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The TV is Smart and Full of Trackers: 
Measuring Smart TV Advertising and Tracking 
Abstract: In this paper, we present a large-scale mea-
surement study of the smart TV advertising and track-
ing ecosystem. First, we illuminate the network behav-
ior of smart TVs as used in the wild by analyzing net-
work traÿc collected from residential gateways. We fnd 
that smart TVs connect to well-known and platform-
specifc advertising and tracking services (ATSes). Sec-
ond, we design and implement software tools that sys-
tematically explore and collect traÿc from the top-1000 
apps on two popular smart TV platforms, Roku and 
Amazon Fire TV. We discover that a subset of apps 
communicate with a large number of ATSes, and that 
some ATS organizations only appear on certain plat-
forms, showing a possible segmentation of the smart 
TV ATS ecosystem across platforms. Third, we evaluate 
the (in)e˙ectiveness of DNS-based blocklists in prevent-
ing smart TVs from accessing ATSes. We highlight that 
even smart TV-specifc blocklists su˙er from missed ads 
and incur functionality breakage. Finally, we examine 
our Roku and Fire TV datasets for exposure of person-
ally identifable information (PII) and fnd that hun-
dreds of apps exfltrate PII to third parties and plat-
form domains. We also fnd evidence that some apps 
send the advertising ID alongside static PII values, ef-
fectively eliminating the user’s ability to opt out of ad 
personalization. 
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1 Introduction 
Smart TV adoption has steadily grown over the last few 
years, with more than 37% of US households owning at 
least one smart TV in 2018, a 16% increase over the 
previous year [1]. This growth is driven by two trends. 
First, over-the top (OTT) video streaming services such 
as Hulu and Netfix have become popular, with more 
than 28 million and 60 million subscribers in the US, re-
spectively [2]. Second, smart TV solutions are available 
at relatively a˙ordable prices, with many of the external 
smart TV boxes/sticks priced less than $50, while built-
in smart TVs now cost only a few hundreds dollars [3]. 
As a result, a diverse set of smart TV platforms have 
emerged, and have been integrated into various smart 
TV products. For example, Apple TV integrates tvOS, 
and TCL and Sharp TVs integrate Roku. 

Many of these platforms have their own respective 
app store, where the vast majority of smart TV apps 
are ad-supported [4]. OTT advertising, which includes 
smart TV, is expected to increase by 40% to $2 billion in 
2018 [5]. Roku and Fire TV are two of the leading smart 
TV platforms in number of ad requests [6]. Despite their 
increasing popularity, the advertising and tracking ser-
vices (“ATSes”) on smart TVs are currently not well 
understood by users, researchers, and regulators. In this 
paper, we present one of the frst large-scale measure-
ment studies of the emerging smart TV advertising and 
tracking ecosystem. 
In the Wild Measurements (§3). First, we analyze 
the network traÿc of smart TV devices in the wild. We 
instrument residential gateways of 41 homes and collect 
fow-level summary logs of the network traÿc gener-
ated by 57 smart TVs from seven di˙erent platforms. 
The comparative analysis of network traÿc by di˙er-
ent smart TV platforms uncovers similarities and di˙er-
ences in their characteristics. As expected, we fnd that 
a substantial fraction of the traÿc is related to popular 
video streaming services such as Netfix and Hulu. More 
importantly, we fnd generic as well as platform-specifc 
ATSes. Although realistic, the in the wild dataset does 
not provide app-level visibility, i.e., we cannot deter-
mine which apps generate traÿc to ATSes. To address 
this limitation, we undertake the following major e˙ort. 
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Controlled Testbed Measurements (§4). We de-
sign and implement two software tools, Rokustic for 
Roku and Firetastic for Amazon Fire TV, which sys-
tematically explore apps and collect their network traf-
fc. We use Rokustic and Firetastic to exercise the top-
1000 apps of their respective platforms, and refer to the 
collected network traÿc as our testbed datasets. We an-
alyze the testbed datasets w.r.t. the top Internet des-
tinations the apps contact, at the granularity of fully 
qualifed domain names (FQDNs), e˙ective second level 
domains (eSLDs), and organizations. We use “domain”, 
“endpoint”, and “destination” interchangeably in place 
of FQDN and eSLD when the distinction is clear from 
the context. We further separate destinations as frst, 
third, and platform-specifc party, w.r.t. to the app that 
contacts them. 

First, we fnd that the majority of apps contact few 
ATSes, while about 10% of the apps contact a large 
number of ATSes. Interestingly, many of these more 
concerning apps come from a small set of developers. 
Second, we fnd what appears to be a segmentation of 
the smart TV ATS ecosystem across Roku and Fire TV 
as (1) the two datasets have little overlap in terms of 
ATS domains; (2) some third party ATSes are among 
the key players on one platform, but completely absent 
on the other; and (3) apps that are present on both plat-
forms have little overlap in terms of the domains they 
contact. Third, we compare the top third party ATS 
domains of the testbed datasets to those of Android. 
Evaluation of DNS-Based Blocklists (§5). Users 
typically rely on DNS-based blocking solutions such as 
Pi-hole [7] to prevent in-home devices such as smart 
TVs from accessing ATSes. Thus, we evaluate the e˙ec-
tiveness of DNS-based blocklists, selecting those that 
are most relevant to smart TVs. Specifcally, we ex-
amine and test four popular blocklists: (1) Pi-hole De-
fault blocklist (PD) [7], (2) Firebog’s recommended ad-
vertising and tracking lists (TF) [8], (3) Mother of all 
Ad-Blocking (MoaAB) [9], and (4) StopAd’s smart TV 
specifc blocklist (SATV) [10]. Our comparative analysis 
shows that block rates vary, with Firebog having the 
highest coverage across di˙erent platforms and StopAd 
blocking the least. We further investigate potential false 
negatives (FN) and false positives (FP). We discover 
that blocklists miss di˙erent ATSes (FN), some of which 
are missed by all blocklists, while more aggressive block-
lists can su˙er from false positives that result in break-
ing app functionality. We discuss two ways to discover 
false negatives, through observing domains contacted 

by multiple apps (“app prevalence”) and keyword search 
(based on ATS related words like “ads” and “measure”). 
PII Exposures (§6). We further examine the net-
work traces of our testbed datasets and fnd that hun-
dreds of apps exfltrate personally identifable informa-
tion (PII) to third parties and platform-specifc parties, 
mostly for non-functional advertising and tracking pur-
poses. Alarmingly, we fnd that many apps send the ad-
vertising ID alongside static PII values such as the de-
vice’s serial number. This eliminates the user’s ability 
to opt out of personalized advertisements by resetting 
the advertising ID, since the ATS can simply link an old 
advertising ID to its new value by joining on the serial 
number. We evaluate the blocklists’ ability to prevent 
exposures of PII and fnd that they generally perform 
well for Roku, but struggle to prevent exfltration of the 
device’s serial number and the device ID to third parties 
and the platform-specifc party for Fire TV. 
Contributions. In this paper, we analyze the network 
behavior of smart TVs, both in the wild and in the lab. 
Our contributions include the following: (1) providing 
an in-depth comparative analysis of the ATS ecosystems 
of Roku, Fire TV, and Android; (2) illuminating the 
key players within the Roku and Fire TV ATS ecosys-
tems by mapping domains to eSLDs and parent orga-
nizations; (3) evaluating the e˙ectiveness and adverse 
e˙ects of an extensive set of blocklists, including smart 
TV specifc blocklists; (4) instrumenting long experi-
ments per app to uncover approximately twice as many 
domains as [11]; and (5) making our tools, Rokustic and 
Firetastic, and our testbed datasets available [12]. 
Outline. The structure of the rest of the paper is as fol-
lows. Section 2 provides background on smart TVs and 
reviews related work. Section 3 presents the in the wild 
measurement and analysis of 57 smart TVs from seven 
di˙erent platforms in 41 homes. Section 4 presents our 
systematic testing approach and comparative analysis 
of the top-1000 Roku and Fire TV apps. Section 5 eval-
uates four well-known DNS-based blocklists and shows 
their limitations through analysis of missed ATSes and 
app breakage. Section 6 investigates exfltration of PII. 
Section 7 concludes the paper, discusses limitations, and 
outlines directions for future work. The appendix pro-
vides additional details and results, as well as an evalu-
ation and discussion of the limitations of our approach. 
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2 Background & Related Work 
Background on Smart TVs. A smart TV is es-
sentially an Internet-connected TV that has apps for 
users to stream content, play games, and even browse 
the web. There are two types of smart TV products 
in the market: (1) built-in smart TVs, and (2) exter-
nal smart TV boxes/sticks, also referred to as over-the-
top (OTT) streaming devices. Some TV manufacturers, 
such as Samsung and Sony, o˙er TVs with built-in smart 
TV functionality. While several others provide external 
box/stick solutions, such as Roku (by Roku), Fire TV 
(by Amazon), and Apple TV (by Apple), that convert a 
regular TV into a smart TV. In addition, hybrid prod-
ucts exist, as some TV manufacturers now integrate ex-
ternal box/stick solutions directly into their smart TVs. 
For example, TCL and Sharp o˙er smart TVs that inte-
grate Roku TV, while Insignia and Toshiba o˙er smart 
TVs that integrate Fire TV. We use “smart TV” as an 
umbrella term for TVs with built-in smart TV function-
ality and OTT streaming devices. 

There is a diverse set of smart TV platforms, each 
with its own set of apps that users can install on their 
TVs. Many smart TVs use an Android-based operating 
system (e.g., Sony, AirTV, Philips) or a modifed version 
of it (e.g., Fire TV). Regular Android TVs have access 
to apps from the Google Play Store, while Fire TV has 
its own app store controlled by Amazon. In both cases, 
applications for such TVs are built in a manner simi-
lar to regular Android applications. Likewise, Apple TV 
apps are built using technologies and frameworks that 
are also available for iOS apps, and both types of apps 
can be downloaded from Apple’s App Store. 

Some smart TV platforms are distinct as compared 
to traditional Android or iOS. For example, Samsung 
smart TV apps are built for their own custom platform 
called Tizen and are downloadable from the Tizen app 
store. Likewise, applications for the Roku platform are 
built using a customized language called BrightScript, 
and are accessible via the Roku Channel Store. Yet an-
other line of smart TVs such as LG smart TV and Hy-
brid broadcast broadband TV (HbbTV) follow a web-
based ecosystem where applications are developed using 
HTML, CSS, and JavaScript. Finally, some smart TV 
platforms, such as Chromecast, do not have app stores 
of their own, but are only meant to “cast” content from 
other devices such as smartphones. 

As with mobile apps, smart TV apps can integrate 
third-party libraries and services, often for advertising 
and tracking purposes. Serving advertisements is one of 

the main ways for smart TV platforms and app devel-
opers to generate revenue [4]. Roku’s advertising rev-
enue exceeded $250 million in 2018 and is expected to 
more than double by 2020 [13]. Both Roku and Fire TV 
take a 30% cut of the advertising revenue from apps on 
their platforms [14]. The smart TV advertising ecosys-
tem mirrors many aspects of the web advertising ecosys-
tem. Most importantly, smart TV advertising uses pro-
grammatic mechanisms that allow apps to sell their ad 
inventory in an automated fashion using behavioral tar-
geting [15, 16]. 

The rapidly growing smart TV advertising and asso-
ciated tracking ecosystem has already warranted privacy 
and security investigations into di˙erent smart TV plat-
forms. Consumer Reports examined privacy policies of 
various smart TV platforms including Roku, LG, Sony, 
and Vizio [17]. They found that privacy policies are of-
ten challenging to understand and it is diÿcult for users 
to opt out of di˙erent types of tracking. For instance, 
many smart TVs use Automatic Content Recognition 
(ACR) to track their users’ viewing data and use it to 
serve targeted ads [18]. Vizio paid $2.2 million to settle 
the charges by the Federal Trade Commission (FTC) 
that they were using ACR to track users’ viewing data 
without their knowledge or consent [19]. While smart 
TV platforms now allow users to opt out of such track-
ing, it is not straightforward for users to turn it o˙ [20]. 
Further, even with ACR turned o˙, users still must 
agree to a basic privacy policy that asks for the right to 
collect data about users’ location, choice of apps, etc. 
Related Work. While the desktop [21–23] and mo-
bile [24–26] ATS ecosystems have been thoroughly stud-
ied, the smart TV ATS ecosystem has not been exam-
ined at scale until recently. 

