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Machine Learning algorithms are becoming widely deployed in real world decision-making. Ensuring fairness

in algorithmic decision-making is a crucial policy issue. Current legislation ensures fairness by barring algorithm

designers from using demographic information in their decision-making. As a result, the algorithms need

to ensure equal treatment to be legally compliant. However, in many cases, ensuring equal treatment leads

to disparate impact particularly when there are di↵erences among groups based on demographic classes. In

response, several “fair” machine learning algorithms that require impact parity (e.g., equal opportunity) have

recently been proposed to adjust for the societal inequalities; advocates propose changing the law to allow

the use of protected class-specific decision rules. We show that these “fair” algorithms that require impact

parity, while conceptually appealing, can make everyone worse o↵, including the very class they aim to protect.

Compared to the current law, which requires treatment parity, these “fair” algorithms, which require impact

parity, limit the benefits of a more accurate algorithm for a firm. As a result, profit maximizing firms could

under-invest in learning, i.e., improving the accuracy of their machine learning algorithms. We show that

the investment in learning decreases when misclassification is costly, which is exactly the case when greater

accuracy is otherwise desired. Our paper highlights the importance of considering strategic behavior of stake

holders when developing and evaluating “fair” machine learning algorithms. Overall, our results indicate that

“fair” algorithms that require impact parity, if turned into law, may not be able to deliver some of the

anticipated benefits.
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1. Introduction

Firms and institutions are increasingly using machine learning algorithms to make decisions in areas

that have far reaching e↵ects, such as access to credit, employment opportunities and education.

Anecdotal evidence as well as recent research has highlighted concerns related to potential discrimi-

nation by algorithms (Chouldechova 2017, Fu et al. 2020, Kleinberg et al. 2016). For example, when

Apple released its credit card, there were claims that women were given a lower credit limit (Wash-

ington Post 2019). Similarly, ProPublica analyzed a risk assessment software known as COMPAS

that is used by judges in the United States to predict recidivism risk for an accused, and concluded

that the COMPAS predictions are biased against black defendants (ProPublica 2014).
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Anti-discrimination laws in the United States have been established to regulate discriminatory

behavior based on protected attributes since 1964.1 The current legislation recognizes two doctrines of

discrimination: disparate treatment and disparate impact. Disparate treatment addresses procedural

discrimination; it recognizes liability for treating people di↵erently because of their membership

in a protected class (e.g., race or gender) and intent to discriminate. In the algorithmic decision

making context, this suggests that any explicit use of sensitive attributes, either in constructing

algorithmic predictions or in setting thresholds, is strictly prohibited (Barocas and Selbst 2016). In

other words, the law that prohibits disparate treatment protects individuals who are a↵ected by

algorithmic decision making against explicit discrimination.

In contrast, disparate impact addresses outcome discrimination; it recognizes liability for practices

with uneven impacts on di↵erent classes (Barocas and Selbst 2016). While disparate treatment

in algorithmic decision making is easy to identify, disparate impact is not. The issue is further

complicated by “business necessity” as a legitimate defense to disparate impact(Chandler 1979).

Hence, even though the current law has provisions for preventing disparate impact, there are little

concrete guidelines on how to enforce it. Thus, the current standard practice in algorithmic decision

making is to prevent disparate treatment, i.e., excluding protected attributes from inputs. This

notion of fairness is known as “equal treatment” as it specifies that observationally equal individuals

should be treated equally irrespective of their demographic membership (Corbett-Davies and Goel

2018).

Recently, several empirical studies have shown that enforcing equal treatment in algorithms often

leads to di↵erent outcomes across demographic groups when there are systematic di↵erences in

groups (Angwin et al. 2016, Chouldechova et al. 2018, Fuster et al. 2017, Skeem and Lowenkamp

2016). In response, several fairness notions, such as equal opportunity, demographic parity, equal-

ized odds, and conditional statistical parity, have been proposed with the aim to ensure certain

perspectives of impact parity in algorithmic decision-making. The corrections for disparate impact

usually require treating di↵erent groups di↵erently, thus violating equal treatment. As a result a

policy debate has ensured as to whether algorithms should be required to satisfy “treatment parity”

or “impact parity” (Barocas and Selbst 2016, Corbett-Davies and Goel 2018, Hardt et al. 2016,

Skeem and Lowenkamp 2016, Kim 2017).

Impact parity can be violated from many di↵erent dimensions. Thus, there is no single fairness

notion that captures the absolute impact parity. In fact, Kleinberg et al. (2016) and Chouldechova

(2017) show that some popular fairness notions that focus on impact parity cannot be satisfied simul-

taneously except in highly constrained special cases. However, one fairness notion, equal opportunity,

1 Civil Rights Act of 1964 (Pub. L. 88-352) (Title VII) is generally viewed to be the first major development in
anti-discrimination law in the US.
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has received considerable attention (Hardt et al. 2016).2 Equal opportunity requires parity in the

proportion of positive decisions in deserving individuals (e.g., loan approval among non-defaulters).3

The underlying idea is that qualified individuals should be given equal opportunity to access a

desirable outcome, regardless of their demographic attributes. Equal opportunity is appealing, as it

allows the protected group, which has been historically discriminated against, to have equal access

to opportunities. In this paper, we focus on equal opportunity as a representative fair condition for

the notion of equal impact.

Our main research goal is to investigate whether regular and protected groups are better o↵ if the

legislation were to change to require equal opportunity instead of equal treatment for algorithmic

decision-making. Further, what would be the firm’s optimal learning e↵orts under the two di↵erent

fairness notions? Finally, would the decision-maker be better o↵ if equal opportunity was required

instead of equal treatment?

The highlight of this paper is the consideration of strategic incentives of the decision-maker.

When comparing the e↵ect of equal treatment to equal impact on the regular and protected groups,

extant research generally takes the trained machine learning algorithm as given and focus on making

decisions that satisfy a particular notion of fairness. However, in reality, the accuracy of algorithms

depends on the amount of learning e↵ort that decision-makers (firms or institutions) exert. To

learn more accurately about the outcome of interest, firms and institutions need to collect high

quality and relevant data, build and improve infrastructure, experiment, develop and update machine

learning models, etc. In return, more accurate predictions allow them to make better decisions that

increase their utilities. Thus, firms and institutions choose the optimal amount of learning e↵ort that

maximizes their profits. To our knowledge, existing research has not studied how decision-makers

would respond to a policy that requires equal treatment compared to one that requires equal impact.

We address this important gap in literature and compare the e↵ect of the two fairness notions in

the case where the firm endogenously chooses an optimal level of learning e↵ort.

