platforms

In this section, we perform an in-depth, systematic
study of two smart TV platforms, Roku and Amazon
Fire TV, which we chose since they are popular [41],
a˙ordable ($25), and among the leading smart TV plat-
forms in terms of number of ad requests [6]. Sections 4.1
and 4.2 present our measurement approach for system-
atically testing the top-1000 apps in each platform while
collecting their network traÿc. Since app exploration is
automated, no real users are involved, thus no IRB is
needed. Our measurement approach provides visibility
into the behaviors of individual apps, which was not
possible from the vantage point used for the in the wild
dataset. In Section 4.3, we analyze the two testbed
datasets, and compare them to each other and to the
Android ATS ecosystem.

4.1 Roku Data Collection

In this section, we describe the Roku platform and our
app selection methodology, and present an overview of
Rokustic—our software tool that automatically explores
Roku apps. We use Rokustic to explore and collect traf-
fc from 1044 Roku apps. The resulting network traces
are analyzed in Sec. 4.3.
Roku Platform. We start by describing the Roku plat-
form, which has its own app store—the Roku Chan-
nel Store [42] (RCS)—that o˙ers more than 8500 apps,
called “channels”. For security purposes, Roku sand-
boxes each app (apps are not allowed to interact or ac-
cess the data of other apps) and provides limited access
to system resources [43]. Furthermore, Roku apps can-
not run in the background. Specifcally, app scripts are
only executed when the user selects a particular app,
and when the user exits the app, the script is halted,
and the system resumes control [44].

To display ads, apps typically rely on the Roku Ad-
vertising Framework which is integrated into the Roku
SDK [45]. The framework allows developers to use ad
servers of their preference and updates automatically
without requiring the developer to rebuild the app. Even
though such a framework eliminates the need for third
party ATS libraries, the development and usage of such

libraries is still possible. For example, the Ooyala IQ
SDK [46] provides various analytics services that can
be integrated into a Roku app. Thus, such libraries can
help ATSes learn the viewing habits of users by collect-
ing data from multiple apps. In terms of permissions,
Roku only protects microphone access with a permis-
sion and does not require any permission to access the
advertising ID. Users can choose to reset this ID and opt
out of targeted advertising at any time [45]. However,
apps and libraries can easily create other IDs or use fn-
gerprinting techniques to continue tracking users even
after opt-out. We further elaborate on this in Sec 6.
App Selection. The RCS provides a web (and on-
device) interface for browsing the available Roku apps.
To the best of our knowledge, Roku does not pro-
vide public documentation on how to programmatically
query the RCS. We therefore reverse-engineer the REST
API backing the RCS web interface by inspecting the
HTTP(S) requests sent while browsing the RCS, and
use this insight to write a script that crawls the RCS
for the metadata of all (8515 as of April 2019) apps.

To test the most relevant apps, we select the
top-50 apps in 30 out of the 32 categories. We exclude
“Themes” and “Screensavers” since these apps do not
show up among the regular apps on the Roku and there-
fore cannot be operated using our automation software.
We base our selection on the “star rating count”, which
we interpret as the review count. Roku apps can be
labeled with multiple categories, thus some apps con-
tribute to the top-50 of multiple categories. This places
the fnal count of apps in our dataset at 1044.
Automation (Rokustic). To scale testing of apps, we
implement a software tool, Rokustic, that automatically
installs and exercises Roku apps. Due to lack of space,
we only provide a brief overview here and defer addi-
tional details to Appendix A.1.

We run Rokustic on a Raspberry Pi that acts as a
router and hosts a local wireless network that the Roku
is connected to. Rokustic utilizes ECP [47], a REST-like
API exposed by the Roku device, to control the Roku.
Given a set of apps to exercise, Rokustic installs each
app by invoking the ECP endpoint that opens up the
on-device version of the RCS page for the app, and then
sends a virtual key press to click the “Add Channel”
button. To exercise apps, Rokustic frst invokes the ECP
endpoint that returns the set of installed apps. For each
app, Rokustic then (1) starts tcpdump on the Raspberry
Pi’s wireless interface; (2) uses ECP to launch the app
and invoke a series of virtual key presses in an attempt
to incur content playback; (3) pauses for fve minutes to

136 The TV is Smart and Full of Trackers

let the content play; (4) exits the app and repeats from
step 2 an additional two times; (5) terminates tcpdump.

Since Roku apps cannot execute in the background
(see “Roku Platform”), all captured traÿc will belong to
the exercised app and the Roku system. The total inter-
action time with each app is approximately 16 minutes.
We do not attempt to decrypt TLS traÿc as we cannot
install our own self-signed certifcates on the Roku.

4.2 Fire TV Data Collection

In this section, we describe the Fire TV platform, our
app selection methodology, and present an overview
of Firetastic—our software tool that automatically ex-
plores Fire TV apps. By using Firetastic to control six
Fire TV devices in parallel, we explore and collect traf-
fc from 1010 Fire TV apps within a one week period.
The resulting network traces are analyzed in Sec. 4.3.
Fire TV Platform. Although Fire TV is made by
Amazon, its underlying operating system, Fire OS, is
a modifed version of Android. This allows apps for
Fire TV to be developed in a similar fashion to An-
droid apps. Therefore, all third-party libraries that are
available for Android apps can also be integrated into
Fire TV apps. Similarly, application sandboxing and
permissions in Fire TV are analogous to those of An-
droid, and any permission requested by the app is inher-
ited by all libraries that the app includes. This allows
third party libraries to track users across apps using
a variety of identifers, such as Advertising ID, Serial
Number, and Device ID, etc. We further discuss track-
ing through PII exposure in Section 6.
App Selection. To test the most relevant apps, we pick
the top-1000 apps from Amazon’s curated list of “Top
Featured” apps. We ignore some apps that use a local
VPN (as they would confict with AntMonitor), that
could not be installed manually, and utility apps that
can change the device settings (which would a˙ect the
test environment). As a result, we ignore around 200
apps while including 1010 testable applications. Ama-
zon’s app store o˙ers around 4,000 free apps at the time
of writing, thus our dataset covers approximately 25%.
Automation (Firetastic). We design and implement
a software tool, Firetastic, that integrates the capabil-
ities of two open source tools for Android: an SDK for
network traÿc collection and a tool for input automa-
tion. We provide a brief overview of Firetastic here, and
defer additional details to Appendix A.2.

Number of Roku Fire TV Both
Apps exercised
Fully qualifed domain names (FQDN)
FQDNs accessed by multiple apps
URL paths

1044
2191
669

13899

1010
1734
603

240713

128
578
199
74

Table 2. Summary of the Roku and Fire TV testbed datasets.
The rightmost column summarizes the intersection between the
two testbed datasets. For example, there are 128 apps that are
present both in the Roku dataset and the Fire TV dataset.

We rely on AntMonitor [37, 48], an open-source
VPN-based library, to intercept all outgoing network
traÿc from the Fire TV, and to label each packet with
the package name of the application (or system pro-
cess) that generated it. We enable AntMonitor’s TLS
decryption for added visibility into PII exposures. We
analyze the success of TLS decryption in Appendix B.
In summary, TLS decryption was generally successful
with 10% or fewer failures for 55% of all apps, and 20%
or fewer failures for 80% of all apps.

For app exploration, we utilize DroidBot [49], a
Python tool that dynamically maps the UI and sim-
ulates user inputs such as button presses using the An-
droid Debug Bridge (ADB). To increase the probability
of content playback, we confgure DroidBot to utilize
its breadth frst search algorithm to explore each app.
The intuition is that the main content is often made
available from top-level UI elements.

In summary, for each app, Firetastic: (1) starts
AntMonitor; (2) explores the app for 15 minutes; (3)
stops AntMonitor; and (4) extracts the .pcapng fles
that were generated during testing. We use Firetastic
to explore apps on six Fire TV devices in parallel. Our
test setup is resource-eÿcient and scalable, using only
one computer to send commands to multiple Fire TVs.

4.3 Comparing Roku and Fire TV

In this section, we analyze the (ATS) domains accessed
by the apps in the Roku and Fire TV testbed datasets.
We frst provide an overview of the datasets, and analyze
how many (ATS) domains apps contact. We then look
closer at the eSLDs and third party ATS domains that
are contacted by the most apps, including which parent
organizations they belong to. Furthermore, we compare
the top third party ATS domains to those of Android.
Finally, we compare the domains accessed by apps that
are present on both testbed platforms.

137 The TV is Smart and Full of Trackers

0 20 40 60 80 100
Number of Distinct Domains

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f T
es

te
d

A
pp

s

Roku

Fire TV

0 20 40 60 80
Number of Distinct ATS Domains

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f T
es

te
d

A
pp

s

Roku

Fire TV

(a) Roku & Fire TV: Distinct domains per app. (b) Roku & Fire TV: Distinct ATS domains per app. A do-
main is considered an ATS if it is labeled as so by any of the
blocklists considered in Sec. 5.

0 250 500 750 1000

Number of Apps

ewscloud.com
stickyadstv.com

springserve.com
cloudfront.net

agkn.com
monarchads.com

akamaihd.net
adsrvr.org
gvt1.com

demdex.net
insightexpressai.com

innovid.com
akamaized.net

adrta.com
imrworldwide.com

vimeocdn.com
ravm.tv

1rx.io
2mdn.net

vimeo.com
irchan.com

tremorhub.com
ifood.tv

spotxchange.com
amazonaws.com

scorecardresearch.com
google-analytics.com

googlesyndication.com
doubleclick.net

roku.com

Platform Party

Third Party

First Party

0 500 1000

Number of Apps

titantv.com
adobe.com

moatads.com
googlevideo.com

akamaihd.net
unity3d.com

serving-sys.com
ytimg.com

uplynk.com
youtube.com

gstatic.com
ifood.tv

scorecardresearch.com
flurry.com

google.com
facebook.com

ssl-images-amazon.com
googlesyndication.com

google-analytics.com
amazonalexa.com

googleapis.com
crashlytics.com

cloudfront.net
amazon-dss.com

doubleclick.net
media-amazon.com

amazonvideo.com
amazon-adsystem.com

amazonaws.com
amazon.com

Platform Party

Third Party

First Party

(c) Roku: Top-30 eSLDs. (d) Fire TV: Top-30 eSLDs.

0 250 500

Number of Apps
pubads.g.doubleclick.net

tpc.googlesyndication.com
www.google-analytics.com

search.spotxchange.com
securepubads.g.doubleclick.net

ad.doubleclick.net
event.spotxchange.com

b.scorecardresearch.com
sb.scorecardresearch.com

googleads4.g.doubleclick.net
ade.googlesyndication.com

gcdn.2mdn.net
adrta.com

PD[0].ads.tremorhub.com
secure.insightexpressai.com

events.tremorhub.com
dpm.demdex.net

cm.g.doubleclick.net
insight.adsrvr.org

ctv.monarchads.com

0 50 100

Number of Apps
e.crashlytics.com

pubads.g.doubleclick.net
ssl.google-analytics.com

pagead2.googlesyndication.com
googleads.g.doubleclick.net

imasdk.googleapis.com
settings.crashlytics.com

data.flurry.com
graph.facebook.com

b.scorecardresearch.com
reports.crashlytics.com

csi.gstatic.com
www.google-analytics.com

config.uca.cloud.unity3d.com
applab-sdk.amazon.com

ad.doubleclick.net
z.moatads.com

ade.googlesyndication.com
cdp.cloud.unity3d.com

dpm.demdex.net

(e) Roku: Top-20 third party ATS domains. (f) Fire TV: Top-20 third party ATS domains.

Fig. 3. Analysis of domain usage per app and the top domains across all apps in the Roku and Fire TV testbed datasets.

138 The TV is Smart and Full of Trackers

Fire TV

Roku

Adobe Systems

Alphabet

Amazon

Bain Capital

Barons Media

comScore

Facebook
Numitas

Oracle

PIxalate

RTL Group

Telaria

The Trade Desk

Unity Tech

Fig. 4. Mapping of platforms measured in our testbed environ-
ment to the parent organizations of the top-20 third-party ATS
domains their apps contact. The width of an edge indicates the
number of apps that contact each organization.

