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Abstract 

Increasingly, retailers have access to better pricing technology, especially in online mar-
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tonomously react to rivals’ prices. We demonstrate that pricing technology with these fea-
tures can increase prices in competitive equilibrium, relative to the standard simultaneous 
price-setting model. Using high-frequency data from major online retailers, we document 
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counterfactual simulation implies that pricing algorithms lead to meaningful increases in 
markups, especially for frms with superior pricing technology. 
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1 Introduction 

Increasingly, retailers have access to better pricing technology, especially in online markets. In 

particular, pricing algorithms are becoming more prevalent. Algorithms can change pricing 

behavior by enabling frms to update prices more frequently and automate pricing decisions. 

Thus, frms can commit to pricing strategies that react to price changes by competitors. This 

may have important implications for price competition relative to standard oligopoly models in 

which frms set prices simultaneously. Do pricing algorithms lead to higher prices? 

In this paper, we present a new model of price competition that captures the features of 

increased pricing frequency and short-run commitment that are enabled by pricing algorithms. 

The model also allows for asymmetric technology among frms. Frequency, commitment, and 

asymmetry are important features of price competition among real-world frms that have pric-

ing algorithms.1 We show that asymmetry in pricing technology can fundamentally shift equi-

librium behavior; if one frm adopts superior technology, both frms can obtain higher prices. 

Thus, our paper illustrates a novel way in which pricing algorithms can increase prices relative 

to the standard simultaneous price-setting (Bertrand) equilibrium. 

Frequency, commitment, and asymmetry have not previously been considered in the context 

of pricing algorithms. The existing literature has almost exclusively assumed that frms set 

price simultaneously, focusing on whether algorithms facilitate collusion in this environment 

(e.g., Calvano et al., 2019; Miklós-Thal and Tucker, 2019; Salcedo, 2015).2 The equilibria 

of the simultaneous price-setting model has been extensively studied and forms the basis of 

most applied work, including analysis by antitrust authorities.3 By contrast, we provide new 

results on equilibrium prices and strategies using our more general model. We focus on Markov 

perfect equilibrium (MPE), wherein frms can only condition on payoff-relevant variables. In 

the standard simultaneous price-setting model, the unique MPE is the Bertrand equilibrium. We 

demonstrate that algorithms expand the set of MPE, allowing frms to obtain higher prices and 

profts in competitive equilibrium. Overall, our results indicate that the potential of algorithms 

to raise prices goes beyond the possibility of facilitating collusion. 

We also present new facts about pricing behavior that motivate the features of our model 

of price competition. We collect a novel dataset on high-frequency pricing behavior from fve 

large online retailers. We document that these retailers have asymmetric pricing technology. 

Two retailers in our dataset have the ability to update prices once each week, one has the ability 

to update prices once each day, and two have the ability to update prices within each hour. The 
1For instance, we document large differences in the maximum frequency with which online frms can update 

prices. In addition, a key characteristic advertised by third-party pricing algorithm solutions is how frequently they 
can update prices. 

2One exception is Klein (2019) who examines algorithmic collusion when frms take turns setting prices. The 
concern about collusion has also been the focus of the popular press. See, e.g., “When Bots Collude,” The New 
Yorker, April 25, 2015 and “Price-Bots Can Collude Against Consumers,” The Economist, May 6, 2017. 

3See, for instance, “Commentary On The Horizontal Merger Guidelines” by the U.S. Department of Justice. 
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pricing patterns we observe are consistent with automated software programmed to run at set 

times. Though we focus on the collection of data for one product category (allergy products), 

each retailer we study, to our knowledge, employs the same pricing technology across hundreds 

(or thousands) of categories on its website. 

We use our model to analyze the potential empirical implications of differences in pricing 

technology. Consistent with the model, we document that frms with faster pricing technology 

appear to react to the price changes of slower rivals, and frms that have higher-frequency pric-

ing have lower prices than their competitors. Thus, while the previous literature has focused 

on the role of search frictions as an explanation for price dispersion, our model provides an 

alternative, complementary explanation: differences in prices for the same product across web-

sites can be driven by pricing technology alone. We use a counterfactual simulation to quantify 

these impacts, fnding that asymmetric pricing technology leads to higher prices for all retailers 

and exacerbates price differences among similar retailers. 

First, we motivate our model with a discussion of the features of pricing algorithms in 

Section 2. We then begin our theoretical analysis by introducing a game in which frms may 

differ in pricing frequency, e.g., changing prices once each week versus once each day (Section 

3). This asymmetry arises in many contexts due to variation in pricing technology. We show 

that the model generates prices that lie between the simultaneous and sequential equilibria and 

nests both as special cases. In typical settings, the faster frm has lower prices and higher profts 

than the slower frm. Moreover, when frms can choose their pricing frequency, each frm has 

a unilateral proft incentive to choose either more frequent or less frequent pricing than their 

rivals. Therefore, the simultaneous price-setting model is not an equilibrium outcome when 

pricing frequency is endogenous. 

In Section 4, we develop a more general model where algorithms enable frms to differ in 

their pricing frequency and also to commit to a pricing strategy for future price updates. This 

model nests the pricing frequency game developed earlier. Further, we show that a model with 

asymmetric commitment—i.e., when only one frm can condition its algorithm on its rival’s 

price—closely parallels the model of asymmetric frequency. We then analyze the case where 

all frms can condition on rivals’ prices, deriving a one-shot competitive game in which frms 

submit pricing algorithms, rather than prices. We use the one-shot game to show that short-run 

commitments, in the form of automated pricing, can also generate higher prices. 

We demonstrate that symmetric commitment enabled by algorithms can generate higher 

prices even when we eliminate clearly collusive strategies, such as cooperate-or-punish equilib-

ria. Thus, we focus on equilibrium pricing strategies that, in some sense, “look competitive.” 

Even with these restrictions, we show that the use of pricing algorithms can increase prices rel-

ative to the Bertrand game. Supracompetitive prices, including the fully collusive prices, can be 

supported with algorithms that are simple linear functions of rivals’ prices.4 In this way, algo-
4In practice, it is typical for algorithms to have a linear adjustment based on the average price of a set of 
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rithms fundamentally change the pricing game and provide a means to increase prices without 

resorting to collusive behavior. 

We also address the question of whether pricing algorithms can arrive at competitive prices. 

Our model provides a negative result, showing that algorithms that depend on rivals’ prices do 

not generate Bertrand prices in equilibrium. In particular, it is not an equilibrium for all frms 

to choose algorithms that equal their price-setting best-response (Bertrand reaction) functions. 

Intuitively, our results are supported by the following logic: A superior-technology frm com-

mits to “beat” (best respond to) whatever price is offered by its rivals, and its investments in 

frequency or automation makes this commitment credible. The rivals take this into account, 

softening price competition. Our model nests several different theoretical approaches that were 

developed prior to the advent of pricing algorithms and have largely been dismissed in the mod-

ern literature, including conjectural variations. We highlight these connections below. 

In our empirical analysis, we study prices for over-the-counter allergy medications for the 

fve largest online retailers for the category.5 Our novel dataset is described and analyzed in 

Section 5. By studying prices at the hourly level, we are able to document heterogeneity in 

pricing technology. We fnd that two frms have within-the-hour (“hourly”) pricing technology, 

one frm has daily pricing technology, and the remaining two have weekly pricing technology, 

updating their prices early every Sunday morning. This high degree of asymmetry is associated 

with asymmetric prices. Relative to the frm with the fastest pricing technology, the frm with 

daily pricing technology sells the same products at prices that are 10 percent higher, whereas 

the frms with weekly pricing technology sell those products at prices that are approximately 

30 percent higher. We also document that price changes by high-frequency retailers are more 

likely after a price change by a low-frequency retailer, suggesting that high-frequency retailers 

monitor the prices of rivals. 

The empirical literature on price competition and frm markups has almost exclusively as-

sumed that frms play a simultaneous pricing game. As a frst step toward quantifying the role 

of heterogeneous pricing technology, we compare observed prices to a counterfactual equilib-

rium in which frms have simultaneous price-setting technology (Section 6). We introduce a 

generalized spatial differentiation model that allows for fexible substitution patterns among 

retailers and provides a tractable empirical approach for examining competition in algorithms. 

Using the observed pricing technology of the retailers as an input, we ft the model to average 

prices and market shares in our data. We then use the estimated demand parameters to sim-

ulate the counterfactual equilibrium for simultaneous Bertrand price competition. Relative to 

the Bertrand equilibrium, the calibrated model predicts that algorithmic competition increases 

competitors. In one interesting example, a retailer on Amazon.com set its price for a book to be 0.9983 times its 
rival’s price, and the rival set its price to be 1.270589 times the retailers’ price. The price of the book rose to nearly 
$24 million. This, we note, was not an equilibrium. See “How A Book About Flies Came To Be Priced $24 Million 
On Amazon,” Wired, April 27, 2011. https://www.wired.com/2011/04/amazon-fies-24-million/ 

5Based on search share and estimated revenue. See discussion in Section 5.1. 
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average prices by 5.2 percent across the fve frms. This corresponds to a 9.6 percent increase 

in profts and a 4.1 percent decrease in consumer surplus. The effect on markups and profts is 

especially large for frms with superior pricing technology, i.e., those with the ability to quickly 

adjust prices. 

Online markets have allowed retailers to easily monitor their rivals’ prices and incorporate 

these prices into pricing algorithms. Evidence suggests that these algorithms are becoming 

more widespread as online retailing continues to grow (Cavallo, 2018). Indeed, there are 

even frms that specialize in providing retailers with information on competitors’ prices for use 

in pricing algorithms.6 This growing prevalence of pricing algorithms has drawn signifcant 

attention from antitrust authorities.7 

Overall, our results imply that pricing algorithms can support higher-price equilibria, even 

when frms act competitively. Our empirical analysis shows price patterns consistent with the 

model and suggests that pricing algorithms can have an economically meaningful effect on 

markups. Thus, if policymakers are concerned that algorithms will raise prices, then the concern 

is much more broad than that of collusion. Of course, algorithms may also have several benefts, 

such as the ability to more effciently respond to time-varying demand. In light of these issues, 

we briefy discuss how policymakers can regulate pricing algorithms in Section 7. Though 

we focus on competitive equilibria, our study also has important implications for collusion. 

By increasing competitive prices and profts, algorithms may make punishment less severe in 

a collusive scheme, reducing the likelihood of collusion. Additionally, our model explicitly 

features a new dimension in the strategy space, allowing frms to change pricing technology as 

an either a substitute or a complement to the pursuit of collusion. 

Related Literature 

We contribute to a growing literature on the impacts of algorithms on prices. Our primary 

contribution is to study competitive equilibria when frms compete in pricing algorithms. Fur-

ther, our counterfactual exercise presents the frst empirical results on the potential impacts of 

pricing algorithms on prices. A recent paper by Assad et al. (2020) adds to the nascent empir-

ical literature, providing reduced-form evidence that algorithms might increase prices in retail 

gasoline markets.8 

For our analysis, we present a new model of price competition to capture features of 

algorithms—frequency and commitment—that have not been studied previously. The prior 

6For instance, Intelligence Node allows retailers to “get your competitor’s pricing and positioning data from the 
world’s largest retail database.” ChannelAdvisor advertises its automated pricing product as “constantly monitoring 
top competitors on the market.” 

7See, for instance, the U.K. Competition and Markets Authority’s 2018 report, “Pricing Algorithms” and Ger-
many’s “Twenty-second Biennial Report by the Monopolies Commission.” Thus far, competition authorities have 
focused on the potential for algorithms to facilitate collusion. 

8Assad et al. (2020) fnd price effects only when both frms in duopoly markets adopt superior pricing technology, 
which suggests that the mechanism in their setting may be collusion or symmetric commitment. 
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literature has focused on the price effects of learning algorithms (Salcedo, 2015; Calvano et al., 

2019) or prediction algorithms (Miklós-Thal and Tucker, 2019; O’Connor and Wilson, 2019) 

in the context of a standard simultaneous price (or quantity) game. This literature focuses on 

how learning or prediction algorithms affect the sophistication of players and their ability to 

collude.9 The equilibria of the environments studied by these papers have been extensively 

studied. By contrast, we examine how pricing algorithms change the nature of pricing game, 

focusing on Markov perfect equilibria as in Maskin and Tirole (1988b).10 Our model generates 

a new set of equilibrium strategies and outcomes that can be supported by algorithms. 

Next, we contribute to a broader empirical literature on the study of supracompetitive prices 

(e.g., Porter, 1983; Nevo, 2001; Miller and Weinberg, 2017; Byrne and de Roos, 2019). We 

provide a new model and empirical results that suggest that the mode of competition can lead 

to meaningful price increases without the need for collusion. Further, our data suggests that 

our model may be particularly relevant in online markets, where algorithms and asymmetries in 

pricing technology are prevalent. Previous empirical studies of supracompetitive prices have ex-

clusively considered stage games with symmetric technology where frms choose actions (price 

or quantity) simultaneously. Our empirical framework takes a frst step at incorporating het-

erogeneous pricing technology and quantifying its implications. 

We also contribute to the empirical literature on online competition by showing how a new 

supply-side mechanism—asymmetric pricing technology—can generate price dispersion. De-

spite the fact that online competition is thought to reduce search costs and expand geographic 

markets, substantial price dispersion has been documented (e.g., Baye et al., 2004; Ellison and 

Ellison, 2005). A large empirical literature has focused on demand-side features such as search 

frictions, but little attention has been paid to frm conduct.11 One exception is Ellison et al. 

(2018), who examine managerial inattention and price dispersion in an online marketplace in 

2000 and 2001, prior to the widespread use of pricing algorithms. 

We argue that a key feature of pricing algorithms is the ability to condition on the prices of 

rivals. This mechanism relates to a large class of models where frms internalize the reactions of 

their rivals, including conjectural variations (Bowley, 1924) and the classic Stackelberg model. 

The real-world applicability of these models has been subject to a long debate (e.g., Fellner, 

1949). The conjectural variations model has fallen out of favor, likely because consistent con-

jectures other than Cournot are diffcult to rationalize (Daughety, 1985; Lindh, 1992). Models 

with sequential behavior have been dismissed as unrealistic for empirical settings because it 

requires the assumption that one frm can honor a (sub-optimal) commitment to an action or 
9Klein (2019) considers the same question but in the alternating-move setting of Maskin and Tirole (1988b). 

10Maskin and Tirole (1988b) show that higher prices can result in a duopoly game where frms set prices in 
alternate periods using strategies that rely exclusively on payoff-relevant variables. Our analysis complements 
their work by showing how higher prices may be obtained in Markov perfect equilibrium in a different economic 
environment—one in which algorithms provide variation in pricing frequency and enable short-run commitment. 

11Work examining online search frictions includes Hong and Shum (2006), Brynjolfsson et al. (2010), and De los 
Santos et al. (2012). 
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strategy while the other reacts. For this reason, applied researchers and antitrust authorities 

have almost universally assumed that frms play a simultaneous Bertrand or Cournot game. We 

argue that such commitments are credible, made possible by investments in differential pricing 

technology. Algorithms provide a natural mechanism for the type of technological commitment 

discussed in Maskin and Tirole (1988a). Thus, one interpretation of our model is that it pro-

vides a new foundation for theoretical results arising in this older literature. By nesting these 

models under a common structure, we also provide a framework for frms to choose among 

different models of competition by changing their pricing technology. 