We present a parsimonious theoretical model where a risk-neutral decision-maker wants to select

good candidates. A candidate is either good or bad. Further, the candidate either belongs to a

regular or a protected group. The accuracy of the machine learning model depends upon the learning

cost that the decision-maker (i.e., firm) incurs. A higher investment (learning cost) in the algorithm

leads to greater accuracy. The two notions of fairness - equal treatment and equal opportunity - are

enforced as separate constraints that the decision-maker must satisfy. We solve for optimal learning

2 Some of the other fairness notions are Demographic parity, Equalized odds and Predictive rate parity
3 The notion of equal opportunity violates Title VII of the United States Civil Rights Act. This is one of the main
reasons that equal opportunity is just a proposal, not an actual law.
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e↵ort, firm profit and approval rates for protected and regular groups under the equal treatment and

equal opportunity regimes. We first carry out the comparison between equal treatment and equal

opportunity. Then we compare equal treatment to a general fairness notion that simply requires a

lower threshold (more approval) for the protected group.

The key di↵erence between the regular group and the protected group in our model is that the

algorithm can better separate good applicants from bad applicants for the regular group than for the

protected group. In other words, the algorithm’s learning e�ciency is higher for the regular group

than the protected group. Several empirical analyses have shown that machine learning algorithms

usually learn more e�ciently for the regular group than the protected group, meaning that the

predictions from the same algorithm tend to be more accurate for the regular group (Hardt et al.

2016, Chouldechova and G’Sell 2017). Therefore, the risk distributions for good and bad applicants

are usually less overlapped in the regular group, reflecting a better separation. There are several

reasons for this unequal separation:

• The same features in the regular group and the protected group may have di↵erent relationships

to the outcome of interest, and machine learning models may not be flexible enough to capture

the di↵erence, especially when they are unaware of the group membership (Chouldechova and

Roth 2018, Hardt 2014).

• Features that better account for pertinent statistical variation among members of the protected

class are usually more expensive to collect and, hence, ignored. Further, the quality of data

records is usually lower for the protected group (Barocas and Selbst 2016).

• The protected group tends to be underrepresented in the data (Chouldechova and Roth 2018,

Barocas and Selbst 2016, Hardt 2014). First, the protected group may account for a smaller

portion in the population. For example, blacks are the protected compared to whites. Second,

the protected group has disproportionately less presence in the data due to historically biased

decisions. For example, if females have had lower chances of getting loans, they would appear

less frequently than males in the data.

1.1. Equal Treatment versus Equal Impact

Before diving into our main results, let us look at an example to see how satisfying equal treatment

would lead to disparate impact when a machine learning algorithm learns more e�ciently about

the regular group than the protected group. Consider a bank making loan-granting decisions. There

are two classes of loan applicants: a regular and a protected class (e.g., male and female), and each

class contains 10 applicants. Some applicants will pay back the loan (non-defaulters) and others will

not (defaulters). The bank wants to give loans to the non-defaulters. However, defaulters and non-

defaulters are not easily identifiable. To aid its decisions, the bank collects data, builds an algorithm



“Un”Fair ML Algorithms 5

that estimates the probability of payback for the 20 applicants, and gives loans to the applicants

with high probability of payback. The bank is unbiased and abides by the law of equal treatment –

it does not use the class membership in the prediction algorithm and it sets the same thresholds for

both groups.

An ideal scenario is that the algorithm perfectly separates defaulters and non-defaulters. Unfortu-

nately, perfect separation is impossible in real life. Currently, state-of-art machine learning algorithms

can only achieve a 70% - 80% accuracy rate for tasks such as loan default or criminal recidivism

predictions (Kleinberg et al. 2017, Netzer et al. 2018). Another ideal scenario is that the risk distri-

bution is independent of the class attribute. In this case, the probability distributions for the regular

group and the protected group are identical, as illustrated in figure 1. Setting a single threshold, in

this case, at any value for both groups is fair from virtually all perspectives. Unfortunately, this case

is rare if not impossible.

0.2 0.4 0.6 0.8 1.0

Regular

Protected

Identical Distributions

Estimated Probability of Payback

Figure 1 The estimated probability of payback for the 20 applicants when the risk is independent of class member-

ship. Each circle represents a defaulter and each triangle represents a non-defaulter. The regular group

and the protected group have identical probability distribution, just as two random samples.

Therefore, the realistic scenario is that the algorithm cannot perfectly separate the defaulters and

non-defaulters, and it produces di↵erent risk distributions for the regular group and the protected

group, as depicted in Figure 2. Now, if the bank uses the profit maximizing single threshold for both

groups (say 0.5), 60% of the regular applicants will get the loan, while only 50% of the protected

applicants will be approved. Moreover, among the qualified applicants – the non-defaulters – the

chance of getting the loan is about 71.4% in the regular group, but only 50% in the protected

group. While the bank’s choice of single threshold appears neutral to the two groups, it has a

disadvantageous e↵ect on the protected group leading to disparate impact.
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Figure 2 The estimated probability of payback for the 20 applicants in a realistic scenario. Each circle represents

a defaulter and each triangle represents a non-defaulter.

1.2. Main Results Synopsis

Our first result is that the firm’s optimal learning e↵ort is lower under equal opportunity

as compared to that under equal treatment. In other words, the firm’s algorithm will be less

accurate under equal opportunity than under equal treatment. The key intuition behind this result

is as follows: At any learning e↵ort (i.e., given a machine learning algorithm), the good and bad

candidates are less separated for protected group compared to the regular group. As a result, the

protected group represents a riskier pool compared to the regular group. Hence, given equal learning

e↵ort, compared to equal treatment, equal opportunity requires the firm to remove candidates from

a less risky regular pool and/or accept candidates from a more risky protected pool. As a result,

the firm is able to extract greater returns from learning e↵ort and therefore is incentivized to learn

more under equal treatment compared to under equal opportunity.

Most research on fair algorithms argues that requiring equal impact instead of equal treatment

will help the protected group at the expense of the regular group (Hardt et al. 2016, Chouldechova

and G’Sell 2017). However, our second result shows that compared to equal treatment, equal

opportunity can make everyone worse-o↵, including the protected group that it aims

to help. As discussed earlier, the proponents of fair algorithms that focus on equal impact generally

ignore the firm as a strategic player. We show that when the firm strategically chooses the learning

e↵ort to maximize its profit, it could make everyone worse o↵. There are two e↵ects at play here.

First, as discussed with the intuition behind our first result, the firm has to let go of the less risky

candidates from the regular group and accept candidates from the riskier protected group. The

regular group gets hurt in this case because the threshold for them to be accepted is raised, while the



“Un”Fair ML Algorithms 7

protected group benefits as the threshold for them to be accepted is lowered. Second, the optimal

algorithm for the firm is less accurate under equal opportunity than equal treatment. In this case, the

firm acts conservatively and raises the thresholds for both the regular and the protected group under

equal opportunity, which hurts both groups by accepting fewer candidates. When the market is risky,

under equal opportunity, the threshold for the protected group is raised to a higher level compared

to what it was under equal treatment. As a result, while the protected group does receive equal

opportunity as the regular group, both receive less opportunity under equal opportunity compared

to under equal treatment.

While the trade-o↵s between fairness and accuracy for a decision-maker is well established, it

is not clear how the decision-maker would be a↵ected by two di↵erent fairness notions. Our third

result, shows that the firm profit would be lower under equal opportunity compared to

equal treatment. The intuition for this result is as follows: Compared to equal treatment, the firm

can take less advantage of learning under equal opportunity, which lowers its profits. Moreover, the

firm invests less in learning e↵ort under equal opportunity and as a result, is not able to separate

the good and bad applicants well. Hence, both the regular and the protected group pools are riskier

for the firm under equal opportunity, which further hurts its profits.