Overview. The datasets collected using Rokustic and
Firetastic are summarized in Table 2. For Roku, we dis-
cover 2191 distinct FQDNs, 699 of which are contacted
by multiple apps. For Fire TV, we discover 1734 dis-
tinct FQDNs, 603 of which are contacted by multiple
apps. We also fnd 578 FQDNs that appear in both
datasets, 199 of which are contacted by multiple apps.
Our automation uncovers approximately twice as many
FQDNs as [11], possibly due to longer experiments and
di˙erent app exploration goals. We further detail this in
Appendix A.3.

Leveraging the blocklists from Sec. 5, we identify
314 ATS domains that are unique to the Roku dataset,
285 that are unique to the Fire TV dataset, and an over-
lap of 227 between the two datasets. When considering
eSLDs of the ATS domains, we fnd 68 eSLDs that are
unique to the Roku dataset, 100 that are unique to the
Fire TV dataset, and an overlap of 138 eSLDs. These
numbers suggest that the ATS ecosystems of the two
platforms have substantial di˙erences, which we ana-
lyze in further detail later in this section.
Number of (ATS) Domains Contacted. Figure 3a
presents the empirical CDF of the number of distinct
domains each app in the two testbed datasets contacts.
Fire TV apps appear more “chatty”—most Fire TV
apps contact about twice as many domains as the Roku
apps. However, when we consider the number of ATS

domains contacted per app in Fig. 3b, the vast majority
(80%) of apps from the two platforms behave similarly.

On the positive side, for both platforms, around
60% of the apps contact only a small handful ATS
domains. Yet, about 10% of the Roku and Fire TV
apps contact 20+ and 10+ ATS domains, respectively.
These concerning apps come from a small set of devel-
opers. For instance, for Roku, “Future Today Inc.” [50],
“8ctave ITV”, and “Stu˙WeLike” [51] are responsible
for 51%, 13%, and 11%, respectively, of these apps.
On the Fire TV side, “HTVMA Solutions, Inc.” [52]
is responsible for 15% of the apps, and “Gray Televi-
sion, Inc.” [53] is responsible for 12% of the apps.
Key Players. Figures 3c (Roku) and 3d (Fire TV)
present the top-30 eSLDs in terms of the number of
apps that contact a subdomain of the eSLD. We defne
an eSLD’s app penetration as the percentage of apps in
the dataset that contact the eSLD.

Platform. The top eSLD of each platform has 100%
app penetration and belongs to the platform operator.
While these eSLDs also cover subdomains that provide
functionality, we note that both platform operators are
engaged in advertising and tracking, as shown in Fig. 9
in Appendix C.3, which separates traÿc to the eSLDs
in Figs. 3c and 3d by ATS and non-ATS FQDNs.

Third Parties. As evident from Figs. 3c and 3d, Al-
phabet has a strong presence in the ATS space of both
platforms, with *.doubleclick.net, an ad delivery end-
point, achieving 58% and 35% app penetration for Roku
and Fire TV, respectively. Its analytic services also rank
high, with google-analytics.com in the top-20 for both
platforms and crashlytics.com in the top-10 for Fire TV.
To better understand additional key third party ATSes,
we strip away the platform-specifc endpoints and re-
port the top-20 third party ATS FQDNs for Roku and
Fire TV in Figs. 3e and 3f, respectively. We note that
both platforms use distinct third party ATSes. For ex-
ample, SpotX (*.spotxchange.com), which serves video
ads, is a signifcant player in the Roku ATS space with
17% app penetration, but only maintains 1% app pene-
tration for Fire TV. Even when considering the smaller
players, we see little overlap between the two platforms,
suggesting these players focus their e˙orts on a single
platform. For example, Kantar Group’s insightexpres-
sai.com analytics service has 7% app penetration on the
Roku platform, but only 0.01% on the Fire TV platform.
Parent Organization Analysis. We further analyze
the parent organizations of Roku and Fire TV third
party ATS endpoints in Fig. 4, using the method de-
scribed earlier in Section 2.1. Interestingly, the set of top

https://spotxchange.com
https://crashlytics.com
https://google-analytics.com
https://doubleclick.net

139 The TV is Smart and Full of Trackers

M
ed

ite
rr

an
ea

n
F

oo
d

C
N

N
go

P
lu

to
 T

V

P
. A

lle
n

S
m

ith

F
re

e
M

ov
ie

s
N

ow

R
el

ax
 M

y
D

og

Ita
lia

n
R

ec
ip

es

B
E

T

P
hi

lo

V
H

1

C
B

S
 S

po
rt

s
S

tr
ea

m

B
ak

in
g

by
 if

oo
d.

tv

H
al

lm
ar

k
C

ha
nn

el

B
lo

om
be

rg

T
ha

i r
ec

ip
es

C
om

ed
y

C
en

tr
al

C
oo

l S
ch

oo
l

P
ar

am
ou

nt
 N

et
w

or
k

H
IS

T
O

R
Y

M
T

V

Li
fe

tim
e

F
un

 W
ith

 R
ob

lo
x

by
H

ap
py

K
id

s
C

hi
ne

se
 R

ec
ip

es

W
at

ch
 T

B
S

C
ra

ftS
m

ar
t

T
el

em
un

do
 D

ep
or

te
s

W
at

ch
T

N
T

T
he

 H
ol

y
T

al
es

 B
ib

le

W
ow

, I
 N

ev
er

 K
ne

w
 T

ha
t

B
B

C
 A

m
er

ic
a

B
lip

pi

F
ox

 B
us

in
es

s
N

et
w

or
k

P
ila

te
s

D
rin

ks

W
S

B
-T

V
 C

ha
nn

el
 2

O
ut

si
de

 T
V

 F
ea

tu
re

s

R
ed

 B
ul

l T
V

O
m

 N
om

 S
to

rie
s

A
&

E

B
es

tC
oo

ks

iF
oo

d.
tv

A
M

C

S
ta

nd
-u

p
C

om
ed

y

H
ay

st
ac

k
T

V

T
ec

hS
m

ar
t.t

v

M
O

O
V

IM
E

X

N
F

L
S

un
da

y
T

ic
ke

t

P
la

yS
ta

tio
n

V
ue

U
P

 F
ai

th
 &

 F
am

ily

A
B

C
 N

ew
s

S
m

ith
so

ni
an

 C
ha

nn
el

B
ab

y
B

y
H

ap
py

K
id

s.
tv

S
lin

g
T

V

T
he

 B
IL

LI
A

R
D

 C
ha

nn
el

Lo
w

 C
ar

b
36

0

N
ow

 Y
ou

 K
no

w

F
ilm

R
is

e
K

id
s

JT
V

 L
iv

e

iH
ea

rt
R

ad
io

N
R

A
 T

V

0

20

40

60

80

100

120

N
um

be
r

of
 H

os
tn

am
es

Common

FireTV

Roku

Fig. 5. Top-60 common apps (apps present in both testbed datasets) ordered by the number of domains that each app contacts. Con-
sidering all 128 common apps, there are 597 domains which are exclusive to Roku apps, 496 domains which are exclusive to Fire TV
apps, and 155 domains which are contacted by both the Roku and the Fire TV versions of the same app.

third party organizations is rather diverse, with only a
slight overlap in the shape of Adobe Systems and com-
Score, possibly suggesting that the remaining organiza-
tions focus their e˙orts on a single platform. Fire TV
shows gaming and social media ATSes from Unity Tech
and Facebook, whereas Roku exhibits more traÿc to
ATSes from companies that focus on video ads such as
The Trade Desk, Telaria, and RTL Group. Similar to the
in the wild organization analysis in Fig 2, we again note
that Alphabet dominates the set of third party ATSes
on both Roku and Fire TV.
Comparing to Android ATS Ecosystem. Next, we
compare the top-20 third party ATS endpoints in our
Roku and Fire TV datasets (Figs. 3e and 3f) with those
reported for Android [24].

Roku vs. Android. The key third party ATSes
in Roku (Fig. 3e) di˙er from the Android platform.
For example, SpotX (*.spotxchange.com) and comScore
(*.scorecardresearch.com) both have a strong presence
on Roku, but are not among the key players for An-
droid. In contrast, Facebook’s graph.facebook.com is
the second most popular ATS domain on Android,
but insignifcant on Roku. The set of top third party
ATSes in Roku is also more diverse and includes
smaller organizations such as Pixalate (adrta.com)
and Telaria (*.tremorhub.com). While Alphabet has a
strong foothold in both ATS ecosystems, it is less sig-
nifcant for Roku (9 out 20 ATS FQDNs are Alphabet-
owned, vs. 16 out of 20 for Android).

Fire TV vs. Android. In contrast to Roku, Fire TV
is more similar to Android: we see an overlap of 9
FQDNs, 7 of which are owned by Alphabet. This
is expected, given that Fire TV is based o˙ of An-
droid and thus natively supports the ATS services of
Android. Facebook (graph.facebook.com) and Verizon

(data.furry.com) both have a strong presence on both
Fire TV and Android. Some of the third party ATS ob-
served for Fire TV, which were not present for Android,
include comScore, Adobe (dpm.demdex.net), and Ama-
zon (applab-sdk.amazon.com).
Common Apps in Roku and Fire TV Next, we
compare the Roku and Fire TV datasets at the app-
level by analyzing the FQDNs accessed by the set of
apps that appear on both platforms, referred to as com-
mon apps. Recall from Table 2 that the datasets col-
lected using Rokustic and Firetastic contain a total of
128 common apps. We identifed common apps by fuzzy
matching app names since they sometimes vary slightly
for each platform (e.g., “TechSmart.tv” on Roku vs.
“TechSmart” on Fire TV). We further cross-referenced
with the developer’s name to validate that the apps were
indeed the same (e.g., both TechSmart apps are created
by “Future Today”). The 128 common apps contact a
total of 1248 distinct FQDNs. Out of these, 597 FQDNs
are exclusively contacted by Roku apps, 496 are exclu-
sively contacted by Fire TV apps, and only 155 FQDNs
are contacted by both Roku and Fire TV apps.

Figure 5 reports the amount of overlapping and non-
overlapping FQDNs for the top-60 common apps (in
terms of the number of distinct FQDNs that each app
contacts). In general, the set of FQDNs contacted by
both the Roku and the Fire TV versions of the same
app is much smaller than the set of platform-specifc
FQDNs. From inspecting the common FQDNs for some
of the apps in Fig. 5, we fnd that these generally include
endpoints that serve content. For example, for Mediter-
ranean Food, the only two common FQDNs are subdo-
mains of ifood.tv, which belong to the parent organiza-
tion behind the app. This makes intuitive sense as the
same app presumably o˙ers the same content on both

ifood.tv
https://TechSmart.tv
https://applab-sdk.amazon.com
https://dpm.demdex.net
https://data.flurry.com
https://graph.facebook.com
https://tremorhub.com
https://adrta.com
https://graph.facebook.com
https://scorecardresearch.com
https://spotxchange.com

140

platforms and must therefore access the same servers to
download said content. On the other hand, the platform-
specifc domains contain obvious ATS endpoints such
as ads.yahoo.com and ads.stickyadstv.com for the Roku
version of the app, and aax-us-east.amazon-adsystem.
com and mobileanalytics.us-east-1.amazonaws.com for
the Fire TV version of the app. In conclusion, our anal-
ysis of common apps reveals (to our surprise) little over-
lap in the ATS endpoints they access, which further sug-
gests that the smart TV ATS ecosystem is segmented
across platforms.
Takeaway. The ATS ecosystems of the Roku and
Fire TV platforms seem to di˙er substantially: (1) the
full set of ATS domains contacted by apps in the two
datasets have little overlap; (2) some organizations are
key players on one platform, but almost absent on the
other (e.g., SpotX has a signifcant presence on Roku,
but is almost absent on Fire TV, whereas Facebook has
a reasonable foothold Fire TV, but almost zero presence
on Roku); and (3) apps present in both datasets have
little overlap in terms of the ATS domains they contact.
Finally, we fnd that the key third party ATS players on
Android have little overlap with Roku, but substantial
overlap with Fire TV, which intuitively makes sense as
Fire TV is built on top of Android.