The logic of how pricing algorithms leads to higher prices is similar to that of price-matching 

guarantees, which some have argued can be anticompetitive (Salop, 1986; Hay, 1981; Moor-

thy and Winter, 2006). Both are predicated on commitment, which software makes possible 

in online markets.12 We show that price-matching guarantees are not chosen in equilibrium 

in our model. There are also parallels between our model and previous literature focused on 

commitment in other settings. Grossman (1981) and Klemperer and Meyer (1989) study sup-

ply function equilibrium in which frms simultaneously decide on quantities in response to a 

(endogenously-determined) market price in a setting with homogeneous products. Lazarev 

(2019) shows that higher prices can result when frms frst commit to a restricted set of prices, 

then choose from among those prices in a second stage. Conlon and Rao (2019) fnd that 

wholesalers can set the collusive price when they can commit to a price schedule. The game-

theoretic notion of commitment ties into a broader literature on strategic delegation that has 

been applied in diverse settings.13 We consider algorithms to be an economic mechanism to 

make such commitments credible.14 Moreover, we are the frst to link pricing algorithms to 

models with these features. 

2 Algorithms and Pricing Behavior 

Broadly speaking, an algorithm is a set of instructions executed by a computer.15 The instruc-

tions map input to a desired set of output. In the context of price competition, algorithms have 

previously been studied as mechanisms to enable better forecasts (Miklós-Thal and Tucker, 
12Hal Varian discussed the appeal of price matching in online markets in the August 24, 2000 New York Times 

article “When commerce moves online, competition can work in strange ways.” In a set of lab experiments, Deck 
and Wilson (2000, 2003) fnd that subjects that use automated price-matching strategies obtain higher profts than 
those that manually set prices. 

13Fershtman and Judd (1987) and Sklivas (1987) show that, by giving managers a mixture of revenue-based and 
proft-based incentives, owners can commit to behavior that is not proft maximizing, leading to higher prices. 

14A related strand of literature deals with one-shot games where players choose contracts (or commitment de-
vices) that condition their actions on the strategies of the other players (Tennenholtz, 2004; Kalai et al., 2010; 
Peters and Szentes, 2012). In this literature, (equilibrium) contracts are functions of the other players’ contracts. 
Tennenholtz (2004) gives the example of submitting a computer program that reads the rivals’ computer program 
and chooses an action accordingly. Another related concept is the cartel punishment device of Osborne (1976). 

15We follow the convention in the literature that associates algorithms with computing. The concept of an algo-
rithm and indeed the word itself predates modern computers by many centuries. 
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2019; O’Connor and Wilson, 2019), refecting the potential for machine learning algorithms to 

enable better predictions (Agrawal et al., 2018). In addition, learning algorithms have been 

studied to address the question of whether artifcial intelligence might arrive at collusive equi-

librium strategies (Calvano et al., 2019; Klein, 2019; Salcedo, 2015). The focus of these studies 

is on how algorithms might affect the sophistication—in terms of prediction or strategies—of 

players in repeated games of simultaneous play. 

By contrast, we consider how algorithms may affect the nature of the pricing game. In our 

context, pricing algorithms can be characterized by a formula to determine prices. The formula 

performs a calculation based on input variables, which, generically, may include a rich history, 

including the past play of rivals or the outcomes of experiments. Thus, we study algorithms 

that may, in principle, also incorporate elements of enhanced prediction or learning. Regardless 

of its level of sophistication, an algorithm imbues a frm with two signifcant features, relative 

to a human agent: 

1. An algorithm lowers the cost of updating prices and facilitates a regular pricing frequency. 
Typically, frms use software to schedule pricing updates at regular intervals, e.g., once 

per day or every 15 minutes. The frequency with which a frm can update prices depends 

on investments in pricing technology, which may differ across frms. Algorithms facilitate 

both regular pricing updates and more frequent updates, as software can better monitor 

rivals’ prices and can fnd the solution to a diffcult pricing problem in less time and with 

less error than a human agent. 

2. An algorithm provides a (short-run) commitment device to a pricing strategy. 
When an algorithm calculates price based on the prices of other frms, it can autonomously 

react to price changes of rivals in the market based on a pre-specifed strategy. This serves 

as a short-run commitment device, as the algorithm itself is typically updated at a lower 

frequency than it is used to set prices. 

These two features map to the innovations of our model. First, we examine the role of 

pricing frequency in Section 3. This is motivated by the fact that pricing frequency is a key 

characteristic that differentiates algorithms in practice. Online frms are observed to set prices 

at regular frequencies and differ widely in the maximum frequency with which they can update 

prices.16 By contrast, a human agent cannot analyze rivals’ prices and update prices at high 

frequency and cannot be expected to maintain a regular pricing frequency.17 Large online 

retailers sell several thousands of products; relying on humans to update all prices at regular 

intervals would be extremely costly. 

Second, an algorithm provides a commitment to follow a pricing rule. The software that 

implements a pricing algorithm is typically updated at a lower frequency than prices. Thus, 
16In addition, third-party “repricers” compete on how frequently they can update prices, e.g., once each day or as 

fast as every few minutes. 
17The study by Ellison et al. (2018) provides empirical evidence of human ineffciency along these dimensions. 
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in between updates to the algorithm, the computer changes prices based on a fxed rule. It 

is widely thought that humans lack this sort of commitment power (e.g. Maskin and Tirole, 

1988a). Borrowing a term from contract theory, we tend to expect a human to adhere to the 

incentive compatibility constraint at every opportunity to set prices. We combine the features 

of frequency and short-run commitment in a more general model in Section 4. 

We assume that frms are fully sophisticated when it comes to monitoring current prices and 

understanding rivals’ algorithms. In practice, frms may use machine learning and experimen-

tation to learn about the pricing algorithms of their rivals. Our environment can be considered 

the limiting case of an arbitrary (but consistent) learning process. We do limit sophistication 

in strategies by focusing on Markov perfect equilibria where frms cannot condition on past 

prices. Our analysis can be contrasted with the literature on algorithmic collusion in which 

frms employ history-dependent strategies, allowing them to sustain collusion. We fnd that 

even if frms are not sophisticated in this dimension, supracompetitive prices can be sustained 

in equilibrium. 

3 Competition with Pricing Frequency 

Following the discussion above, we begin by modeling pricing frequency. This is a key char-

acteristic that differentiates algorithms in practice. We show that enabling frms to choose 

different pricing frequencies has important implications, and it provides some intuition for a 

richer model where frms can also commit to a pricing strategy in the short run. We present this 

more general model in Section 4. 

3.1 Infnite Horizon Model 

Consider two frms with the ability to change prices at different frequencies. Both frms initially 

set prices at t = 0. Firm 1 can update its price at discrete points after each interval of time T1, 

and frm 2 can likewise update its price after T2. We assume that T1 = θT2, where θ ∈ N. This 

implies that frm 2 has (weakly) superior technology, allowing it to change its price at least as 

frequently as frm 1. For example, T1 may equal one week, while T2 equals one day (θ = 7). 

Without loss of generality, we normalize T1 = 1, i.e., we defne units of time in terms of the 

period between frm 1’s potential price changes. 

In the next section, we formalize the link of this model to a more general model of competi-

tion in algorithms. The implicit assumption we make in this section is that frms can revise their 

algorithms whenever they have the ability to update prices, i.e., they completely re-solve for 

the optimal price. In other words, frms cannot commit to a fxed pricing rule in intermediate 

periods. Pricing frequency therefore corresponds to the frequency that frms can update their 

algorithms. Under the assumption of no commitment, it suffces to analyze the pricing game. 

We focus on the two-frm case, but our results readily extend to multiple frms. 
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Demand arrives in continuous time, with a measure m(t) ≥ 0 of consumers arriving at 

t. The distribution of consumers is stable over time, so that demand looks identical at any 

instant t except for the size of the market. Given demand and prices (p1, p2), frm j realizes 

instantaneous proft fow πj (p1, p2). We assume the proft functions are quasiconcave and have 

a unique maximum with respect to a frm’s own price. Firms discount the future exponentially 

at rate ρ and have an infnite horizon. 

Firms choose a sequence of prices to maximize profts, conditional on the fow of consumers 

m(t), the proft fows πj , and the behavior of the rival frms. Let p1(t) and p2(t) denote the 

prices of each frm over time, and let P1 be the discrete sequence of prices chosen by frm 1 

at t = {0, 1, 2, ...}. For timing purposes, we assume that P1s is relevant for demand over the 

period (s, s + 1]. Firm 1’s problem can be written as: 

∞ Z X s+1 

max e −ρtπ1(P1s, p2(t))m(t)dt. (1) 
P1 

s=0 s 

Because frm 2 can change its price at every point s ∈ {0, 1, ..., ∞} in addition to intermedi-

ate times, the problem can be expressed as a sequence of single-period stage games. We restrict 

our attention to subgame perfect equilibrium in each stage game. The resulting equilibrium is 

the unique (pure-strategy) Markov perfect equilibrium of the infnite horizon problem. 

3.2 Stage Game Analysis 

As we have shown, the repeated game can be expressed as a sequence of single-period stage 

games. By solving for the equilibrium of each stage game, we can construct the Markov perfect 

equilibrium of the repeated game. Firm 1’s problem in stage game s is Z s+1 

max e −ρtπ1(p1, p2(t))m(t)dt. (2) 
p1 s 

We now analyze the behavior of frm 2 in each period. Firm 2’s pricing behavior will satisfy 

the following two properties in equilibrium: (1) frm 2’s price will be constant over the period 

(despite its ability to update prices), and (2) frm 2’s price will lie along its Bertrand best-

response function. The frst property is a result of π2(·) being time-invariant and p1 being fxed 

in the period. The second property arises from the fact that it is optimal for frm 2 to price along 

the Bertrand best-response function when it is pricing simultaneously with its rival (t = s) and 

also in any later pricing update (e.g., t = s +1/θ). The Bertrand best-response function for frm 

2 treats p1 as fxed, which is a Nash equilibrium condition at t = s and is literally true at any 

other point when frm 2 can update its price. Let R2(p1, s) denote frm 2’s reaction function in 

period s. 

We return to frm 1’s problem. Without loss of generality, we focus on the frst period 
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(s = 0). Let p2 now denote the price of frm 2, which is time-invariant (in the stage game) in 

equilibrium, and let R2(p1) = R2(p1, 0). Firm 1 chooses p1 recognizing that p2 can react to its 

price after a period of 1/θ. Firm 1’s problem can be expressed as: 

Z Z 1 1 
θ 

e −ρtπ1(p1, p2)m(t)dt + e −ρtπ1(p1, R2(p1))m(t)dt. (3) max 
p1 0 1 

θ 

Because the proft fow function is time-invariant, we can write frm 1’s stage game problem 

as: 

max (1 − α)π1(p1, p2) + απ1(p1, R2(p1)) (4) 
p1 

where α = 
�R 1 

e−ρtm(t)dt 
�−1 R 1 

e1 
−ρtm(t)dt. The value 1 − α describes the relative weight that 0 

θ 
18 In the initial frm 1 places on the initial period (0, 1/θ], which is a function of ρ, m(t), and θ. 

price-setting phase, the usual Nash-in-price logic holds: frm 1 treats frm 2’s price as given over 

the period (0, 1/θ]. After t = 1/θ, frm 1 recognizes that frm 2 will price optimally against its 

chosen price when it has the opportunity to update. 

There are two special cases of this pricing model that we now highlight. When α = 0, 

frm 1 considers only the current price of frm 2. Roughly speaking, frm 1 places zero weight 

on the ability of frm 2 to react to a price change by frm 1. This can arise when θ = 1, i.e., 

when frms have symmetric technology and set prices simultaneously. Thus, our model nests 

the usual Bertrand-Nash equilibrium assumption that frm set prices while holding fxed the 

prices of rivals. 

The second special case is when α = 1. In this case, frm 1 only considers its profts after 

frm 2 has a chance to update its price. Roughly speaking, frm 1 fully internalizes the reaction 

of its rival. This can arise when θ → ∞, i.e., when frm 2 has much faster pricing technology 

than frm 1. The result is equivalent to a sequential pricing model, where frst frm 1 chooses 

a price and then is followed by frm 2. In this way, our model provides a foundation for the 

sequential pricing game analyzed in the theory literature but rarely in applied work. 

Depending on the underlying parameters, the model can capture both simultaneous and 

sequential price-setting behavior. More generally, the asymmetric technology allowed for in 

our model provides a foundation for a rich set of equilibrium outcomes that capture of a mix of 

the incentives in these games. We now provide our frst proposition, which describes the set of 

equilibrium outcomes for any value of α: 

Proposition 1. In the pricing frequency game, the equilibrium prices will lie on the faster frm’s 
Bertrand best-response function between the Bertrand equilibrium and the sequential pricing equi-
librium. 

18When the stage game interval is small, it is reasonable to assume that demand arrives uniformly and that ρ = 0, 
θ−1 in which case we have the simple expression α = 
θ . 
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Figure 1: Equilibrium in the Pricing Frequency Game 
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Notes: Figure plots the best-response functions R1(·) and R2(·) for simultaneous price 
competition with differentiated products. The intersection of these functions produces 

S 
1 , p 2 ). The point (p 1 , p 2 ) indicates the equilibrium of B B S the Bertrand-Nash equilibrium (p 

S 

F 
2 ) is the equilibrium of a pricing frequency 

1 , p 2 ) and (p 1 , p 2 ). 
B 

F , p 1 the sequential pricing game. The point (p 
B S game, which lies between (p 

Proof: We have established that frm 2’s price will lie along its Bertrand best-

response function, as it always treats frm 1’s price as given. When α = 0, the 

problem is equivalent to a simultaneous Bertrand pricing game. Note that this is 

obtained when θ = 1, in which case the game corresponds exactly to simultaneous 
B price setting. Denote the optimal price in this game p . When α = 1, the game is 1 

equivalent to a sequential price-setting game, where frm 1 is the leader and frm 2 
S is the follower, with optimal price p . Because the proft function is quasiconcave, 1 

the price that maximizes the weighted sum of π1(p1, p2) and π1(p1, R2(p1)) lies in 
B S between p and p . QED. 1 1 

Figure 1 illustrates the equilibrium of the game. When frms are very impatient or most 

consumers arrive before frm 2 can update its price, the equilibrium will resemble Bertrand 

(pB). When frms are patient and all consumers arrive after frm 2 can update its price, the 
F equilibrium resembles sequential price setting (pS ). The equilibrium prices p can fall any-

F where between these points, depending m(t), θ, ρ, and the proft functions. Note that p is 

not necessarily a linear combination of pB and pS ; it is in the fgure because the best-response 

function is linear. 

We conclude this section by showing that higher prices resulting from asymmetric pricing 

frequency are a general result for a large class of problems. Consider a typical case where the 

products are substitutes (i.e., ∂q1 > 0) and prices are strategic complements (with upward-∂p2 
∂R2 sloping best-response functions in the price-setting game, ∂p1 

> 0). Under these conditions, 

the sequential price-setting equilibrium will have higher prices than the Bertrand equilibrium. 
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Thus, we obtain our second proposition: 

Proposition 2. Suppose frms produce substitute goods and prices are strategic complements. In 
the pricing frequency game, both frms realize higher prices compared to the simultaneous price-
setting (Bertrand-Nash) equilibrium. 