There are many widely viewed benefits of equal impact that we do not capture in our main model,

but address through extensions of our model. First, one argument is that the algorithm accuracy for

the protected group could increase when more applicants from the protected group are approved,

and equal impact may better improve fairness in the long term by reducing the learning e�ciency

gap over time. We extend our main model to capture the e↵ect of approval rates for a group on their

future learning e�ciency. Our results show that the learning e�ciency for the protected group would

improve at a slower rate under equal impact than equal treatment, and our main results still hold

in the extended model. The intuition behind this result directly follows from our second result. In

any period, fewer members of the protected and regular group are likely to be approved under equal

impact than under equal treatment. As a result, the e↵ect on the next period learning e�ciency is

smaller under equal opportunity than under equal treatment. Second, the protected group members

may feel that they have a better chance under equal impact and hence would improve their quality.

That is, a greater fraction of protected group individuals would become good under equal impact

than under equal treatment. While we do not fully model the process through which individuals

invest in themselves to become good or bad candidates, for comparison purposes we do the following:

We compare the case where the protected and the regular groups have the same fraction of good

and bad applicants under equal opportunity to the case where the protected group has a smaller

fraction of good applicants than that in the regular group under equal treatment. We show that

even in this comparison, the optimal learning e↵ort would be lower under equal impact than under

equal treatment.
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1.3. Contributions

Our paper makes several contributions. To our knowledge, we are the first to provide a framework to

compare the e↵ect of two countervailing fairness notions on the decision-maker and the individuals

that are a↵ected by these decisions when accounting for the strategic role of the decision-maker in

algorithmic decision-making. We are also one of the first to endogenize the accuracy of the model.

Extant literature has ignored the strategic role that a decision maker plays and the cost of learning

in this context. Modeling the incentives of the decision-maker helps us revert some of the results that

are commonly accepted in the fair machine learning literature. By definition, the equal opportunity

or other related fair algorithms that enforce equal impact, help the protected group at the cost of

regular group. However, we show that when the market is risky, both the regular and the protected

group could be worse o↵ under equal opportunity compared to under equal treatment, because equal

opportunity discourages learning e↵ort.

As the strategic role of the decision-maker is ignored in the fair machine learning literature,

the impact of a specific fairness notion on the decision-maker is also typically not considered. The

fairness-e�ciency trade-o↵ is widely accepted. Thus, it is accepted that enforcing fairness of any

form could make the decision-maker less e�cient. However, how di↵erent fairness notions would

a↵ect the profit of the decision maker is not that obvious. We show that the decision-maker would

be worse under equal opportunity compared to equal treatment.

Our results are not limited to the notion of “equal opportunity” only. Any fairness notion that

closes the gap of learning outcomes by lowering the threshold for the protected group (relative to

the regular group) would reduce the firm’s learning e↵ort, and therefore harm the firm, the regular

group and sometimes even the protected group too. Our results highlight that these di↵erent “fair”

algorithms that aim to ensure equal impact, if turned into law in place of equal treatment, may not

be able to deliver some of the anticipated benefits.

In a number of extensions of our main model, we show that our results are robust even when

considering several widely viewed benefits of equal impact over equal treatment. One may think that

the di↵erence in learning e�ciencies of the regular and the protected group is a short run observation,

and in the long run, the di↵erence will disappear as more data becomes available. Yet, we show that

when the algorithmic accuracy is a function of past approval rates, it will improve at a slower rate

under fairness notions motivated by equal impact than under equal treatment. Another argument

in support of fairness notions motivated by equal impact is that the protected group would feel they

have a better chance under these conditions and as a result invest in improving their underlying

distribution. In other words, the distribution of good and bad applicants in the protected group

may improve to match that of the regular group under these fairness constraints. In an extension of
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our main model, we show that even when the protected group improves its distribution under equal

opportunity, the optimal learning e↵ort of the decision maker is still lower compared to that under

equal treatment.

The next section presents our model. Sections 3 and 4 analyze and compare the decision maker’s

optimal decisions under equal treatment and under equal opportunity. In Section 5, we model a

general fairness notion with the property that it lowers the threshold for the protected group. We

show that our results continue to hold for this fairness notion too. Section 6 presents robustness

check under additional features. Section 7 concludes.

2. Model

Consider a decision-maker who needs to make the decision of accepting or not accepting a candi-

date (e.g., a bank deciding to approve the loan for an applicant, a university deciding to admit a

student). A candidate can be good or bad. For the decision-maker, the utility of accepting a good

candidate is ↵, and the dis-utility of accepting a bad candidate is �. If the decision-maker does not

accept the candidate, it will earn zero utility from that candidate. The decision maker can exert

e↵ort (invest in learning) to separate good candidates from bad candidates. This is di↵erent from

the model of Shimao et al. (2018), which models the e↵ort exerted by applicants in improving their

quality. We use s to denote such learning e↵ort, and use ⌧(s) for the cost of exerting an e↵ort of s.

We assume that ⌧(s) is a convex increasing function of s, which means that it is increasingly costly

to better learn and separate good candidates from bad ones.

Based on a sensitive attribute (such as race or gender), each candidate belongs to one of two

groups: a protected group and a regular group. The protected group is the group of candidates that

needs to be protected against any potential discrimination. All other candidates are in the regular

group. We assume that both groups are of equal size. The number of regular, as well as protected,

candidates is normalized to 1. Both groups contain good and bad candidates. Let dp and dr be the

proportion of bad candidates for the protected and the regular group, respectively. We assume that

dp � dr. The underlying reason is that the protected group is usually at a disadvantage in terms

of socioeconomic status (due to complex historical reasons), which makes it more di�cult for a

protected candidate to be a good candidate (by paying back the loan, for example). Note that this

assumption includes the case where the two groups have the same proportion of bad candidates,

i.e., dp = dr. Define ↵p = ↵(1� dp), �p = �dp, and similarly ↵r = ↵(1� dr), �r = �dr. We assume

that �r � ↵r, and because dp � dr, this implies that �p � ↵p. Intuitively, this assumption means

that if the decision-maker accepts all candidates in either group, then it derives a negative expected

utility (↵r��r  0 and ↵p��p  0). Compared to Shimao et al. (2019), who analyze the equilibrium
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behavior of algorithms when the subjects (e.g., applicants) are strategic, we do not model agents

as strategic. That is, the agents cannot change their type (good or bad). In section 6.2, we do a

robustness check to show that our main results still hold when we consider the type change caused

by applicants’ strategic response.