5 Blocklists for Smart TVs
In this section, we evaluate four well-known DNS-based
blocklists’ ability to prevent smart TVs from accessing
ATSes and their adverse e˙ects on app functionality. We
further demonstrate how the datasets resulting from au-
tomated app exploration may aid in curating new can-
didate rules for blocklists.

5.1 Evaluating Popular DNS Blocklists

DNS-based blocking solutions such as Pi-hole [7] are
used to prevent in-home devices, including smart TVs,
from accessing ATS domains [54]. To block advertis-
ing and tracking traÿc, they essentially “blackhole”
DNS requests to known ATS domains. Specifcally, they
match the domain name in the DNS request against a
set of blocklists, which are essentially curated hosts fles
that contain rules for well-known ATS domains. If the
domain name is found in one of the blocklists, it is typi-
cally mapped to 0.0.0.0 or 127.0.0.1 to prevent outbound
traÿc to that domain [55].

The TV is Smart and Full of Trackers

Block Rate (%)
Platform # Domains PD TF MoaAB SATV

Dataset obtained “in the wild”
Apple 3179
Samsumg 1765
Chromecast 1576
Roku 2312
Vizio 942
LG 627
Sony 119

10% 13% 12% 5%
14% 19% 15% 8%
9% 15% 15% 5%
15% 19% 18% 7%
16% 18% 16% 11%
45% 54% 50% 27%
16% 24% 16% 7%

Dataset obtained in our testbed
Roku 2191 17% 22% 20% 9%
Fire TV 1734 22% 27% 22% 9%

Table 3. Block rates of the four blocklists when applied to the
domains in our datasets.

Setup. We evaluate the following blocklists:
1. Pi-hole Default (PD): We test blocklists included

in Pi-hole’s default confguration [56] to imitate the
experience of a typical Pi-hole user. This set has
seven hosts fles including Disconnect.me ads, Dis-
connect.me tracking, hpHosts, CAMELEON, Mal-
wareDomains, StevenBlack, and Zeustracker. PD
contains a total of about 133K entries.

2. The Firebog (TF): We test nine advertising and
fve tracking blocklists recommended by “The Big
Blocklist Collection” [8], to emulate the experience
of an advanced Pi-hole user. This includes: Discon-
nect.me ads, hpHosts, a dedicated blocklist target-
ing smart TVs, and hosts versions of EasyList and
EasyPrivacy. TF contains 162K entries total.

3. Mother of all Ad-Blocking (MoaAB): We test
this curated hosts fle [9] that targets a wide-range
of unwanted services including advertising, track-
ing, (cookies, page counters, web bugs), and mal-
ware (phishing, spyware) to again imitate the expe-
rience of an advanced Pi-hole user. MoaAB contains
a total of about 255K entries.

4. StopAd (SATV): We test a commercial smart TV
focused blocklist by StopAd [10]. This list partic-
ularly targets Android based smart TV platforms
such as Fire TV. We extract StopAd’s list by analyz-
ing its APK using Android Studio’s APK Analyzer
[57]. SATV contains a total of about 3K entries.

We applied these blocklists to both our in the wild and
testbed datasets and we report the results next.
Block Rates. We start our analysis by comparing how
many FQDNs are blocked by the di˙erent blocklists.
We defne a blocklist’s block rate as the number of dis-
tinct FQDNs that are blocked by the list, over the total

ads.yahoo.com
ads.stickyadstv.com
aax-us-east.amazon-adsystem.com
aax-us-east.amazon-adsystem.com
mobileanalytics.us-east-1.amazonaws.com
https://connect.me
https://Disconnect.me

141 The TV is Smart and Full of Trackers

App Name No List
No No
Ads Breakage

No
Ads

PD
No

Breakage
No
Ads

TF
No

Breakage

M
No
Ads

oaAB
No

Breakage
No
Ads

SATV
No

Breakage

R
ok
u

Co
m
m
on Pluto TV

iFood.tv
Tubi

5
5

5 5

— 6

5 5
5

To
p

YouTube
CBS News Live
The Roku Channel
Sony Crackle

5
5
5
5

5

5

6
5

6
6

5

5

6
5

5
5

Ra
nd

om WatchFreeComedyFlix
Live Past 100 Well
SmartWoman

5

5

5 5

Fi
re
 T

V

Co
m
m
on Pluto TV

iFood.tv
Tubi

5
5

5 5
— 6

5
—

5
6

5 6

To
p

Downloader
The CW for Fire TV
FoxNow
Watch TNT

5
5

—
—

6
6

—
—

6
6

—
5

6 5
5

Ra
nd

om KCRA3 Sacramento
Watch the Weather Channel
Jackpot Pokers by PokerStars

5
5

— 6 —
5

6 5 5

5

Table 4. Missed ads and functionality breakage for di˙erent blocklists when employed during manual interaction with 10 Roku apps
and 10 Fire TV apps. For “No Ads”, a checkmark () indicates that no ads were shown during the experiment, a cross (5) indicates
that some ad(s) appeared during the experiment, and a dash (—) indicates that breakage prevented interaction with the app alto-
gether. For “No Breakage”, a checkmark () indicates that the app functioned correctly, a cross (5) indicates minor breakage, and a
bold cross (6) indicates major breakage.

number of distinct FQDNs in the dataset. Table 3 com-
pares the block rates of the aforementioned blocklists on
our in the wild and testbed datasets. Overall, we note
that TF, closely followed by MoaAB and PD, blocks the
highest fraction of domains across all of the platforms
in both the in the wild and testbed datasets. SATV is
the distant last in terms of block rate. It is noteworthy
that TF blocks more domains than MoaAB despite being
about one-third shorter. We surmise this is because TF
includes a smart TV focused hosts fle, and thus catches
more relevant smart TV ATSes. This fnding shows that
the size of a blocklist does not necessarily translate to
its coverage.
Blocklist Mistakes. Motivated by the di˙erences in
the block rates of the four blocklists, we next compare
them in terms of false negatives (FN) and false posi-
tives (FP). False negatives occur when a blocklist does
not block requests to ATSes and may result in (visually
observable) ads or (visually unobservable) PII exfltra-
tion. False positives occur when a blocklist blocks re-
quests that enable app functionality and may result in
(visually observable) app breakage.

We frst systematically quantify visually observable
false negatives and false positives of blocklists by inter-

acting with a sample of apps from our testbed datasets
while coding for ads and app breakage. We sample 10
Roku apps and 10 Fire TV apps, including the top-
4 free apps, three apps that are present on both plat-
forms, and an additional three randomly selected apps.
We test each app fve times: once without any blocklist
and four times where we individually deploy each of the
aforementioned blocklists. During each experiment, we
attempt to trigger ads by playing multiple videos and/or
live TV channels and fast-forwarding through video con-
tent. We take note of any functionality breakage (due to
false positives) and visually observable missed ads (due
to false negatives). We di˙erentiate between minor and
major functionality breakage as follows: minor breakage
when the app’s main content remains available but the
application su˙ers from minor user interface glitches or
occasional freezes; and major breakage when the app’s
content becomes completely unavailable or the app fails
to launch.
Missed Ads vs. Functionality Breakage. Table 4
summarizes the results of our manual analysis for missed
ads and functionality breakage. Overall, we fnd that
none of the blocklists are able to block ads from all of
the sampled apps while avoiding breakage. In particular,

142 The TV is Smart and Full of Trackers

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+
Number of Apps

0%

20%

40%

60%

80%

100%

B
lo

ck
 R

at
e

Roku

Fire TV

Fig. 6. Block rates as a function of the number apps that con-
tact a FQDN. For the horizontal axis, “2+” represents the set
of FQDNs that are contacted by 2 or more apps. For Roku, the
more apps that contact an FQDN, the more likely it is that the
FQDN is an ATS, according to the blocklists. The same is not
true for Fire TV because platform services start to dominate the
set of FQDNs that are accessed by many apps, and platform ser-
vices are often not blocked.

none of the blocklists are able to block ads in YouTube
and Pluto TV (available on both Roku and Fire TV).
Across di˙erent lists, PD seems to achieve the best bal-
ance between blocking ads and preserving functionality.

For Roku, PD and TF perform similarly. While TF
is the only list that blocks ads in Sony Crackle, both
lists miss ads in YouTube and Pluto TV. TF majorly
breaks three apps, while PD only majorly breaks one
app. MoaAB is unable to block ads in four apps and
majorly breaks only one app. SATV does not cause any
breakage, but is unable to block ads in six apps.

For Fire TV, PD again seems to be the most e˙ec-
tive at blocking ads while avoiding breakage, but is still
unable to block ads in one app (Pluto TV) and majorly
breaks two apps. TF is also unable to block ads in Pluto
TV, but majorly breaks four apps. MoaAB is unable to
block ads in three apps and majorly breaks three apps
(one minor). SATV is unable to block ads in four apps
and majorly breaks one app (two minor).
Takeaway. All blocklists su˙er from a non-trivial
amount of visually observable FPs and FNs. Some
blocklists (e.g., PD and TF) are clearly more e˙ec-
tive than others. Interestingly, SATV, which is curated
specifcally for smart TVs, did not perform well.

5.2 Identifying False Negatives

In this section, we demonstrate how datasets generated
using automation tools such as Rokustic and Firetastic
enable blocklist curators to identify potential false neg-
atives in the blocklist. In particular, we observe that the

more apps that contact a FQDN, the more likely it is
that the FQDN is an ATS. This is intuitive and consis-
tent with a similar observation previously made in the
mobile ecosystem [24].

We frst use simple keywords such as “ad”, “ads”,
and “track” to shortlist obvious ATS domains in our
datasets. While keyword search is not perfect, this sim-
ple approach identifes several obvious false negatives
(we provide the full list in Appendix C.4). For ex-
ample, p.ads.roku.com and adtag.primetime.adobe.com
are advertising/tracking related domains which are not
blocked by any of the lists.

We observe that many of these false negatives (i.e.,
missed ATS domains) are contacted by multiple apps
in our testbed datasets. For example, p.ads.roku.com
is accessed by more than 100 apps in our Roku testbed
dataset. To gain further insight into potential false nega-
tives, we study whether the likelihood of being blocked
is impacted by the number of apps that access a do-
main. Figure 6 plots the block rates for the union of
the four blocklists as a function of FQDNs’ occurrences
across apps in our testbed datasets. We note that the
block rate substantially increases for the domains that
appear across multiple apps. For example, the block rate
almost doubles for domains contacted by two or more
apps as compared to domains contacted by a single or
more apps. Domains that are contacted by multiple dif-
ferent apps are therefore more likely to belong to third
party ATS libraries included by smart TV apps.