Three concurrent papers studied the network be-
havior and privacy implications of smart TVs [11, 27, 
28]. Ren et al. [27] studied a large set of IoT de-
vices, spanning multiple device categories. Their re-
sults showed that smart TVs were the category of de-
vices that contacted the largest number of third parties, 
which further motivates our in-depth study of the smart 
TV ATS ecosystem. Huang et al. [28] used crowdsourc-
ing to collect network traÿc for IoT devices in the wild 
and showed that smart TVs contact many trackers by 
matching the contacted domains against the Disconnect 
blocklist. Finally, Moghaddam et al. [11] also instru-
mented the Roku and Fire TV platforms to map the 
ATS endpoints and the exposure of PII. Our work in-
dependently confrms the fndings of these works w.r.t. 
the smart TV ATS ecosystem, both by analyzing seven 
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di˙erent smart TV platforms in the wild and by per-
forming systematic tests of two platforms (Roku and 
Fire TV) in the lab. In addition, we further contribute 
along two fronts. First, we show that even the same app 
across di˙erent smart TV platforms contact di˙erent 
ATSes, which shows the fragmentation of the smart TV 
ATS ecosystem. Second, we evaluate the e˙ectiveness of 
di˙erent sets of blocklists, including smart TV specifc 
blocklists, in terms of their ability to prevent ads and 
their adverse e˙ects on app functionality. We also sug-
gest ways to aid blocklist curation through analysis of 
domain usage across apps and PII exposures. 

Earlier work in this space includes [29] by Ghiglieri 
and Tews, who studied how broadcasting stations could 
track viewing behavior of users in the HbbTV plat-
form. In contrast to the rich app-based platforms we 
study, the HbbTV platform studied in [29] contained 
only one HbbTV app that uses HTML5-based overlays 
to provide interactive content. Related to our work, they 
found that the HbbTV app loaded third-party tracking 
scripts from Google Analytics. Malkin et al. [30] sur-
veyed 591 U.S. Internet users about their expectations 
on data collection by smart TVs. They found that users 
would rather enjoy new technology than worry about 
privacy, and users thus over rely on existing laws and 
regulations to protect their data. 

2.1 Labeling Methodology 

Throughout this paper, we provide insight into the 
smart TV ATS ecosystems by labeling a domain ac-
cording to (1) its purpose (ATS or non-ATS); (2) its 
parent organization (i.e., the domain owner); and (3) its 
relation to the app that uses it (frst, third, or platform-
specifc party). We detail this methodology below. 
ATS Domains. We identify ATS domains as follows. 
For fgures that denote top domains, we check if the 
FQDN is labeled as ads or tracking by VirusTotal, 
McAfee, OpenDNS [31–33], or if it is blocked by any 
of the blocklists considered in Sec. 5. For fgures and 
tables that involve entire datasets, we only consider the 
blocklists due to the impracticality of manually labeling 
thousands of data points. 
Parent Organizations. To understand the presence of 
di˙erent organizations on smart TV platforms, we map 
each FQDN to its e˙ective second level domain (eSLD) 
using Mozilla’s Public Suÿx List [34, 35], and use 
Crunchbase [36]’s acquisition and sub-organization in-
formation to fnd the parent company of the eSLD. For 

example, hulu.com belongs to the Walt Disney Com-
pany and youtube.com belongs to Alphabet. 
App-Level Party Categorization. The app-level vis-
ibility in our testbed experiments (Sec. 4) enables cate-
gorization of an Internet destination as a frst party or a 
third party w.r.t. app generating the traÿc. We provide 
an overview of the technique here and defer details to 
Appendix C.1. 

We adopt a technique similar to prior work [24], and 
we augment it to also include a platform-specifc party 
for traÿc to platform-related destinations. We match 
tokenized eSLDs with tokenized package/app names 
and developer names. If the tokens match, we label the 
domain as frst party. Otherwise, if the traÿc originated 
from platform activity rather than app activity, we la-
bel it as platform-specifc party: for Fire TV, AntMoni-
tor [37] labels connections with the responsible process; 
for Roku, we check if the eSLD contains “roku”. Other-
wise, if the domain is contacted by at least two di˙erent 
apps from di˙erent developers, we label it as third party. 
Lastly, we resort to labeling it as other to capture do-
mains that are only contacted by a single app. 

3 Smart TV Traÿc in the Wild 
In this section, we study the network behavior of smart 
TV devices when used by real users by analyzing a 
dataset collected at residential gateways of tens of 
homes (we refer to this dataset as the in the wild 
dataset). We compare the number of fows and traÿc 
volumes generated by smart TVs from seven di˙erent 
platforms. We analyze the most frequently used domains 
of each platform by identifying ATS domains and map-
ping each domain to its parent organization. 
Data Collection. To study smart TV traÿc character-
istics in the wild, we monitor network traÿc of 41 homes 
in a major metropolitan area in the United States. We 
sni˙ network traÿc of smart TV devices at the resi-
dential gateways using o˙-the-shelf OpenWRT-capable 
commodity routers. We collect fow-level summary in-
formation for network traÿc. For each fow, we collect 
its start time, FQDN of the external endpoint (using 
DNS), and the internal device identifer. We identify 
smart TVs using heuristics that rely on DNS, DHCP, 
and SSDP traÿc and also manually verify the identi-
fed smart TVs by contacting users. Our data collection 
covers a total of 57 smart TVs across 41 homes over 
the duration of approximately 3 weeks in 2018. Note 
that we obtained written consent from users, informing 
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Fig. 1. Top-30 fully qualifed domain names in terms of number of fows per device for a subset of the smart TVs in the “in the wild” 
dataset. See Appendix C.2 for the other brands. Domains identifed as ATS are highlighted with red, dashed bars. 

them of our data collection and research objectives, in 
accordance with our institution’s IRB guidelines. 
Dataset Statistics. Table 1 lists basic statistics of 
smart TV devices observed in our dataset. Overall, we 
note 57 smart TVs from 7 di˙erent vendors/platforms 
using a variety of technologies. 

Devices can be built-in smart TVs such as Samsung 
and Sony, others like Chromecast and Apple TV can 
be external stick/box solutions, while devices like Roku 
can have both forms. For example, 7 out 9 Roku devices 
in our dataset were built-in Roku smart TVs, while the 
remaining two were external Roku sticks. Note that a 
smart TV platform such as Roku supports the same 
set of apps and a similar interface for both built-in and 

external smart TV devices. Thus, we do not di˙erentiate 
between built-in vs. external Roku smart TV devices. 

We expect smart TV devices to generate signifcant 
traÿc because they are typically used for OTT video 
streaming [38]. Chromecast devices generate the highest 
number of fows (exceeding 200 thousand fows) on aver-
age, while Samsung, Apple, and Roku devices generate 
nearly 50 thousand fows on average. Roku devices gen-
erate the highest volume of fows (exceeding 80 GB) on 
average, with one Roku generating as much as 283 GB. 
Except for LG and Sony devices, all smart TV devices 
generate at least tens of GBs worth of traÿc on aver-
age. Finally, we note that smart TV devices typically 
connect to hundreds of di˙erent endpoints on average. 
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Smart 
TV 

Platform 

Device 
Count 

Average 
Flow 
Count 
/Device 
(x 1000) 

Average 
Flow 

Volume 
/Device 
(GB) 

Average 
eSLD 
Count 
/Device 

Apple 
Samsung 

Chromecast 
Roku 
Vizio 
LG 
Sony 

16 
11 
10 
9 
6 
4 
1 

49.3 
62.6 
201.9 
48.1 
43.4 
10.9 
33.1 

46.6 
33.2 
26.3 
83.0 
63.4 
0.9 
0.1 

536 
369 
354 
543 
278 
1893 
186 

Table 1. Traÿc statistics of 57 smart TV devices observed across 
41 homes (“in the wild” dataset). 

Endpoint Analysis. Fig. 1 plots the top-30 FQDNs in 
terms of fow count for Roku, Apple, Sony, and Samsung 
smart TV platforms. The plots for the remaining smart 
TV platforms are in Appendix C.2. 

We note several similarities in the domains accessed 
by di˙erent smart TV devices. First, video streaming 
services such as Netfix and Hulu are popular across the 
board, as evident from domains such api-global.netfix. 
com and vortex.hulu.com. Second, cloud/CDN services 
such as Akamai and AWS (Amazon) also appear for 
di˙erent smart TV platforms. Smart TVs likely connect 
to cloud/CDN services because popular video stream-
ing services typically rely on third party CDNs [39, 40]. 
Third, we note the prevalence of well-known adver-
tising and tracking services (ATSes). For example, 
*.scorecardresearch.com and *.newrelic.com are third 
party tracking services, and pubads.g.doubleclick.net is 
a third party advertising service. 

We notice several platform-specifc di˙erences in 
the domains accessed by di˙erent smart TV platforms. 
For example, giga.logs.roku.com (Roku), time-ios.apple. 
com (Apple), hh.prod.sonyentertainmentnetwork.com 
(Sony), and log-ingestion.samsungacr.com (Samsung) 
are unique to di˙erent types of smart TVs. In addition, 
we notice platform-specifc ATSes. For example, the fol-
lowing advertising-related domains are not in the top-30 
(and therefore not pictured in Fig. 1), but are unique to 
di˙erent smart TV platforms: p.ads.roku.com (Roku), 
ads.samsungads.com (Samsung), and us.info.lgsmartad. 
com (LG). 
Organizational Analysis. Figure 2 illustrates the mix 
of di˙erent parent organizations contacted by the seven 
smart TV platforms in our dataset. It shows the preva-
lence of Alphabet in smart TV platforms like Chrome-
cast, Sony, and LG, while revealing competing organi-
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Sony Bravia

Vizio

Adobe Systems
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Alphabet

Amazon

Apple

AT&T
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Deezer
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Kodi
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Localytics

NBCUniversal Media

Netflix

New Relic

NFL

Roku

Samsung

Sony

Time Warner

Twitter

Unknown/CDN

Verizon
Vizio

Walt Disney Company

Fig. 2. Mapping of platforms measured in the wild to the par-
ent organizations of the endpoints they contact (for the top-30 
FQDNs of each platform). The width of an edge indicates the 
number of distinct FQDNs within that organization that was ac-
cessed by the platform. 

zations such as Apple on the other end of the spectrum. 
Furthermore, it reveals the presence of organizations like 
Conviva, comScore, and Localytics, whose main busi-
ness is in the advertising and tracking space. We note 
that Samsung, Deezer, Roku, LG, and Flingo have the 
majority of their domains labeled as ATSes while Net-
fix and Walt Disney Company have less than half of 
their domains labeled as ATSes. 
Takeaway & Limitations. Traÿc analysis of di˙er-
ent smart TV platforms in the wild highlights interest-
ing similarities and di˙erences. As expected, all devices 
generate traÿc related to popular video streaming ser-
vices. In addition, they also access ATSes, both well-
known and platform-specifc. While our vantage point 
at the residential gateway provides a real-world view of 
the behavior of smart TV devices, it lacks granular in-
formation beyond fows (e.g., packet-level information) 
and does not tie traÿc to the app that generate it. An-
other limitation of this analysis is that the fndings may 
be biased by the viewing habits of users in these 41 
households. It is unclear how to normalize to provide 
a fair comparison of endpoints accessed by the di˙er-
ent smart TV platforms. We address these limitations 

api-global.netflix.com
api-global.netflix.com
vortex.hulu.com
*.scorecardresearch.com
*.newrelic.com
pubads.g.doubleclick.net
giga.logs.roku.com
time-ios.apple.com
time-ios.apple.com
hh.prod.sonyentertainmentnetwork.com
log-ingestion.samsungacr.com
p.ads.roku.com
ads.samsungads.com
us.info.lgsmartad.com
us.info.lgsmartad.com
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next by systematically analyzing two popular smart TV 
platforms in a controlled testbed. 