The decision-maker assigns scores to the candidates to represent their goodness. The distributions

of scores depend on the learning e↵ort s: the higher s is, the better separated are bad candidates and

good candidates. Figure 3 pictorially depicts score distributions for di↵erent groups. 4 We assume

that the scores of protected-bad candidates and protected-good candidates are uniformly distributed

as U [0, 1� �ps] and U [�ps, 1] respectively. Intuitively, when the decision maker does not exert any

e↵ort to separate bad candidates from good candidates, i.e., when s = 0, the scores of both bad

candidates and good candidates are uniformly distributed between 0 and 1. As the decision-maker

starts exerting e↵ort (i.e., s > 0) to learn and separate the two sub-groups, the bad candidates and

good candidates start to separate. The rate of this separation is captured by the parameter �p > 0

(the subscript p stands for the protected group). Similarly, the scores of regular-bad candidates and

regular-good candidates are uniformly distributed as U [0, 1��rs] and U [�rs, 1] respectively, where

�r represents the rate of separation of bad candidates and good candidates in the regular group.

Because the learning e�ciency is higher for the regular group, we have �r > �p. To avoid trivial cases,

we assume perfect separation would never happen for either group, i.e., the score distributions for

bad candidates and good candidates always have overlaps. Mathematically, this means the maximum

amount of learning is less than 1

2�r
, i.e. s2 [0, 1

2�r
).

Empirical Evidence for the Assumption �r > �p: We test this assumption on a real-world

dataset from Prosper, which is a crowdfunding platform. The data set contains 3776 observations.

Each observation represents a loan application. We tried to predict whether an applicant pays back

the loan or not, using several attributes such as Listing Amount, Credit Score, Debt, Income, etc.

The prediction was performed using several state-of-the-art algorithms such as XGBoost, SVM,

Random Forest, Naive Bayes, and Multi-Layer Perceptions. The best performing algorithm was

XGBoost, and its accuracy for males was 0.7344, and for females, it was 0.6479. Thus, there is a gap

of 0.0865 between the accuracies for males and females. Similar gaps exist for other algorithms too.

For example, the XGBoost accuracy for males was 0.7905 and for females was 0.7375 for predicting

credit risk on a publicly available German Credit Data at the UCI Machine learning repository. In

another publicly available dataset from the UCI repository that captures student achievement in

secondary education of two Portuguese schools, XGBoost results report a mean squared error of

3.1982 for females and 1.6451 for males when predicting their math grades.

4 The height of the bars corresponding to “good” and “bad” applicants is only for visualization; it does not necessarily
mean that there are more “bad” applicants. This height depends on the default rate and other parameters of the model.
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Figure 3 Distribution of scores of bad candidates and good candidates in protected and regular groups. The same

value of s achieves more separation of good and bad candidates in the regular group compared to the

protected group.

The decision-maker employs threshold rules when accepting the candidates. That is, it accepts a

candidate if and only if his or her score is higher than a fixed threshold. The decision-maker decides

two thresholds, cp and cr, for the protected group and the regular group, respectively. The threshold

rule is intuitive and widely used in practice, and Corbett-Davies and Goel (2018) demonstrates that

the threshold rule based on true risk produces the optimal decisions for a rational decision maker.

The two thresholds, cp and cr, along with the learning e↵ort, s, are chosen jointly to maximize the

decision-maker’s profit. In the absence of the fairness requirement, the decision-maker can choose

the three decisions freely within their feasible ranges. When certain fairness notions are enforced,

the decision-maker has to choose the decisions in a way that satisfies the fairness requirement.

Mathematically, each fairness definition is a constraint in the decision-maker’s optimization problem,

and the decision-maker’s optimal decisions (i.e., cp, cr, and s) will change according to the fairness

constraint that it operates under.

• Equal Treatment (ET): Use the same threshold for both the groups, i.e.,

cp = cr.

Under this constraint, the sensitive group label is not used in the decision. All candidates are

treated equally, as they are held to the same standard, irrespective of their group identity.

Equal Treatment is currently required by law. Failure to satisfy it would constitute a violation

of treatment parity.
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• Equal Opportunity (EO): Given that a candidate is a good candidate, the probability of

getting accepted should be the same for the protected and the regular candidates Hardt et al.

(2016), i.e.,

Probp[L= 1|D= 0] = Probr[L= 1|D= 0],

where L= 1 represent that the candidate is accepted, D = 0 represents that the candidate is

a good, and Probp[·] and Probr[·] represents the probabilities corresponding to protected and

regular groups respectively. This fairness notion requires that the truly “qualified” candidates

(good candidates) have an equal probability of getting accepted in both the groups.

• Demographic Parity (DP): The probability of getting accepted should be the same for

protected and regular candidates, i.e.,

Probp[L= 1] = Probr[L= 1].

Since the notion of Equal Opportunity (EO) and Demographic Parity (DP) are both group-level

fairness notions, they are qualitatively very similar. Thus, we only consider the first two fairness

notions for our analysis, i.e., Equal Treatment and Equal Opportunity, as representative fairness-

notions of individual and group fairness, respectively. In a later section, we compare equal treatment

with a general equal impact fairness algorithm.

The first central question we address in this paper is which of these fairness notions leads to more

learning, where the amount of learning is quantified as the optimal value of s that the decision-

maker chooses. The amount of learning determines the distributions of the scores, and therefore also

influences the thresholds, cp and cr and the final acceptance decisions. Hence, the second central

question we address is – how do these fairness notions a↵ect the decision maker’s profit and the

opportunity of getting accepted for the candidates.

3. Analysis

We now proceed with analyzing the decision-maker’s optimization problem under the two fairness

constraints. The decision-maker chooses three quantities, s, cp and cr, to maximize its profit. The

decision-maker itself is unbiased, in the sense that it only cares about the profit, and candidates in

the protected and the regular groups contribute to the profit in the same way conditional on whether

they are good or bad candidates. Let ⇡ represent the profit of the decision-maker, then we have

⇡ = min

⇢
1� cr
1� �rs

, 1

�
·↵r �max

⇢
1� �rs� cr
1� �rs

, 0

�
·�r

+ min

⇢
1� cp
1� �ps

, 1

�
·↵p �max

⇢
1� �ps� cp
1� �ps

,0

�
·�p � ⌧(s) (1)
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Table 1 The main notation for our analysis

Notation Description

↵ The utility of selecting a good candidate.

� The dis-utility of selecting a bad candidate.

dp, dr Fraction of bad candidates in the protected and regular groups.

↵p, ↵r Expected utility of selecting a good candidate in protected and regular
groups, respectively: ↵p = ↵(1� dp), ↵r = ↵(1� dr).

�p, �r Expected dis-utility of selecting a bad candidate in protected and regular
groups, respectively: �p = �dp, �r = �dr.

cr Decision threshold for the regular group.

cp Decision threshold for the protected group.

s E↵ort exerted by the decision-maker.

⌧(s) Cost of exerting an e↵ort of s.

�p Rate of learning for the protected group.

�r Rate of learning for the regular group.

For each fairness constraint, we first obtain the optimal value of cp and cr for a given s, and

then write the profit of decision-maker as a function of s. These functions give the highest possible

profit (achieved by choosing the optimal thresholds) for any value of learning e↵ort s. Intuitively,

more learning (higher s) means better separation of good and bad candidates, and therefore higher

revenue, but it also leads to higher cost since ⌧(s) is an increasing function of s. Next, we analyze

the decision maker’s problem under the fairness notion of equal-treatment.