6 PII Exposures in Smart TVs
In this section, we examine our testbed datasets from
Sec. 4 for exposure of personally identifable informa-
tion (PII) and we evaluate the e˙ectiveness of block-
lists in preventing it. We defne “PII exposure” as the
transmission of any PII from the smart TV device to
any Internet destination. We identify PII values (such
as advertising ID and serial number) through the set-
tings menus and packaging of each device. Since trackers
are known to encode or hash PII [58], we compute the
MD5 and SHA1 hashes for each of the PII values. We
then search for these PII values in the HTTP header
felds and URI path. Recall from Section 4 that we can
analyze HTTP information even for encrypted fows in
the Fire TV dataset due to AntMonitor’s TLS decryp-
tion [37, 48], but can only analyze unencrypted fows in
Roku. The number of PII exposures reported for Roku
should therefore be considered a lower bound.

p.ads.roku.com
adtag.primetime.adobe.com
p.ads.roku.com

143 The TV is Smart and Full of Trackers

PII Roku Testbed Dataset (Apps & eSLDs)
1st Party 3rd Party Other Total

Fire TV Test
1st Party 3rd Party

bed Dataset (Apps & eSLDs)
Platform Party Other Total

Advertising ID
Serial Number
Device ID
Username
MAC
Location

4/4/25% 263/36/88% 6/3/0% 269/42/81%
48/17/5% 128/16/74% 2/2/0% 174/34/36%

- - - -
4/4/0% 1/1/100% - 5/5/20%

- - - -
- 42/2/100% - 42/2/100%

17/7/25% 53/31/78%
10/3/0% 51/4/33%
19/8/0% 153/27/36%
1/2/0% 2/2/100%

- 2/2/100%
- 27/7/90%

715/4/71% 5/5/40% 725/39/71%
867/4/9% 2/2/0% 881/9/12%

819/5/14% 10/11/21% 856/43/31%
1/1/100% - 4/5/40%

- - 2/2/100%
2/2/100% - 28/7/90%

Table 5. Applications / eSLDs / % Distinct FQDNs Blocked. Number of apps that expose PII, number of distinct eSLDs
that receive PII from these apps, and percentage of distinct subdomains of the eSLDs that are blocked by the blocklists. We further
separate by party as defned in Sec. 2.1. Roku platform column omitted since we do not observe PII exposures to platform domains.

Overview. Table 5 reports the PII exposures for both
testbed platforms. For Roku, the majority of the PII
exposures are to third parties, whereas for Fire TV
they are to the platform-specifc party. The blocklists
adequately prevent exfltration of PII to third parties,
blocking 74% or more of third party domains for all the
PII values considered for Roku. For Fire TV, they miti-
gate the majority of advertising ID exposures, blocking
71% or more of the involved domains, but are not as
e˙ective in preventing exposures of serial number and
device ID to third parties and platform destinations.
Di˙erentiating PII Exposures. Inspired by [59], we
adopt a simple approach for distinguishing between
“good” and “bad” PII exposures that treats PII ex-
posures to third parties as a higher threat to privacy
than PII exposures to frst parties. PII exposures to
frst parties are generally warranted as they likely have
a functional purpose such as personalization of content
(e.g., keeping track of where the user paused a video).
For example, the Roku app “Acacia Fitness & Yoga
Channel” from “RLJ Entertainment”, sends a request
to the frst party domain api.rlje.net with a URI path of
“/cms/acacia/today/roku/content/browse.json” while
including the device’s serial number in an HTTP header
feld, suggesting that the serial number is used to per-
sonalize today’s featured content.

On the other hand, PII exposures to third parties
are generally unwarranted as they typically do not have
a functional purpose. This extends to cases where the
app retrieves its content through a third party CDN
as the personalization could be achieved by frst send-
ing the PII to the frst party server which could then
respond to the app with the CDN URL for the con-
tent to be retrieved. For instance, the Roku app “Arm-
chairTourist” from “ArmchairTourist Video Inc.” sends
a request to the third party domain ads.adrise.tv with
a URI path of “/track/impression...” that encodes the

device’s serial number, suggesting that the PII is used
to track what ads have been shown to the user.
Exposures to Platform Party. For Fire TV, the
majority of the exposures of serial number and de-
vice ID to platform destinations seem to be for adver-
tising and tracking purposes. For example, 697 apps
send the serial number and device ID (and advertis-
ing ID) to the platform endpoint aviary.amazon.com
with a URI path of “/GetAds”, and 53 apps send the
serial number to dna.amazon.com, with a URI path
of “/GetSponsoredTileAds”. Judging from these paths,
it would seem like the advertising ID alone would be
suÿcient and the more appropriate PII. On the other
hand, some exposures seem to serve a functional pur-
pose. For example, 67 apps send the serial number to
atv-ext.amazon.com, with varying URI paths contain-
ing “/cdp/”. We surmise that this domain serves as
“Content Delivery Platform(s)” [60], allowing apps to
personalize content without user login. Specifcally, we
see paths such as “/cdp/playback/GetDefaultSettings”
coupled with an “x-atv-session-id” HTTP header feld.
Joint Exposure of Static and Dynamic PII. We
observe that some apps send the advertising ID along-
side other static identifers. This goes against recom-
mended developer practices, where apps and ATSes
should only rely on dynamic identifers that can be
refreshed like advertising ID to give users the abil-
ity to opt out of being tracked. Aside from the 697
Fire TV apps that expose advertising ID alongside se-
rial number and device ID discussed earlier, we ob-
serve 10 Roku apps (including prominent ones such as
Pluto TV and PBS) that send both the advertising ID
and the serial number to third parties (subdomains of
scorecardreasearch.com and youboranqs01.com). Simi-
larly, 12 Fire TV apps send the advertising ID along-
side the device ID to third party destinations such
as ads.adrise.tv and ctv.monarchads.com. Thus, these

api.rlje.net
ads.adrise.tv
aviary.amazon.com
dna.amazon.com
atv-ext.amazon.com
scorecardreasearch.com
youboranqs01.com
ads.adrise.tv
ctv.monarchads.com

144 The TV is Smart and Full of Trackers

practices allow ATSes to link an old advertising ID to
the new value by joining on the static identifers.
Leveraging Missed PII Exposures to Improve
Blocklists. The above indicate another direction for
improving blocklist curation for smart TVs. By deploy-
ing tools such as Rokustic and Firetastic and searching
the network traces for PII exposures, blocklist curators
can generate candidate rules that can then be exam-
ined manually. Using this approach, we identifed 38
domains in the Roku dataset and 30 in the Fire TV
dataset that receive PII, but were not blocked by any
list. These numbers are conservative as we exclude loca-
tion and account name that are likely to be used for le-
gitimate purposes, such as logging in or serving location-
based content. These domains include obvious ATSes
such as ads.aimitv.com and ads.ewscloud.com. Another
noteworthy mention is hotlist.samba.tv: Samba TV uses
Automatic Content Recognition to provide content sug-
gestions on smart TVs, but this comes at the cost of
targeted advertising that even propagates onto other
devices in the home network [61].
Takeaway. Hundreds of Roku and Fire TV apps expose
PII, mostly to third parties and the platform-specifc
party. For Fire TV, we observe that most of the expo-
sures to the platform-specifc party seem to be for ad-
vertising and tracking purposes. We observe that many
Roku and Fire TV apps send the advertising ID along-
side a static identifer (e.g., serial number), which en-
ables the ATS to relink a user profle associated with an
old advertising ID to a new advertising ID, thus elimi-
nating the user’s ability to opt out. The blocklists gener-
ally do well at preventing exposure of the advertising ID
on both platforms, but are less successful at preventing
exposures of serial number and device ID on Fire TV.

7 Conclusion & Directions
Summary. In this paper, we performed one of the
frst comprehensive measurement studies of the emerg-
ing smart TV advertising and tracking service (ATS)
ecosystem. To that end, we analyzed and compared: (i) a
realistic but small in the wild dataset (57 smart TV de-
vices from seven di˙erent platforms, with coarse fow-
level information); and (ii) two large testbed datasets
(top-1000 apps on Roku and Fire TV, tested system-
atically, with granular per app and packet-level infor-
mation). Our work establishes that the smart TV ATS
ecosystem is fragmented across di˙erent smart TV plat-
forms and is di˙erent from the mobile ATS ecosystem.

We further evaluate popular DNS-based blocklists’ abil-
ity to prevent smart TVs from accessing ATSes, and
fnd that all lists su˙er from missed ATSes and incur
app breakage. Finally, we examine our testbed datasets
for exposure of personally identifable information (PII)
and discover that hundreds of apps send PII to third
parties and the platform-specifc party, mostly for ad-
vertising and tracking purposes.
Limitations. Our methodology has its limitations.
First, the automated app exploration may not always
result in content (video/audio) playback, which may im-
pact the (ATS) domains discovered. We evaluate the
extent of this limitation in Appendix A.3. We fnd that
Rokustic and Firetastic perform on par with concurrent
work [11] in terms of playback success, and that they
manage to discover a large fraction of the number of
domains discovered during manual interaction. Second,
apps may prevent TLS interception through use of cer-
tifcate pinning, which may prevent Firetastic from ob-
serving PII exposures in encrypted traÿc. We assess the
decryption failures in Appendix B: we fnd that for 80%
of the apps in our Fire TV testbed dataset, TLS inter-
ception only fails for 20% or fewer of an app’s TLS con-
nections. Third, our analysis of FPs and FNs in DNS-
based blocklists in Sec. 5.1 does not account for DNS
over HTTPS (DoH), nor static advertisements, thus it
may overcount blocklist FNs for these cases.
Future Work. Our fndings motivate more research to
further understand smart TVs and to develop privacy-
enhancing solutions specifcally designed for each smart
TV platform. For example, more research is needed
to curate accurate, fne-grained (as opposed to DNS-
based), and platform-specifc blocklists. To foster fur-
ther research along this direction, we plan to make
our tools, Rokustic and Firetastic, and testbed datasets
publicly available [12]. We intend to further improve our
tools’ ability to thoroughly explore smart TV apps along
the directions discussed in Appendix A.3.

Acknowledgements
This work is supported in part by NSF Awards 1715152,
1750175, 1815131, and 1815666, Seed Funding by UCI
VCR, and Minim. The authors would like to thank
M. Hammad Mazhar and the team at Minim for their
help with collecting and analyzing smart TV traÿc
in the wild. We would also like to thank our shepherd,
Erik Sy, and the anonymous PETS reviewers for their
feedback that helped signifcantly improve the paper.

ads.aimitv.com
ads.ewscloud.com
hotlist.samba.tv

145 The TV is Smart and Full of Trackers

References
[1] Rimma Kats. How Many Households Own a Smart

TV? https://www.emarketer.com/content/how-many-
households-own-a-smart-tv, 2018. [Online; accessed 2019-
05-10].

[2] Hulu gained twice as many US subscribers as Netfix at the
start of 2019. https://www.cnbc.com/2019/05/01/hulu-
gained-twice-as-many-subscribers-as-netfix-in-us.html,
2019. [Online; accessed 2019-05-10].

[3] Amazon: Smart TVs. https://www.amazon.com/smart-
tv-store/b?ie=UTF8&node=5969290011, 2019. [Online;
accessed 2019-05-10].

[4] Connected TV Advertising is Surging. https://www.
videonuze.com/article/connected-tv-advertising-is-surging,
2017. [Online; accessed 2019-05-10].

[5] MAGNA ADVERTISING FORECASTS. https://
magnaglobal.com/magna-advertising-forecasts-fall-update-
executive-summary/, 2019. [Online; accessed 2019-05-10].

[6] Jump PR. Beachfront Releases 2018 CTV Ad Data,
Roku Still Leads, Amazon Growing Quickly. https:
//www.broadcastingcable.com/post-type-the-wire/2018-
ctv-ad-data-realeased-by-beachfront, 2018. [Online; ac-
cessed 2019-05-10].

[7] Pi-Hole: A black hole for Internet advertisements. https:
//pi-hole.net/, 2019. [Online; accessed 2019-05-11].

[8] WaLLy3K. The Big Blocklist Collection. https://frebog.net,
2019. [Online; accessed 2019-04-29].

[9] MoaAB: Mother of All AD-BLOCKING. https://forum.xda-
developers.com/showthread.php?t=1916098, 2019. [Online;
accessed 2019-04-22].

[10] Kromtech Alliance Corp. Stopad for tv. https://stopad.io/
tv, 2019.

[11] Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess,
Arunesh Mathur, Danny Yuxing Huang, Nick Feamster,
Edward W. Felten, Prateek Mittal, and Arvind Narayanan.
Watching You Watch: The Tracking Ecosystem of Over-
the-Top TV Streaming Devices. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’19, pages 131–147, New York, NY,
USA, 2019. ACM.

[12] UCI Networking Group. The TV is Smart and Full of Track-
ers: Project Page. http://athinagroup.eng.uci.edu/projects/
smarttv/, 2019.

[13] Ross Benes. 10 Ways Roku Is Growing Its Ad Business.
https://www.emarketer.com/content/10-ways-roku-is-
growing-its-ads-business, 2019. [Online; accessed 2019-
05-10].