Proof: Above, we have demonstrated that frm 1’s price lies between the Bertrand 
B S B price p and the sequential equilibrium price p . It suffces to show that p < pS 

1 , 1 1 1 
B S in which case the optimal price lies on [p1 , p1 ]. 

Consider frm 1’s frst-order condition to maximize profts (π): 

dπ1 ∂π1 ∂π1 ∂p2 
= + = 0 (5) 

dp1 ∂p1 ∂p2 ∂p1 

In the simultaneous price-setting equilibrium, frm 1 takes frm 2’s price as given 

(∂p2 
∂p1 

= 0), and ∂π1 = 0. In the sequential game, frm 1 recognizes that ∂p2 = ∂p1 ∂p1 
∂R2 > 0 (by strategic complementarity) and ∂π1 > 0 (because the products are ∂p1 ∂p2 

substitutes). Therefore, relative to the Bertrand-Nash prices, frm 1 has an incentive 
dπ1 to raise its price in the sequential game: dp1 

> 0. Firm 1’s optimal price will be 
B strictly greater than p when α > 0 and the proft function is well-behaved. Higher 1 

prices for both frms result from strategic complementarity. QED. 

3.3 Pricing Frequency Game: Example 

We have described above conditions under which a dynamic game of price competition with 

asymmetric pricing frequency can be broken down into single-period stage games. We now 

provide an example to help fx ideas. In this game, frms compete for demand over a single 

period. Each frm produces a single product and set prices to maximize profts. Firms initially 

set prices at the beginning of the period, and, depending on the technology, can update prices 

throughout the period. 

We assume that demand is such that products are (imperfect) substitutes and prices are 

strategic complements. In particular, we use a variant of the Hotelling (1929) model, with 

fxed locations and an outside option.19 Where the utility from both goods is positive, the 

(local) demand for each good has the convenient linear form: 

1 
qj (t) = m(t)(1 − pj + p−j ). 

2 
19Each consumer i receives utility v from consuming the good and has disutility of τdij for the distance dij they 

travel to purchase from frm j. We set v = 2 and τ = 1. Utility is linear in income and is normalized so that the 
marginal utility of income is 1. Consumer locations are uniformly distributed and the value of not purchasing is 
normalized to have zero utility. 
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R 1 We assume 0 m(t)dt = 2. Because equilibrium prices are invariant throughout the period, we 

can integrate over t to obtain qj = 1 − pj + p−j for each frm. 

As above, frm 1 sets its price at the beginning of each period, whereas frm 2 can update 

its at a frequency of θ ∈ N, corresponding to elapsed intervals of T2 = 1/θ. Firm 2’s price will 

lie along its best-response function. Firm 1 will internalize the reaction by frm 2, choosing its 

price to maximize the proft function given by equation (4). In this example, the equilibrium 

prices are given by 

p1 =
3 

(6) 
3 − α 
6 − α 

p2 = , 
6 − 2α�R 1 

�−1 R 1 −ρtwhere α = e m(t)dt 1 e−ρtm(t)dt. in general, prices depend on the relative level of 0 
θ 

technology of frm 2 (θ), as well as the discount rate ρ and the arrival rate of consumers m(t).20 

Note that, even with linear demand, equilibrium prices may have a nonlinear relationship with 

α or θ. 

To illustrate the impact of pricing technology in this example, we consider three cases. 

First, consider the standard case where frms have symmetric technology, i.e., θ = 1. This 

corresponds conceptually to a game in which frms use human agents to set prices. In this case, 

α = 0, and thus equilibrium prices, p1 = p2 = 1, and profts, π1 = π2 = 1, are equivalent to the 

simultaneous Bertrand-Nash equilibrium. 

Now consider the case in which frm 2 adopts new pricing technology and is able to adjust 

prices at a higher frequency than frm 1. This implies that θ > 1 and α > 0. From equation 

(6), we can see that frm 1 and frm 2 increase their prices, but frm 2 chooses a lower price 

than frm 1. This result has an intuitive logic: frm 2 commits to “undercut” the price of frm 

1, maximizing its own profts conditional on its rival’s price. This softens frm 1’s incentive to 
1 compete on price. For example, when α = (which may correspond to θ = 2), frm 1 chooses a 2 

price of 1.2 and frm 2 chooses a price of 1.1. Firm 1 loses market share to frm 2, as equilibrium 

quantities are (0.9, 1.1), but profts are (1.08, 1.21), which are higher for both frms than in the 

Bertrand equilibrium. 

Finally, consider the case in which frm 2’s technology is much more advanced, allowing 

them to update prices “in real time.” In our model, this corresponds to θ → ∞ and α = 1. 

Firm 1 now fully internalizes the reaction of frm 2 and chooses a price of 1.5. This leads frm 

2 to price at 1.25. Quantities are (0.75, 1.25), and profts are (1.125, 1.5625), resulting in an 

equivalent outcome to the sequential pricing game. 

The Bertrand-Nash logic uses a dynamic metaphor to rule out the above outcomes: if frm 
20When demand arrives uniformly throughout the period and ρ = 0, we can represent equilibrium prices as 

3θ 1+5θ function of the faster frms technology, θ: p1 = 
1+2θ and p2 = 

2+4θ . 
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2’s price is fxed at either 1.1 or 1.25, frm 1 has a unilateral incentive to reduce prices, which 

would then induce a reaction by frm 2, and so on until the Bertrand-Nash equilibrium is ob-

tained. Though both frms may recognize that they would be better off by not undercutting 

the competitor, they cannot credibly commit not to (especially in a one-shot game). However, 

since frm 2 is able to undercut frm 1’s price through more frequent pricing, frm 1 is able to 

internalize frm 2’s reaction and maintain prices that are above the Bertrand equilibrium. In 

this way, the model provides a foundation for commitment; such commitment is necessary to 

generate higher prices than the Bertrand game. 

3.4 Endogenous Pricing Technology 

We have characterized a pricing game in which frms may differ in their pricing technologies. 

Here, asymmetry is essential to generating higher prices. If frm 1 adopts technology that 

enables it to update prices at the same frequency as frm 2, then the equilibrium prices return 

to the Bertrand-Nash equilibrium. For this reason, frm 1 has a disincentive to upgrade its 

technology to match that of frm 2. 

Thus, when frms can choose the pricing frequency in this model, asymmetric frequencies 

are the equilibrium outcome. We formalize this result by modeling a frst-stage adoption deci-

sion in Appendix A, but the result is quite intuitive. Whenever frms choose the same technol-

ogy, Bertrand prices result. Each frm has a unilateral incentive to move away from symmetric 

technology, and they would do so if the cost to change technology were not prohibitively high. 

A frm may adopt costly technology even if its rival gains more from the outcome, as the frm 

prefers this outcome to the world in which neither frm adopts. Conversely, a frm may even 

pay to downgrade its technology to avoid the Bertrand outcome. In other words, frms may 

be willing to disadvantage themselves relative to their rivals to gain the benefts of softened 

price competition. For these reasons, we might not expect simultaneous price-setting behav-

ior to hold in equilibrium.21 This result raises some interesting considerations for empirical 

researchers, for whom simultaneous price-setting behavior is the standard assumption. 

In Section 5, we document that asymmetric pricing technology is a key feature of major 

online retailers in the U.S., which is consistent with the unilateral incentives described above. 

However, in some cases, symmetric pricing frequencies do arise in the real world. We believe 

there are other factors that help to maintain symmetric pricing frequency in equilibrium. First, 

a potential beneft of frequent price changes is the ability to adapt to time-varying demand con-

ditions (so-called “dynamic pricing”). Second, changing one’s pricing frequency is not costless; 

technological or operational costs may maintain symmetric frequencies in equilibrium. These 

features may dominate the incentive we identify here in certain settings. 
21Hamilton and Slutsky (1990) show similar incentives in a two-stage game where frms frst choose whether to 

move frst or second. They do not address how a frm may commit to only moving once. 
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4 Algorithms with Commitment 

The previous section discussed outcomes in which frms have asymmetries in pricing frequency. 

We believe the above model captures one of the essential features of pricing algorithms in the 

real world: namely, the ability to update prices on a more frequent basis. Roughly speaking, 

the frequency model corresponds to a game where the algorithms employed by frms are “fully 

rational,” i.e., the algorithms can continually revise their strategies so that they are optimal 

in every moment. In practice, this maps to an environment where frms are able update their 

algorithms whenever there is an opportunity to update prices, so that the encoded algorithm is 

not fxed and does not provide commitment. 

Here, we provide a generalization of this game where we allow frms to choose different 

frequencies for algorithm updates and pricing updates. When prices are updated at higher 

frequencies than algorithms, an algorithm serves as a short-run commitment device. Roughly 

speaking, the algorithm enables commitment to a pricing rule that is not “rational” in the short 

run. From the same general model, we derive a “one-shot” game of competition in algorithms. 

4.1 Setup 

Two rival frms have the ability to change prices and algorithms at different frequencies. Both 

frms can update their algorithms and prices at t = 0. Firm 1 can update its algorithm at regular 

intervals, which we normalize to 1 (θ1 = 1). Firm 2 has weakly superior algorithm technology 

and can update its algorithm after intervals of 1/θ2, where θ2 ∈ N. Firms can update prices 

with frequencies (γ1, γ2) ∈ N. We further assume that γj = aj θj , where aj ∈ N. In other words, 

whenever a frm can change its algorithm, it can also change its price.22 

In general, a frm’s algorithm may determine its price as a function of rivals’ prices and a rich 

set of observables. Non-price observables, such as cost shocks or the entire history of play, may 

be capture by the state vector, xt. Formally, an algorithm is a function pj = σj (p̂−jt, xt), where 

p̂−jt is the most recently observed price of the rival frm. Given our focus on Markov perfect 

equilibrium, we abstract away from xt and consider algorithms that take the form σj (p̂−j ). One 

can interpret our equilibrium analysis as conditional on a given state in a specifc period. 

At t = 0, both frms have the ability to fexibly change their algorithm, σj . Each frms’ 

strategy at t = 0 consists of (pj0, σj0(·)), where pj0 is the price determined while updating the 

algorithm and σj0(·) is the pricing rule at future opportunities. Firm 2 submits a new strategy 

(pjt, σjt(·)) when t ∈ {0, 1/θ2, 2/θ2, ...}. The strategy space captures the fact that whenever 

a frm can make a revision to its algorithm, its rival does not take the commitment to that 

algorithm to be credible in that instant.23 

22This latter assumption also provides expositional clarity. For other values of aj , similar qualitative results may 
be obtained. An illustration of timing in this game can be seen in Appendix Figure 12. 

23Think of the programmer as being able to manually override, or “hardcode,” the algorithm. 
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Firms choose a sequence of prices and algorithms to maximize profts, conditional on the 

fow of consumers m(t), the proft fows πj , and the behavior of the rival frms. Let p1(t) and 

p2(t) denote the prices of each frm over time, and let S1 = {(p1t, σ1t)} be the sequence of 

strategies chosen by frm 1 at t = {0, 1, 2, ...}. Demand adheres to the same conditions as the 

previous section. 

When pricing updates correspond to algorithm updates (γ1 = 1 and γ2 = θ2), we obtain the 

pricing frequency game of Section 3. In this game, there is no opportunity to rely on the pricing 

rule σj(·) to set prices. 

In this section, we focus on two additional special cases of pricing technology: 

• Asymmetric Commitment: We can consider a game with asymmetric commitment, where 

only one frm has an algorithm that commits to automatic updates as a function of its ri-

val’s price (γ1 = θ1 = 1 and γ2 > θ2). This game closely corresponds to the pricing 

frequency model. We discuss this game and the connections to the frequency game in 

Section 4.2. 

• Symmetric Commitment: We consider a case with symmetric short-run commitment, 

which allows us to highlight the role of commitment in algorithmic pricing. We turn our 

attention to this case in Section 4.3. 

In each case, we restrict attention to Markov perfect equilibria. Because of the synchronous 

nature of the updates, it suffces to analyze subgame perfect equilibrium of a single-period 

stage game. Using these cases, we illustrate how the changes to frequency and commitment 

brought about by algorithms can lead to higher prices in competitive equilibrium. 

4.2 Asymmetric Competition in Pricing Algorithms 

We frst focus on the case in which frm 2 can commit to an algorithm that conditions on 

the price of frm 1, but frm 1 does not have this capability. We call this game the asymmetric 
commitment game to refer to the asymmetry in the nature of the algorithms. Though frm 1 does 

not automate its response to frm 2’s prices, it may, in general, have an algorithm that responds 

to demand shocks and cost shocks, or other observables. In the absence of such features, i.e., 

when demand is stable, its algorithm reduces to standard price-setting behavior. 

The asymmetric game is of particular interest because the real world features asymmetry 

in the ability of frms to monitor rivals and adjust prices. Thus, characterizing the equilibrium 

may help us understand real-world phenomena. Formally, the model differs from the frequency 

game of Section 3 by allowing the frm with superior technology to commit to a pricing function. 

It is a case of the general model with γ1 = 1, θ2 = 1, and γ2 > 1. 

Conditional on frm 2’s strategy S2 = (p2, σ2), frm 1’s problem in the frst period can be 
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expressed as: 

Z Z 1 
γ

max 
1 
2 
e −ρtπ1(p1, p2)m(t)dt + e −ρtπ1(p1, σ2(p1))m(t)dt. (7) 

p1 1 0 
γ2 

As before, we can write frm 1’s stage game problem as a weighted average of the pre-update 

period (0, 1/γ2] and the post-update period (1/γ2, 1]: 

max(1 − α)π1(p1, p2) + απ1(p1, σ2(p1)) (8) 
p1 �R 1 

�−1 R 1 −ρt −ρtwhere α = e m(t)dt 1 e m(t)dt. In the asymmetric commitment game, σ2 de-0 
γ2 

1 pends on p1. The duration γ2 
represents the time lag between frm 1’s pricing decision and the 

response of the algorithm by frm 2. In this game, it is a (weakly) dominant strategy for σ2 

to mirror frm 2’s best-response function. We use this result to highlight a special equilibrium 

where frm 2 submits its best-response function. 

Proposition 3. There exists an equilibrium to the asymmetric commitment game in which the 
second frm submits its best-response function as its algorithm. This strategy is weakly dominant. 
The frst frm submits a price that maximizes its own proft along the second frm’s best-response 
function. 

It is readily apparent that no proftable deviation exists. The frm that submits a price-

dependent algorithm cannot do better than submitting its Bertrand best-response function as 

its algorithm, regardless of the price chosen by frm 1. Thus, this is the unique equilibrium 

after eliminating weakly dominated strategies.24 At this equilibrium, equation (8) is equivalent 

to (4). Thus, the asymmetric commitment game mirrors the asymmetry pricing frequency 

game from Section 3. Indeed, we present our second result for this section as a corollary to 

Proposition 2: 

Corollary. When frms produce substitute goods and prices are strategic complements, then, in the 
asymmetric equilibrium where one frm submits its best-response function as its algorithm, both 
frms realize higher prices compared to the price-setting (Bertrand-Nash) equilibrium. 

We have shown that asymmetries in pricing technologies are suffcient to generate higher 

prices than the in the simultaneous price-setting equilibrium. The results from this section high-

light a somewhat surprising result: asymmetries arising from either frequency or commitment 

generate the same outcomes in equilibrium. Thus, understanding the exact nature of the pric-

ing strategies may matter less than accounting for asymmetries. One can model a frm with a 
24There are many Nash equilibria where frm 2 has an algorithm that, local to the equilibrium, the algorithm maps 

to the best-response function. There are fewer limitations on how the algorithm looks away from the equilibrium. 
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superior algorithm that conditions its rival’s price as simply having the ability to update prices 

more frequently. 