4 Systematic Testing of the Roku 
and Fire TV Platforms 

In this section, we perform an in-depth, systematic 
study of two smart TV platforms, Roku and Amazon 
Fire TV, which we chose since they are popular [41], 
a˙ordable ($25), and among the leading smart TV plat-
forms in terms of number of ad requests [6]. Sections 4.1 
and 4.2 present our measurement approach for system-
atically testing the top-1000 apps in each platform while 
collecting their network traÿc. Since app exploration is 
automated, no real users are involved, thus no IRB is 
needed. Our measurement approach provides visibility 
into the behaviors of individual apps, which was not 
possible from the vantage point used for the in the wild 
dataset. In Section 4.3, we analyze the two testbed 
datasets, and compare them to each other and to the 
Android ATS ecosystem. 

4.1 Roku Data Collection 

In this section, we describe the Roku platform and our 
app selection methodology, and present an overview of 
Rokustic—our software tool that automatically explores 
Roku apps. We use Rokustic to explore and collect traf-
fc from 1044 Roku apps. The resulting network traces 
are analyzed in Sec. 4.3. 
Roku Platform. We start by describing the Roku plat-
form, which has its own app store—the Roku Chan-
nel Store [42] (RCS)—that o˙ers more than 8500 apps, 
called “channels”. For security purposes, Roku sand-
boxes each app (apps are not allowed to interact or ac-
cess the data of other apps) and provides limited access 
to system resources [43]. Furthermore, Roku apps can-
not run in the background. Specifcally, app scripts are 
only executed when the user selects a particular app, 
and when the user exits the app, the script is halted, 
and the system resumes control [44]. 

To display ads, apps typically rely on the Roku Ad-
vertising Framework which is integrated into the Roku 
SDK [45]. The framework allows developers to use ad 
servers of their preference and updates automatically 
without requiring the developer to rebuild the app. Even 
though such a framework eliminates the need for third 
party ATS libraries, the development and usage of such 

libraries is still possible. For example, the Ooyala IQ 
SDK [46] provides various analytics services that can 
be integrated into a Roku app. Thus, such libraries can 
help ATSes learn the viewing habits of users by collect-
ing data from multiple apps. In terms of permissions, 
Roku only protects microphone access with a permis-
sion and does not require any permission to access the 
advertising ID. Users can choose to reset this ID and opt 
out of targeted advertising at any time [45]. However, 
apps and libraries can easily create other IDs or use fn-
gerprinting techniques to continue tracking users even 
after opt-out. We further elaborate on this in Sec 6. 
App Selection. The RCS provides a web (and on-
device) interface for browsing the available Roku apps. 
To the best of our knowledge, Roku does not pro-
vide public documentation on how to programmatically 
query the RCS. We therefore reverse-engineer the REST 
API backing the RCS web interface by inspecting the 
HTTP(S) requests sent while browsing the RCS, and 
use this insight to write a script that crawls the RCS 
for the metadata of all (8515 as of April 2019) apps. 

To test the most relevant apps, we select the 
top-50 apps in 30 out of the 32 categories. We exclude 
“Themes” and “Screensavers” since these apps do not 
show up among the regular apps on the Roku and there-
fore cannot be operated using our automation software. 
We base our selection on the “star rating count”, which 
we interpret as the review count. Roku apps can be 
labeled with multiple categories, thus some apps con-
tribute to the top-50 of multiple categories. This places 
the fnal count of apps in our dataset at 1044. 
Automation (Rokustic). To scale testing of apps, we 
implement a software tool, Rokustic, that automatically 
installs and exercises Roku apps. Due to lack of space, 
we only provide a brief overview here and defer addi-
tional details to Appendix A.1. 

We run Rokustic on a Raspberry Pi that acts as a 
router and hosts a local wireless network that the Roku 
is connected to. Rokustic utilizes ECP [47], a REST-like 
API exposed by the Roku device, to control the Roku. 
Given a set of apps to exercise, Rokustic installs each 
app by invoking the ECP endpoint that opens up the 
on-device version of the RCS page for the app, and then 
sends a virtual key press to click the “Add Channel” 
button. To exercise apps, Rokustic frst invokes the ECP 
endpoint that returns the set of installed apps. For each 
app, Rokustic then (1) starts tcpdump on the Raspberry 
Pi’s wireless interface; (2) uses ECP to launch the app 
and invoke a series of virtual key presses in an attempt 
to incur content playback; (3) pauses for fve minutes to 
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let the content play; (4) exits the app and repeats from 
step 2 an additional two times; (5) terminates tcpdump. 

Since Roku apps cannot execute in the background 
(see “Roku Platform”), all captured traÿc will belong to 
the exercised app and the Roku system. The total inter-
action time with each app is approximately 16 minutes. 
We do not attempt to decrypt TLS traÿc as we cannot 
install our own self-signed certifcates on the Roku. 

4.2 Fire TV Data Collection 

In this section, we describe the Fire TV platform, our 
app selection methodology, and present an overview 
of Firetastic—our software tool that automatically ex-
plores Fire TV apps. By using Firetastic to control six 
Fire TV devices in parallel, we explore and collect traf-
fc from 1010 Fire TV apps within a one week period. 
The resulting network traces are analyzed in Sec. 4.3. 
Fire TV Platform. Although Fire TV is made by 
Amazon, its underlying operating system, Fire OS, is 
a modifed version of Android. This allows apps for 
Fire TV to be developed in a similar fashion to An-
droid apps. Therefore, all third-party libraries that are 
available for Android apps can also be integrated into 
Fire TV apps. Similarly, application sandboxing and 
permissions in Fire TV are analogous to those of An-
droid, and any permission requested by the app is inher-
ited by all libraries that the app includes. This allows 
third party libraries to track users across apps using 
a variety of identifers, such as Advertising ID, Serial 
Number, and Device ID, etc. We further discuss track-
ing through PII exposure in Section 6. 
App Selection. To test the most relevant apps, we pick 
the top-1000 apps from Amazon’s curated list of “Top 
Featured” apps. We ignore some apps that use a local 
VPN (as they would confict with AntMonitor), that 
could not be installed manually, and utility apps that 
can change the device settings (which would a˙ect the 
test environment). As a result, we ignore around 200 
apps while including 1010 testable applications. Ama-
zon’s app store o˙ers around 4,000 free apps at the time 
of writing, thus our dataset covers approximately 25%. 
Automation (Firetastic). We design and implement 
a software tool, Firetastic, that integrates the capabil-
ities of two open source tools for Android: an SDK for 
network traÿc collection and a tool for input automa-
tion. We provide a brief overview of Firetastic here, and 
defer additional details to Appendix A.2. 

Number of Roku Fire TV Both 
Apps exercised 
Fully qualifed domain names (FQDN) 
FQDNs accessed by multiple apps 
URL paths 

1044 
2191 
669 

13899 

1010 
1734 
603 

240713 

128 
578 
199 
74 

Table 2. Summary of the Roku and Fire TV testbed datasets. 
The rightmost column summarizes the intersection between the 
two testbed datasets. For example, there are 128 apps that are 
present both in the Roku dataset and the Fire TV dataset. 

We rely on AntMonitor [37, 48], an open-source 
VPN-based library, to intercept all outgoing network 
traÿc from the Fire TV, and to label each packet with 
the package name of the application (or system pro-
cess) that generated it. We enable AntMonitor’s TLS 
decryption for added visibility into PII exposures. We 
analyze the success of TLS decryption in Appendix B. 
In summary, TLS decryption was generally successful 
with 10% or fewer failures for 55% of all apps, and 20% 
or fewer failures for 80% of all apps. 

For app exploration, we utilize DroidBot [49], a 
Python tool that dynamically maps the UI and sim-
ulates user inputs such as button presses using the An-
droid Debug Bridge (ADB). To increase the probability 
of content playback, we confgure DroidBot to utilize 
its breadth frst search algorithm to explore each app. 
The intuition is that the main content is often made 
available from top-level UI elements. 

In summary, for each app, Firetastic: (1) starts 
AntMonitor; (2) explores the app for 15 minutes; (3) 
stops AntMonitor; and (4) extracts the .pcapng fles 
that were generated during testing. We use Firetastic 
to explore apps on six Fire TV devices in parallel. Our 
test setup is resource-eÿcient and scalable, using only 
one computer to send commands to multiple Fire TVs. 

4.3 Comparing Roku and Fire TV 

In this section, we analyze the (ATS) domains accessed 
by the apps in the Roku and Fire TV testbed datasets. 
We frst provide an overview of the datasets, and analyze 
how many (ATS) domains apps contact. We then look 
closer at the eSLDs and third party ATS domains that 
are contacted by the most apps, including which parent 
organizations they belong to. Furthermore, we compare 
the top third party ATS domains to those of Android. 
Finally, we compare the domains accessed by apps that 
are present on both testbed platforms. 
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(a) Roku & Fire TV: Distinct domains per app. (b) Roku & Fire TV: Distinct ATS domains per app. A do-
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blocklists considered in Sec. 5. 
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Fig. 3. Analysis of domain usage per app and the top domains across all apps in the Roku and Fire TV testbed datasets. 
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Fig. 4. Mapping of platforms measured in our testbed environ-
ment to the parent organizations of the top-20 third-party ATS 
domains their apps contact. The width of an edge indicates the 
number of apps that contact each organization. 

Overview. The datasets collected using Rokustic and 
Firetastic are summarized in Table 2. For Roku, we dis-
cover 2191 distinct FQDNs, 699 of which are contacted 
by multiple apps. For Fire TV, we discover 1734 dis-
tinct FQDNs, 603 of which are contacted by multiple 
apps. We also fnd 578 FQDNs that appear in both 
datasets, 199 of which are contacted by multiple apps. 
Our automation uncovers approximately twice as many 
FQDNs as [11], possibly due to longer experiments and 
di˙erent app exploration goals. We further detail this in 
Appendix A.3. 

Leveraging the blocklists from Sec. 5, we identify 
314 ATS domains that are unique to the Roku dataset, 
285 that are unique to the Fire TV dataset, and an over-
lap of 227 between the two datasets. When considering 
eSLDs of the ATS domains, we fnd 68 eSLDs that are 
unique to the Roku dataset, 100 that are unique to the 
Fire TV dataset, and an overlap of 138 eSLDs. These 
numbers suggest that the ATS ecosystems of the two 
platforms have substantial di˙erences, which we ana-
lyze in further detail later in this section. 
Number of (ATS) Domains Contacted. Figure 3a 
presents the empirical CDF of the number of distinct 
domains each app in the two testbed datasets contacts. 
Fire TV apps appear more “chatty”—most Fire TV 
apps contact about twice as many domains as the Roku 
apps. However, when we consider the number of ATS 

domains contacted per app in Fig. 3b, the vast majority 
(80%) of apps from the two platforms behave similarly. 

On the positive side, for both platforms, around 
60% of the apps contact only a small handful ATS 
domains. Yet, about 10% of the Roku and Fire TV 
apps contact 20+ and 10+ ATS domains, respectively. 
These concerning apps come from a small set of devel-
opers. For instance, for Roku, “Future Today Inc.” [50], 
“8ctave ITV”, and “Stu˙WeLike” [51] are responsible 
for 51%, 13%, and 11%, respectively, of these apps. 
On the Fire TV side, “HTVMA Solutions, Inc.” [52] 
is responsible for 15% of the apps, and “Gray Televi-
sion, Inc.” [53] is responsible for 12% of the apps. 
Key Players. Figures 3c (Roku) and 3d (Fire TV) 
present the top-30 eSLDs in terms of the number of 
apps that contact a subdomain of the eSLD. We defne 
an eSLD’s app penetration as the percentage of apps in 
the dataset that contact the eSLD. 