[14] Garett Sloane. AMAZON IS NOW TAKING A 30 PER-
CENT CUT OF AD SALES FROM FIRE TV. https:
//adage.com/article/design/amazon-taking-30-percent-ad-
sales-fre-tv/315678, 2018. [Online; accessed 2019-05-10].

[15] Roku, Inc. The Roku Advantage. https://advertising.roku.
com/advertising-solutions, 2019. [Online; accessed 2019-05-
10].

[16] Amazon.com, Inc. Amazon DSP. https://advertising.
amazon.com/products/amazon-dsp, 2019. [Online; accessed
2019-05-10].

[17] "Consumer Reports". Samsung and Roku Smart TVs Vul-
nerable to Hacking. https://www.consumerreports.org/
televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-
consumer-reports-fnds/, 2018. [Online; accessed 2019-04-
22].

[18] Sapna Maheshwari. How Smart TVs in Millions of U.S.
Homes Track More Than What’s On Tonight. https://
www.nytimes.com/2018/07/05/business/media/tv-viewer-
tracking.html, 2018. [Online; accessed 2019-05-10].

[19] "FTC". VIZIO to Pay $2.2 Million to FTC, State of New
Jersey to Settle Charges It Collected Viewing Histories on
11 Million Smart Televisions without Users’ Consent. https:
//www.ftc.gov/news-events/press-releases/2017/02/vizio-
pay-22-million-ftc-state-new-jersey-settle-charges-it, 2017.
[Online; accessed 2019-04-22].

[20] Whitson Gordon. How to Stop Your Smart TV From Track-
ing What You Watch. https://www.nytimes.com/2018/07/
23/smarter-living/how-to-stop-your-smart-tv-from-tracking-
what-you-watch.html, 2018. [Online; accessed 2019-05-10].

[21] J. R. Mayer and J. C. Mitchell. Third-Party Web Track-
ing: Policy and Technology. In 2012 IEEE Symposium on
Security and Privacy, pages 413–427, May 2012.

[22] Phillipa Gill, Vijay Erramilli, Augustin Chaintreau, Balachan-
der Krishnamurthy, Konstantina Papagiannaki, and Pablo
Rodriguez. Follow the Money: Understanding Economics of
Online Aggregation and Advertising. In Proceedings of the
2013 conference on Internet measurement conference, pages
141–148. ACM, 2013.

[23] Steven Englehardt and Arvind Narayanan. Online Tracking:
A 1-million-site Measurement and Analysis. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1388–1401, New
York, NY, USA, 2016. ACM.

[24] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Mark Allman, Christian
Kreibich, and Phillipa Gill. Apps, Trackers, Privacy, and
Regulators: A Global Study of the Mobile Tracking Ecosys-
tem. NDSS, 2018.

[25] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Cho˙nes. ReCon: Revealing and Con-
trolling PII Leaks in Mobile Network Traÿc. In Proceedings
of the 14th Annual International Conference on Mobile Sys-
tems, Applications, and Services, pages 361–374. ACM,
2016.

[26] Anastasia Shuba, Athina Markopoulou, and Zubair Shafq.
NoMoAds: E˙ective and Eÿcient Cross-App Mobile Ad-
Blocking. Proceedings on Privacy Enhancing Technologies,
2018(4):125–140, 2018.

[27] Jingjing Ren, Daniel J. Dubois, David Cho˙nes, Anna Maria
Mandalari, Roman Kolcun, and Hamed Haddadi. Infor-
mation Exposure From Consumer IoT Devices: A Multidi-
mensional, Network-Informed Measurement Approach. In
Proceedings of the Internet Measurement Conference, IMC
’19, pages 267–279, New York, NY, USA, 2019. ACM.

[28] Danny Yuxing Huang, Noah Apthorpe, Gunes Acar, Frank
Li, and Nick Feamster. IoT Inspector: Crowdsourcing La-
beled Network Traÿc from Smart Home Devices at Scale,
2019.

[29] M. Ghiglieri and E. Tews. A privacy protection system for
HbbTV in Smart TVs. In 2014 IEEE 11th Consumer Com-

https://www.emarketer.com/content/how-many-households-own-a-smart-tv
https://www.emarketer.com/content/how-many-households-own-a-smart-tv
https://www.cnbc.com/2019/05/01/hulu-gained-twice-as-many-subscribers-as-netflix-in-us.html
https://www.cnbc.com/2019/05/01/hulu-gained-twice-as-many-subscribers-as-netflix-in-us.html
https://www.amazon.com/smart-tv-store/b?ie=UTF8&node=5969290011
https://www.amazon.com/smart-tv-store/b?ie=UTF8&node=5969290011
https://www.videonuze.com/article/connected-tv-advertising-is-surging
https://www.videonuze.com/article/connected-tv-advertising-is-surging
https://magnaglobal.com/magna-advertising-forecasts-fall-update-executive-summary/
https://magnaglobal.com/magna-advertising-forecasts-fall-update-executive-summary/
https://magnaglobal.com/magna-advertising-forecasts-fall-update-executive-summary/
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://pi-hole.net/
https://pi-hole.net/
https://firebog.net
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
https://stopad.io/tv
https://stopad.io/tv
http://athinagroup.eng.uci.edu/projects/smarttv/
http://athinagroup.eng.uci.edu/projects/smarttv/
https://www.emarketer.com/content/10-ways-roku-is-growing-its-ads-business
https://www.emarketer.com/content/10-ways-roku-is-growing-its-ads-business
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://advertising.roku.com/advertising-solutions
https://advertising.roku.com/advertising-solutions
https://advertising.amazon.com/products/amazon-dsp
https://advertising.amazon.com/products/amazon-dsp
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
https://www.consumerreports.org/televisions/samsung-roku-smart-tvs-vulnerable-to-hacking-consumer-reports-finds/
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://www.ftc.gov/news-events/press-releases/2017/02/vizio-pay-22-million-ftc-state-new-jersey-settle-charges-it
https://www.nytimes.com/2018/07/23/smarter-living/how-to-stop-your-smart-tv-from-tracking-what-you-watch.html
https://www.nytimes.com/2018/07/23/smarter-living/how-to-stop-your-smart-tv-from-tracking-what-you-watch.html
https://www.nytimes.com/2018/07/23/smarter-living/how-to-stop-your-smart-tv-from-tracking-what-you-watch.html
https://Amazon.com

146 The TV is Smart and Full of Trackers

munications and Networking Conference (CCNC), pages
357–362, Jan 2014.

[30] Nathan Malkin, Julia Bernd, Maritza Johnson, and Serge
Egelman. “What Can’t Data Be Used For?” Privacy Expec-
tations about Smart TVs in the US. In European Workshop
on Usable Security (Euro USEC), 2018.

[31] VirusTotal. https://www.virustotal.com/. [Online; accessed
2019-08-24].

[32] McAfee, LLC. Customer URL Ticketing System. https:
//www.trustedsource.org/. [Online; accessed 2019-08-24].

[33] OpenDNS Domain Tagging. https://community.opendns.
com/domaintagging/. [Online; accessed 2019-08-24].

[34] Mozilla Foundation. Public Suÿx List. https://publicsuÿx.
org/. [Online; accessed 2019-08-23].

[35] John Kurkowsi. tldextract. https://github.com/john-
kurkowski/tldextract. [Online; accessed 2019-08-23].

[36] Crunchbase. https://www.crunchbase.com/. [Online; ac-
cessed 2019-08-29].

[37] Anastasia Shuba, Anh Le, Emmanouil Alimpertis, Minas
Gjoka, and Athina Markopoulou. AntMonitor: A System for
On-Device Mobile Network Monitoring and its Applications.
arXiv preprint arXiv:1611.04268, 2016.

[38] Je˙rey Erman, Alexandre Gerber, KK Ramadrishnan, Sub-
habrata Sen, and Oliver Spatscheck. Over The Top Video:
The Gorilla in Cellular Networks. In Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement con-
ference, pages 127–136. ACM, 2011.

[39] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Cas-
tro, and Steve Uhlig. Open Connect Everywhere: A Glimpse
at the Internet Ecosystem through the Lens of the Netfix
CDN. ACM SIGCOMM Computer Communication Review,
48(1):28–34, 2018.

[40] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Volker Hilt,
and Zhi-Li Zhang. A tale of three CDNs: An active mea-
surement study of Hulu and its CDNs. In 2012 Proceedings
IEEE INFOCOM Workshops, pages 7–12. IEEE, 2012.

[41] eMarketer. US Connected TV Users, by Brand, 2018 &
2022. https://www.emarketer.com/Chart/US-Connected-
TV-Users-by-Brand-2018-2022-of-connected-TV-users/
220767, 2018. [Online; accessed 2019-11-26].

[42] Roku, Inc. Roku Channel Store. https://channelstore.roku.
com, 2019. [Online; accessed 2019-04-19].

[43] Roku, Inc. Roku Developer Documentation: Security
Overview. https://sdkdocs.roku.com/display/sdkdoc/
Security+Overview, 2019. [Online; accessed 2019-04-22].

[44] Roku, Inc. Roku Developer Documentation: Development
Environment Overview. https://sdkdocs.roku.com/display/
sdkdoc/Development+Environment+Overview, 2019. [On-
line; accessed 2019-04-22].

[45] Roku, Inc. Roku Developer Documentation: Roku Advertis-
ing Framework. https://sdkdocs.roku.com/display/sdkdoc/
Roku+Advertising+Framework, 2019. [Online; accessed
2019-04-22].

[46] Ooyala IQ SDK for Roku. https://github.com/ooyala/iq-
sdk-roku, 2015. [Online; accessed 2019-04-22].

[47] Je˙ Bush, Kevin Cooper, and Linda Kyrnitszke. External
Control API. https://sdkdocs.roku.com/x/K5cY, 2013.
[Online; accessed 2019-03-04].

[48] AntMonitor open-source. https://github.com/UCI-
Networking-Group/AntMonitor, 2018. [Online; accessed

2019-05-10].
[49] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen.

DroidBot: a Lightweight UI-guided Test Input Generator for
Android. In 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), pages 23–26.
IEEE, 2017.

[50] Future Today Inc. http://www.stu˙welike.com/, 2019.
[Online; accessed 2019-12-05].

[51] Stu˙WeLike. http://www.stu˙welike.com/, 2019. [Online;
accessed 2019-12-05].

[52] Manta Media Inc. Htvma Solutions, Inc. https://www.
manta.com/c/mhqfv38/htvma-solutions-inc, 2019. [Online;
accessed 2019-12-05].

[53] Gray Television, Inc. https://gray.tv/, 2019. [Online; ac-
cessed 2019-12-06].

[54] telekrmor. Round 3: What Really Happens On Your Net-
work? https://pi-hole.net/2017/07/06/round-3-what-really-
happens-on-your-network/, 2017. [Online; accessed 2019-
05-11].

[55] Pi-hole LLC. Blocking Mode. https://docs.pi-hole.net/
ftldns/blockingmode, 2018.

[56] Customising Sources for Ad Lists. https://github.com/pi-
hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists, 2019.

[57] Google LLC. apkanalyzer. https://developer.android.com/
studio/command-line/apkanalyzer, 2019. [Online; accessed
2019-04-29].

[58] Steven Englehardt, Je˙rey Han, and Arvind Narayanan.
I never signed up for this! privacy implications of email
tracking. Proceedings on Privacy Enhancing Technologies,
2018(1):109–126, 2018.

[59] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick
Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and
Edgar Weippl. Block me if you can: A large-scale study of
tracker-blocking tools. In 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 319–333. IEEE,
2017.

[60] Antidot. Content Delivery Platform. https://www.antidot.
net/content-delivery-platform/, 2019. [Online; accessed
2019-12-05].

[61] Sapna Maheshwari. How Smart TVs in Millions of U.S.
Homes Track More Than What’s On Tonight. https://
www.nytimes.com/2018/07/05/business/media/tv-viewer-
tracking.html, 2018. [Online; accessed 2019-05-11].