3.1. Equal Treatment

In this case, the decision-maker maximizes its profit given in Equation (1) such that cp = cr. We

use c to denote the common threshold for both the groups, where c= cp = cr. Let cET represent the

optimal common threshold. Note that cET 2 [�ps,1� �ps], because when the common threshold is

lower than �ps (or higher than 1� �ps), the decision-maker can always increase (or decrease) it to

achieve a higher profit.

Define the following:

When c2 [�ps,1� �ps], we can rewrite the profit function under equal treatment constraint as:

⇡ET =

8
>>>>>>><

>>>>>>>:

⇣
�r

1��rs
+ �p�↵p

1��ps

⌘
c+ ↵p

1��ps
+↵r ��r ��p � ⌧(s), if �ps c < �rs,

⇣
�r�↵r
1��rs

+ �p�↵p

1��ps

⌘
c+ ↵r

1��rs
+ ↵p

1��ps
��r ��p � ⌧(s), if �rs c < 1� �rs,

⇣
�p�↵p

1��ps
� ↵r

1��rs

⌘
c+ ↵r

1��rs
+ ↵p

1��ps
��p � ⌧(s), if 1� �rs c 1� �ps.

(2)
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The derivative with respective to c is

d⇡ET

dc
=

8
>>>>>><

>>>>>>:

�r
1��rs

+ �p�↵p

1��ps
, if �ps c < �rs,

�r�↵r
1��rs

+ �p�↵p

1��ps
, if �rs c 1� �rs,

�p�↵p

1��ps
� ↵r

1��rs
, if 1� �rs c 1� �ps.

(3)

The profit function is piece-wise linear in c. In the first two cases of the above equation, both
�

�r
1��rs

+ �p�↵p

1��ps

�
and

�
�r�↵r
1��rs

+ �p�↵p

1��ps

�
are positive because �p > ↵p and �r > ↵r. Therefore, the profit

is increasing in c in these two cases, i.e., in the range [�ps,1� �rs]. Depending on the the sign of
��p�↵p

1��ps
� ↵r

1��rs

�
, the optimal value of c could be either 1� �rs or 1� �ps.5 Thus, we have

cET =

(
1� �rs if �p  ↵p +

1��ps

1��rs
↵r,

1� �ps otherwise.
(4)

Let ⇡ET(s) be the optimal profit of the decision maker under equal treatment, for a given value

of s. Substituting the optimal threshold in Equation (2), we get

⇡ET(s) =

8
><

>:

↵p�rs

1��ps
+ ↵r�rs

1��rs
+ �p�ps

1��ps
� �p�rs

1��ps
� ⌧(s), if �p < ↵p +

1��ps

1��rs
↵r,

↵p�ps

1��ps
+ ↵r�ps

1��rs
� ⌧(s), otherwise.

(5)

Next, we analyze the decision-maker’s problem under the fairness notion of equal opportunity.

3.2. Equal Opportunity

The equal opportunity constraint requires the same rate of acceptance for the good candidates in

the protected and the regular groups. Mathematically, the constraint of equal opportunity can be

written as follows:

1� cr
1� �rs

=
1� cp
1� �ps

. (6)

Thus, the decision maker maximizes its profit subject to the above constraint. Let cEO

p and cEO

r be

the optimal acceptance thresholds under equal opportunity. First, we note the following about the

equal opportunity constraint in (6).

Proposition 1 Under equal opportunity, the acceptance threshold is lower for the protected group

compared to the regular group, i.e., cEO

p < cEO

r .

5 When
�p�↵p

1��ps
� ↵r

1��rs
= 0, the profit is a constant on [1� �rs,1� �ps]. The optimal c can be any value in the range.

We take 1� �rs as the optimal value in this case.
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Proof: Because �p < �r, 1� �rs < 1� �ps. Combine the inequality with the constraint in (6), we

have 1� cEO

r < 1� cEO

p , which means cEO

p < cEO

r . ⌅

Intuitively, the separation of good and bad candidates is faster for the regular group compared to

the protected group. Therefore, if the decision-maker uses the same acceptance threshold for both

regular and protected candidates, then more good candidates of the regular group will get accepted

compared to the protected group. However, the constraint of equal opportunity mandates that the

probability of getting accepted should be the same for the good candidates of both the groups; thus,

the decision-maker has to lower the threshold for the protected group to accept more protected-good

candidates. In other words, for a fixed level of learning e↵ort s, equal opportunity is in favor of the

protected group.

Re-arrange the equal opportunity constraint in (6), we have

cr =
1� �rs

1� �ps
cp +

(�r � �p)s

1� �ps
(7)

The constraint poses a one-to-one mapping between cp and cr: one is determined when the other one

is chosen. Therefore, the decision-maker is e↵ectively setting one threshold. In the following text, we

will use cp as the decision variable, and cr can always be obtained using (7). Similar to Section 3.1,

we note that cEO

p 2 [�ps,1� �ps]. Substituting the value of cr from (7) into the profit function (1),

we have

⇡EO =

8
><

>:

(�p�↵p)+(�r�↵r)

1��ps
cp +

↵p+↵r��r
1��ps

+ �r
1��rs

��p ��r � ⌧(s), if �ps cp  1� 1��ps

1��rs
�rs,

�p�↵p�↵r

1��ps
cp +

↵p+↵r

1��ps
��p � ⌧(s), if 1� 1��ps

1��rs
�rs < cp  1� �ps.

(8)

The derivative of the profit with respect to cp is

d⇡EO

dcp
=

8
><

>:

(�p�↵p)+(�r�↵r)

1��ps
, if �ps cp  1� 1��ps

1��rs
�rs,

�p�↵p�↵r

1��ps
, if 1� 1��ps

1��rs
�rs < cp  1� �ps.

(9)

Similar to the case under equal treatment, (�p�↵p)+(�r�↵r)

1��ps
is positive, and the optimal value of cp

depends on the sign of �p�↵p�↵r

1��ps
. Thus, we have

�
cEO

p , cEO

r

�
=

8
>><

>>:

⇣
1� �rs(1��ps)

1��rs
, 1� �rs

⌘
if �p  ↵p +↵r,

⇣
1� �ps, 1� 1��rs

1��ps
�ps

⌘
, otherwise.

(10)

Let ⇡EO(s) be the optimal profit of the decision-maker under equal opportunity, for a given value of

s. Substituting the optimal thresholds into Equation (8), we get

⇡EO(s) =

8
><

>:

↵p�rs

1��rs
+ ↵r�rs

1��rs
+ �p�ps

1��ps
� �p�rs

1��rs
� ⌧(s), if �p  ↵p +↵r,

↵p�ps

1��ps
+ ↵r�ps

1��ps
� ⌧(s), otherwise.