Platform. The top eSLD of each platform has 100% 
app penetration and belongs to the platform operator. 
While these eSLDs also cover subdomains that provide 
functionality, we note that both platform operators are 
engaged in advertising and tracking, as shown in Fig. 9 
in Appendix C.3, which separates traÿc to the eSLDs 
in Figs. 3c and 3d by ATS and non-ATS FQDNs. 

Third Parties. As evident from Figs. 3c and 3d, Al-
phabet has a strong presence in the ATS space of both 
platforms, with *.doubleclick.net, an ad delivery end-
point, achieving 58% and 35% app penetration for Roku 
and Fire TV, respectively. Its analytic services also rank 
high, with google-analytics.com in the top-20 for both 
platforms and crashlytics.com in the top-10 for Fire TV. 
To better understand additional key third party ATSes, 
we strip away the platform-specifc endpoints and re-
port the top-20 third party ATS FQDNs for Roku and 
Fire TV in Figs. 3e and 3f, respectively. We note that 
both platforms use distinct third party ATSes. For ex-
ample, SpotX (*.spotxchange.com), which serves video 
ads, is a signifcant player in the Roku ATS space with 
17% app penetration, but only maintains 1% app pene-
tration for Fire TV. Even when considering the smaller 
players, we see little overlap between the two platforms, 
suggesting these players focus their e˙orts on a single 
platform. For example, Kantar Group’s insightexpres-
sai.com analytics service has 7% app penetration on the 
Roku platform, but only 0.01% on the Fire TV platform. 
Parent Organization Analysis. We further analyze 
the parent organizations of Roku and Fire TV third 
party ATS endpoints in Fig. 4, using the method de-
scribed earlier in Section 2.1. Interestingly, the set of top 

https://spotxchange.com
https://crashlytics.com
https://google-analytics.com
https://doubleclick.net


139 The TV is Smart and Full of Trackers 

M
ed

ite
rr

an
ea

n 
F

oo
d

C
N

N
go

P
lu

to
 T

V

P
. A

lle
n 

S
m

ith

F
re

e 
M

ov
ie

s 
N

ow

R
el

ax
 M

y 
D

og

Ita
lia

n 
R

ec
ip

es

B
E

T

P
hi

lo

V
H

1

C
B

S
 S

po
rt

s 
S

tr
ea

m

B
ak

in
g 

by
 if

oo
d.

tv

H
al

lm
ar

k 
C

ha
nn

el

B
lo

om
be

rg

T
ha

i r
ec

ip
es

C
om

ed
y 

C
en

tr
al

C
oo

l S
ch

oo
l

P
ar

am
ou

nt
 N

et
w

or
k

H
IS

T
O

R
Y

M
T

V

Li
fe

tim
e

F
un

 W
ith

 R
ob

lo
x 

by
H

ap
py

K
id

s
C

hi
ne

se
 R

ec
ip

es

W
at

ch
 T

B
S

C
ra

ftS
m

ar
t

T
el

em
un

do
 D

ep
or

te
s

W
at

ch
T

N
T

T
he

 H
ol

y 
T

al
es

 B
ib

le

W
ow

, I
 N

ev
er

 K
ne

w
 T

ha
t

B
B

C
 A

m
er

ic
a

B
lip

pi

F
ox

 B
us

in
es

s 
N

et
w

or
k

P
ila

te
s

D
rin

ks

W
S

B
-T

V
 C

ha
nn

el
 2

O
ut

si
de

 T
V

 F
ea

tu
re

s

R
ed

 B
ul

l T
V

O
m

 N
om

 S
to

rie
s

A
&

E

B
es

tC
oo

ks

iF
oo

d.
tv

A
M

C

S
ta

nd
-u

p 
C

om
ed

y

H
ay

st
ac

k 
T

V

T
ec

hS
m

ar
t.t

v

M
O

O
V

IM
E

X

N
F

L 
S

un
da

y 
T

ic
ke

t

P
la

yS
ta

tio
n 

V
ue

U
P

 F
ai

th
 &

 F
am

ily

A
B

C
 N

ew
s

S
m

ith
so

ni
an

 C
ha

nn
el

B
ab

y 
B

y 
H

ap
py

K
id

s.
tv

S
lin

g 
T

V

T
he

 B
IL

LI
A

R
D

 C
ha

nn
el

Lo
w

 C
ar

b
36

0

N
ow

 Y
ou

 K
no

w

F
ilm

R
is

e 
K

id
s

JT
V

 L
iv

e

iH
ea

rt
R

ad
io

N
R

A
 T

V

0

20

40

60

80

100

120

N
um

be
r 

of
 H

os
tn

am
es

Common

FireTV

Roku

Fig. 5. Top-60 common apps (apps present in both testbed datasets) ordered by the number of domains that each app contacts. Con-
sidering all 128 common apps, there are 597 domains which are exclusive to Roku apps, 496 domains which are exclusive to Fire TV 
apps, and 155 domains which are contacted by both the Roku and the Fire TV versions of the same app. 

third party organizations is rather diverse, with only a 
slight overlap in the shape of Adobe Systems and com-
Score, possibly suggesting that the remaining organiza-
tions focus their e˙orts on a single platform. Fire TV 
shows gaming and social media ATSes from Unity Tech 
and Facebook, whereas Roku exhibits more traÿc to 
ATSes from companies that focus on video ads such as 
The Trade Desk, Telaria, and RTL Group. Similar to the 
in the wild organization analysis in Fig 2, we again note 
that Alphabet dominates the set of third party ATSes 
on both Roku and Fire TV. 
Comparing to Android ATS Ecosystem. Next, we 
compare the top-20 third party ATS endpoints in our 
Roku and Fire TV datasets (Figs. 3e and 3f) with those 
reported for Android [24]. 

Roku vs. Android. The key third party ATSes 
in Roku (Fig. 3e) di˙er from the Android platform. 
For example, SpotX (*.spotxchange.com) and comScore 
(*.scorecardresearch.com) both have a strong presence 
on Roku, but are not among the key players for An-
droid. In contrast, Facebook’s graph.facebook.com is 
the second most popular ATS domain on Android, 
but insignifcant on Roku. The set of top third party 
ATSes in Roku is also more diverse and includes 
smaller organizations such as Pixalate (adrta.com) 
and Telaria (*.tremorhub.com). While Alphabet has a 
strong foothold in both ATS ecosystems, it is less sig-
nifcant for Roku (9 out 20 ATS FQDNs are Alphabet-
owned, vs. 16 out of 20 for Android). 

Fire TV vs. Android. In contrast to Roku, Fire TV 
is more similar to Android: we see an overlap of 9 
FQDNs, 7 of which are owned by Alphabet. This 
is expected, given that Fire TV is based o˙ of An-
droid and thus natively supports the ATS services of 
Android. Facebook (graph.facebook.com) and Verizon 

(data.furry.com) both have a strong presence on both 
Fire TV and Android. Some of the third party ATS ob-
served for Fire TV, which were not present for Android, 
include comScore, Adobe (dpm.demdex.net), and Ama-
zon (applab-sdk.amazon.com). 
Common Apps in Roku and Fire TV Next, we 
compare the Roku and Fire TV datasets at the app-
level by analyzing the FQDNs accessed by the set of 
apps that appear on both platforms, referred to as com-
mon apps. Recall from Table 2 that the datasets col-
lected using Rokustic and Firetastic contain a total of 
128 common apps. We identifed common apps by fuzzy 
matching app names since they sometimes vary slightly 
for each platform (e.g., “TechSmart.tv” on Roku vs. 
“TechSmart” on Fire TV). We further cross-referenced 
with the developer’s name to validate that the apps were 
indeed the same (e.g., both TechSmart apps are created 
by “Future Today”). The 128 common apps contact a 
total of 1248 distinct FQDNs. Out of these, 597 FQDNs 
are exclusively contacted by Roku apps, 496 are exclu-
sively contacted by Fire TV apps, and only 155 FQDNs 
are contacted by both Roku and Fire TV apps. 

Figure 5 reports the amount of overlapping and non-
overlapping FQDNs for the top-60 common apps (in 
terms of the number of distinct FQDNs that each app 
contacts). In general, the set of FQDNs contacted by 
both the Roku and the Fire TV versions of the same 
app is much smaller than the set of platform-specifc 
FQDNs. From inspecting the common FQDNs for some 
of the apps in Fig. 5, we fnd that these generally include 
endpoints that serve content. For example, for Mediter-
ranean Food, the only two common FQDNs are subdo-
mains of ifood.tv, which belong to the parent organiza-
tion behind the app. This makes intuitive sense as the 
same app presumably o˙ers the same content on both 

ifood.tv
https://TechSmart.tv
https://applab-sdk.amazon.com
https://dpm.demdex.net
https://data.flurry.com
https://graph.facebook.com
https://tremorhub.com
https://adrta.com
https://graph.facebook.com
https://scorecardresearch.com
https://spotxchange.com
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platforms and must therefore access the same servers to 
download said content. On the other hand, the platform-
specifc domains contain obvious ATS endpoints such 
as ads.yahoo.com and ads.stickyadstv.com for the Roku 
version of the app, and aax-us-east.amazon-adsystem. 
com and mobileanalytics.us-east-1.amazonaws.com for 
the Fire TV version of the app. In conclusion, our anal-
ysis of common apps reveals (to our surprise) little over-
lap in the ATS endpoints they access, which further sug-
gests that the smart TV ATS ecosystem is segmented 
across platforms. 
Takeaway. The ATS ecosystems of the Roku and 
Fire TV platforms seem to di˙er substantially: (1) the 
full set of ATS domains contacted by apps in the two 
datasets have little overlap; (2) some organizations are 
key players on one platform, but almost absent on the 
other (e.g., SpotX has a signifcant presence on Roku, 
but is almost absent on Fire TV, whereas Facebook has 
a reasonable foothold Fire TV, but almost zero presence 
on Roku); and (3) apps present in both datasets have 
little overlap in terms of the ATS domains they contact. 
Finally, we fnd that the key third party ATS players on 
Android have little overlap with Roku, but substantial 
overlap with Fire TV, which intuitively makes sense as 
Fire TV is built on top of Android. 

5 Blocklists for Smart TVs 
In this section, we evaluate four well-known DNS-based 
blocklists’ ability to prevent smart TVs from accessing 
ATSes and their adverse e˙ects on app functionality. We 
further demonstrate how the datasets resulting from au-
tomated app exploration may aid in curating new can-
didate rules for blocklists. 

5.1 Evaluating Popular DNS Blocklists 

DNS-based blocking solutions such as Pi-hole [7] are 
used to prevent in-home devices, including smart TVs, 
from accessing ATS domains [54]. To block advertis-
ing and tracking traÿc, they essentially “blackhole” 
DNS requests to known ATS domains. Specifcally, they 
match the domain name in the DNS request against a 
set of blocklists, which are essentially curated hosts fles 
that contain rules for well-known ATS domains. If the 
domain name is found in one of the blocklists, it is typi-
cally mapped to 0.0.0.0 or 127.0.0.1 to prevent outbound 
traÿc to that domain [55]. 

The TV is Smart and Full of Trackers 

Block Rate (%) 
Platform # Domains PD TF MoaAB SATV 

Dataset obtained “in the wild” 
Apple 3179 
Samsumg 1765 
Chromecast 1576 
Roku 2312 
Vizio 942 
LG 627 
Sony 119 

10% 13% 12% 5% 
14% 19% 15% 8% 
9% 15% 15% 5% 
15% 19% 18% 7% 
16% 18% 16% 11% 
45% 54% 50% 27% 
16% 24% 16% 7% 

Dataset obtained in our testbed 
Roku 2191 17% 22% 20% 9% 
Fire TV 1734 22% 27% 22% 9% 

Table 3. Block rates of the four blocklists when applied to the 
domains in our datasets. 

Setup. We evaluate the following blocklists: 
1. Pi-hole Default (PD): We test blocklists included 

in Pi-hole’s default confguration [56] to imitate the 
experience of a typical Pi-hole user. This set has 
seven hosts fles including Disconnect.me ads, Dis-
connect.me tracking, hpHosts, CAMELEON, Mal-
wareDomains, StevenBlack, and Zeustracker. PD 
contains a total of about 133K entries. 