[62] Raspberry Pi Foundation. Setting up a Raspberry Pi as
an access point in a standalone network (NAT). https://
www.raspberrypi.org/documentation/confguration/wireless/
access-point.md, 2019. [Online; accessed 2019-03-04].

[63] Android tcpdump. https://www.androidtcpdump.com/,
2019. [Online; accessed 2019-04-11].

https://www.virustotal.com/
https://www.trustedsource.org/
https://www.trustedsource.org/
https://community.opendns.com/domaintagging/
https://community.opendns.com/domaintagging/
https://publicsuffix.org/
https://publicsuffix.org/
https://github.com/john-kurkowski/tldextract
https://github.com/john-kurkowski/tldextract
https://www.crunchbase.com/
https://www.emarketer.com/Chart/ US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767
https://www.emarketer.com/Chart/ US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767
https://www.emarketer.com/Chart/ US-Connected-TV-Users-by-Brand-2018-2022-of-connected-TV-users/220767
https://channelstore.roku.com
https://channelstore.roku.com
https://sdkdocs.roku.com/display/sdkdoc/Security+Overview
https://sdkdocs.roku.com/display/sdkdoc/Security+Overview
https://sdkdocs.roku.com/display/sdkdoc/Development+Environment+Overview
https://sdkdocs.roku.com/display/sdkdoc/Development+Environment+Overview
https://sdkdocs.roku.com/display/sdkdoc/Roku+Advertising+Framework
https://sdkdocs.roku.com/display/sdkdoc/Roku+Advertising+Framework
https://github.com/ooyala/iq-sdk-roku
https://github.com/ooyala/iq-sdk-roku
https://sdkdocs.roku.com/x/K5cY
https://github.com/UCI-Networking-Group/AntMonitor
https://github.com/UCI-Networking-Group/AntMonitor
http://www.stuffwelike.com/
http://www.stuffwelike.com/
https://www.manta.com/c/mhqfv38/htvma-solutions-inc
https://www.manta.com/c/mhqfv38/htvma-solutions-inc
https://gray.tv/
https://pi-hole.net/2017/07/06/round-3-what-really-happens-on-your-network/
https://pi-hole.net/2017/07/06/round-3-what-really-happens-on-your-network/
https://docs.pi-hole.net/ftldns/blockingmode
https://docs.pi-hole.net/ftldns/blockingmode
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://developer.android.com/studio/command-line/apkanalyzer
https://developer.android.com/studio/command-line/apkanalyzer
https://www.antidot.net/content-delivery-platform/
https://www.antidot.net/content-delivery-platform/
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.nytimes.com/2018/07/05/business/media/tv-viewer-tracking.html
https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md
https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md
https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md
https://www.androidtcpdump.com/

147 The TV is Smart and Full of Trackers

Appendix
In appendices A and B, we discuss implementation de-
tails and limitations of our methodology, and outline
directions for improvement. In Appendix C, we provide
additional analysis of datasets that had to be omitted
from the main text due to lack of space. Notably, the
rest of the “in the wild” dataset is within Appendix C.2.

A Automatic App Exploration
In this section, we provide details on the implementa-
tion of our automatic app exploration tools, Rokustic for
Roku (Sec. A.1) and Firetastic for Fire TV (Sec. A.2),
in addition to what is described in the main paper (Sec-
tions 4.1 and 4.2, respectively). Then, in Section A.3,
we discuss the limitations of Rokustic and Firetastic,
including when the automation does not lead to video
playback and how the automated exploration compares
to manual testing of apps that require login. Ultimately,
this discussion leads to directions for how to improve
Rokustic’s and Firetastic’s automatic app exploration.

A.1 Roku Automation

To scale testing of apps, we implement a software sys-
tem, Rokustic, that automatically installs and exercises
Roku apps on a Roku Express 3900X (Roku for short).
Setup. We run Rokustic on a Raspberry Pi 3 Model B+
set up to host a standalone network as per the instruc-
tions given in [62]. The Pi’s wireless interface (wlan0) is
confgured as a wireless access point with DHCP server
and NAT, and the Roku is connected to this local wire-
less network. The Pi’s wired interface (eth0) connects
the Pi and thus, in turn, the Roku to the WAN. This
setup enables us to collect all traÿc going in and out
of the Roku by running tcpdump on the Raspberry Pi’s
wireless interface. We do not attempt to decrypt TLS
traÿc as we cannot install our own self-signed certif-
cates on the Roku.

Rokustic utilizes the Roku External Control (ECP)
API [47] to control the Roku. The ECP is a REST-like
API exposed by the Roku to other devices on the local
network. The ECP includes a set of REST-endpoints
that provides the ability to press keys on the Roku re-
mote, query the Roku for various information such as
the set of installed apps, programmatically browse the
Roku Channel Store (RCS), etc.

App Installation. Given a set of apps to exercise,
Rokustic installs each app by invoking the ECP end-
point that opens up the on-device version of the RCS
page for the app, and then sends a virtual key press to
click the “Add Channel” button that starts download
and installation of the app. Rokustic then waits for fve
seconds, and then queries the Roku for the set of in-
stalled apps to check if the installation has completed,
and if so continues to install the next app, otherwise the
wait-and-check is repeated (until a fxed threshold).
App Exploration. From manual inspection of a few
apps (e.g. YouTube and Pluto TV), we fnd that
playable content is often presented in a grid, where each
cell is a di˙erent video or live TV channel. Generally,
the user interface defaults to highlighting one of these
cells (e.g., the frst recommended video). Pressing “Se-
lect” on the Roku remote immediately after the app has
launched will therefore result in playback of some con-
tent. From this insight, we devised a simple algorithm
(see Listing 1) that attempts to cause playback of three
di˙erent videos for each installed Roku app.

for app in roku.installedApps:

startPacketCapture(app.id);

Play default video

launch(app); sleepSeconds(20);

press("SELECT"); sleepMinutes(5);

Play some other video by selecting a

different cell in the grid

relaunch(app);

press("DOWN"); press("DOWN");

press("RIGHT"); press("RIGHT");

press("SELECT"); sleepMinutes(5);

Play a 3rd video

relaunch(app);

press("DOWN"); press("DOWN");

press("SELECT"); sleepMinutes(5);

Quit the Roku app

press("HOME");

stopPacketCapture(app.id);

Listing 1. Algorithm for exercising Roku apps.

For each Roku app, the algorithm frst starts a
packet capture so as to produce a .pcap fle for each
Roku app, thereby essentially labeling traÿc with the
app that caused it: since Roku apps cannot execute in
the background (see Sec. 4.1), all traÿc captured dur-
ing execution of a single app will belong to that app
and the Roku system. The target app is launched, and
the algorithm pauses, waiting for the app to load. Next,
a virtual “Select” key press is sent to attempt to start

https://stopPacketCapture(app.id
https://startPacketCapture(app.id

148 The TV is Smart and Full of Trackers

video playback, and the algorithm subsequently pauses
to let the content play. The app is then relaunched by
returning to the Roku’s home screen and then launching
the app again. The purpose of this is to safely return to
the app’s home screen such that di˙erent content can
be selected for playback. This is repeated two times,
with slight variations in the sequence of navigational
key presses, such that each app will (presumably) end
up playing three di˙erent videos, making the total ex-
ploration time approximately 16 minutes per app. We
note that the relaunch procedure internally performs
short sleeps to let the app quit and launch again, and
that we have omitted a one second sleep after each nav-
igational key press in the pseudo code in Listing 1.

Although the Roku remote has a “Back” button,
which behaves similarly to the back button in Android,
we purposefully avoid using it as a means to return to
the app’s home screen: if the video selected for playback
is shorter than the sleep duration, the app will return to
its home screen automatically, and pressing “Back” will
therefore quit the app and return to the Roku’s home
screen. This would pollute our data as the subsequent
navigational key presses would cause a di˙erent app to
be highlighted and then launched by the next “Select”
key press.

A.2 Fire TV Automation

Since Fire TV is based on Android, we can use existing
Android tools to capture network traÿc. Although there
are various methods for capturing traÿc on Android
on the device itself (e.g. androidtcpdump [63]), most of
them require a rooted device. While it is possible to root
a Fire TV, it may make applications behave di˙erently if
they detect root. Thus, to collect measurements that are
representative of an average user, we use a VPN-based
traÿc interception method that does not require rooting
the device [37, 48]. We discard incoming traÿc because
video content results in huge pcap fles, which due to a
technical limitation of ADB (very slow transfer speeds
for large fles) slows down the automated experiments
signifcantly. The outgoing traÿc is suÿcient for our
domain and PII analysis.

To automatically explore each Fire TV application,
we utilize Droidbot [49], as it treats each app as a tree
of possible paths to explore instead of randomly gen-
erating events, which results in higher test coverage of
the application. Furthermore, we deduce that developers
would minimize the necessary clicks in order to reach the
core sections of their applications, especially for playing

video content. Thus, we confgure DroidBot to utilize
its breadth frst search algorithm to explore each ap-
plication. The intuition is that this should cover more
distinct UI paths of the app, thus increasing the chance
of content playback (in contrast, the Depth First Search
algorithm may cause the automation to deep end into
a path that we do not care about, such as a settings
menu). With some trial and error, we selected the input
command interval as three seconds which leaves enough
time for applications to handle the command and load
the next view during app exploration.

We summarize Firetastic’s automation algorithm in
Listing 2. For each app, Firetastic frst starts the local
VPN to capture (and decrypt) traÿc. Next, it invokes
DroidBot, which in turn launches the app and begins ex-
ploring it. When the 15-minute exploration completes,
Firetastic stops the local VPN and extracts the .pcapng
fles that were generated during testing.

device = "10.0.1.xx:5555"

pcapng_dir = "/some/path/to/store/pcapng"

apk_dir = "/some/path/to/apk/batch"

for app in apk_dir:

Start AntMonitor on Fire TV

start_antmonitor(device)

Ensure VPN connection up

ensure_antmonitor_connected(device)

Run DroidBot command

params = { duration: 15min ,

policy: "bfs_naive",

install_timeout: 5min ,

interval: 3sec }

run_droidbot(app, params, device)

Stop AntMonitor on Fire TV

stop_antmonitor_vpn(device)

Extract the pcap files

extract_pcapng_files(app, pcapng_dir ,

device)

Clean up before testing next app

remove_pcapng_files(device)

Listing 2. Algorithm for exercising FireTV apps.

A.3 Limitations of App Exploration

Our automated app exploration has, admittedly, limita-
tions. For example, it can miss video playback for some
apps, and cannot fully explore apps that require login.
In this section, we evaluate our automated exploration
vs. a more realistic manual exploration by a real user,

149 The TV is Smart and Full of Trackers

App Name Playback?
(auto) Auto (A)

Distinct eSLDs
Manual (M) A

M

Disti
A

nct ATS domains
M A

M

R
ok
u

To
p-
10

YouTube
Sling TV
The Roku Channel
Crackle
JW Broadcasting
PBS KIDS
ESPN
Tubi - Free Movies & TV
DisneyNOW
Pluto TV - It’s Free TV

5

5

5
5
5

8
10
16
9
3
4
6
3
6
24

15
21
13
34
4
7

16
19
9
9

53%
48%
123%
26%
75%
57%
38%

15.79%
67%

267%

5
6
7
8
2
4
4
5
4
36

15
21
5
42
2
6
16
34
5
7

33%
29%
140%
19%
100%
67%
25%
15%
80%
514%

Ra
nd

om
 Roku Newscaster

ChuChu TV
Elvis
Mondo
tik tok

5

5

4
10
20
4
1

5
10
38
5
3

80%
100%
53%
80%
33%

3
9
14
2
2

2
17
54
2
3

150%
53%
26%
100%
67%

Total 8 of 15 (53%) 74 113 65% 64 122 52%

Fi
re
 T

V

To
p-
10

Pluto TV - It’s Free TV
ABC
Fox Now
AMC
Fox Sports GO
Kids for Youtube
PBS Kids
CNN Go
Sundance TV
MTV

5
5

5
5

15
14
22
18
12
16
12
31
13
56

30
13
24
28
19
19
15
34
23
38

50%
108%
92%
64%

63.16%
84%
80%
91%
57%
147%

13
5
18
8
7
7
7
41
5
38

35
6
18
19
17
5
9
34
11
54

37%
83%
100%
42%
41%
140%
78%
121%
45%
70%

Ra
nd

om
 Vimeo

Dog TV Online
WCSC Live 5 News
WFXG FOX 54
13abc WTVG Toledo, OH

5

12
10
13
18
12

11
14
12
18
11

109%
71%
108%
100%
109%

5
2
5
8
5

3
5
5
7
2

167%
40%
100%
114%
250%

Total 10 of 15 (67%) 125 117 107% 115 138 83%

Table 6. Content playback success for Rokustic and Firetastic, and a comparison of the number of domains discovered by Rokustic and
Firetastic to the number of domains discovered during manual interaction with the same app, for 15 apps that do not require login.
For each app, we perform approximately 16 minutes of automated and 16 minutes of manual interaction.