(11)
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From the above analysis, we can see that, both under equal treatment and under equal opportunity,

the optimal threshold and the resulting profit function in learning-e↵ort depend on �p, the expected

loss from the bad candidates in the protected group. Intuitively, when this expected loss is too

high (either because the loss due to selecting a bad candidate � is large compared to the benefit of

selecting a good candidate ↵, or the fraction of bad candidates dp is high), the decision maker would

be conservative and pick up a higher threshold. Otherwise, the decision maker would choose a lower

threshold to accept more candidates. Specifically, we can summarize the results into three cases:

(1) When �p  ↵p +↵r,

cET

p = cET

r = 1� �rs, ⇡ET(s) =
↵p�rs

1� �ps
+

↵r�rs

1� �rs
+

�p�ps

1� �ps
� �p�rs

1� �ps
� ⌧(s)

cEO

p = 1� �rs(1� �ps)

1� �rs
, cEO

r = 1� �rs, ⇡EO(s) =
↵p�rs

1� �rs
+

↵r�rs

1� �rs
+

�p�ps

1� �ps
� �p�rs

1� �rs
� ⌧(s);

(2) When ↵p +↵r < �p  ↵p +
1��ps

1��rs
↵r,

cET

p = cET

r = 1� �rs, ⇡ET(s) =
↵p�rs

1� �ps
+

↵r�rs

1� �rs
+

�p�ps

1� �ps
� �p�rs

1� �ps
� ⌧(s)

cEO

p = 1� �ps, c
EO

r = 1� 1� �rs

1� �ps
�ps, ⇡EO(s) =

↵p�ps

1� �ps
+

↵r�ps

1� �ps
� ⌧(s);

(3) When �p > ↵p +
1��ps

1��rs
↵r,

cET

p = cET

r = 1� �ps, ⇡ET(s) =
↵p�ps

1� �ps
+

↵r�ps

1� �rs
� ⌧(s);

cEO

p = 1� �ps, c
EO

r = 1� 1� �rs

1� �ps
�ps, ⇡EO(s) =

↵p�ps

1� �ps
+

↵r�ps

1� �ps
� ⌧(s).

In the main paper, we focus only on the most interesting case (1) when the thresholds are in the

overlapping regions of all the distributions under both equal treatment and equal opportunity, and

assume �p  ↵r +↵p. Our results continue to hold in other cases too (see Appendix).

4. Comparisons

In the previous section, for each of the two fairness constraints, we have obtained the optimal

thresholds for a given level of learning s and converted the profit into a function of only s. This allows

us to explore the relationship between the profit and the learning under di↵erent constraints, and

examine how the corresponding optimal decisions influence the decision-maker and the applicants.

We present the results in this section.

4.1. Learning

Let sET and sEO be the optimal learning under equal treatment and equal opportunity, respectively.

We compare the two quantities to find which policy leads to more learning. Before we formally

present and prove our result, it is convenient to show the following lemma first.

We now present Theorem 1 which compares the optimal learning levels under the two constraints.
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Theorem 1 The optimal learning e↵ort is higher under equal treatment than under equal opportu-

nity, i.e., sET � sEO.

This theorem suggests that equal opportunity discourages learning e↵ort compared to equal treat-

ment. To understand the intuition, we separate each profit function into two parts: revenue, denoted

as R(s), and cost, ⌧(s).

⇡ET(s) =RET(s)� ⌧(s), where RET(s) =
↵p�rs

1� �ps
+

↵r�rs

1� �rs
+

�p�ps

1� �ps
� �p�rs

1� �ps
;

⇡EO(s) =REO(s)� ⌧(s), where REO(s) =
↵p�rs

1� �rs
+

↵r�rs

1� �rs
+

�p�ps

1� �ps
� �p�rs

1� �rs
.

Figure 4 Marginal cost of s (learning) and marginal revenue of s under di↵erent constraints: equal treatment(ET)

and equal opportunity(EO). For any given s, R0
ET �R0

EO. Therefore, the optimal values of learning, at

which marginal costs equal marginal revenues, have the order sET � sEO

Intuitively, when we switch from equal treatment to equal opportunity, the marginal benefit of

learning is reduced. Equal opportunity requires a lower acceptance threshold for the protected group

than for the regular group (see Proposition 1), while equal treatment requires the same thresholds.

When the decision-maker makes additional learning e↵ort, it better separates bad candidates from

good candidates, and can therefore lower the thresholds to accept more candidates. Under equal

treatment, the decision-maker always lower the two thresholds by the same amount. Under equal

opportunity, the decision-maker has to lower the threshold for the protected group more than the
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threshold for the regular group, because equal opportunity requires the same rate of acceptance for

good candidates, while the distribution of the protected good candidates is more spread out due to

the less e�cient learning. As a result, the decision-maker either su↵ers from a higher loss brought

by the additional protected bad candidates whom it has to accept, or fails to achieve a higher profit

provided by some regular good candidates whom it could accept otherwise. In other words, equal

opportunity restricts the decision-maker to partially realizing the benefit of learning, and eventually

leads to a lower optimal learning e↵ort.

The “cost of fairness” has been well recognized in the fair machine learning literature – when we

enforce fairness constraints, the prediction accuracy usually decreases. Current view of the trade-o↵

between fairness and accuracy, however, is instantaneous. Previous literature mostly focuses on a

machine learning model with fixed predictive power, and compares the prediction accuracy for the

model under certain fairness constraints. This accuracy loss corresponds to the case when s is fixed

and the decision-maker only chooses acceptance thresholds in accordance to di↵erent constraints

in our model. However, the “cost of the fairness” is more than this direct impact on accuracy. We

highlight that equal opportunity e↵ectively act as a “tax” on learning and reduce the marginal

benefit of learning. When the benefit of learning is discounted, the decision maker is less incentivized

to put e↵ort into better prediction, which further decreases prediction accuracy.

4.2. Impact on the Decision Maker

As a business entity, the decision-maker’s primary goal is to maximize its profit. Let ⇡⇤
ET

and ⇡⇤
EO

be the optimal profits under equal treatment and equal opportunity, respectively. We compare them

in the following proposition.

Proposition 2 The profit of the decision maker is higher under equal treatment than under equal

opportunity, i.e., ⇡⇤
ET

� ⇡⇤
EO

.