As we show next, these similarities end when considering symmetric technology. Symmetric 

pricing frequency leads uniquely to Bertrand prices. By contrast, when both frms have algo-

rithms with short-run commitment, frms are able to realize higher prices and profts than the 

Bertrand equilibrium, despite possessing symmetric technology. 

4.3 Symmetric Competition in Pricing Algorithms 

We now consider the case in which both frms have algorithms that can depend on the prices of 

rivals. Further, these algorithms update prices at a higher frequency than the frequency which 

frms can update their strategies, generating short-run commitment to the strategies. Without 

loss of generality, we consider the frst period, t ∈ (0, 1]. Our objective is to characterize the 

equilibrium strategies that would be chosen by both frms. 

Suppose that frm 1 and frm 2 can both update their algorithms with equal frequency 

(θ2 = 1). Firms are also able to commit to an algorithmic pricing rule for future price updates, 

which occur simultaneously, with γ1 = γ2 = γ. Thus, initial price-setting behavior determines 

prices until t = 1/γ, after which the algorithms determine prices. For expositional clarity, we 

assume that there is no mass point in m(t) at t = 1/γ and that algorithms instantaneously 

converge to the “steady-state” prices, so the transition has no impact on profts. In other words, 

we allow the dynamic process of tâtonnement to play out in every instant.25 

As before, we can write frm 1’s stage game problem as a weighted average of the pre-update 

period (0, 1/γ] and the post-update period (1/γ, 1]: 

max(1 − α)π1(p1, p2) + απ1(σ1, σ2) (9) 
p1,σ1 �R 1 

�−1 R 1 −ρt −ρt 26 where α = e m(t)dt 1 e m(t)dt. The value 1 − α describes the relative weight 0 
γ 

that frm 1 places on the initial period (0, 1/γ], which is a function of ρ, m(t), and θ2. In the 

initial price-setting phase, the usual Nash-in-price logic holds: frm 1 treats frm 2’s price as 

given over the period (0, 1/γ]. After t = 1/γ, frm 1 recognizes that frm 2’s algorithm will 

control the pricing updates, and it will choose σ1 optimally with that in mind. 

As in the asymmetric game, each frm chooses a strategy that maximizes a weighted average 

of two proft components. As before, the frst component is equivalent to the proft function 
25Alternatively, one could explicitly model this process over discrete pricing updates determined by γ. Our focus 

is on the case where γ is large; for this case, the process has no impact on frm profts or strategies. 
26The simplifcation is possible because the proft fow function is time-invariant. The full problem is Z 1 Z 1 

γ −ρt −ρtmax e π1(p1, p2)m(t)dt + e π1(σ1, σ2)m(t)dt. 
p1,σ1 1 0 

γ 
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for the Bertrand model. The second component is different, as frm 1 choses σ1 while taking 

into account the choice of σ2. To make progress on understanding the equilibria of the general 

setup, we analyze the equilibria of the subgame in which frms choose algorithms (σ1, σ2). We 

can treat this component as a subgame because our setup is equivalent to a model in which 

frms frst choose prices at t = 0 and then choose (σ1, σ2) at t = 1/γ. 

We now develop the equilibrium of this subgame. When α = 1, the equilibrium will corre-

spond to the stage game equilibrium of the full model. We consider the case of α = 1 to be a fair 

approximation to price competition in which both frms have very high-frequency algorithms, 

e.g., algorithms that can update hundreds of prices within a 15-minute window. 

4.4 Stage Game Analysis 

We now defne a competitive game—competition in pricing algorithms—and its equilibrium con-

cept. Firms compete in pricing algorithms by submitting a pricing strategy σ(·), or “algorithm”, 

to a market coordinator. The algorithms may condition directly on the prices of rivals. The 

algorithm may also be a function of variables that are observable to the frm, but they cannot 

be functions of other player’s algorithms. 

After receiving the pricing algorithms, the market coordinator solves the system of equations 

set by the algorithms to determine prices. Based on the general model developed above, the 

market coordinator may be thought of as the process of tâtonnement arising from an initial 

price vector. Without further restrictions, the game thus far described may suffer from an 

indeterminacy problem: there may be multiple solutions to the system of equations set by the 

algorithms. For example, consider the case where both frms submit an algorithm of the form ⎧ ⎨ C C p , for p−j = p
σ(p−j ) = (10) ⎩ pB , otherwise 

C Bwhere p is the collusive price and pB is the punishment (Bertrand) price. Both (p , pB) and 
C (p , pC ) are equilibria of the system, depending on the initial price vector. 

A second issue is that cooperate-or-punishment strategies like this one would raise imme-

diate antitrust concerns if made public. We wish to analyze, fundamentally, the impact of 

algorithmic competition on prices. Do they lead to higher prices in the absence of behavior that 

“looks collusive?” 

To resolve these issues, we provide a modifcation to the general game that results in a 

unique solution conditional on algorithms. When multiple solutions are possible, the market 

coordinator picks the solution that minimizes the profts of the frms. If multiple such solutions 

exist, the coordinator randomizes among them. Effectively, we allow an adversarial market 

coordinator to choose the initial price vector. 
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Restriction (Proft-Minimizing Coordinator). In the pricing algorithm game, the market coordi-
nator selects the solution to the system of equations determined by the algorithms that minimizes 
joint profts. Formally, the market coordinator chooses p = (p1, p2) to solve X 

min πj (σj (p−j ), σ−j (pj )) (11) 
p 

j∈{1,2} 

s.t. pj = σj (p−j ) ∀j. 

This selection procedure is a natural choice for us because it provides conservative results re-

garding prices. We tie our hands, eliminating equilibria that mirror typical collusive strategies. 

In the real world, this selection procedure refects pro-consumer market mechanisms to disci-

pline frms. 

We now defne the equilibrium concept for the algorithm-setting game. In equilibrium, 

each frm’s algorithm maximizes its own proft, conditional on the algorithms submitted by the 

other frms and subject to a market coordinator that minimize the joint profts when multiple 

solutions to the algorithms exist. We formalize this below. 

Equilibrium defnition: When frms compete in pricing algorithms, equilibrium algo-
rithms {σ∗ } satisfy j 

∗ ∗ σ ∗ = arg max −j ), σ ∗ 
j )) ∀j (12) j πj (σj (p −j (p 

σj |σ∗ 
−j X 

∗ s.t. p = arg min πj (σ ∗ −j (pj )) j (p−j ), σ ∗ 

p∈ P ̃
j∈{1,2} 

P ̃≡ {p : pj = σ j 
∗ (p−j ) ∀j}, 

∗ ∗ ∗ resulting in equilibrium prices p = (p 1, p 2). 

Even subject to the proft-minimizing coordinator, many equilibrium strategies can be sup-

ported. Note that any equilibrium of the pricing algorithm game has the following property: in 

equilibrium, no frm can do better by submitting a single price, conditional on the algorithms 

of its rivals. Formally, 

∗ ∗ ∗ πj(σ j 
∗ (p −j ), σ ∗ 

j )) ≥ πj (pj , σ ∗ 
j )) ∀pj , j. (13) −j (p −j (p 

Therefore, any equilibrium lies at the intersection of modifed best-response functions for price, 

where the best-response functions take into account the algorithms of the rivals. 

Given the equilibrium concept, we now illustrate some of the similarities and differences 

to the asymmetric commitment game from Section 4.2. Consider a scenario in the pricing 
S algorithm game in which frm 1 submits algorithm σ1(·) = p and frm 2 submits algorithm 1 

S σ2(p1) = R2(p1), where p = arg maxp1 π1(p1, R2(p1)) and R2(·) is frm 2’s best-response func-1 
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S tion. Recall that p is equivalent to the equilibrium price of the frst-mover in a sequential pric-1 

ing game. As in Section 4.2, neither frm can do better with a unilateral deviation. Thus, this 

asymmetric case—where one frm submits the price, and the other a function of that price—is 

an equilibrium of a game even when both frms have the technology to condition on the prices 

of rivals. 

If both frms were to instead submit their best-response functions from the price-setting 

game, σj (p−j ) = Rj (p−j ), the unique price vector that satisfes both algorithms is the Bertrand 
S equilibrium. Thus, as in Section 4.2, frm 1 can do strictly better by submitting σ1(·) = p1 

instead of σ1(·) = R1(p2). Therefore, (σ1, σ2) = (R1, R2) is not an equilibrium of the algorithm-

setting game. This is a central negative result of our model. 

Proposition 4. When frms compete in a one-shot game by submitting pricing algorithms, it is (in 
general) not an equilibrium for each frm to submit their price-setting best-response function. 

Proof: By the above reasoning, individual frms can realize a proftable deviation 

by submitting a price that lies along their rival’s best-response function and results 

in greater profts to the frm. QED. 

When frms compete in algorithms, the algorithms will not refect the price-setting best-response 

functions in equilibrium. That is, if each frm’s algorithm conditions on its rival’s price, algo-

rithms cannot be “competitive” in equilibrium.27 

Though it is not an equilibrium for each frm to submit their Bertrand best-response func-

tions, the symmetric commitment game admits a multitude of possible equilibria. We provide a 

formal proof and a discussion of equilibrium selection in Appendix B. Despite this result, we ex-

pect algorithms to result in higher prices than the Bertrand-Nash equilibrium for three reasons. 

First, when algorithms have positive slope coeffcients on rivals’ prices, higher prices result. 

Imposing this restriction on frms’ choices seems reasonable a priori when prices are strategic 

complements. In other words, prices that are lower than Bertrand-Nash are supported only 

when an algorithm treats the rival prices as strategic substitutes, despite the complementarity. 

Second, many of these equilibria are “knife-edge” cases. To examine which equilibria are, 

in some sense, more robust, we simulate a simple learning process in Appendix B. Firms ex-

periment with algorithms that are linear functions of rivals’ prices, updating the parameters if 

profts increase. From a starting point of randomly-chosen algorithms, frms disproportionately 

arrive at equilibria that are bounded from below by their best-response functions and bounded 

from above by the proft Pareto frontier. Our simulations show that higher prices result. 
27Interestingly, the Bertrand-Nash solution is still an equilibrium of the game. However, it is only an equilibrium 

B B B if the algorithms do not depend (locally) on rivals’ prices. For example, p = (p 1 , p 2 ) is obtained in equilibrium if 
B both frms resort to simple price-setting technology, with algorithms σj (p−j ) = p j . More generally, when σj (·) is 

B B differentiable at p −j , a necessary condition to obtain p in equilibrium is that ∂σj (p−j )/∂p−j = 0 ∀j. Otherwise, 
the reaction by rivals creates an incentive to deviate from the Bertrand price. 

21 

http:equilibria.We
http:equilibrium.27


4.5 Algorithms, Supracompetitive Prices, and Collusive Prices 

We have, thus far, address two questions related to the use of algorithms and supracompetitive 

prices. First, we have demonstrated that asymmetries in frequency and commitment—key 

features of pricing algorithms—lead to higher prices than the Bertrand equilibrium. Thus, by 

unilaterally changing one’s pricing technology, a frm can increase its prices and profts above 

the usual competitive benchmark. In other words, technology provides frms with a means to 

increase profts without resorting to collusion. 

Second, we have shown that algorithms that depend on rivals’ prices cannot be competitive 

in equilibrium. Thus, if all frms use algorithms that condition on rivals’ prices, we might ex-

pect supracompetitive prices to result. As discussed above, sensible restrictions on equilibrium 

strategies do result in higher prices. Simulations that provide frms with a simple reinforcement 

learning rule to select strategies provide additional support for this conclusion. 

We now address a third question: Can algorithms be used to obtain collusive outcomes in 

competitive equilibrium? In other words, are collusive profts possible in Markov perfect equi-

librium? We again focus on one-shot mechanics of the symmetric commitment game, allowing 

each frm to commit to an algorithm that is optimal conditional on the algorithm of its rival. 

As discussed above, our restrictions rule out the typical strategies to sustain collusive behav-

ior. However, the collusive outcome can be supported by algorithms that satisfy the restrictions. 
3 For example, in the model of demand in Section 3.3, the collusive outcome is (p1, p2) = (32 , ). 2 

This is an equilibrium with the following strategies: 

σj (p−j ) = 1 + 
1 
p−j (14) 

3

It is straightforward to verify that, conditional on these algorithms, no frm wishes to deviate 
C C in its algorithm and the collusive price results. In fact, the collusive outcome pC = (p1 , p2 ) can 

be achieved in equilibrium in general with simple linear algorithms. These algorithms take the 

form 
C C σj (p−j ) = p j + bj (p−j − p −j ), (15) 

where bj is chosen to eliminate any incentive for the rival frm (−j) to deviate in prices.28 

Thus, simple linear strategies, which may not raise competitive concerns prima facie, can 

support fully collusive prices when all frms employ algorithms. These results suggest that the 

widespread concerns about the level of sophistication in algorithms may be somewhat mis-

placed. With commitment, frms can sustain collusive profts with algorithms that appear to be 

quite unsophisticated. 

The intuition behind higher prices in our model is related to the logic of how price-matching 

guarantees may lead to higher prices: if a frm (credibly) commits to match the price of its rival, 

∂π−j /∂p−j 28Specifcally, bj = − . See derivation in Appendix B. 
∂π−j /∂pj C p

��� 
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then the rival has a reduced incentive to lower its price. Our model allows price matching as a 

possible strategy, and it is straightforward to show that pure price-matching algorithms do not 

arise in equilibrium. If one frm chooses the price-matching algorithm σ(p−j ) = p−j , the other 

will pick the collusive price. But, conditional on the second frm’s price, the frst frm will want 

to deviate along its best-response function. If both frms choose price-matching algorithms, 

then the adversarial market coordinator is free to pick any price that delivers the lowest profts. 

Our model of symmetric commitment is also related to the analysis of conjectural variations. 

One important distinction is that the conjectural variations literature has attempted to restrict 

the set of equilibria to those in which the conjectural variations are consistent with the beliefs 

and actions of the other players (e.g., Bresnahan, 1981; Kamien and Schwartz, 1983; Daughety, 

1985; Lindh, 1992). In the equilibria of our model of pricing algorithms, frm’s beliefs are 

consistent with the pricing strategies (algorithms) played by other frms, yet any conjectural 

variation equilibrium may be supported, regardless of whether it is an equilibrium in consistent 

conjectures with the price-setting game. 

Thus, our general model unifes several different pricing games (e.g., Bertrand, sequential 

pricing, conjectural variations) under the same set of primitives. We view algorithms as pro-

viding a real-world foundation for many classic models of price competition. By nesting these 

models under a common structure, we also provide a framework for frms to choose among 

different models of competition by changing their pricing technology. Our model also provides 

a basis for more fexible assumptions of price competition that can be adapted to empirical 

settings. We demonstrate the importance of accounting for pricing technology when examining 

competition empirically in Section 6. 

4.6 Pricing Algorithm Game: Oligopoly Example 

To extend the intuition of asymmetry in pricing algorithms beyond duopolistic competition, we 

consider an oligopoly setting with three frms. We simulate equilibrium prices in the model 

with the aim of comparing model predictions to our empirical fndings in Section 5. Similar 

qualitative results can be obtained for any number of frms. 