2. The Firebog (TF): We test nine advertising and 
fve tracking blocklists recommended by “The Big 
Blocklist Collection” [8], to emulate the experience 
of an advanced Pi-hole user. This includes: Discon-
nect.me ads, hpHosts, a dedicated blocklist target-
ing smart TVs, and hosts versions of EasyList and 
EasyPrivacy. TF contains 162K entries total. 

3. Mother of all Ad-Blocking (MoaAB): We test 
this curated hosts fle [9] that targets a wide-range 
of unwanted services including advertising, track-
ing, (cookies, page counters, web bugs), and mal-
ware (phishing, spyware) to again imitate the expe-
rience of an advanced Pi-hole user. MoaAB contains 
a total of about 255K entries. 

4. StopAd (SATV): We test a commercial smart TV 
focused blocklist by StopAd [10]. This list partic-
ularly targets Android based smart TV platforms 
such as Fire TV. We extract StopAd’s list by analyz-
ing its APK using Android Studio’s APK Analyzer 
[57]. SATV contains a total of about 3K entries. 

We applied these blocklists to both our in the wild and 
testbed datasets and we report the results next. 
Block Rates. We start our analysis by comparing how 
many FQDNs are blocked by the di˙erent blocklists. 
We defne a blocklist’s block rate as the number of dis-
tinct FQDNs that are blocked by the list, over the total 

ads.yahoo.com
ads.stickyadstv.com
aax-us-east.amazon-adsystem.com
aax-us-east.amazon-adsystem.com
mobileanalytics.us-east-1.amazonaws.com
https://connect.me
https://Disconnect.me
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App Name No List 
No No 
Ads Breakage 

No 
Ads 

PD 
No 
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No 
Ads 

TF 
No 
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M
No 
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No 
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5 
5 

5 5 

— 6 

5 5 
5 
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5 
5 
5 

5 

5 

6 
5 

6 
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5 

5 
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5 

5 
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5 
5 

5 5 
— 6 

5 
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5 
6 

5 6 
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The CW for Fire TV 
FoxNow 
Watch TNT 

5 
5 

— 
— 

6 
6 

— 
— 

6 
6 

— 
5 

6 5 
5 

Ra
nd

om KCRA3 Sacramento 
Watch the Weather Channel 
Jackpot Pokers by PokerStars 

5 
5 

— 6 — 
5 

6 5 5 

5 

Table 4. Missed ads and functionality breakage for di˙erent blocklists when employed during manual interaction with 10 Roku apps 
and 10 Fire TV apps. For “No Ads”, a checkmark ( ) indicates that no ads were shown during the experiment, a cross (5) indicates 
that some ad(s) appeared during the experiment, and a dash (—) indicates that breakage prevented interaction with the app alto-
gether. For “No Breakage”, a checkmark ( ) indicates that the app functioned correctly, a cross (5) indicates minor breakage, and a 
bold cross (6) indicates major breakage. 

number of distinct FQDNs in the dataset. Table 3 com-
pares the block rates of the aforementioned blocklists on 
our in the wild and testbed datasets. Overall, we note 
that TF, closely followed by MoaAB and PD, blocks the 
highest fraction of domains across all of the platforms 
in both the in the wild and testbed datasets. SATV is 
the distant last in terms of block rate. It is noteworthy 
that TF blocks more domains than MoaAB despite being 
about one-third shorter. We surmise this is because TF 
includes a smart TV focused hosts fle, and thus catches 
more relevant smart TV ATSes. This fnding shows that 
the size of a blocklist does not necessarily translate to 
its coverage. 
Blocklist Mistakes. Motivated by the di˙erences in 
the block rates of the four blocklists, we next compare 
them in terms of false negatives (FN) and false posi-
tives (FP). False negatives occur when a blocklist does 
not block requests to ATSes and may result in (visually 
observable) ads or (visually unobservable) PII exfltra-
tion. False positives occur when a blocklist blocks re-
quests that enable app functionality and may result in 
(visually observable) app breakage. 

We frst systematically quantify visually observable 
false negatives and false positives of blocklists by inter-

acting with a sample of apps from our testbed datasets 
while coding for ads and app breakage. We sample 10 
Roku apps and 10 Fire TV apps, including the top-
4 free apps, three apps that are present on both plat-
forms, and an additional three randomly selected apps. 
We test each app fve times: once without any blocklist 
and four times where we individually deploy each of the 
aforementioned blocklists. During each experiment, we 
attempt to trigger ads by playing multiple videos and/or 
live TV channels and fast-forwarding through video con-
tent. We take note of any functionality breakage (due to 
false positives) and visually observable missed ads (due 
to false negatives). We di˙erentiate between minor and 
major functionality breakage as follows: minor breakage 
when the app’s main content remains available but the 
application su˙ers from minor user interface glitches or 
occasional freezes; and major breakage when the app’s 
content becomes completely unavailable or the app fails 
to launch. 
Missed Ads vs. Functionality Breakage. Table 4 
summarizes the results of our manual analysis for missed 
ads and functionality breakage. Overall, we fnd that 
none of the blocklists are able to block ads from all of 
the sampled apps while avoiding breakage. In particular, 
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Fig. 6. Block rates as a function of the number apps that con-
tact a FQDN. For the horizontal axis, “2+” represents the set 
of FQDNs that are contacted by 2 or more apps. For Roku, the 
more apps that contact an FQDN, the more likely it is that the 
FQDN is an ATS, according to the blocklists. The same is not 
true for Fire TV because platform services start to dominate the 
set of FQDNs that are accessed by many apps, and platform ser-
vices are often not blocked. 

none of the blocklists are able to block ads in YouTube 
and Pluto TV (available on both Roku and Fire TV). 
Across di˙erent lists, PD seems to achieve the best bal-
ance between blocking ads and preserving functionality. 

For Roku, PD and TF perform similarly. While TF 
is the only list that blocks ads in Sony Crackle, both 
lists miss ads in YouTube and Pluto TV. TF majorly 
breaks three apps, while PD only majorly breaks one 
app. MoaAB is unable to block ads in four apps and 
majorly breaks only one app. SATV does not cause any 
breakage, but is unable to block ads in six apps. 

For Fire TV, PD again seems to be the most e˙ec-
tive at blocking ads while avoiding breakage, but is still 
unable to block ads in one app (Pluto TV) and majorly 
breaks two apps. TF is also unable to block ads in Pluto 
TV, but majorly breaks four apps. MoaAB is unable to 
block ads in three apps and majorly breaks three apps 
(one minor). SATV is unable to block ads in four apps 
and majorly breaks one app (two minor). 
Takeaway. All blocklists su˙er from a non-trivial 
amount of visually observable FPs and FNs. Some 
blocklists (e.g., PD and TF) are clearly more e˙ec-
tive than others. Interestingly, SATV, which is curated 
specifcally for smart TVs, did not perform well. 

5.2 Identifying False Negatives 

In this section, we demonstrate how datasets generated 
using automation tools such as Rokustic and Firetastic 
enable blocklist curators to identify potential false neg-
atives in the blocklist. In particular, we observe that the 

more apps that contact a FQDN, the more likely it is 
that the FQDN is an ATS. This is intuitive and consis-
tent with a similar observation previously made in the 
mobile ecosystem [24]. 

We frst use simple keywords such as “ad”, “ads”, 
and “track” to shortlist obvious ATS domains in our 
datasets. While keyword search is not perfect, this sim-
ple approach identifes several obvious false negatives 
(we provide the full list in Appendix C.4). For ex-
ample, p.ads.roku.com and adtag.primetime.adobe.com 
are advertising/tracking related domains which are not 
blocked by any of the lists. 

We observe that many of these false negatives (i.e., 
missed ATS domains) are contacted by multiple apps 
in our testbed datasets. For example, p.ads.roku.com 
is accessed by more than 100 apps in our Roku testbed 
dataset. To gain further insight into potential false nega-
tives, we study whether the likelihood of being blocked 
is impacted by the number of apps that access a do-
main. Figure 6 plots the block rates for the union of 
the four blocklists as a function of FQDNs’ occurrences 
across apps in our testbed datasets. We note that the 
block rate substantially increases for the domains that 
appear across multiple apps. For example, the block rate 
almost doubles for domains contacted by two or more 
apps as compared to domains contacted by a single or 
more apps. Domains that are contacted by multiple dif-
ferent apps are therefore more likely to belong to third 
party ATS libraries included by smart TV apps. 

6 PII Exposures in Smart TVs 
In this section, we examine our testbed datasets from 
Sec. 4 for exposure of personally identifable informa-
tion (PII) and we evaluate the e˙ectiveness of block-
lists in preventing it. We defne “PII exposure” as the 
transmission of any PII from the smart TV device to 
any Internet destination. We identify PII values (such 
as advertising ID and serial number) through the set-
tings menus and packaging of each device. Since trackers 
are known to encode or hash PII [58], we compute the 
MD5 and SHA1 hashes for each of the PII values. We 
then search for these PII values in the HTTP header 
felds and URI path. Recall from Section 4 that we can 
analyze HTTP information even for encrypted fows in 
the Fire TV dataset due to AntMonitor’s TLS decryp-
tion [37, 48], but can only analyze unencrypted fows in 
Roku. The number of PII exposures reported for Roku 
should therefore be considered a lower bound. 

p.ads.roku.com
adtag.primetime.adobe.com
p.ads.roku.com
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PII Roku Testbed Dataset (Apps & eSLDs) 
1st Party 3rd Party Other Total 

Fire TV Test
1st Party 3rd Party 

bed Dataset (Apps & eSLDs) 
Platform Party Other Total 

Advertising ID 
Serial Number 
Device ID 
Username 
MAC 
Location 

4/4/25% 263/36/88% 6/3/0% 269/42/81% 
48/17/5% 128/16/74% 2/2/0% 174/34/36% 

- - - -
4/4/0% 1/1/100% - 5/5/20% 

- - - -
- 42/2/100% - 42/2/100% 

17/7/25% 53/31/78% 
10/3/0% 51/4/33% 
19/8/0% 153/27/36% 
1/2/0% 2/2/100% 

- 2/2/100% 
- 27/7/90% 

715/4/71% 5/5/40% 725/39/71% 
867/4/9% 2/2/0% 881/9/12% 

819/5/14% 10/11/21% 856/43/31% 
1/1/100% - 4/5/40% 

- - 2/2/100% 
2/2/100% - 28/7/90% 

Table 5. Applications / eSLDs / % Distinct FQDNs Blocked. Number of apps that expose PII, number of distinct eSLDs 
that receive PII from these apps, and percentage of distinct subdomains of the eSLDs that are blocked by the blocklists. We further 
separate by party as defned in Sec. 2.1. Roku platform column omitted since we do not observe PII exposures to platform domains. 

Overview. Table 5 reports the PII exposures for both 
testbed platforms. For Roku, the majority of the PII 
exposures are to third parties, whereas for Fire TV 
they are to the platform-specifc party. The blocklists 
adequately prevent exfltration of PII to third parties, 
blocking 74% or more of third party domains for all the 
PII values considered for Roku. For Fire TV, they miti-
gate the majority of advertising ID exposures, blocking 
71% or more of the involved domains, but are not as 
e˙ective in preventing exposures of serial number and 
device ID to third parties and platform destinations. 
Di˙erentiating PII Exposures. Inspired by [59], we 
adopt a simple approach for distinguishing between 
“good” and “bad” PII exposures that treats PII ex-
posures to third parties as a higher threat to privacy 
than PII exposures to frst parties. PII exposures to 
frst parties are generally warranted as they likely have 
a functional purpose such as personalization of content 
(e.g., keeping track of where the user paused a video). 
For example, the Roku app “Acacia Fitness & Yoga 
Channel” from “RLJ Entertainment”, sends a request 
to the frst party domain api.rlje.net with a URI path of 
“/cms/acacia/today/roku/content/browse.json” while 
including the device’s serial number in an HTTP header 
feld, suggesting that the serial number is used to per-
sonalize today’s featured content. 