As we haves shown in the previous section, under equal treatment the decision-maker is able to

take more advantage of learning, while the cost of learning remains the same regardless of the fairness

constraint. Therefore, the decision-maker’s profit is higher under equal treatment. More specifically,

with the same amount of learning s, the decision-maker has to set a lower threshold for the protected

users under equal opportunity, which results in more acceptance of both protected-bad candidates

and protected-good candidates. Because �p � ↵p, the loss from the additional bad candidates is

higher than the profit form the additional good candidates, and it leads to net loss in profit under

equal opportunity. Furthermore, the decision-maker optimally chooses a higher amount of learning

s under equal treatment, which means more learning can bring more profits. Therefore, overall the

decision-maker’s profit is higher under ET compared to EO.
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4.3. Impact on the Regular Group

Candidates care about getting accepted. All candidates want to be accepted, but not all candidates

are the same: some will turn out to be good, others bad. We call the acceptance of a good candidate

a successful acceptance, and the acceptance of a bad candidate a failed acceptance. It is clear that

a successful acceptance is beneficial for candidates too. For example, in the case of loan granting,

the fact that these candidates applied for the loan and eventually paid it back suggests that they

are able to use the loan in meaningful ways that increase their utilities. From a social planner’s

perspective, successful loans are well justified because their recipients are people who deserve the

loan. What is less obvious is that failed acceptance can be harmful for candidates. When a bad

candidate is accepted, not only does the decision-maker su↵er from a financial loss, the candidate

also loses trust – his or her score will decrease and it will be more di�cult to get opportunities that

require a good score in the future (Liu et al. 2018). From a group perspective, failed acceptance has

an opportunity cost, as it could be better utilized if given to the good candidates. Moreover, if more

bad candidates are accepted, the observed proportion of bad candidates of the group would increase,

which may leave the impression that this group is “riskier” when it is actually just the poor selection

of candidates. While it may be hard to conclude whether failed acceptance is beneficial or harmful

to the candidates in an absolute sense, it is obvious that failed acceptance is less beneficial than

successes. When examining the e↵ect of the fairness notions on the regular group (or the protected

group), we focus on two statistics:

1. The fraction of good candidates who get accepted, which equals to the number of successful

acceptance divided by the total number of good candidates in the group. We call it coverage rate,

as in the rate of the deserving candidates (good candidates) in the group being served (covered).

This is technically equivalent to the True Positive Rate that is widely used in machine learning

literature. We denote it as �C
A, where A2 {p, r} is the group membership (Protected or Regular)

and C 2 {ET, EO} is the fairness constraint (Equal Treatment or Equal Opportunity).

2. The fraction of successful acceptance in all the accepted candidates for the group, which equals

to the number of successful acceptance divided by the total number of accepted candidates to

the group. We call it success rate, as it measures the rate of success among all the accepted can-

didates. It is denoted as �CA , where A is the group membership and C is the fairness constraint.

Based on the previous reasoning, these two rates are strong indicators of the group welfare and

are positively correlated with it. They allow us to compare group welfare under di↵erent fairness

constraints without assuming a specific relationship between the utility of a successful acceptance

and the utility of a failed acceptance for the group. We first examine the coverage rate of the regular

group:
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Proposition 3 For the regular group, a higher fraction of good candidates would be accepted under

equal treatment than under equal opportunity, i.e., �ET
r � �EO

r .

Under equal opportunity, the optimal amount of learning is lower (Theorem 1), so the decision-

maker is less certain about quality of candidates. Consequentially, it sets a higher acceptance thresh-

old. Moreover, with a lower learning, there are fewer regular-good candidates with scores higher

than any given threshold. Therefore, a smaller fraction of good candidates in the regular group gets

accepted under equal opportunity compared to under equal treatment. As the total number of good

candidates in the regular group remains the same, this also means that fewer good candidates in the

regular group are accepted under equal opportunity.

With the optimal thresholds, the decision-maker never accepts bad candidates in the regular

group. In other words, the success rate of the regular group is 1 both under equal treatment and

under equal opportunity. Combined with Proposition 3, it means that overall fewer candidates from

the regular group are accepted under equal opportunity. Therefore, compared to equal treatment,

equal opportunity makes the regular group worse o↵.

4.4. Impact on the Protected Group

Now we move to the impact of the fairness constraints on the protected group. As mentioned in

the previous section, we compare the protected group’s welfare under equal treatment and under

equal opportunity by examining two statistics of the group: coverage rate (the fraction of good

candidates who get accepted) and success rate (the fraction of successful acceptance in all the

accepted candidates).

Equal opportunity is designed to protect the protected group in terms of the coverage rate. In most

of the cases, the protected group would have a lower coverage rate if we apply the same thresholds to

both groups. For example, the case study in Hardt et al. (2016) shows that if we grant loans based on

candidates’ FICO scores, then under race-blind thresholds, Hispanic and black people who would not

default are granted loans at much lower rates than others. Similarly, Angwin et al. (2016) point out

that black people who did not re-o↵end were less likely to be labeled as low risk by COMPAS6 than

white people who did not re-o↵end. Therefore, if we release defendants with COMPAS risk scores

below a certain threshold, the black “good defendants” (those who would not re-o↵end) will have

a smaller chance to be released compared to the white “good defendants.” Our model provides one

explanation for this phenomenon: Because the learning e�ciency is lower for the protected group,

the decision-maker always learns more about the regular group. This means bad candidates and good

6 A risk score produced by an algorithm that predicts recidivism.
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candidates are always better separated in the regular group. As good candidates’ scores are more

concentrated in high values with better separation, more regular good candidates than protected

good candidates will have scores above any given threshold. Therefore, under equal treatment, the

regular group always has a higher coverage rate.

As equal opportunity requires the same coverage rate for the two groups, intuitively it should

result in a higher coverage rate for the protected group compared to the coverage rate under equal

treatment. Indeed, with the same amount of learning, the decision-maker has to choose a lower

threshold for the protected group under equal opportunity than under equal treatment. This lower

threshold forces the decision-maker to accept more protected candidates (both bad candidates and

good candidates), and thus leads to a higher coverage rate under equal opportunity. We call it

threshold e↵ect of equal opportunity. However, there is a second force that also influences the coverage

rate. Under equal opportunity, the optimal amount of learning is lower. The decision-maker is less

certain about the quality of candidates, and would raise the thresholds. Meanwhile, with lower

learning, fewer protected good candidates would have scores above any given threshold. Just as

less learning under equal opportunity leads to a lower coverage rate for the regular group, it also

decreases the coverage rate for the protected group. We call it learning e↵ect of equal opportunity.

As threshold e↵ect and learning e↵ect are two opposing forces, the protected group’s coverage rate

under equal opportunity could be either higher or lower, depending on the size of the two forces.

Specifically, when learning e↵ect is stronger than threshold e↵ect, fewer protected good candidates

would be accepted under equal opportunity. In other words, equal opportunity can harm the very

group it aims to protect.

Clearly, the cost function ⌧(s) a↵ects the size of threshold e↵ect and learning e↵ect. To analytically

show that the protected group can have a lower coverage rate under equal opportunity, we assume

a cost function, ⌧(s) = ks
1��rs

, where k is a parameter that characterizes the level of the learning

cost. When k is too high, i.e., it is too costly to learn, the optimal learning would be 0 and the

decision-maker would not accept any candidates. In this case, the market fails under both equal

treatment and equal opportunity. When k is too low, i.e., it is too easy to learn, the decision maker

would choose to perfectly separate the good candidates from the bad candidates at least for the

regular group, which we assume could never happen. Thus, we assume that k 2 [↵r�r + ⇢2(↵p�r �

�p�r +�p�p), ↵r�r +↵p�r ��p�r +�p�p), where ⇢= 1

2� �p
�r

. The value of k in this range ensures that

neither market failure nor perfect separation happens, i.e., 0< sET, sEO < 1

2�r
.