Demand remains similar to that of the model in section 3.3, but the three frms are now 

located at equidistant 1-unit intervals along a circle with circumference of 3. Thus, we use the 

Salop (1979) model to characterize demand. Each unit of the circle’s circumference contains a 

mass of 1 consumers. Consumers maintain travel costs as before. Where the utility from both 

goods is positive, the (local) demand for each good is: 

X 
qj = 1 − pj +

1 
pk (16) 

2 
k 6=j 

3 As before, the Bertrand-Nash equilibrium is pj = 1 and the collusive price is pj = (for all j). 2 

23 

http:settings.We


Figure 2: Timing for Oligopoly Example 

Start of Demand 

Period Realized 

γ1 = 1 

γ2 = 2 

γ3 = 3 

One Period 
Notes: Solid black markers represent opportunities to adjust algorithms 
and update prices. Open circles indicate opportunities to update prices 
based on the previously-determined algorithm. Algorithm updates are 
governed by θ = 1 and pricing updates are governed by γ. Diamonds 
indicate consequential opportunities to adjust prices when all pricing up-
dates can occur before demand is realized. 

Now assume that there are three levels of pricing technology. Firm 1 has inferior pricing 

technology and can update prices only at the beginning of the period. Firm 2 has more fre-

quent pricing, allowing it to react to frm 1 before the end of the period. Firm 3 has superior 

technology and can update prices in response to both frm 1 and frm 2. In particular, assume 

γ3 > γ2 > γ1 = θ and θj = θ ∀j. Furthermore, assume the differences in pricing frequency 

are large so that it is as if frms with faster algorithms react instantly to slower rivals. In other 

words, the faster algorithms can react before demand is realized. 

Figure 2 illustrates how timing works in this oligopoly example. When the algorithms can 

react faster than demand is realized, any set of technology satisfying γ3 > γ2 > γ1 will have 

equivalent strategic effects. In the fgure, we show the edge case when (γ1, γ2, γ3) = (1, 2, 3) 

and all demand is realized at the end of the period. Open circles indicate pricing updates 

determined by the algorithms for frms 2 and 3. Diamonds indicate pricing decisions that are 

consequential for the realized demand. Effectively, frms with superior technology have a last-

mover advantage for price. Variation in pricing technology can sort frms into a sequential 

pricing game, with the pricing order given by γj . Thus, pricing frequency provides a simple 

economic mechanism for frms to commit to a specifc sequence, even in oligopoly settings. 

Figure 3 demonstrates the equilibrium prices of the model compared to the simultaneous 

price-setting benchmark. Firm 1, which has the slowest pricing technology, has the highest 

price. Firm 3, which has the fastest pricing technology, has the lowest price. The model implies 

that prices are monotonically decreasing in pricing algorithm frequency. Furthermore, all prices 

in the pricing algorithm equilibrium are higher than those from the Bertrand-Nash equilibrium. 

Firms with inferior technology choose to compete less aggressively, as frms with superior tech-
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Figure 3: Simulated Pricing Algorithm Equilibrium 
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Notes: Figure displays the prices for three frms from a simulation of competition in pricing 
algorithms with heterogeneous pricing technology. Pricing frequency of 3 is the superior (i.e., 
fastest) pricing technology. Marker labels indicate the frm. 

nology can credibly commit to offering lower prices. Within a pricing algorithm equilibrium, 

more frequent pricing is correlated with lower prices, but all prices are elevated relative to the 

case where all frms have the slowest technology. 

5 Empirical Evidence on Pricing Technology and Prices 

In this section, we introduce a novel dataset of high-frequency prices for competing retailers. 

We then explore the differences in pricing technology across the retailers in our dataset. We 

document systematic differences in when price changes occur. We then examine the linkages 

between pricing technology and the predictions of our theoretical model. 

5.1 Data 

For our empirical analysis, we collected a novel dataset of hourly prices for over-the-counter 

allergy drugs from fve online retailers. The retailers are the fve largest in the allergy cate-

gory based on Google search data and are among the largest retailers overall by e-commerce 

revenues.29 We have kept the identities of the retailers anonymous, calling them A, B, C, D, 

and E. For each of these retailers, allergy drugs represent an important product category. All 

fve retailers sell products in many other categories, and four of the fve have a large in-store 

presence in addition to their online channel. Prices are set uniformly for online shoppers across 

the United States. 
29According to ecommerceDB (https://ecommercedb.com/), these fve retailers combined for $6 billion in e-

commerce revenues for personal care, which includes medicine, cosmetics, and personal care products. 
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Table 1: Price Observations by Website and Brand 

Retailer Allegra Benadryl Claritin Flonase Nasacort Xyzal Zyrtec Total 
A 309,554 208,422 509,404 104,634 68,858 108,854 234,903 1,544,629 
B 125,095 58,270 144,098 46,584 12,517 34,177 75,096 495,837 
C 89,477 99,608 171,782 80,772 34,633 32,508 90,858 599,638 
D 112,281 68,459 128,394 50,130 2,411 47,321 128,123 537,119 
E 71,061 47,799 125,171 51,732 38,051 23,185 62,600 419,599 
Total 707,468 482,558 1,078,849 333,852 156,470 246,045 591,580 3,596,822 

Notes: Count of price observations for the sample period from April 10, 2018 through October 1, 2019. 

We focus on the seven brands of allergy drugs that are sold by all fve retailers: Allegra, 

Benadryl, Claritin, Flonase, Nasacort, Xyzal, and Zyrtec.30 This set of products provides a 

relatively straight-forward set of competing products in which to examining pricing technology 

in detail, however we believe our analysis of frms’ pricing technology applies more broadly to 

other products sold by the retailers. 

We defne a product to be a drug-brand-form-(variant-)size combination, e.g. Loratadine-

Claritin-Tablet-20. Each of the retained brands specializes in one drug, but they often offer 

the products in multiple forms (e.g., Liquid Gels, Liquid, or Tablets). Each brand offers many 

different size options, so there are several products per brands. In addition, most brands offer 

variants with different amounts of the active drug, targeted for children, 12-hour or 24-hour 

use. There are also versions of the drug that are combined a decongestant. These varieties are 

captured by the variant of the drug. Finally, we distinguish products that are sold in a twinpack, 

so that twinpack of 12 tablets is a different product than a single pack of 24 tablets.31 When 

a retailer sells multiple versions of the same product, we select the most popular version by 

retaining the version that has the greatest number of reviews, on average, in our sample. Our 

dataset spans April 10, 2018 through October 1, 2019, resulting in 3,596,822 price observations 

across the fve websites. See Table 1 for a tabulation. Retailers A and B offer signifcantly more 

product varieties than the other retailers. This is primarily due to the number of size options 

offered for each brand. 

Obtaining online prices can be challenging, as updates to price information may take a 

while to propagate through the network, retailers can have complicated websites that take time 

to load, and the websites tend to change over time. These features are refected in our raw 

data, and we have taken steps to eliminate measurement error. First, we have focused on 

high-volume brands, helping to ensure the availability of price information. Second, we use 

supplemental information obtained at the time of our price sample to rule out price changes 

brought about by a lag in the website. For example, we can see if the description of the product 
30Our sample consists of products sold directly by retailers and not products in which a third-party seller sets the 

price. Third-party sellers are less popular for allergy products. 
31We drop multipacks that are of greater size than a twinpack, as they are not common across retailers. 
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Table 2: Summary Statistics for Hourly Prices by Retailer 

Retailer 

A B C D E All 

Daily Mean 

Count of Products 124.2 41.1 49.9 42.5 35.1 58.6 

Daily Mean per Product 

Observations 20.9 20.4 19.0 21.1 19.1 20.1 

Count of Reviews 101.1 231.9 258.5 241.3 302.1 219.4 

Price Statistics 

Mean Price 27.354 16.185 17.628 20.925 21.742 20.750 

Mean Abs. Price Change 1.358 2.236 1.124 3.281 3.063 1.891 

Count of Price Changes 1.858 0.285 0.008 0.021 0.025 0.441 

Any Price Change 0.372 0.088 0.008 0.020 0.024 0.103 

Notes: Statistics are calculated by website by day. 

is consistent over time. Third, we impute missing prices by flling in missing prices with the 

most recently observed price if the gap of missing prices is fewer than six hours. Finally, for 

the three retailers that do not change prices hourly, we smooth over single-period blips in price 

that revert back to the earlier price.32 Figure 13 in the Appendix displays the count of products 

in our sample over time. 

Summary statistics for our data are presented in Table 2. On average, we observe 124 

products each day for retailer A, compared to 41 products for retailer B. Across all retailers, 

we observe the price for each product in 20 out of 24 hours on average. The mean price for 

these products is $20.75, with a mean (absolute) price change of $1.89. The table indicates 

stark differences in the frequency of price changes. Retailer A changes the prices of 37 percent 

of its products in a given day, with an average count of 1.9 price changes per product. At the 

other extreme, retailer C only changes the price of 0.8 percent of its products each day, making 

a single change when it does so. 

Figure 4 displays example time series for two products in our sample: Xyzal-Tablet-80 and 

Zyrtec-Liquid Gel-40. These two examples illustrate fundamentally different pricing patterns 

across the fve retailers. Retailer A has frequent price changes of a large magnitude, but prices 

that are on average lower than its competitors. Retailer B has price movements that are closer 

to A, though less frequent, whereas C, D, and E tend to have more similar prices. 
32Overall, 7.8 percent of the prices are imputed in our analysis sample. 
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Figure 4: Example Time Series of Prices 

(a) Xyzal, Tablets, 80 Count (b) Zyrtec, Liquid Gels, 40 Count 
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Notes: Figure displays the time series of hourly prices in our dataset for two example products across fve 
retailers. Panel (a) displays the prices for an 80-count package of Xyzal tablets. Panel (b) displays the prices 
for a 40-count package of Zyrtec liquid gels. 

5.2 Heterogeneity in Pricing Technology 

The previous section showed that there is variation across the fve retailers in terms of how 

frequently they change prices. This fact alone does not demonstrate that the retailers possess 

different technologies, in terms of the capability to change prices quickly. Whether or not a 

price actually changes may not refect the underlying capability to change price; for example, 

some products at retailer A have long periods of stable prices in the data. 

However, examining the data further reveals that the fve retailers possess very different 

pricing technologies, which we defne as the maximum frequency with which frms can adjust 

prices. Figure 5 displays the heterogeneity in price changes by day of the week and hour of 

the day. First, panel (a) of Figure 5 presents the occurrence of price changes by day of the 

week. Though A, B, and C have roughly equal amounts of price changes throughout the week, 

retailers D and E realize nearly all of their price changes on Sunday. 

Second, panel (b) presents the distribution of price changes across hours of the day. Retail-

ers A and B have well-dispersed price changes across the 24 hours of the day. By contrast, C, 

D, and E have nearly all observed price changes occurring within a few hours in the morning.33 

Firms D and E begin their price update script around midnight EDT. Thus, we observe that A 
and B have pricing technology that allows for updates at any hour of the day, C has technology 

that allows for a daily update each morning, and D and E have technology that allow them to 

update their prices once per week (on Sundays). Table 3 summarizes these fndings. 

Pricing technology, in the sense of this paper, is directly linked to the frequency with which 

frms are able to update prices. We highlight the stark differences in the distribution of observed 
33Several of the changes that occur away from these peaks are likely due to measurement error. 
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Figure 5: Heterogeneity in Pricing Technology 

(a) Daily Price Changes, by Retailer and Day of Week 
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(b) Hourly Price Changes, by Retailer 
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Notes: Panel (a) displays the fraction of products with a price change in each day of the week, by day of 
week and retailer. Panel (b) displays the fraction of all price changes that occur at a given hour of the day, by 
retailer. Hours are reported in Eastern Time. 
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Table 3: Pricing Frequency by Online Retailers 

Retailer Frequency Period 

A Hourly Any time 
B Hourly Any time 
C Daily 3:00 AM to 6:00 AM EDT 
D Weekly on Sunday 1:00 AM to 6:00 AM EDT 
E Weekly on Sunday 12:00 AM to 2:00 AM EDT 

Notes: Table summarizes the pricing technology of the fve 
retailers in our data. 

price changes as pointing to heterogeneity in pricing technology. Though frms do not use every 

opportunity to change prices—recall that frm C changes the prices of less than one percent of its 

products each day—we fnd the consistency in the times that price changes occur as compelling 

evidence of technological constraints. 

Of course, our defnition of technology is not merely the set of hardware and software that 

functionally updates a price on website. Technology also includes managerial and operational 

constraints that restrict a frm from updating prices on a more frequent basis. Put differently, 

even if frm C had access to the same hardware and software as A, it would take signifcant 

operational changes to enable the frm to update its prices as frequently. 

5.3 Evidence of Competitive Effects 

Having established that the fve retailers in our data have different technologies affecting the 

frequency at which they can update prices, we now examine the pricing patterns in more detail 

to determine whether the data are consistent with the model of Section 3. The theory generates 

a stark prediction: frms that have higher-frequency pricing technology will have lower prices. 

Again, the intuition is higher-frequency pricing allows a frm to commit to meet its rival’s best 

price; as a consequence, the rival prices less aggressively. 

To examine this prediction, we wish to compare the price of identical products across re-

tailers. We use a regression in order to account for differences in product assortment in the 

cross-section and over time. More specifcally, we regress log prices on indicators for each 

retailer, while including product and period (hourly) fxed effects. The resulting coeffcients re-

fect the average difference in (log) price for identical products (brand-drug-form-variant-size) 

sold across different retailers at the same point in time. 

Table 4 presents the results. Retailer A serves as a baseline, so the coeffcients refect the 

average difference in log price relative to A. Relative to retailer A, products are typically sold at 

a 6.8 percent (0.066 log point) premium at B and a 9.5 percent (0.091 log point) premium at C. 

These same products are sold at a substantial premium at retailers D and E, who have average 

price differences of 28 percent and 33 percent, respectively. We observe the same qualitative 
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Table 4: Log Price Differences Across Retailers, Relative to A 

(1) (2) (3) (4) 

B 0.066∗∗∗ 0.047∗∗∗ 0.146∗∗∗ 0.117∗∗∗ 

(0.000) (0.001) (0.000) (0.001) 

C 0.091∗∗∗ 0.107∗∗∗ 0.171∗∗∗ 0.187∗∗∗ 

(0.000) (0.001) (0.000) (0.001) 

D 0.249∗∗∗ 0.289∗∗∗ 0.307∗∗∗ 0.337∗∗∗ 

(0.000) (0.001) (0.000) (0.001) 

E 0.284∗∗∗ 0.366∗∗∗ 0.340∗∗∗ 0.419∗∗∗ 

(0.000) (0.001) (0.000) (0.001) 

Product FEs X X X X 
Period FEs X X X X 
Sold at All Retailers X X 
On or After Jul 1 2019 X X 
Observations 3,596,822 673,771 1,186,534 234,696 

∗ ∗∗ ∗∗∗ Standard errors in parentheses. p < 0.10, p < 0.05, p < 0.01. 

patterns if we vary our estimation sample. Models (2) and (4) use observations from the most 

recent three months of the data, and models (3) and (4) includes only products sold by all fve 

retailers. The results remain qualitatively similar, though the price differences between A and 

the rest increase when we restrict the sample. 