On the other hand, PII exposures to third parties 
are generally unwarranted as they typically do not have 
a functional purpose. This extends to cases where the 
app retrieves its content through a third party CDN 
as the personalization could be achieved by frst send-
ing the PII to the frst party server which could then 
respond to the app with the CDN URL for the con-
tent to be retrieved. For instance, the Roku app “Arm-
chairTourist” from “ArmchairTourist Video Inc.” sends 
a request to the third party domain ads.adrise.tv with 
a URI path of “/track/impression...” that encodes the 

device’s serial number, suggesting that the PII is used 
to track what ads have been shown to the user. 
Exposures to Platform Party. For Fire TV, the 
majority of the exposures of serial number and de-
vice ID to platform destinations seem to be for adver-
tising and tracking purposes. For example, 697 apps 
send the serial number and device ID (and advertis-
ing ID) to the platform endpoint aviary.amazon.com 
with a URI path of “/GetAds”, and 53 apps send the 
serial number to dna.amazon.com, with a URI path 
of “/GetSponsoredTileAds”. Judging from these paths, 
it would seem like the advertising ID alone would be 
suÿcient and the more appropriate PII. On the other 
hand, some exposures seem to serve a functional pur-
pose. For example, 67 apps send the serial number to 
atv-ext.amazon.com, with varying URI paths contain-
ing “/cdp/”. We surmise that this domain serves as 
“Content Delivery Platform(s)” [60], allowing apps to 
personalize content without user login. Specifcally, we 
see paths such as “/cdp/playback/GetDefaultSettings” 
coupled with an “x-atv-session-id” HTTP header feld. 
Joint Exposure of Static and Dynamic PII. We 
observe that some apps send the advertising ID along-
side other static identifers. This goes against recom-
mended developer practices, where apps and ATSes 
should only rely on dynamic identifers that can be 
refreshed like advertising ID to give users the abil-
ity to opt out of being tracked. Aside from the 697 
Fire TV apps that expose advertising ID alongside se-
rial number and device ID discussed earlier, we ob-
serve 10 Roku apps (including prominent ones such as 
Pluto TV and PBS) that send both the advertising ID 
and the serial number to third parties (subdomains of 
scorecardreasearch.com and youboranqs01.com). Simi-
larly, 12 Fire TV apps send the advertising ID along-
side the device ID to third party destinations such 
as ads.adrise.tv and ctv.monarchads.com. Thus, these 

api.rlje.net
ads.adrise.tv
aviary.amazon.com
dna.amazon.com
atv-ext.amazon.com
scorecardreasearch.com
youboranqs01.com
ads.adrise.tv
ctv.monarchads.com
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practices allow ATSes to link an old advertising ID to 
the new value by joining on the static identifers. 
Leveraging Missed PII Exposures to Improve 
Blocklists. The above indicate another direction for 
improving blocklist curation for smart TVs. By deploy-
ing tools such as Rokustic and Firetastic and searching 
the network traces for PII exposures, blocklist curators 
can generate candidate rules that can then be exam-
ined manually. Using this approach, we identifed 38 
domains in the Roku dataset and 30 in the Fire TV 
dataset that receive PII, but were not blocked by any 
list. These numbers are conservative as we exclude loca-
tion and account name that are likely to be used for le-
gitimate purposes, such as logging in or serving location-
based content. These domains include obvious ATSes 
such as ads.aimitv.com and ads.ewscloud.com. Another 
noteworthy mention is hotlist.samba.tv: Samba TV uses 
Automatic Content Recognition to provide content sug-
gestions on smart TVs, but this comes at the cost of 
targeted advertising that even propagates onto other 
devices in the home network [61]. 
Takeaway. Hundreds of Roku and Fire TV apps expose 
PII, mostly to third parties and the platform-specifc 
party. For Fire TV, we observe that most of the expo-
sures to the platform-specifc party seem to be for ad-
vertising and tracking purposes. We observe that many 
Roku and Fire TV apps send the advertising ID along-
side a static identifer (e.g., serial number), which en-
ables the ATS to relink a user profle associated with an 
old advertising ID to a new advertising ID, thus elimi-
nating the user’s ability to opt out. The blocklists gener-
ally do well at preventing exposure of the advertising ID 
on both platforms, but are less successful at preventing 
exposures of serial number and device ID on Fire TV. 

7 Conclusion & Directions 
Summary. In this paper, we performed one of the 
frst comprehensive measurement studies of the emerg-
ing smart TV advertising and tracking service (ATS) 
ecosystem. To that end, we analyzed and compared: (i) a 
realistic but small in the wild dataset (57 smart TV de-
vices from seven di˙erent platforms, with coarse fow-
level information); and (ii) two large testbed datasets 
(top-1000 apps on Roku and Fire TV, tested system-
atically, with granular per app and packet-level infor-
mation). Our work establishes that the smart TV ATS 
ecosystem is fragmented across di˙erent smart TV plat-
forms and is di˙erent from the mobile ATS ecosystem. 

We further evaluate popular DNS-based blocklists’ abil-
ity to prevent smart TVs from accessing ATSes, and 
fnd that all lists su˙er from missed ATSes and incur 
app breakage. Finally, we examine our testbed datasets 
for exposure of personally identifable information (PII) 
and discover that hundreds of apps send PII to third 
parties and the platform-specifc party, mostly for ad-
vertising and tracking purposes. 
Limitations. Our methodology has its limitations. 
First, the automated app exploration may not always 
result in content (video/audio) playback, which may im-
pact the (ATS) domains discovered. We evaluate the 
extent of this limitation in Appendix A.3. We fnd that 
Rokustic and Firetastic perform on par with concurrent 
work [11] in terms of playback success, and that they 
manage to discover a large fraction of the number of 
domains discovered during manual interaction. Second, 
apps may prevent TLS interception through use of cer-
tifcate pinning, which may prevent Firetastic from ob-
serving PII exposures in encrypted traÿc. We assess the 
decryption failures in Appendix B: we fnd that for 80% 
of the apps in our Fire TV testbed dataset, TLS inter-
ception only fails for 20% or fewer of an app’s TLS con-
nections. Third, our analysis of FPs and FNs in DNS-
based blocklists in Sec. 5.1 does not account for DNS 
over HTTPS (DoH), nor static advertisements, thus it 
may overcount blocklist FNs for these cases. 
Future Work. Our fndings motivate more research to 
further understand smart TVs and to develop privacy-
enhancing solutions specifcally designed for each smart 
TV platform. For example, more research is needed 
to curate accurate, fne-grained (as opposed to DNS-
based), and platform-specifc blocklists. To foster fur-
ther research along this direction, we plan to make 
our tools, Rokustic and Firetastic, and testbed datasets 
publicly available [12]. We intend to further improve our 
tools’ ability to thoroughly explore smart TV apps along 
the directions discussed in Appendix A.3. 
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Appendix 
In appendices A and B, we discuss implementation de-
tails and limitations of our methodology, and outline 
directions for improvement. In Appendix C, we provide 
additional analysis of datasets that had to be omitted 
from the main text due to lack of space. Notably, the 
rest of the “in the wild” dataset is within Appendix C.2. 

A Automatic App Exploration 
In this section, we provide details on the implementa-
tion of our automatic app exploration tools, Rokustic for 
Roku (Sec. A.1) and Firetastic for Fire TV (Sec. A.2), 
in addition to what is described in the main paper (Sec-
tions 4.1 and 4.2, respectively). Then, in Section A.3, 
we discuss the limitations of Rokustic and Firetastic, 
including when the automation does not lead to video 
playback and how the automated exploration compares 
to manual testing of apps that require login. Ultimately, 
this discussion leads to directions for how to improve 
Rokustic’s and Firetastic’s automatic app exploration. 

A.1 Roku Automation 

To scale testing of apps, we implement a software sys-
tem, Rokustic, that automatically installs and exercises 
Roku apps on a Roku Express 3900X (Roku for short). 
Setup. We run Rokustic on a Raspberry Pi 3 Model B+ 
set up to host a standalone network as per the instruc-
tions given in [62]. The Pi’s wireless interface (wlan0) is 
confgured as a wireless access point with DHCP server 
and NAT, and the Roku is connected to this local wire-
less network. The Pi’s wired interface (eth0) connects 
the Pi and thus, in turn, the Roku to the WAN. This 
setup enables us to collect all traÿc going in and out 
of the Roku by running tcpdump on the Raspberry Pi’s 
wireless interface. We do not attempt to decrypt TLS 
traÿc as we cannot install our own self-signed certif-
cates on the Roku. 

Rokustic utilizes the Roku External Control (ECP) 
API [47] to control the Roku. The ECP is a REST-like 
API exposed by the Roku to other devices on the local 
network. The ECP includes a set of REST-endpoints 
that provides the ability to press keys on the Roku re-
mote, query the Roku for various information such as 
the set of installed apps, programmatically browse the 
Roku Channel Store (RCS), etc. 

App Installation. Given a set of apps to exercise, 
Rokustic installs each app by invoking the ECP end-
point that opens up the on-device version of the RCS 
page for the app, and then sends a virtual key press to 
click the “Add Channel” button that starts download 
and installation of the app. Rokustic then waits for fve 
seconds, and then queries the Roku for the set of in-
stalled apps to check if the installation has completed, 
and if so continues to install the next app, otherwise the 
wait-and-check is repeated (until a fxed threshold). 
App Exploration. From manual inspection of a few 
apps (e.g. YouTube and Pluto TV), we fnd that 
playable content is often presented in a grid, where each 
cell is a di˙erent video or live TV channel. Generally, 
the user interface defaults to highlighting one of these 
cells (e.g., the frst recommended video). Pressing “Se-
lect” on the Roku remote immediately after the app has 
launched will therefore result in playback of some con-
tent. From this insight, we devised a simple algorithm 
(see Listing 1) that attempts to cause playback of three 
di˙erent videos for each installed Roku app. 

for app in roku.installedApps: 

startPacketCapture(app.id); 

# Play default video 

launch(app); sleepSeconds(20); 

press("SELECT"); sleepMinutes(5); 

# Play some other video by selecting a 

# different cell in the grid 

relaunch(app); 

press("DOWN"); press("DOWN"); 

press("RIGHT"); press("RIGHT"); 

press("SELECT"); sleepMinutes(5); 

# Play a 3rd video 

relaunch(app); 

press("DOWN"); press("DOWN"); 

press("SELECT"); sleepMinutes(5); 

# Quit the Roku app 

press("HOME"); 

stopPacketCapture(app.id); 

Listing 1. Algorithm for exercising Roku apps. 

For each Roku app, the algorithm frst starts a 
packet capture so as to produce a .pcap fle for each 
Roku app, thereby essentially labeling traÿc with the 
app that caused it: since Roku apps cannot execute in 
the background (see Sec. 4.1), all traÿc captured dur-
ing execution of a single app will belong to that app 
and the Roku system. The target app is launched, and 
the algorithm pauses, waiting for the app to load. Next, 
a virtual “Select” key press is sent to attempt to start 

https://stopPacketCapture(app.id
https://startPacketCapture(app.id
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video playback, and the algorithm subsequently pauses 
to let the content play. The app is then relaunched by 
returning to the Roku’s home screen and then launching 
the app again. The purpose of this is to safely return to 
the app’s home screen such that di˙erent content can 
be selected for playback. This is repeated two times, 
with slight variations in the sequence of navigational 
key presses, such that each app will (presumably) end 
up playing three di˙erent videos, making the total ex-
ploration time approximately 16 minutes per app. We 
note that the relaunch procedure internally performs 
short sleeps to let the app quit and launch again, and 
that we have omitted a one second sleep after each nav-
igational key press in the pseudo code in Listing 1. 