App Name
Auto (A)

Distinct eSLDs
Manual (M) A

M

Dist
A

inct ATS domains
M A

M

R
ok
u

HBO NOW
Hulu
Netfix
SHOWTIME
STARZ

3
6
3
4
5

7
18
4
8
7

43%
33%
75%
50%
71%

2
3
3
3
3

5
21
3
6
5

40%
14%
100%
50%
60%

Total 14 30 47% 6 26 23%

Fi
re
 T

V

HBO NOW
Hulu
Netfix
SHOWTIME
STARZ

7
9
11
10
18

9
19
9
8

14

78%
47%
122%
125%
129%

2
4
4
4
12

2
17
3
3
7

100%
24%
133%
133%
171%

Total 27 42 64% 15 27 56%

Table 7. Comparison of the number of domains discovered by Rokustic and Firetastic to the number of domains discovered during
manual interaction with the same fve apps that require login. The automation was performed while logged out, and the manual in-
teraction was performed while logged in. For each app, we perform approximately 16 minutes of automated and 16 minutes of manual
interaction.

150 The TV is Smart and Full of Trackers

for 20 apps. We report the cases where our automatic
exploration succeeds and fails, and we provide insights
into the reasons why, and ideas for future improvements.

First, we evaluate our tools’ ability to perform play-
back, because it a˙ects our ability to capture traÿc re-
lated to ads delivered at the start of or during con-
tent (video/audio) playback. We evaluate Firetastic’s
and Rokustic’s content playback rates in Sec. A.3.1 by
performing a case study of 15 apps. We fnd that the two
tools perform similarly to the the state-of-the-art [11],
and we identify how we can further improve the tools
to increase the chance of incurring content playback.

In Sec. A.3.2, we evaluate the automated approach’s
ability to discover an app’s domain space by comparing
the eSLDs and ATS domains discovered by the tools to
the eSLDs and ATS domains discovered during manual
interaction with the same 15 apps. We fnd that both
tools generally do well at mapping a large fraction of
the number of domains discovered during manual inter-
action.

Finally, a common limitation of app exploration in
general (not just for smart TV apps) is that it is diÿ-
cult to explore apps that require user login. In Sec. A.3.3
we compare the eSLDs and ATS domains discovered by
Firetastic and Rokustic for 5 popular streaming apps
(while logged out) to the eSLDs and ATS domains dis-
covered during manual interaction (while logged in). As
expected, we fnd that the automation misses parts of
the domain space of apps that serve third-party ads as
part of content that is only accessible after logging in.
Interestingly, we also observe cases where the automa-
tion discovers more (ATS) domains than the manual
experiments.

A.3.1 Video Playback

Setup. To evaluate Firetastic’s and Rokustic’s ability
to incur playback of an app’s main content (video/au-
dio) for the set of apps that do not require login to access
(parts of) their content, we run the full (˘16 minutes)
automation for 15 apps on each platform, while observ-
ing for content playback. We pick the 15 apps according
to their popularity (as defned in Sec. 4): (1) the top-10
most popular apps to capture the most infuential apps;
and (2) 5 additional randomly sampled apps, spread
evenly across the popularity spectrum, to represent the
dataset as a whole.
Results. We present the content playback results in
Table 6. Firetastic manages to play content for 67% of

the 15 apps (60% for the top-10 apps, and 80% for the
random apps). A common characteristic of the 33% un-
successful apps is that the majority of their content is
locked, and that free content is deferred to the least ac-
cessible sections of the UI (e.g., the bottom row of a
grid layout). This decreases the chance that Firetastic
will discover a playable video during the 16 min exper-
iment, especially since attempts to play locked content
often redirects to login/activation screens where addi-
tional time is lost. We can improve on this in future
work by mixing BFS and DFS exploration: the automa-
tion can explore each level up to a certain threshold
before drilling down into the next nested view.

Rokustic manages to play content for 53% of the 15
apps (50% for the top-10 apps, and 60% for the ran-
dom apps). Unsuccessful attempts are primarily due to
nested menus, where additional “Select” key press(es)
are necessary to start playback. Through manual in-
teraction with a few apps prior to executing our top-
1000 apps measurement, we observe that if an app starts
playback on the frst “Select” key press, additional key
presses may result in pausing and/or exiting the video,
or skipping past an ad. Therefore, we opt for a con-
servative approach that, when successful, will collect as
much ad/video traÿc as possible. In future work, we can
further improve content playback by repeatedly sending
“Select” key presses (with short pauses in between) un-
til the network throughput for the Roku stays above a
certain threshold for a short duration (e.g., the bitrate
of 720p video for 5 seconds). This dynamic strategy can
handle more nested menus and thus be resilient to fu-
ture changes to an app’s UI.
Takeaway. In summary, both tools work well when an
app adheres to good UI design principles, such as re-
ducing the number of user actions required to reach the
main content. The content playback success rates are
on par with state-of-the-art concurrent work [11], with
Firetastic slightly ahead, possibly due to its dynamic
approach to UI exploration (as opposed to the static,
heuristic-based approach used in [11]), and with Rokus-
tic slightly behind. While Firetastic leverages existing
advanced Android tools (Droidbot), similar tools do not
currently exist for Roku, thus we had to build them from
scratch, and it is therefore natural that Rokustic falls
slightly behind its Fire TV counterpart.

151 The TV is Smart and Full of Trackers

A.3.2 Automation vs. Manual Testing

Setup. Next, we evaluate Firetastic’s and Rokustic’s
ability to successfully map an app’s domain space. We
manually interact with the 15 apps from Sec. A.3, and
compare the network behavior observed during auto-
mated testing to the network behavior observed during
manual testing. For a fair comparison, we interact with
each app for approximately the same duration as in the
automated experiments (˘16 minutes). For consistency,
we follow a protocol in which we attempt to play 7 dif-
ferent videos for approximately 2 minutes each, leaving
a few minutes to navigate between videos. We compare
the network behavior in terms of the number of eSLDs
and ATS domains (as defned by the union of the block-
lists from Sec. 5) contacted by each app. The results are
presented in Table 6.
Results. Firetastic is successful in mapping the domain
space for 10 out of 15 apps (67%), uncovering 0.8 times
(or more) the number of eSLDs, and 0.7 times (or more)
the number of ATS domains discovered in the man-
ual experiments. In fact, Firetastic even discovers more
eSLDs and ATS domains than the manual experiment
for 6 (40%) and 7 (47%), respectively, of the 15 apps.
Rokustic is less successful, but still manages to uncover
0.67 times (or more) the number of eSLDs and ATS
domains in the manual experiment for 7 (47%) and 8
(53%), respectively, of the 15 apps. Moreover, Rokustic
even discovers 2.67 times as many eSLDs as the manual
experiment for one of the apps (Pluto TV).
Intuition. The two tools have very di˙erent approaches
to app exploration: Firetastic seeks to explore as much
app functionality as possible, but is likely to exit con-
tent playback early, whereas Rokustic seeks to mimic a
real user that sits through 3 videos of 5 minutes. Each
approach has its own merit: Firetastic is good at dis-
covering many ATS domains for apps that present ads
before content playback begins, whereas Rokustic is the
more successful tool when it comes to discovering ATS
domains for apps that defer ad delivery to later in the
video/audio stream, as was the case for Pluto TV. Fi-
nally, we note that even in the worst case, i.e., when
Firetastic and Rokustic do not manage to incur content
playback, they still uncover several ATS domains.
Takeaway. This case study, and the fact that Fire-
tastic and Rokustic uncovered approximately twice as
many domains as the state-of-the-art [11] for the top-
1000 apps measurement described in Sec. 4, show that
our tools already provide suÿcient means to automati-
cally estimate a lower bound on the ATS domains of the

two platforms. This lower bound should improve when
we implement the changes suggested earlier.

A.3.3 Apps that Require Login

Setup. To understand how well the automation man-
ages to map the domain spaces of apps that require
login, we pick 5 of the top subscription-based streaming
apps and run the automation without logging in, and
also manually interact with the same apps while logged
in (following the same protocol as in Sec. A.3.2). We
compare the network behavior using the same metrics
as in Sec. A.3.2. The results are presented in Table 7.
Results. Firetastic actually discovers more eSLDs than
the manual experiments for 3 out of the 5 apps. We
also observe that the STARZ app contacts more ATS
domains when automatically tested than in the man-
ual experiment. These fndings are interesting as they
indicate that an app’s domain space and ATS-related
activity possibly changes after the user logs in and is
not necessarily tied to video playback. An ideal exper-
iment would thus need to thoroughly exercise the app
in both states. The results for Rokustic are more in line
with what is to be expected: Rokustic discovers fewer
eSLDs and ATS domains than the manual experiments
(55% and 53%, respectively, on average). Finally, for
both platforms, we observe that the number of ATS do-
mains contacted by Hulu increases signifcantly for the
manual experiments. This is to be expected as Hulu is
the only of the 5 apps that deliver third-party ads dur-
ing content playback.
Takeaway. As expected, Rokustic can only map parts
of the (ATS) domain spaces of apps that require login.
For Firetastic, we observe that some apps contact more
ATS domains while logged out, and an ideal experiment
would thus need to explore the apps in both states.

B Fire TV TLS Interception
Firetastic attempts to decrypt TLS traÿc to facilitate
detection of PII exposures in encrypted traÿc. How-
ever, the decryption may fail: (i) for apps that attempt
to mitigate TLS interception, for example through use
of certifcate pinning, or (ii) if the cipher suites used
in the TLS connection are not supported by the TLS
decryption library used in AntMonitor. To approximate
the impact that such decryption failures may have on
the PII exposure results, we evaluate the failure rate

152

0.0 0.2 0.4 0.6 0.8
Share of TLS Decryption Failures

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

 o
f T

es
te

d
A

pp
s

Fig. 7. Empirical CDF of TLS decryption failures per app. The
decryption generally worked well: Decryption fails for 1 out of 10
(or fewer) TLS connections for 55% of all apps; 1 out of 5 (or
fewer) TLS connections for 80% of all apps.

of Firetastic’s TLS interception across all apps in the
Fire TV testbed dataset from Sec. 4.
Methodology. For each app in the Fire TV testbed
dataset, we frst identify the set of TCP connections,
t, initiated by this app and labeled as TLS by tshark.
Next, we identify the subset h of TCP connections in t
that also contained at least one packet labeled by tshark
as HTTP: these are the connections that are successfully
decrypted. Finally, we compute the decryption failure

|t|−|h|rate of each app as . We note that our methodol-|t|
ogy conservatively computes an upper bound compared
to the actual failure rate, as any non-HTTP over TLS
(e.g., proprietary binary protocols) will be counted as
decryption failures.