We plot the (scaled) coeffcients from specifcation (1) against a measure of pricing technol-

ogy in 6. The x-axis captures the pricing frequency, which increases along the x-axis. We report 

the frequency as the median number of hours between any pricing update on each website; the 

axis values are reversed so that superior (more frequent) technology is to the right. Firm E has 

a median approximately equal to the number of hours in a week (168), whereas frm A has a 

median of 1. The resulting price patterns are consistent with the model described in Section 3. 

Firm A has implemented a pricing technology that enables them to perform frequent updates, 

and A has the lowest prices. This is in line with the prediction that a faster pricing algorithm 

enables a frm to best respond to its competitors, resulting in a relatively lower price. The pat-

tern also holds up if we look at frms with weekly pricing technology (D and E). These frms sell 

at a price substantially higher than B and C, who have more frequent pricing technology. Lastly, 

we note that E sells at a slightly lower price than D, and it updates its prices a few hours later. 

Consistent with the model, we fnd that higher-frequency technology is correlated with 

lower prices. This is initial evidence of competition in pricing algorithms, implying higher 

prices than what would result from a simultaneous price-setting game. However, it is important 

to note that there are other reasons why prices could be higher for frms with low-frequency 

pricing. The primary concern in our setting is that demand may not symmetric, i.e., consumers 

prefer to purchase from certain frms or engage in directed search. We address this concern in 

the following section by accounting for fexible substitution patterns in our model of demand. 
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Figure 6: Price Differences Across Retailers 
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Notes: Figure displays the relative prices (Firm A = 100) plotted against the pricing frequency of each retailer. 
We report the frequency as the median number of hours between pricing updates. 168 hours corresponds to 
one week. The relative prices are obtained from the estimated coeffcients in specifcation (3) of Table 4. 

The model of asymmetric pricing technology generates a second set of predictions: If frms’ 

algorithms depend on rivals’ prices, then we should expect a unilateral price change by a low-

frequency frm to increase the probability of a price change by the high-frequency frms. In order 

to examine this prediction, we analyze the timing of price changes by faster frms in response 

to price changes by a slower rival. In particular, a slow frm may experiences an idiosyncratic 

cost shocks due to shipping delays or have low stock in warehouses. In response to the cost 

shock, the slow frm may adjust prices, causing faster rivals to react. The primary concern is 

that price changes are endogenous and frms may be responding to common shocks. However, 

to the extent that frms are responding to a demand or cost shock that affects all frms, price 

changes at higher-frequency pricing technology frms would anticipate those of a slower rival. 

To examine the reaction of prices to other frms, we take price changes occurring at retailer 

E, one of the two frms with weekly pricing technology, as the impulse. We observe 374 price 

changes in our data occurring between midnight and 5 AM on Sunday. We partition the weeks 

into Friday through Thursday blocks, giving us a two-day pre period and a fve-day post period 

around each price change. We then measure cumulative price changes of the same product 

occurring at rival retailers during each week. We capture “treated” product-weeks in which the 

product changed its price at retailer E and “control” weeks in which the product did not change 

its price. 

Figure 7 plots the cumulative price changes before and after midnight on Sunday across 

each product-week. The blue line corresponds to treated product-weeks, i.e., weeks in which 

the price of a particular product changed at retailer E. The dashed line corresponds to control 
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Figure 7: Price Changes in Response to a Price Change by Retailer E 
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(c) Retailer C (d) Retailer D 
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Notes: Figure displays the cumulative price changes of four retailers in response to a price change occurring 
at retailer E. The blue line displays the cumulative price change when retailer E changes a price of the same 
product in that week. The dashed line plots the cumulative price changes when the product at retailer E does 
not have a price change. The pre-period differences are netted out so that the difference is zero at period 0. 

product-weeks that had no price change. The gap between the blue line and the dashed line is 

the marginal increase in price changes when a price change occurs at retailer E, and is analogous 

to a difference-in-differences estimate. We adjust for pre-period differences so the gap is zero 

in period 0. 

Retailers A and B have an increased probability of a price change within 48 hours after 

a price change at retailer E. Retailer A realizes approximately 1 additional price change on 

average, whereas B realizes roughly 0.1 additional price changes. The baseline rate of price 

changes at A is approximately 10 times that of B, so the proportional increase is roughly the 

same across the two retailers. 

Retailer D is twice as likely to change the price of its product when the price changes at 

E. Since they update their prices only a few hours after E, it is likely that these changes are 
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determined by a common unobserved factor, though it is plausible that D has technology in 

place that allows it to response to a change at E. The point estimates for retailer C indicate 

that it is slightly less likely to change its price after a change at E. However, the estimate is 

not precise because price changes at C occur at a much lower rate. We only observe 16 price 

changes for C during a product-week where E realizes a price change. 

The evidence suggests that the two retailers with the most frequent pricing technology, 

A and B, are responding to other frms’ prices. There is not enough data to conclude about 

retailer C. Retailer D, the second slowest frm, may be responding to price changes that occur 

a few hours earlier at E, or they may be determined simultaneously by an unobserved factor, 

such as a wholesale cost shock or a demand shock. 

For the high-frequency frms, it is quite possible that this analysis underreports the degree to 

which they respond to E’s prices. The above fgure captures an increased rate of price changes. 

The high-frequency retailers may plausibly react through the magnitudes of the price changes, 

while maintaining the same rate of price changes. 

6 Quantifying The Impact of Algorithmic Competition 

While previous empirical work has assumed that frms have symmetric price-setting technology, 

we fnd that differences in pricing technology is an important feature of the market we examine. 

As a frst step towards quantifying the impact of algorithmic technology on prices, we perform a 

counterfactual exercise where study how equilibrium prices would change if frms competed via 

simultaneous Bertrand competition. The simulated differences in prices may interpreted as the 

impact of adopting the asymmetric pricing technologies we observe. The exercise also suggests 

that ftting a (misspecifed) Bertrand model could generate biased estimates of markups in 

online markets. 

To calculate counterfactual prices, we simulate Bertrand competition using a model of spa-

tial demand that is calibrated to aggregate prices and shares in our data. We generalize the 

Hotelling (1929) spatial demand model to allow for an arbitrary number of frms and fexible 

demand substitution patterns. We then apply the model to the fve frms in our sample, taking 

into account the pricing technology of each frm. 

One potential challenge for the empirical analysis of algorithmic competition is that the 

game can become computationally intractable, as the solution for one frm is an input into 

another frm’s problem. A feature of our spatial demand model is that it generates analytical 

solutions for both the algorithm game and the simultaneous Bertrand game. This allows us to 

feasibly match the model predictions to the data and simulate alternative forms of competition. 
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6.1 Demand with Spatial Differentiation 

We introduce a model of demand for products that are spatially differentiated. Consumers vary 

in their proximity to each frm, therefore the “travel” costs associated with each frm varies 

across consumers. In our setting, travel costs represent psychological costs and hassle costs of 

visiting each website. This may roughly be interpreted as search costs, though we provide no 

formal connection. These costs allow for positive markups when products are homogeneous. 

The model is a generalization of the Hotelling (1929) line. Unlike the circle model of Salop 

(1979), frms compete with all other frms, not just their closest neighbors. In this way, the 

model is related to the pyramid model of von Ungern-Sternberg (1991) and the spokes model 

of Chen and Riordan (2007). Unlike previous models, our approach allows for the mass of 

consumers on each segment to be different, including the mass of consumers on the outside 

option segments. This feature is important since it allows for fexible substitution patterns 

that could explain differences in prices across retailers. This is also an advantage over models 

of vertical differentiation, such as the logit model, which restrict the horizontal substitution 

patterns to be symmetric across frms. 

Each frm j lies in a (J − 1)-dimensional space. A mass of consumers µjk lie along the line 

segment connecting j to k.34 The distance between each frm is 1 unit. Each frm sells a single 

product, which consumers value at vj > 0, and each frm chooses a price pj . Each frm also 

has a mass of consumers on a line segment of distance D0 connecting to an outside option 

(j = 0), with p0 = 0 and v0 = 0. Consumers lie on these segments with mass µj0D0. D0 may 

be arbitrarily large, so that the frm never captures the full segment. 

Each consumer i is indexed by its location and bears a travel cost τdij for traveling a distance 

dij to frm j to purchase its product. A consumer along segment jk will choose j if uij > uik, or 

(vj − pj ) − (vk − pk) > τ (dij − dik). (17) 

That is, the consumer will prefer j to k if the added value of product j is greater than the 

additional travel cost of visiting frm j. The consumer also has the option to stay home and get 

ui0 = 0, which he will do if uij < 0 and uik < 0. 

For our calibration exercise, we assume that consumer locations are distributed uniformly 

within each segment. We also assume that the products are homogeneous (but for the travel 

costs), so that vj = v for all j except for the outside option, for which v0 = 0. Finally, we 

assume that consumer valuations are suffciently high that all consumers on the inside segments 

purchase a product.35 Demand for retailer j is equal to � � X 1 1 1 
qj = µjk − (pj − pk) + µj0 (v − pj ) . (18) 

2 2τ τ 
k 6=j,0 

34Demand can be represented by a graph. The graph is complete if µjk > 0 for all {j, k}. 
35In a slight abuse of notation, we omit the arrival rate of consumers m(t). 
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The model fexibly captures horizontal differentiation through the distribution of consumers 

across segments: for all consumers that could choose product j, there are a fraction of con-

sumers µjk that have product k as the next-best option. A mass of consumers µj0 will P 
k0 µjk0 

substitute only between j and the outside option, though all consumers would choose not to 

buy if prices were high enough (pj > v). For additional details of this model, see Appendix C. 

6.2 Calibration 

To estimate the parameters of the demand system, we leverage the supply-side restrictions aris-

ing from frms’ proft-maximizing behavior. In contrast to the standard assumptions in applied 

work, we allow frms to be asymmetric in their pricing technology, corresponding to the ob-

served patterns found in Section 5.1. Retailers D and E set prices simultaneously, followed by 

retailer C, then B, and, fnally, A. The sequence can be interpreted as arising from asymmetries 

in frequency (as in Section 3) or from asymmetric commitment (as in Section 4). What matters 

strategically is that the faster frms can change their prices in response to slower rivals. Given 

the large differences in technology across frms, we assume that faster frms can react before 

rivals realize any (meaningful) demand. 

Under these assumptions, the frms’ best-response functions are 

RA(pB, pC , pD, pE ) = arg max (pA − c)qA(pA,pB , pC , pD, pE ) 
pA 

RB(pC , pD, pE ) = arg max (pB − c)qB(RA(·), pB, pC , pD, pE) 
pB 

RC (pD, pE ) = arg max (pC − c)qC (RA(·), RB(·), pC , pD, pE ) 
pC 

RD(pE ) = arg max (pD − c)qD(RA(·), RB(·), RC (·), pD, pE ) 
pD 

RE(pD) = arg max (pE − c)qE (RA(·), RB(·), RC (·), pD, pE ). 
pE 

Equilibrium prices are determined by the solution to the system of equations above. A key 

advantage of the demand system in equation (18) is that it admits an analytical solution for 

prices.36 

The goal of the calibration exercise is to fnd demand parameters in order to match each 

retailer’s price index, pj , and aggregate shares, qj . Each frm’s price index is calculated by 

averaging over the price of all products and then constructing an index relative to retailer A 
as in Figure 6. A key challenge in online markets is that market shares for individual products 

are rarely observed by researchers. We construct a proxy for aggregate market shares using 

the share of Google searches for the retailer name and the word “allergy.”37 In order to help 

validate this measure of market share, we also obtain market shares of online personal care 
36The expressions for prices are several pages long and are available upon request. 
37We use the average of Google searches for the retailer name alone as well as the retailer name in addition to 

“allergy.” See Appendix Table 8. The data were obtained from Google Trends (trends.google.com). 
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Table 5: Calibrated Segment Weights 

Retailer k 

A B C D E Outside 

A 0.00 11.22 2.05 0.52 0.52 0.00 
B r

j 

11.22 0.00 2.05 0.52 0.52 1.79 
C 2.05 2.05 0.00 0.52 0.52 1.42 
D R

et
ai

le

0.52 0.52 0.52 0.00 0.52 3.02 
E 0.52 0.52 0.52 0.52 0.00 3.93 

Notes: Row j column k shows the mass of customers on the segment 
between retailer j and k (µjk). The weights are symmetric; for conve-
nience, they are displayed twice (µjk = µkj ), representing the perspec-
tive of each frm. The outside segment weights represent the share of 
customers captured from the outside segments at the equilibrium prices. 

products for the retailers from ecommerceDB. Appendix Table 8 shows that the implied market 

shares are quite similar. We also assume frms have identical marginal cost, which we normalize 

to 1.38 Price-cost margins are determined by the calibrated prices in the model. 

The unknown parameters to be recovered are the value of the product v, the travel cost 

parameter τ , and the relative weights on the segments {µjk}. We parameterize the J by (J+1) µ 

matrix with six parameters: {m1,m2,m3,m4,m5,m6}. While the fact that prices are negatively 

correlated with higher-pricing frequency is consistent with the model, this may also be due 

in part due to the fact that demand is not symmetric. In other words, consumers may have 

a preference for frms with lower pricing frequency. In the calibration, we allow substitution 

patterns that could explain differential pricing across frms. Thus, we can use our model to 

capture the impacts of both preferences and pricing technology on price differences across 

frms. 

Specifcally, we choose a parameterization for the segment weights so that differences in 

preferences can account for differences in prices and quantities we observe in the data. For 

the slower frms, D and E, we constrain the segment weights so that substitution is symmetric 

to all other retailers: m1 = {µAD, µBD, µCD, µAE , µBE , µCE }. The frm with daily pricing, C, 

has symmetric weights with the faster frms, m2 = {µAC , µBC }. The two fastest frms have a 

unique weight m3 = µAB. Finally, we give each frm a unique mass for the outside option, 

normalizing the mass for E to 1. We also set the mass along the outside option for A to zero.39 

This assumption is made because this retailer does not have any in-store sales for this market; 
38In the context of allergy drugs, we argue that differences in marginal costs across retailers for identical products 

are relatively small. As in Ellison et al. (2018), we take wholesale costs to be common across retailers. All fve 
retailers sell large quantities of these brands across online and brick-and-mortar channels. Shipping costs may differ 
among retailers, but shipping costs are a relatively small portion of the total price. The average price ranges from 
$16 to $27 across retailers, and the products are small and light. Overall, differences in marginal cost are unlikely 
to generate the price differences seen in Figure 6. 

39Thus, (µA0, µB0, µC0, µD0, µE0) = (0,m6,m5,m4, 1). 
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Figure 8: Calibration Fit for Markups and Shares 
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Notes: Figure displays the markups (panel (a)) and the relative shares (panel (b)) plotted against the pricing 
frequency of each retailer. Frequency is normalized to the relative sequence. The black squares indicate the 
data, and the red dots are the ftted prices from a calibration exercise. The relative prices are obtained from 
the estimated coeffcients in specifcation (1) of Table 4. The markup level is pinned down by the calibrated 
model. The green triangles display the counterfactual simultaneous Bertrand markups at the calibrated pa-
rameters and the corresponding shares. 

we are imposing that the all of A’s marginal customers would substitute to one of the other four 

online retailers at the equilibrium prices. 