Although the Roku remote has a “Back” button, 
which behaves similarly to the back button in Android, 
we purposefully avoid using it as a means to return to 
the app’s home screen: if the video selected for playback 
is shorter than the sleep duration, the app will return to 
its home screen automatically, and pressing “Back” will 
therefore quit the app and return to the Roku’s home 
screen. This would pollute our data as the subsequent 
navigational key presses would cause a di˙erent app to 
be highlighted and then launched by the next “Select” 
key press. 

A.2 Fire TV Automation 

Since Fire TV is based on Android, we can use existing 
Android tools to capture network traÿc. Although there 
are various methods for capturing traÿc on Android 
on the device itself (e.g. androidtcpdump [63]), most of 
them require a rooted device. While it is possible to root 
a Fire TV, it may make applications behave di˙erently if 
they detect root. Thus, to collect measurements that are 
representative of an average user, we use a VPN-based 
traÿc interception method that does not require rooting 
the device [37, 48]. We discard incoming traÿc because 
video content results in huge pcap fles, which due to a 
technical limitation of ADB (very slow transfer speeds 
for large fles) slows down the automated experiments 
signifcantly. The outgoing traÿc is suÿcient for our 
domain and PII analysis. 

To automatically explore each Fire TV application, 
we utilize Droidbot [49], as it treats each app as a tree 
of possible paths to explore instead of randomly gen-
erating events, which results in higher test coverage of 
the application. Furthermore, we deduce that developers 
would minimize the necessary clicks in order to reach the 
core sections of their applications, especially for playing 

video content. Thus, we confgure DroidBot to utilize 
its breadth frst search algorithm to explore each ap-
plication. The intuition is that this should cover more 
distinct UI paths of the app, thus increasing the chance 
of content playback (in contrast, the Depth First Search 
algorithm may cause the automation to deep end into 
a path that we do not care about, such as a settings 
menu). With some trial and error, we selected the input 
command interval as three seconds which leaves enough 
time for applications to handle the command and load 
the next view during app exploration. 

We summarize Firetastic’s automation algorithm in 
Listing 2. For each app, Firetastic frst starts the local 
VPN to capture (and decrypt) traÿc. Next, it invokes 
DroidBot, which in turn launches the app and begins ex-
ploring it. When the 15-minute exploration completes, 
Firetastic stops the local VPN and extracts the .pcapng 
fles that were generated during testing. 

device = "10.0.1.xx:5555" 

pcapng_dir = "/some/path/to/store/pcapng" 

apk_dir = "/some/path/to/apk/batch" 

for app in apk_dir: 

# Start AntMonitor on Fire TV 

start_antmonitor(device) 

# Ensure VPN connection up 

ensure_antmonitor_connected(device) 

# Run DroidBot command 

params = { duration: 15min , 

policy: "bfs_naive", 

install_timeout: 5min , 

interval: 3sec } 

run_droidbot(app, params, device) 

# Stop AntMonitor on Fire TV 

stop_antmonitor_vpn(device) 

# Extract the pcap files 

extract_pcapng_files(app, pcapng_dir , 

device) 

# Clean up before testing next app 

remove_pcapng_files(device) 

Listing 2. Algorithm for exercising FireTV apps. 

A.3 Limitations of App Exploration 

Our automated app exploration has, admittedly, limita-
tions. For example, it can miss video playback for some 
apps, and cannot fully explore apps that require login. 
In this section, we evaluate our automated exploration 
vs. a more realistic manual exploration by a real user, 
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App Name Playback? 
(auto) Auto (A) 

Distinct eSLDs 
Manual (M) A 

M

Disti
A 

nct ATS domains 
M A 

M 

R
ok
u 

To
p-
10

 

YouTube 
Sling TV 
The Roku Channel 
Crackle 
JW Broadcasting 
PBS KIDS 
ESPN 
Tubi - Free Movies & TV 
DisneyNOW 
Pluto TV - It’s Free TV 

5 

5 

5 
5 
5 

8 
10 
16 
9 
3 
4 
6 
3 
6 
24 

15 
21 
13 
34 
4 
7 

16 
19 
9 
9 

53% 
48% 
123% 
26% 
75% 
57% 
38% 

15.79% 
67% 

267% 

5 
6 
7 
8 
2 
4 
4 
5 
4 
36 

15 
21 
5 
42 
2 
6 
16 
34 
5 
7 

33% 
29% 
140% 
19% 
100% 
67% 
25% 
15% 
80% 
514% 

Ra
nd

om
 Roku Newscaster 

ChuChu TV 
Elvis 
Mondo 
tik tok 

5 

5 

4 
10 
20 
4 
1 

5 
10 
38 
5 
3 

80% 
100% 
53% 
80% 
33% 

3 
9 
14 
2 
2 

2 
17 
54 
2 
3 

150% 
53% 
26% 
100% 
67% 

Total 8 of 15 (53%) 74 113 65% 64 122 52% 

Fi
re
 T

V
 

To
p-
10

 

Pluto TV - It’s Free TV 
ABC 
Fox Now 
AMC 
Fox Sports GO 
Kids for Youtube 
PBS Kids 
CNN Go 
Sundance TV 
MTV 

5 
5 

5 
5 

15 
14 
22 
18 
12 
16 
12 
31 
13 
56 

30 
13 
24 
28 
19 
19 
15 
34 
23 
38 

50% 
108% 
92% 
64% 

63.16% 
84% 
80% 
91% 
57% 
147% 

13 
5 
18 
8 
7 
7 
7 
41 
5 
38 

35 
6 
18 
19 
17 
5 
9 
34 
11 
54 

37% 
83% 
100% 
42% 
41% 
140% 
78% 
121% 
45% 
70% 

Ra
nd

om
 Vimeo 

Dog TV Online 
WCSC Live 5 News 
WFXG FOX 54 
13abc WTVG Toledo, OH 

5 

12 
10 
13 
18 
12 

11 
14 
12 
18 
11 

109% 
71% 
108% 
100% 
109% 

5 
2 
5 
8 
5 

3 
5 
5 
7 
2 

167% 
40% 
100% 
114% 
250% 

Total 10 of 15 (67%) 125 117 107% 115 138 83% 

Table 6. Content playback success for Rokustic and Firetastic, and a comparison of the number of domains discovered by Rokustic and 
Firetastic to the number of domains discovered during manual interaction with the same app, for 15 apps that do not require login. 
For each app, we perform approximately 16 minutes of automated and 16 minutes of manual interaction. 

App Name 
Auto (A) 

Distinct eSLDs 
Manual (M) A 

M

Dist
A 

inct ATS domains 
M A 

M 

R
ok
u 

HBO NOW 
Hulu 
Netfix 
SHOWTIME 
STARZ 

3 
6 
3 
4 
5 

7 
18 
4 
8 
7 

43% 
33% 
75% 
50% 
71% 

2 
3 
3 
3 
3 

5 
21 
3 
6 
5 

40% 
14% 
100% 
50% 
60% 

Total 14 30 47% 6 26 23% 

Fi
re
 T

V
 

HBO NOW 
Hulu 
Netfix 
SHOWTIME 
STARZ 

7 
9 
11 
10 
18 

9 
19 
9 
8 

14 

78% 
47% 
122% 
125% 
129% 

2 
4 
4 
4 
12 

2 
17 
3 
3 
7 

100% 
24% 
133% 
133% 
171% 

Total 27 42 64% 15 27 56% 

Table 7. Comparison of the number of domains discovered by Rokustic and Firetastic to the number of domains discovered during 
manual interaction with the same fve apps that require login. The automation was performed while logged out, and the manual in-
teraction was performed while logged in. For each app, we perform approximately 16 minutes of automated and 16 minutes of manual 
interaction. 
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for 20 apps. We report the cases where our automatic 
exploration succeeds and fails, and we provide insights 
into the reasons why, and ideas for future improvements. 

First, we evaluate our tools’ ability to perform play-
back, because it a˙ects our ability to capture traÿc re-
lated to ads delivered at the start of or during con-
tent (video/audio) playback. We evaluate Firetastic’s 
and Rokustic’s content playback rates in Sec. A.3.1 by 
performing a case study of 15 apps. We fnd that the two 
tools perform similarly to the the state-of-the-art [11], 
and we identify how we can further improve the tools 
to increase the chance of incurring content playback. 

In Sec. A.3.2, we evaluate the automated approach’s 
ability to discover an app’s domain space by comparing 
the eSLDs and ATS domains discovered by the tools to 
the eSLDs and ATS domains discovered during manual 
interaction with the same 15 apps. We fnd that both 
tools generally do well at mapping a large fraction of 
the number of domains discovered during manual inter-
action. 

Finally, a common limitation of app exploration in 
general (not just for smart TV apps) is that it is diÿ-
cult to explore apps that require user login. In Sec. A.3.3 
we compare the eSLDs and ATS domains discovered by 
Firetastic and Rokustic for 5 popular streaming apps 
(while logged out) to the eSLDs and ATS domains dis-
covered during manual interaction (while logged in). As 
expected, we fnd that the automation misses parts of 
the domain space of apps that serve third-party ads as 
part of content that is only accessible after logging in. 
Interestingly, we also observe cases where the automa-
tion discovers more (ATS) domains than the manual 
experiments. 

A.3.1 Video Playback 

Setup. To evaluate Firetastic’s and Rokustic’s ability 
to incur playback of an app’s main content (video/au-
dio) for the set of apps that do not require login to access 
(parts of) their content, we run the full (˘16 minutes) 
automation for 15 apps on each platform, while observ-
ing for content playback. We pick the 15 apps according 
to their popularity (as defned in Sec. 4): (1) the top-10 
most popular apps to capture the most infuential apps; 
and (2) 5 additional randomly sampled apps, spread 
evenly across the popularity spectrum, to represent the 
dataset as a whole. 
Results. We present the content playback results in 
Table 6. Firetastic manages to play content for 67% of 

the 15 apps (60% for the top-10 apps, and 80% for the 
random apps). A common characteristic of the 33% un-
successful apps is that the majority of their content is 
locked, and that free content is deferred to the least ac-
cessible sections of the UI (e.g., the bottom row of a 
grid layout). This decreases the chance that Firetastic 
will discover a playable video during the 16 min exper-
iment, especially since attempts to play locked content 
often redirects to login/activation screens where addi-
tional time is lost. We can improve on this in future 
work by mixing BFS and DFS exploration: the automa-
tion can explore each level up to a certain threshold 
before drilling down into the next nested view. 