We note that in t, we only include TLS connec-
tions, where the TLS handshake concluded successfully.
We assume that an app will retry the connection if it
rejects AntMonitor’s certifcate. AntMonitor stops in-
tercepting an app’s connections if it detects that the
app rejects its certifcate, thus the second TLS hand-
shake should complete successfully. This restriction on
t therefore also prevents double counting (i.e., the orig-
inal failed connection does not contribute to the total
number of TLS connections initiated by the app). Al-
though we only recorded upstream data for Fire TV, we
use the presence of an upstream TLS Application Data
packet as a proxy for inferring that the TLS handshake
concluded successfully.
Results. In Fig. 7, we show the empirical CDF for the
TLS decryption failure rates for all apps in the Fire TV
testbed dataset. We note that the decryption generally
works well. For example, decryption fails for 1 out of
10 (or fewer) TLS connections for 55% of all apps, and

The TV is Smart and Full of Trackers

1 out of 5 (or fewer) TLS connections for 80% of all
apps. Since TLS decryption was generally successful,
this validates the PII exposure results.

C Additional Analysis of Datasets

C.1 Labeling Datasets Continued

To complement Sec 2.1, this section provides the full
details for how we label each endpoint as either frst
party, third party or platform-specifc party, w.r.t. the
app that contacts it:
1. We frst tokenize app identifers and the eSLD

of the contacted FQDN (we obtain the eSLD
using Mozilla’s Public Suÿx List [34, 35]). For
Fire TV, we tokenize the package names and de-
veloper names. For Roku, we rely on app and de-
veloper names since its apps do not have package
names. For app/package tokens, we ignore common
and platform-specifc strings like “com”, “fretv”,
“roku”, etc., while retaining all tokens from the de-
veloper names. We then match the resulting identi-
fers with the tokenized eSLD.

2. If the tokens match, we label the destination as
frst party. We note that since we keep all developer
tokens, we will map “roku” related eSLDs as frst
party if the app was developed oÿcially by Roku.

3. Otherwise, we label a destination as platform-
specifc party if it originated from platform activity
rather than app activity. For Fire TV, we rely on
AntMonitor’s [37] ability to label each connection
with the responsible process. For Roku, we simply
check if the eSLD contains “roku”.

4. Otherwise, if the destination is contacted by at least
two di˙erent apps from di˙erent developers, we la-
bel it as third party.

5. Finally, if the destination does not fall into any
of the other categories, we resort to labeling it as
other, which thus captures domains that are only
contacted by a single app and are not identifed as
a frst party nor platform-specifc party.

We acknowledge that the variations in labeling method-
ology for platform-specifc parties for Roku and Fire TV
may impact comparability. However, we believe that our
choice provides the more accurate platform-specifc la-
beling for each testbed platform.

153 The TV is Smart and Full of Trackers

C.2 In the Wild Dataset Continued

Figure 8 complements Fig. 1 in Sec. 3, providing data
for the remaining three devices.

0 5k 10k 15k 20k

Number of Flows
nrdp.nccp.netflix.com
api-global.netflix.com

ichnaea.netflix.com
www.youtube.com

android.clients.google.com
occ-0-*.nflxso.net
occ-2-*.nflxso.net
occ-1-*.nflxso.net

i.ytimg.com
ios.nccp.netflix.com

ipv4-c10*.oca.nflxvideo.net
control2.tvinteractive.tv

googleads.g.doubleclick.net
i9.ytimg.com

atv-ext.amazon.com
www.lookingglass.rocks

cdn-0.nflximg.com
api.us-east-1.aiv-delivery.net

youtube-ui.l.google.com
control-*.tvinteractive.tv

securepubads.g.doubleclick.net
ipv4-c09*.oca.nflxvideo.net
ipv4-c04*.oca.nflxvideo.net

www.google.com
ytimg.l.google.com

pagead2.googlesyndication.com
presentationtracking.netflix.com

s.youtube.com
video-stats.l.google.com

(a) Vizio

0 100k 200k 300k

Number of Flows
mtalk.google.com

lh3.googleusercontent.com
mobile-gtalk.l.google.com

android.clients.google.com
lh4.googleusercontent.com
lh5.googleusercontent.com
lh6.googleusercontent.com

clients4.google.com
www.youtube.com

www.lookingglass.rocks
vortex.hulu.com
home.hulu.com

clients3.google.com
i.ytimg.com

http-v-darwin.hulustream.com
youtube-ui.l.google.com

clients1.google.com
www.gstatic.com

play.hulu.com
connectivitycheck.gstatic.com

video-stats.l.google.com
s.youtube.com

http-e-darwin.hulustream.com
google-public-dns-a.google.com

ytimg.l.google.com
i9.ytimg.com

tpc.googlesyndication.com
mtalk4.google.com

yt3.ggpht.com
cws-eu-west-1.conviva.com

C.3 Key Players Continued

Figure 9 provides further insight into the “Keys Players”
discussion in Sec. 4.3 by accumulating fows to subdo-
mains of the top-30 eSLDs of each platform. Each eSLD
is in turn mapped to its parent organization. Finally, all
fows to domains under that parent organization are sep-
arated based on whether they are labeled as advertising
and tracking or not. A large amount of the fows to the
two platform operators are labeled as advertising and
tracking.

Ads & Tracking

Other

1rx.io

2mdn.net

adobe.com

adrta.com

adsrvr.org

agkn.com

akamaihd.net

akamaized.net

amazon-adsystem.com
amazon-dss.com

amazon.com

amazonalexa.com

amazonaws.com

amazonvideo.com

cloudfront.net

crashlytics.com

demdex.net

doubleclick.net

ewscloud.com

facebook.com

flurry.com

google-analytics.com

google.com

googleapis.com

googlesyndication.com

googlevideo.com

gstatic.com

gvt1.com

ifood.tv

imrworldwide.com

innovid.com

insightexpressai.com

irchan.com

media-amazon.com

moatads.com

monarchads.com
ravm.tv

roku.com

scorecardresearch.com

serving-sys.com

spotxchange.com

springserve.com

ssl-images-amazon.com

stickyadstv.com

titantv.com

tremorhub.com

unity3d.com

uplynk.com

vimeo.com
vimeocdn.com

youtube.com

ytimg.com

Unknown

Adobe Inc.
Akamai Technologies, Inc.

Alphabet Inc.

Amazon.com, Inc.

Bain Capital

Barons Media

Broadcast Interactive Media

Cinedigm Corp.

Comcast Corporation

Comscore, Inc.

eBizPa LLC

Facebook

Golden Gate Capital

Innovid, Inc.
Marimedia

Numitas

Oracle

Roku, Inc.

SpotX, Inc.

SpringServe, LLC

Telaria, Inc.

The E.W. Scripps Company

The Nielsen Company (US), LLC

The Trade Desk, Inc.

Unity Tech

Vector Capital

Verizon Media

Vimeo, Inc.

Fire TV

Roku

(b) Chromecast

0 1k 2k

Number of Flows
api-global.netflix.com

us.lgtvsdp.com
ichnaea.netflix.com

www.lookingglass.rocks
googleads.g.doubleclick.net

www.youtube.com
android.clients.google.com

www.google.com
ngfts.lge.com

snu.lge.com
coordinator-*.amazonaws.com

us.rdx2.lgtvsdp.com
occ-1-*.nflxso.net

us.ibs.lgappstv.com
r4*.googlevideo.com

occ-0-*.nflxso.net
r5*.googlevideo.com

occ-2-*.nflxso.net
ipv4-c02*.oca.nflxvideo.net

pagead2.googlesyndication.com
us.info.lgsmartad.com

api*.prodaa.netflix.com
ipv4-c07*.oca.nflxvideo.net

comet.yahoo.com
r3*.googlevideo.com

www.googleadservices.com
geo.yahoo.com

dcs-edge-*.elb.amazonaws.com
occ-1-*.1.nflxso.net

(c) LG

Fig. 8. Continuation of Fig. 1 from Sec. 3: Top-30 fully qualifed
domain names in terms of number of fows per device for the
remaining devices in the in the wild dataset. Domains identifed
as ATSes are highlighted with red, dashed bars.

Fig. 9. Left to right: (1) mapping of fows to subdomains of the
top-30 eSLDs (see Figs. 3c and 3d) of each testbed platform; (2)
mapping from eSLD to its parent organization; (3) separation of
the fows to the organization by advertising and tracking fows
and other fows. An edge’s width represents the number of fows.

C.4 False Negatives for Blocklists

Table 8 provides a full list of false negatives to com-
plement Sec 5.2. We discover potential ATS domains by
looking at whether multiple apps contact the domain
and through keyword searches.

154 The TV is Smart and Full of Trackers

Hostname PD TF MoaAB SATV
p.ads.roku.com 5 5 5 5

1.amazonaws.com

1.amazonaws.com

external-1.amazonaws.com

1.amazonaws.com

ads.aimitv.com 5 5 5 5
5 5 5 5adtag.primetime.adobe.com

ads.adrise.tv 5 5 5
ads.samba.tv 5 5 5
tracking.sctv1.monarchads.com 5 5 5
ads.ewscloud.com 5 5 5 5
trackingrkx.com 5 5 5 5
us-east-1-ads.superawesome.tv 5 5 5 5
track.sr.roku.com 5 5 5 5
router.adstack.tv 5 5 5 5

5 5 5 5metrics.claspws.tv
customerevents.netfix.com 5 5 5
event.altitude-arena.com 5 5 5
ads.altitude-arena.com 5 5 5
myhouseofads.frebaseio.com 5 5 5 5
mads.amazon.com 5 5 5 5
ads.aimitv.com.s3.amazonaws.com 5 5 5 5
analytics.mobitv.com 5 5 5 5

5 5 5 5events.brightline.tv
ctv.monarchads.com 5 5 5
ads.superawesome.tv 5 5 5
adplatform-static.s3-us-west- 5 5 5 5

kraken-measurements.s3-external- 5 5 5 5

kinstruments-measurements.s3- 5 5 5 5

venezia-measurements.s3-external- 5 5 5 5

ad-playlistserver.aws.syncbak.com 5 5 5 5

Table 8. Examples of potential false negatives for the four DNS-
based blocklists found using app penetration analysis and key-
words search (“ad”, “ads”, “analy”, “track”, “hb” (for heartbeat),
“score”, “event”, “metrics”, “measure”).

https://ad-playlistserver.aws.syncbak.com
https://ads.superawesome.tv
https://ctv.monarchads.com
https://events.brightline.tv
https://analytics.mobitv.com
https://mads.amazon.com
https://myhouseofads.firebaseio.com
https://ads.altitude-arena.com
https://event.altitude-arena.com
https://customerevents.netflix.com
https://metrics.claspws.tv
https://router.adstack.tv
https://track.sr.roku.com
https://us-east-1-ads.superawesome.tv
https://trackingrkx.com
https://ads.ewscloud.com
https://tracking.sctv1.monarchads.com
https://ads.samba.tv
https://ads.adrise.tv
https://adtag.primetime.adobe.com
https://ads.aimitv.com
https://1.amazonaws.com
https://external-1.amazonaws.com
https://1.amazonaws.com
https://1.amazonaws.com
https://p.ads.roku.com

	The TV is Smart and Full of Trackers: Measuring Smart TV Advertising and Tracking
	1 Introduction
	2 Background & Related Work
	2.1 Labeling Methodology

	3 Smart TV Traffic in the Wild
	4 Systematic Testing of the Roku and Fire TV Platforms
	4.1 Roku Data Collection
	4.2 Fire TV Data Collection
	4.3 Comparing Roku and Fire TV

	5 Blocklists for Smart TVs
	5.1 Evaluating Popular DNS Blocklists
	5.2 Identifying False Negatives

	6 PII Exposures in Smart TVs
	7 Conclusion & Directions
	A Automatic App Exploration
	A.1 Roku Automation
	A.2 Fire TV Automation
	A.3 Limitations of App Exploration
	A.3.1 Video Playback
	A.3.2 Automation vs. Manual Testing
	A.3.3 Apps that Require Login

	B Fire TV TLS Interception
	C Additional Analysis of Datasets
	C.1 Labeling Datasets Continued
	C.2 In the Wild Dataset Continued
	C.3 Key Players Continued
	C.4 False Negatives for Blocklists