We use the method of moments to choose the parameters (v, τ, {µjk}) that best ft the rela-

tive prices and shares we observe in the data. We minimize the sum of squared deviations from 

relative average prices, taken from specifcation (1) of Table 4, and relative average shares 

using our proxy for quantities.40 

The calibrated parameters for the value of the product and travel costs are v = 5.09 and τ = 

0.67. The calibrated segment weights are displayed in Table 5. These parameters generate an 

equilibrium mean price of 2.07. As marginal costs are normalized to 1, prices may be interpreted 

as markups (price over cost). Mean realized travel costs are 0.61. Thus, we estimate that, net 

of travel costs, willingness to pay is roughly twice the equilibrium price. 

The ft of the calibration exercise is displayed in Figure 8. In panel (a), squares indicate the 

relative prices in the data; these prices are translated to markups based on the calibrated model. 

The x-axis displays the pricing frequency in terms of the relative sequence. The red dots indicate 

the markups from the calibrated model. Likewise, the black squares in panel (b) represent 

observed shares, and the red dots indicated the predicted shares from the model. Our eight-
40In calibration, we impose a penalty if the parameters result in a frm capturing more than 95 percent of the 

consumers on a given segment. This ensures that the counterfactual simultaneous Bertrand prices have an interior 
solution. The resulting penalty is small and the constraint does not meaningfully affect our estimates. Our counter-
factual effects are robust to alternative share defnitions that are based on category revenues or a combination of 
revenues and search data. 
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Table 6: Own-Price and Cross-Price Demand Elasticities 

Retailer Price 

A B C D E 

A re -2.17 1.84 0.34 0.10 0.10 
B 1.93 -2.81 0.39 0.12 0.12 
C 

R
et

ai
le

r 
Sh

a

0.71 0.77 -2.18 0.23 0.24 
D 0.20 0.22 0.22 -1.76 0.27 
E 0.17 0.18 0.18 0.21 -1.72 

Notes: Row j column k shows (∂qj /∂pk )(pk/qj ). 

parameter model fts prices and shares quite well. Allowing for fexible substitution patterns is 

important; if we had instead assumed symmetric demand, we would not be able to rationalize 

the data. Though we ft relative prices among the frms, underlying marginal costs play an 

important role in determining equilibrium in the model. Marginal costs are pinned down by the 

frst-order conditions, allowing us to recover an estimate of markups. The calibrated parameters 

imply reasonable price-cost margins between 0.461 (retailer A) and 0.593 (retailer E). 

Table 6 shows a matrix of elasticity of demand estimates from the model. Own-price elas-

ticities range from −1.7 to −2.8, consistent with other estimates from online goods.41 Our es-

timated cross-price elasticities indicate that, when the price of a product increases, consumers 

are more likely to substitute towards similar frms, e.g., consumers from retailer A are more 

likely to substitute to B and consumers from retailer E are more likely to substitute to D. 

6.3 Counterfactual 

To illustrate the potential impact of pricing algorithms on prices, we use our calibrated model 

to predict equilibrium prices if all frms instead had simultaneous price-setting technology. The 

Bertrand equilibrium prices and shares are displayed with green triangles in Figure 8. Our 

model indicates that algorithmic competition increases the average price by 5.2 percent above 

the counterfactual Bertrand equilibrium. These price changes differ across frms. Firms D and 

E realize more modest price changes of 1.9 and 1.6 percent. Based on our calibrated demand 

parameters, these frms receive a greater relative share of consumers from outside segments, 

rendering their behavior closer to that of a (local) monopolist. Competition for customers is 

more intense between the other three frms, who realize price increases between 4.5 and 10.1 

percent as a result of algorithmic competition. 

The results from the counterfactual exercise are presented in Table 7. Algorithmic competi-

tion has the biggest impact on shares for frm B, which sees a 3.9 percentage point (12 percent) 

decline in market share relative to the counterfactual Bertrand environment. The majority of 

this shift in share accrues to Firm A, which increases market share by 3.2 percentage points. 
41See, for instance, De los Santos et al. (2012). 

39 

http:goods.41


Table 7: Counterfactual Effects on Markups and Profts 

Simultaneous Bertrand Algorithmic Competition Percent Change 

Firm Markup Share Proft Markup Share Proft Markup Share Proft 

A 1.77 0.281 6.4 1.85 0.313 7.8 4.6 11.5 22.0 
B 1.82 0.315 7.6 2.01 0.276 8.1 10.1 -12.4 6.3 
C 1.93 0.136 3.7 2.02 0.138 4.1 5.1 1.3 11.1 
D 2.34 0.121 4.8 2.38 0.124 5.0 1.9 2.0 4.4 
E 2.42 0.147 6.1 2.46 0.150 6.4 1.6 1.8 3.7 

Aggregate 1.97 1 28.6 2.07 1 31.3 5.2 0 9.6 

Notes: Table displays the implied markups, shares, and profts from the calibrated model. The frst three 
columns report the counterfactual estimates with simultaneous Bertrand price-setting behavior. The middle 
three columns report the predicted values from the model of algorithmic competition that is ftted to the data. 
The fnal three columns report the percent changes of moving from simultaneous Bertrand to algorithmic 
competition. Profts are arbitrarily scaled so that 1 unit corresponds to $100 million of e-commerce in the 
Personal Care category. 

The remaining 0.7 percent lost by Firm B result in modest increases for the other three frms. 

The differential effects on prices and quantities generate heterogeneous effects on frm prof-

its. Because retailer A realizes meaningful increases in both price and quantity as a result of 

algorithmic competition, it sees the largest gain in profts (22 percent). Despite lower quanti-

ties, retailer B’s price increase is great enough to generate a 6 percent increase in profts from 

asymmetric technology. By contrast, retailers D and E realize proft gains of about 4 percent 

from more modest increases in both price and quantity. Consistent with the stylized results in 

Section 3, all frms proft as a result of algorithmic competition. 

Our model predicts that algorithmic competition results in a modest decline in market-level 

quantities of 0.9 percent. This limited substitution to the outside option means that effects on 

total welfare are small (a decline of 0.3 percent). Algorithmic competition in our calibrated 

model serves primarily as a transfer between frms and consumers: consumer surplus falls 

by 4.1 percent, and frm profts increase by 9.6 percent. To assign a dollar value to these 

effects, we can do a rough back-of-the-envelope calculation. These fve frms have annual e-

commerce revenues of approximately $6 billion in the category of Personal Care. If we assume 

that our estimated price effects apply to the entire category, then consumer surplus for the 

category would improve by $300 million annually by moving from algorithmic competition to 

simultaneous Bertrand price setting. 

7 Implications 

As online sales grow and pricing algorithms become more prevalent, it is important to under-

stand the implications for competition. While differentiated Bertrand has become the canonical 

model of competition in applied work, the model does not account for the fact that frms have 
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asymmetries in pricing frequency and employ algorithms that condition on rivals’ prices. With 

these features, frms have unilateral incentives to move away from Bertrand competition. We 

show that frms would choose technology that results in asymmetric frequency, even if it pro-

vided a greater advantage to their rivals. In addition, the Bertrand best-response functions are 

not equilibrium strategies when frms compete in algorithms. These fndings suggest that the 

Bertrand equilibrium may be the exception in online markets, rather than the rule. 

Our theoretical results demonstrate how changes to pricing technology can lead to higher 

equilibrium prices relative to the Bertrand equilibrium. We then document that fve large online 

retailers have asymmetric pricing technology and show that the pricing patterns in the data are 

consistent with the predictions of our theoretical results. In particular, we fnd that frms with 

higher-frequency pricing technology have, on average, substantially lower prices. 

We take a frst step towards quantifying the effects of competition in pricing algorithms 

by calibrating a model that incorporates both fexible substitution patterns and heterogeneous 

pricing technology. The model implies that algorithmic competition increases average prices 

by 5.2 percent relative to the simulated counterfactual in which frms engage in simultane-

ous Bertrand competition. Our simulation indicates that algorithmic pricing may meaningfully 

increase prices—even in markets with several frms in competitive equilibrium. 

Thus, if policymakers are concerned that algorithms will raise prices, then the concern 

is much more broad than that of collusion. Policymakers could potentially shift frms to the 

Bertrand counterfactual by limiting the ability of frms to respond to rivals’ prices. One solution 

would be to prohibit algorithms from directly conditioning on rivals’ prices, while still allowing 

frms to have frequent price updates as a function of other factors, such as demand shocks. 

Besides prohibiting the behavior, policymakers could limit the scraping of rival frms’ prices or 

restrict the storage of recent prices by other frms; either of these policies may be more feasible 

to implement and yield similar results. Alternatively, policymakers could regulate the frequency 

with which frms update their algorithms and their prices. Simultaneous price-setting conduct 

could be restored if price updates occurred with an industry-standard (symmetric) frequency, 

such as once per day.42 

Such enforcement measures raise conceptual and legal challenges, as they do not ft neatly 

into the existing regulatory and antitrust environment of the United States. Our results poten-

tially raise new considerations for future policies about digital markets. However, the above 

measures may prove to be less burdensome than trying to determine whether algorithms have 

reached an “agreement” to collude. Moreover, we have shown that a regulator searching for 

the existence of an agreement may miss many instances of algorithms actually raising prices; 

indeed, very simple algorithms can support the fully collusive outcome in competitive equilib-

rium. 
42The standard could be jointly determined by market participants and a regulatory authority, per a suggestion 

from Fiona Scott Morton. 
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In this paper, we focus on the fact that pricing technology allows frms to condition their 

strategies on rivals’ prices. What is special about algorithms that are a function of prices? 

Because retail prices are public and immediately available to rival frms, they allow for short-

run commitment that shapes the nature of competition. If frms were prohibited from using 

rivals’ prices, one could imagine frms using algorithms based on rivals’ quantities, inventories, 

or other factors. However, these data are rarely made public at the frequency necessary to 

support a short-run commitment. When frms can condition their strategies on the actions of 

rivals, they have several instruments to discipline price competition. 

Though we focus on competitive equilibria, our study also has important implications for 

collusion. First, the competitive equilibrium is typically used as “punishment” in a collusive 

equilibrium. In our model, pricing algorithms can support a competitive equilibrium with 

higher profts than the Bertrand equilibrium. Thus, pricing algorithms can make punishment 

less severe, reducing the likelihood of collusion. On the other hand, our model explicitly con-

siders the ability of frms to increase their pricing frequency. As both frms increase in frequency, 

the ability to capture profts by deviating from a collusive price falls, thus increasing the like-

lihood of collusion or coordination. Finally, the model offers a new set of dimension of the 

strategy space that frms can use to increase prices. As an alternative to collusion, frms could 

instead choose to adopt different pricing technologies. As we show in the paper, frms need not 

cooperate on this outcome; asymmetric technology is in fact the equilibrium outcome when the 

choice is endogenous. 

Online sales represent an increasing share of many diverse markets, including insurance, 

accommodations, and automobiles, in addition to retail goods. In all of these sectors, the shift 

online coincides with an increased availability of publicly posted prices and pricing technology 

that uses these prices as inputs. Though we view the issues raised in this paper as quite general, 

there is a large scope for future research that incorporates other features of these markets and 

examines additional implications of competition in pricing algorithms. 
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Online Appendix 

A Endogenous Pricing Frequency 

A.1 Adoption Game 

In this appendix, we provide a two-stage game in which frms can initially choose their pric-

ing technology, before choosing prices. Firms are characterized by pricing technology θj ∈ 

{1, 2, 3, ..., θ}, where a higher value represents superior technology and θ represents the best 

available technology. Firms can adopt θj = 1 at zero cost or pay an adoption cost A to choose 

any other feasible technology. Firms compete in the pricing game after determining their tech-

nology. 

In the model, the profts do not depend directly on the technology each frm has, but rather 

on their relative order. Denote the profts for the superior technology frm as πH , the profts for 

the inferior technology frm as πD, and the profts for when they have the same technology as 

πS . Following the results from the main text, πH > πD > πS . We assume that πH − πS > A, so 

that it can be proftable for one frm to adopt costly technology. 

We now characterize equilibria of the game. Without loss of generality, let frm 2 represent 

the frm with (weakly) superior technology in equilibrium. To characterize the equilibria, there 

are two relevant cases to consider. 

Case 1: πH − πD ≥ A. Under these conditions, a pure-strategy equilibrium is for frm 2 

to choose the best available technology (θ2 = θ) while frm 1 chooses θ1 = 1. It must be both 

proftable for frm 2 to adopt a superior technology, relative to symmetric technologies (this is 

true by assumption), and frm 2 must choose a technology so that frm 1 would not want to 

“leapfrog” frm 2’s choice. As the adoption cost is the same for any technological improvement, 

frm 2 must choose the best possible technology. The frm with superior technology has higher 

profts. 

Case 2: πH − πD < A. The pure-strategy equilibria are characterized by frm 2 adopting 

any technology θ2 > 1 and by frm 1 choosing θ1 = 1. Firm 2 is indifferent to the exact level 

of technology because frm 1 has no incentive to invest in superior technology in equilibrium. 

In fact, the frm with inferior technology has higher profts (net of adoption costs) in this sce-

nario. Thus, the frm that adopts superior technology is only motivated to do so to break the 

symmetric outcome, in which both realize lower profts. Though it competes more aggressively 

and realizes higher profts in the pricing game, it would prefer to be in frm 1’s position. 

The pure strategy equilibria result in higher prices and higher profts for both frms, com-

pared to the simultaneous price-setting equilibrium. As a corollary, any mixed strategy equi-
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Figure 9: Example Pricing Frequency Adoption Game 

Firm 2 

Firm 1 

Low Moderate High 

Low (1.00, 1.00) (1.08, 1.21) (1.08, 1.21) 

Moderate (1.21, 1.08) (1.00, 1.00) (1.08, 1.21) 

High (1.21, 1.08) (1.21, 1.08) (1.00, 1.00) 

librium also has higher expected prices and profts than the simultaneous price-setting equi-

librium. Firm have a positive proft incentive to endogenously sort into asymmetric pricing 

technologies. 

To illustrate this point, consider the three-by-three frst-stage game where frms can choose 

pricing frequency and adoption is costless (A = 0). Firms know the profts for each subgame 

when they choose a low frequency, a moderate frequency, or a high frequency (θ ∈ {1, 2, 3}). 
Figure 9 presents the payoffs based on the illustrative model in Section 3.3 when α = 0.5. 

Any scenario where both frms choose the same frequency—low, moderate, or high—is not 

an equilibrium, because each frm has an incentive to deviate by choosing either a faster or 

a slower pricing technology. The only equilibria of the game are asymmetric where only one 

player chooses the highest frequency. 

A.2 Adoption with an Initial Endowment of Technology 

To further highlight the motivation for frms to make asymmetric choices in technology, we now 

consider a variant of the game above where both frms are initially endowed with technology 

θe > 1. To change to a different technology, frms pay an adoption cost A as before, but they 

may costlessly retain their endowment or costlessly switch to θ = 1. The costs for the initial 

endowment are sunk, so there is no salvage value for the endowed technology. 

Without loss of generality, suppose that frms are initially endowed with θe = 2. If πH −πD ≥ 

A, then, similarly to case 1 above, the equilibrium has frm 2 choosing θ, while frm 1 keeps its 

initial endowment θ1 = θe .43 

Now suppose that πH − πD < A, so that surpassing your rival with costly investments is 

not proftable. In this scenario, the unique pure-strategy equilibrium is for frm 1 to downgrade 
its technology to θ1 = 1 and for frm 2 to maintain its endowment. Here, frms willingly 

choose inferior technology to generate asymmetry. This is proftable for both frms, but it is less 

proftable for the frm that gives up its initial endowment. Perhaps surprisingly, this result holds 

even when there is some cost to downgrade (a), provided that the asymmetric outcome is still 
43If frm 1 were to costlessly reduce its technology to θ1 = 1, frm 2 would prefer to keep its initial endowment. 