Rokustic manages to play content for 53% of the 15 
apps (50% for the top-10 apps, and 60% for the ran-
dom apps). Unsuccessful attempts are primarily due to 
nested menus, where additional “Select” key press(es) 
are necessary to start playback. Through manual in-
teraction with a few apps prior to executing our top-
1000 apps measurement, we observe that if an app starts 
playback on the frst “Select” key press, additional key 
presses may result in pausing and/or exiting the video, 
or skipping past an ad. Therefore, we opt for a con-
servative approach that, when successful, will collect as 
much ad/video traÿc as possible. In future work, we can 
further improve content playback by repeatedly sending 
“Select” key presses (with short pauses in between) un-
til the network throughput for the Roku stays above a 
certain threshold for a short duration (e.g., the bitrate 
of 720p video for 5 seconds). This dynamic strategy can 
handle more nested menus and thus be resilient to fu-
ture changes to an app’s UI. 
Takeaway. In summary, both tools work well when an 
app adheres to good UI design principles, such as re-
ducing the number of user actions required to reach the 
main content. The content playback success rates are 
on par with state-of-the-art concurrent work [11], with 
Firetastic slightly ahead, possibly due to its dynamic 
approach to UI exploration (as opposed to the static, 
heuristic-based approach used in [11]), and with Rokus-
tic slightly behind. While Firetastic leverages existing 
advanced Android tools (Droidbot), similar tools do not 
currently exist for Roku, thus we had to build them from 
scratch, and it is therefore natural that Rokustic falls 
slightly behind its Fire TV counterpart. 
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A.3.2 Automation vs. Manual Testing 

Setup. Next, we evaluate Firetastic’s and Rokustic’s 
ability to successfully map an app’s domain space. We 
manually interact with the 15 apps from Sec. A.3, and 
compare the network behavior observed during auto-
mated testing to the network behavior observed during 
manual testing. For a fair comparison, we interact with 
each app for approximately the same duration as in the 
automated experiments (˘16 minutes). For consistency, 
we follow a protocol in which we attempt to play 7 dif-
ferent videos for approximately 2 minutes each, leaving 
a few minutes to navigate between videos. We compare 
the network behavior in terms of the number of eSLDs 
and ATS domains (as defned by the union of the block-
lists from Sec. 5) contacted by each app. The results are 
presented in Table 6. 
Results. Firetastic is successful in mapping the domain 
space for 10 out of 15 apps (67%), uncovering 0.8 times 
(or more) the number of eSLDs, and 0.7 times (or more) 
the number of ATS domains discovered in the man-
ual experiments. In fact, Firetastic even discovers more 
eSLDs and ATS domains than the manual experiment 
for 6 (40%) and 7 (47%), respectively, of the 15 apps. 
Rokustic is less successful, but still manages to uncover 
0.67 times (or more) the number of eSLDs and ATS 
domains in the manual experiment for 7 (47%) and 8 
(53%), respectively, of the 15 apps. Moreover, Rokustic 
even discovers 2.67 times as many eSLDs as the manual 
experiment for one of the apps (Pluto TV). 
Intuition. The two tools have very di˙erent approaches 
to app exploration: Firetastic seeks to explore as much 
app functionality as possible, but is likely to exit con-
tent playback early, whereas Rokustic seeks to mimic a 
real user that sits through 3 videos of 5 minutes. Each 
approach has its own merit: Firetastic is good at dis-
covering many ATS domains for apps that present ads 
before content playback begins, whereas Rokustic is the 
more successful tool when it comes to discovering ATS 
domains for apps that defer ad delivery to later in the 
video/audio stream, as was the case for Pluto TV. Fi-
nally, we note that even in the worst case, i.e., when 
Firetastic and Rokustic do not manage to incur content 
playback, they still uncover several ATS domains. 
Takeaway. This case study, and the fact that Fire-
tastic and Rokustic uncovered approximately twice as 
many domains as the state-of-the-art [11] for the top-
1000 apps measurement described in Sec. 4, show that 
our tools already provide suÿcient means to automati-
cally estimate a lower bound on the ATS domains of the 

two platforms. This lower bound should improve when 
we implement the changes suggested earlier. 

A.3.3 Apps that Require Login 

Setup. To understand how well the automation man-
ages to map the domain spaces of apps that require 
login, we pick 5 of the top subscription-based streaming 
apps and run the automation without logging in, and 
also manually interact with the same apps while logged 
in (following the same protocol as in Sec. A.3.2). We 
compare the network behavior using the same metrics 
as in Sec. A.3.2. The results are presented in Table 7. 
Results. Firetastic actually discovers more eSLDs than 
the manual experiments for 3 out of the 5 apps. We 
also observe that the STARZ app contacts more ATS 
domains when automatically tested than in the man-
ual experiment. These fndings are interesting as they 
indicate that an app’s domain space and ATS-related 
activity possibly changes after the user logs in and is 
not necessarily tied to video playback. An ideal exper-
iment would thus need to thoroughly exercise the app 
in both states. The results for Rokustic are more in line 
with what is to be expected: Rokustic discovers fewer 
eSLDs and ATS domains than the manual experiments 
(55% and 53%, respectively, on average). Finally, for 
both platforms, we observe that the number of ATS do-
mains contacted by Hulu increases signifcantly for the 
manual experiments. This is to be expected as Hulu is 
the only of the 5 apps that deliver third-party ads dur-
ing content playback. 
Takeaway. As expected, Rokustic can only map parts 
of the (ATS) domain spaces of apps that require login. 
For Firetastic, we observe that some apps contact more 
ATS domains while logged out, and an ideal experiment 
would thus need to explore the apps in both states. 

B Fire TV TLS Interception 
Firetastic attempts to decrypt TLS traÿc to facilitate 
detection of PII exposures in encrypted traÿc. How-
ever, the decryption may fail: (i) for apps that attempt 
to mitigate TLS interception, for example through use 
of certifcate pinning, or (ii) if the cipher suites used 
in the TLS connection are not supported by the TLS 
decryption library used in AntMonitor. To approximate 
the impact that such decryption failures may have on 
the PII exposure results, we evaluate the failure rate 
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Fig. 7. Empirical CDF of TLS decryption failures per app. The 
decryption generally worked well: Decryption fails for 1 out of 10 
(or fewer) TLS connections for 55% of all apps; 1 out of 5 (or 
fewer) TLS connections for 80% of all apps. 

of Firetastic’s TLS interception across all apps in the 
Fire TV testbed dataset from Sec. 4. 
Methodology. For each app in the Fire TV testbed 
dataset, we frst identify the set of TCP connections, 
t, initiated by this app and labeled as TLS by tshark. 
Next, we identify the subset h of TCP connections in t 
that also contained at least one packet labeled by tshark 
as HTTP: these are the connections that are successfully 
decrypted. Finally, we compute the decryption failure 

|t|−|h|rate of each app as . We note that our methodol-|t|
ogy conservatively computes an upper bound compared 
to the actual failure rate, as any non-HTTP over TLS 
(e.g., proprietary binary protocols) will be counted as 
decryption failures. 

We note that in t, we only include TLS connec-
tions, where the TLS handshake concluded successfully. 
We assume that an app will retry the connection if it 
rejects AntMonitor’s certifcate. AntMonitor stops in-
tercepting an app’s connections if it detects that the 
app rejects its certifcate, thus the second TLS hand-
shake should complete successfully. This restriction on 
t therefore also prevents double counting (i.e., the orig-
inal failed connection does not contribute to the total 
number of TLS connections initiated by the app). Al-
though we only recorded upstream data for Fire TV, we 
use the presence of an upstream TLS Application Data 
packet as a proxy for inferring that the TLS handshake 
concluded successfully. 
Results. In Fig. 7, we show the empirical CDF for the 
TLS decryption failure rates for all apps in the Fire TV 
testbed dataset. We note that the decryption generally 
works well. For example, decryption fails for 1 out of 
10 (or fewer) TLS connections for 55% of all apps, and 
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1 out of 5 (or fewer) TLS connections for 80% of all 
apps. Since TLS decryption was generally successful, 
this validates the PII exposure results. 

C Additional Analysis of Datasets 

C.1 Labeling Datasets Continued 

To complement Sec 2.1, this section provides the full 
details for how we label each endpoint as either frst 
party, third party or platform-specifc party, w.r.t. the 
app that contacts it: 
1. We frst tokenize app identifers and the eSLD 

of the contacted FQDN (we obtain the eSLD 
using Mozilla’s Public Suÿx List [34, 35]). For 
Fire TV, we tokenize the package names and de-
veloper names. For Roku, we rely on app and de-
veloper names since its apps do not have package 
names. For app/package tokens, we ignore common 
and platform-specifc strings like “com”, “fretv”, 
“roku”, etc., while retaining all tokens from the de-
veloper names. We then match the resulting identi-
fers with the tokenized eSLD. 

2. If the tokens match, we label the destination as 
frst party. We note that since we keep all developer 
tokens, we will map “roku” related eSLDs as frst 
party if the app was developed oÿcially by Roku. 

3. Otherwise, we label a destination as platform-
specifc party if it originated from platform activity 
rather than app activity. For Fire TV, we rely on 
AntMonitor’s [37] ability to label each connection 
with the responsible process. For Roku, we simply 
check if the eSLD contains “roku”. 

4. Otherwise, if the destination is contacted by at least 
two di˙erent apps from di˙erent developers, we la-
bel it as third party. 

5. Finally, if the destination does not fall into any 
of the other categories, we resort to labeling it as 
other, which thus captures domains that are only 
contacted by a single app and are not identifed as 
a frst party nor platform-specifc party. 

We acknowledge that the variations in labeling method-
ology for platform-specifc parties for Roku and Fire TV 
may impact comparability. However, we believe that our 
choice provides the more accurate platform-specifc la-
beling for each testbed platform. 
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C.2 In the Wild Dataset Continued 

Figure 8 complements Fig. 1 in Sec. 3, providing data 
for the remaining three devices. 
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C.3 Key Players Continued 

Figure 9 provides further insight into the “Keys Players” 
discussion in Sec. 4.3 by accumulating fows to subdo-
mains of the top-30 eSLDs of each platform. Each eSLD 
is in turn mapped to its parent organization. Finally, all 
fows to domains under that parent organization are sep-
arated based on whether they are labeled as advertising 
and tracking or not. A large amount of the fows to the 
two platform operators are labeled as advertising and 
tracking. 
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Fig. 8. Continuation of Fig. 1 from Sec. 3: Top-30 fully qualifed 
domain names in terms of number of fows per device for the 
remaining devices in the in the wild dataset. Domains identifed 
as ATSes are highlighted with red, dashed bars. 

Fig. 9. Left to right: (1) mapping of fows to subdomains of the 
top-30 eSLDs (see Figs. 3c and 3d) of each testbed platform; (2) 
mapping from eSLD to its parent organization; (3) separation of 
the fows to the organization by advertising and tracking fows 
and other fows. An edge’s width represents the number of fows. 

C.4 False Negatives for Blocklists 

Table 8 provides a full list of false negatives to com-
plement Sec 5.2. We discover potential ATS domains by 
looking at whether multiple apps contact the domain 
and through keyword searches. 
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Hostname PD TF MoaAB SATV 
p.ads.roku.com 5 5 5 5 

1.amazonaws.com 

1.amazonaws.com 

external-1.amazonaws.com 

1.amazonaws.com 

ads.aimitv.com 5 5 5 5 
5 5 5 5adtag.primetime.adobe.com 

ads.adrise.tv 5 5 5 
ads.samba.tv 5 5 5 
tracking.sctv1.monarchads.com 5 5 5 
ads.ewscloud.com 5 5 5 5 
trackingrkx.com 5 5 5 5 
us-east-1-ads.superawesome.tv 5 5 5 5 
track.sr.roku.com 5 5 5 5 
router.adstack.tv 5 5 5 5 

5 5 5 5metrics.claspws.tv 
customerevents.netfix.com 5 5 5 
event.altitude-arena.com 5 5 5 
ads.altitude-arena.com 5 5 5 
myhouseofads.frebaseio.com 5 5 5 5 
mads.amazon.com 5 5 5 5 
ads.aimitv.com.s3.amazonaws.com 5 5 5 5 
analytics.mobitv.com 5 5 5 5 

5 5 5 5events.brightline.tv 
ctv.monarchads.com 5 5 5 
ads.superawesome.tv 5 5 5 
adplatform-static.s3-us-west- 5 5 5 5 

kraken-measurements.s3-external- 5 5 5 5 

kinstruments-measurements.s3- 5 5 5 5 

venezia-measurements.s3-external- 5 5 5 5 

ad-playlistserver.aws.syncbak.com 5 5 5 5 

Table 8. Examples of potential false negatives for the four DNS-
based blocklists found using app penetration analysis and key-
words search (“ad”, “ads”, “analy”, “track”, “hb” (for heartbeat), 
“score”, “event”, “metrics”, “measure”). 

https://ad-playlistserver.aws.syncbak.com
https://ads.superawesome.tv
https://ctv.monarchads.com
https://events.brightline.tv
https://analytics.mobitv.com
https://mads.amazon.com
https://myhouseofads.firebaseio.com
https://ads.altitude-arena.com
https://event.altitude-arena.com
https://customerevents.netflix.com
https://metrics.claspws.tv
https://router.adstack.tv
https://track.sr.roku.com
https://us-east-1-ads.superawesome.tv
https://trackingrkx.com
https://ads.ewscloud.com
https://tracking.sctv1.monarchads.com
https://ads.samba.tv
https://ads.adrise.tv
https://adtag.primetime.adobe.com
https://ads.aimitv.com
https://1.amazonaws.com
https://external-1.amazonaws.com
https://1.amazonaws.com
https://1.amazonaws.com
https://p.ads.roku.com
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