But this is not an equilibrium because frm 1 would then optimally leapfrog frm 2. 

47 



more proftable for frm 1 than the symmetric outcome (πD −a > πS , and also πD −a > πH −A). 

A.3 Discussion 

The simple adoption game highlights a few properties of the price competition when frms vary 

in pricing frequency. First, the incentive to have asymmetric technologies is quite robust. A 

frm may adopt costly technology even if its rival gains more from the outcome, as the frm 

prefers this outcome to the world in which neither frm adopts. A frm may even pay a cost 

to downgrade its technology, if the frm and its rival and endowed with similar technology to 

begin with. Thus, though the most salient case for asymmetry is one in which the investing frm 

gains vis-a-vis its rivals, frms may even be willing to disadvantage themselves relative to their 

rivals to gain the benefts of softened price competition. 

The above equilibrium results also apply if technology adoption is costless. Thus, if frms 

can choose their pricing technology at costs that are not prohibitively high, then we should not 

expect simultaneous price-setting behavior to hold in equilibrium. This raises some interesting 

considerations for empirical researchers, where a simultaneous price-setting behavior is the 

standard assumption. 

When extending the analysis to dynamic settings, the model provides potentially interest-

ing interpretations of observed phenomena. In the frst case discussed above, we have one frm 

adopting the best available technology, and the other frm choosing to not invest at all in costly 

technology. Thus, this model has favor of a one-sided “arms race,” where the superior technol-

ogy frm over-invests in technology to prevent being bested by its rival. This over-investment 

can be quantifed in a more general model where the cost of adoption depends on the tech-

nology level, i.e., as a (weakly increasing) function, A(θ). We omit an exposition of the model 

here, as it can complicate the analysis by eliminating all pure-strategy equilibria. 

Over multiple periods, it would be possible to observe an arms race if the best-available 

technology were increasing over time, and frms maintained their technology from the previous 

period. With an increase in θ from one period to the next, frm 1 would fnd it proftable to 

leapfrog frm 2, and, if the positions switch, an future increase in θ would allow frm 2 to again 

overtake frm 1. 
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B Equilibrium Selection 

B.1 A Multitude of Equilibria 

It is possible to show that a multitude of equilibria can exist when frms compete in algorithms. 

To demonstrate this, we further restrict the class of algorithms to a special case: algorithms that 

are linear in other frms’ prices. Even with these straightforward algorithms, we can show that 

many equilibria exist: 

Proposition 5. When frms compete in a one-shot game by submitting pricing algorithms, any 
price vector can be supported by algorithms that are linear functions of rivals’ prices, provided the 
derivatives of profts with respect to prices exist at those prices. 

Proof: For the two-frm case, consider the price vector p ̂ = (p̂1, p̂2). Recall that, 

in equilibrium, it must be the case that a frm cannot do better by reverting to 

price-setting behavior. Firm 1’s equilibrium price-setting frst-order condition can 

be rewritten as: ���� ���� dπ1 

dp1 ���� 
∂π1 ∂π1 ∂σ2 

∂p1 
= 0 (19) + = 

∂p1 ∂p2 p ̂ p ̂���� ∂σ2 ∂π1/∂p1 (20) =⇒ = − 
∂p1 ∂π1/∂p2 p ̂ p ̂

∂σ1 ∂π2/∂p2 Likewise, = − when evaluated at p̂. To support the prices (p̂1, p̂2) with ∂p2 ∂π2/∂p1 

algorithms that are linear in rivals’ prices, one can solve the system of equations so 

that beliefs and strategies are consistent: 

p̂1 = σ1(p̂2) = a1 + b1 p̂2 (21) 

p̂2 = σ2(p̂2) = a2 + b2 p̂1 (22) ��� and b2 

��� . It is apparent that the solution has b1 = − ∂π2/∂p2 
∂π2/∂p1 

∂π1/∂p1 Thus, = − ∂π1/∂p2 p ̂ p ̂
each equation has one unknown, and the system has a unique solution for the pa-

rameters a1 and a2. It is straightforward to extend the argument to many frms.44 

B.2 Simulations 

Despite this multiplicity result, we expect algorithms to result in higher prices than the Bertrand-

Nash equilibrium. We discuss these reasons in the main text. Here, we highlight one of the 

��� 
44For example, one solution to the J -frm problem would be to allow each frm’s algorithm to depend only on one 

∂πj /∂pj other frm’s price: Rj (p) = aj + bjkpk , where k = j +1∀j < J and k = 1 if j = J . The solution is bjk = − 
∂πj /∂pk p ̂

and aj = p̂j − bjkpk. 
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Figure 10: Equilibrium Selection with Pricing Algorithms 

(a) Firm 2 Only (b) Firm 1 and Firm 2 
0

.2
5

.5
.7

5
1

1.
25

1.
5

1.
75

2
Pr

ic
e 

(F
irm

 2
)

0 .25 .5 .75 1 1.25 1.5 1.75 2
Price (Firm 1)

0
.2

5
.5

.7
5

1
1.

25
1.

5
1.

75
2

Pr
ic

e 
(F

irm
 2

)

0 .25 .5 .75 1 1.25 1.5 1.75 2
Price (Firm 1)

Notes: Figure displays the resulting prices from 500 simulated duopoly markets when frms use a simple 
learning rule to update their prices or pricing algorithms. Each frm will update its algorithm if a random 
deviation in the algorithm parameters improve profts. Any stable point in simulation is an equilibrium (no 
proftable deviation exists). Each point displays the prices after 10,000 experiments. Panel (a) displays the 
results from the asymmetric algorithm game (frm 1 chooses price). Panel (b) displays the results from the 
game where both have algorithms. The plotted lines indicate the two price-setting best-response functions; 
their intersection is the unique Bertrand-Nash equilibrium. 

reasons: many of these equilibria are “knife-edge” cases. To examine which equilibria are, in 

some sense, more robust, we simulate a simple learning process. We allow frms to experi-

ment with linear algorithms, updating the parameters if profts increase. From a starting point 

of randomly-chosen algorithms, frms disproportionately arrive at equilibria that are bounded 

from below by their best-response functions and bounded from above by the proft Pareto fron-

tier. Our simulation shows that higher prices result than those of the Bertrand equilibrium. 

To test this intuition, we simulate a simple learning process to select equilibria. We follow 

the duopoly setup of Section 3.3 and allow frms to choose linear algorithms: pjt = ajt + bjtpkt. 

We initialize each frm with random parameters aj0 and bj0. Each period, one (randomly-

chosen) frm runs an experiment, modifying their parameters: ãjt+1 = ajt + ε1 
t and b̃jt+1 = 

bjt + ε2 
t . If this experiment improves profts, the frm updates their benchmark to the new 

parameters ((ajt+1, bjt+1) = (ãjt+1, ̃bjt+1)), otherwise, they revert to the previous parameters 

((ajt+1, bjt+1) = (ajt, bjt)). 

A “rest point” of this game is an equilibrium, i.e., where no unilateral deviation exists. To 

fnd the rest points, we simulate 10,000 experiments in each of 500 duopoly markets. The 

resulting prices are displayed in Figure 10. Panel (a) displays the results from the asymmetric 
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game in which frm 1 is a price-setter and frm 2 chooses an algorithm. The resulting prices, 

as would be expected, lie along frm 2’s best-response function and are (weakly) higher than 

the simultaneous Bertrand-Nash equilibrium, (1, 1). There is a mass at the Bertrand-Nash equi-

librium, at frm 1’s optimal choice conditional on the best-response of frm 2, and at the joint 

proft-maximizing point along frm 2’s best-response function. Some simulations arrive at the 

Bertrand-Nash equilibrium because the frms never realize more proftable algorithms strate-

gies. The second mass point corresponds to the equilibrium of the sequential pricing game. 

Panel (b) shows the resulting prices from the game in which both frms have pricing algo-

rithms. The prices are centered around the collusive equilibrium, (1.5, 1.5), and lie along the 

proft Pareto frontier. The equilibria are bounded by the two frms’ best-response functions. 

Our simulation of a simple learning process selects equilibria with higher prices. The re-

sulting prices are bounded from below by each frm’s best-response function and bounded from 

above by the proft Pareto frontier. This is supported by the simple intuition that frms only 

have the incentive to adopt these algorithms if it would improve profts above the price-setting 

equilibrium. 

51 



C Details of Spatial Differentiation Model 

We introduce a model of demand for products that are spatially differentiated. Consumers vary 

in their proximity to each frm, therefore the “travel” costs associated with each frm varies 

across consumers. In this section, we present additional formal details about the model. For 

further motivation, see Section 6.1. 

Each frm j lies in a (J − 1)-dimensional space. A mass of consumers µjk lie along the line 

segment connecting j to k.45 The distance between each frm is 1 unit. Each frm sells a single 

product, which consumers value at vj > 0, and each frm chooses a price pj . Each frm also has 

a mass of consumers on a line segment of distance D0 connecting to an outside option (j = 0), 

with p0 = 0 and v0 = 0. Consumers lie on these segment with density µj0 and mass µj0D0. D0 

may be arbitrarily large, so that the frm never captures the full segment. Figure 11 provides a 

visual representation of the demand system for the case of three frms. 

Each consumer i is indexed by its location and bears a travel cost τdij for traveling a distance 

dij to frm j to purchase its product. A consumer along segment jk will choose j if uij > uik, or 

(vj − pj ) − (vk − pk) > τ (dij − dik). (23) 

That is, the consumer will prefer j to k if the added value of product j is greater than the 

additional travel cost of visiting frm j. The consumer also has the option to stay home and get 

ui0 = 0, which he will do if uij < 0 and uik < 0. 

Consumers are distributed along each line segment connecting j to k according to a distri-

bution Fjk with support [0, 1]. We assume that the distribution is symmetric about the midpoint 

of the segment. Symmetry implies Fjk = Fkj , so the direction of the connection is arbitrary. We 

also assume that the same distribution is applied to all segments: Fjk = F , though this could 

easily be relaxed. Demand along each segment can then be characterized by the distribution 

function F . 

Noting that dik = 1 − dij for a consumer on segment jk, a consumer on this segment will 
1 choose j if uij > uik and if uij ≥ 0, i.e., 1 + ((vj − pj ) − (vk − pk)) > dij and 1 (vj − pj ) ≥ dij . 2 2τ τ 

Firm j receives customers for which dij satisfes both conditions. Therefore, frm j receives a 

quantity of µjkF (yjk) from line segment jk, where � � 
1 1 1 

yjk = min + ((vj − pj ) − (vk − pk)) , (vj − pj ) . (24) 
2 2τ τ 

1 1 For the outside segments, yj0 = (vj − pj ), as these segments have length D0 instead of D0 τ 

1. The parameter D0 can also be interpreted as the relative travel cost of choosing the outside 

option relative to an inside good, as the model has an isomorphic parameterization with outside 

travel costs τ̃0 = D0τ . 
45Demand can be represented by a graph. The graph is complete if µjk > 0 for all {j, k}. 
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Figure 11: Spatial Differentiation Model with Three Firms 
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Notes: Example of demand for three frms with an outside option. The 
mass of consumers along each segment is given by µjk. The segments 
with mass µ10, µ20, and µ30 represent consumers whose next-best alter-
native to the linked frm is the outside option. 

Overall, quantities are given by X 
qj = µjkF (yjk). (25) 

k 6=j 

The fexibility in substitution patterns from this relatively parsimonious model comes primarily 

through the mass of consumers on each segment {µjk} and the choice of distribution F . In 

equilibrium, the consumers {µj0} that have no next-best alternative other than the outside 

option are also important in determining substitution patterns. 

We introduce some terminology to facility discussion of the model. When max(uij , uik) ≥ 0 

for all i on segment jk and yjk < 1, the segment is contested.46 When some consumers prefer 

to stay home, rather than purchase, the segment is uncontested. If segment jk is uncontested, 

there is no consumer indifferent between j and k, so those frms have local monopoly power 

over a portion of consumers on that segment. That is, a change in the price of frm k does 

not affect demand for frm j at the margin. When all segments between frms (the “inside” 

segments) are contested, we say the market is covered. For a covered market, all consumers on 

inside segments purchase. 

46When yjk ≥ 1, the segment is dominated by j. 
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D Additional Tables and Figures 

Figure 12: Timing with Pricing Technology (θ, γ) 

θj = 1, γj = 4 

θj = 2, γj = 6 

θj = 3, γj = 3 

Notes: Solid black markers represent opportunities to adjust algorithms 
and update prices. Open circles indicate opportunities to update prices 
based on the previously-determined algorithm. Algorithm updates are 
governed by θ and pricing updates are governed by γ. 

Figure 12 illustrates the timing of pricing decisions in period s of the repeated pricing al-

gorithm game. Pricing technology for frm j is governed by the frequency with which the frm 

can update its algorithm (θj ) and the frequency that it can update prices (γj ). When γj > θj , 

the frm has a short-run commitment to update prices according to the previously-determined 

algorithm, σj (·). 

s s + 1 
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Figure 13: Observed Products Over Time 
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Notes: Figure displays the average daily count of observed products in our 
sample by week and by retailer. Dips in the data correspond to changes 
to the retailer website and issues with the researchers’ servers. Retailers 
A and B offer signifcantly more product varieties than the other retailers. 
This is primarily due to the number of size options offered for each brand. 

Figure 13 illustrates the challenge of capturing high-frequency price data over an extended 

period. Dips in the data correspond to changes to the retailer website and issues with the 

researchers’ servers. We note that we have several periods of many thousands of observations 

for which we have a consistent sample, and the periods of missing data do not meaningfully 

affect our results once we account for period fxed effects. We also include specifcations using 

only data from July 1, 2019 through October 1, 2019, which are the most recent three months 

and for which we have a fairly consistent panel. 
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Table 8: Measures of Retailer Market Share 

Google Search 

Share of Online “Retailer name” 
Retailer Personal Care “Retailer name” + Allergy Mean 

A 0.338 0.427 0.188 0.307 
B 0.252 0.311 0.263 0.287 
C 0.084 0.139 0.123 0.131 
D 0.119 0.062 0.188 0.125 
E 0.207 0.061 0.237 0.149 

Notes: Share of personal care category refect 2019 revenue fgures from ecom-
merceDB.com. This includes online sales of medical, pharmaceutical, and cosmetic 
products for each of the retailers, including sales through mobile channels. Google 
search fgures refer to the searches over the sample period as a share of total searches 
for all of the fve retailers. Google search data are obtained from Google Trends 
(trends.google.com). 

Table 8 provides measures of aggregate shares for the retailers in our data. We calibrate 

our model to Google search shares, using the mean of search shares for the retailer name and 

search shares for the retailer name along with the word “allergy.” We cross-check these shares 

against revenue shares provided by ecommerceDB.com. The measures of online revenue shares 

are obtained for the category of personal care, which includes all medical, pharmaceutical, and 

cosmetic products. Four of our retailers are in the top fve for the personal care category by 

revenue, and all are in the top ten. The other retailers in the top ten have a focus on cosmetics. 
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