We assume k is within this range and focus on cases where separations of the bad candidates

and the good candidates are positive but not perfect. Note that what matters here is the size of k
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relative to other parameters, instead of the absolute value of k. Therefore, we can re-write k in other

parameters and a scale parameter �:

k= ↵r�r +�2(↵p�r ��p�r +�p�p), � 2 [⇢,1).

The scale parameter � represents the actual level of learning cost: when � < ⇢, the decision-maker

would choose to perfectly separate the bad candidates and the good candidates because the learning

cost is minimal; as � increases, the optimal amounts of learning decrease as learning becomes more

costly; when �� 1, the market fails because it is too expensive to learn.

Theorem 2 For the protected group, a higher fraction of good candidates would get accepted under

equal treatment than under equal opportunity when the ratio of expected profit (↵p) to expected loss

(�p) is su�ciently low for the protected group. That is, �ET

p � �EO

p , if ↵p

�p
 1� 1�(2��)2)�2

(1��2)(2��)2
· �p
�r
.

As previously discussed, equal opportunity would harm the protected group in its coverage rate

when the learning e↵ect is greater than the threshold e↵ect. While the two e↵ects are interdependent

and determined by all the parameters jointly, the threshold e↵ect is mostly a↵ected by the learning

e�ciency gap (�r � �p), and the learning e↵ect is influenced more by the expected loss from the

protected group (�p �↵p). Imagine we start from the optimal learning and thresholds under equal

treatment, and change the fairness constraint to equal opportunity. Now the decision-maker has

to set a lower threshold for the protected group to match its coverage rate to the regular group’s

coverage rate. The higher the learning e�ciency gap is, the more the decision-maker has to lower

the threshold. Since the expected profit from the protected group is negative (�p > ↵p), the decision-

maker su↵ers from a loss when it lowers the threshold and accepts more protected candidates. To

mitigate the loss, the decision-maker would decrease the learning e↵ort, as this reduces both the

total cost of learning and the di↵erence of the separations in the protected group and in the regular

group. The higher the expected loss from the protected group (�p � ↵p), the more the decision-

maker su↵ers from a lower threshold, and thus the more it is motivated to reduce the learning

e↵ort. In the extreme case, if the expected loss from the protected group is 0, the decision-maker

would be indi↵erent to setting a lower threshold, and has no incentive to reduce learning, which

means no learning e↵ect. Therefore, when the expected loss from the protected group is su�ciently

large relative to the learning e�ciency gap, the learning e↵ect dominates the thresholds e↵ect, and

equal opportunity would result in a lower coverage rate for the protected group compared to equal

treatment.

After showing that the coverage rate of the protected group can be lower under equal opportunity

than under equal treatment, we now compare the success rate of the protected group under the two

fairness constraints.
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Figure 5 The figure on the left depicts that in a market with a high ratio of expected loss to expected profit, the

fairness notion of equal opportunity can hurt the protected group. The figure on the right explains the

intuition behind this result. In a risky market in which the ratio of expected loss to expected profit is

high, firms have low incentive to exert e↵ort in learning.

Theorem 3 For the protected group, a higher fraction of the approved candidates are good candi-

dates under equal treatment than under equal opportunity, i.e., �ET

p > �EO

p .

With any degree of learning and separation, the bad candidates’ scores are more concentrated in

low values while the good candidates’ scores are more concentrated in high values. Therefore, as the

decision-maker lowers the threshold for the protected group, the additionally approved candidates

will have a lower (or at best, the same) percentage of good candidates, which decreases the overall

success rate. Moreover, under equal opportunity, the learning e↵ort is lower, thus the bad candidates

and the good candidates are less separated in general, which also contributes to a lower success rate.

Theorem 2 suggests that fewer good candidates in the protected group would get accepted under

equal opportunity when the expected loss from the group is high, while theorem 3 says among

the approved protected candidates, the portion of good candidates is always smaller under equal

opportunity. This means very often equal opportunity would make the protected group worse o↵

as it leads to lower values in both coverage rate and success rate. Even when the decision-maker

approves more protected good candidates under equal opportunity because the expected loss from

the protected group is low, the additional good candidates that are approved always come at the cost

of even more additional bad candidates who also have to be approved. Overall, equal opportunity

can harm the protected group–the very group it aims to protect.
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5. A General Fairness Notion

Most fairness notions, including equal opportunity and other definitions such as demographic parity,

equalized odds and conditional statistical parity,7 aim to achieve equal impact and, hence, require

the decision maker to lower the threshold for the protected group. Corbett-Davies et al. (2017)

show that for several popular definitions of fairness, the utility maximizing algorithms require group

specific thresholds, and when the protected group is at a disadvantage, this means a lower threshold

for it. Indeed, many algorithms that aim to achieve di↵erent fairness notions involve setting a lower

threshold for the protected group either directly (e.g., Hardt et al. (2016)) or indirectly through

data processing and transformation (e.g., Calders et al. (2009)). In this section, we show that our

main results continue to hold of a general fairness notion having this property. First we define such

a general fairness notion. Define

✓=
1� cp
1� cr

. (12)

A fairness notion can be simply specified by the value of ✓. A value of ✓> 1 means that the fairness

notion requires the decision maker to lower the threshold for the protected group. When ✓= 1, this

fairness notion is equivalent to equal-treatment. Similarly, when ✓ = 1��ps

1��rs
, this fairness notion is

equivalent to equal opportunity.

Similar to Section 4, we focus on the case when cr = 1� �rs. Using the definition of ✓, we have

cp = 1� ✓(1� cr). Thus, we have 1� cr = �rs and 1� cp = ✓(1� cr) = ✓�rs. Let ⇡✓ represent the

profit of the decision maker under this general fairness notion. Then, ⇡✓ can be written as

⇡✓ =
�rs↵r

1� �rs
+

✓�rs↵p

1� �ps
� (✓�rs� �ps)�p

1� �ps
� ⌧(s).

We now analyze the e↵ect of the general fairness notion defined in this section on the learning

e↵ort (s) exerted by the decision-maker. Define G1(✓) = �p�p � ✓�r(�p �↵p). The above expression

of profit can now be written as

⇡✓ =
�rs↵r

1� �rs
+

sG1(✓)

1� �ps
� ⌧(s). (13)

Taking the derivative of ⇡✓ with respect to s, we get

d⇡✓

ds
=

�r↵r

(1� �rs)2
+

G1(✓)

(1� �ps)2
� ⌧ 0(s). (14)

Using the above expression, it is easy to see that d
d✓

�
d⇡✓
ds

�
 0, because dG1(✓)

d✓
 0. Let s⇤(✓) be the

optimal learning e↵ort by the decision-maker. Then, we have the following result

7 Demographic parity requires equal acceptance rate for both groups; equalized odds requires equal true positive rate
and equal false positive rate; conditional statistical parity requires equal acceptance rate conditioning on a set of risk
factors.
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Theorem 4 The optimal learning e↵ort s⇤(✓) decreases with ✓.

The proof and the intuition of the above theorem is similar to that of Theorem 1. We now proceed

to analyze the impact of the general fairness notion on the profit of the decision-maker. At the

optimal level of learning e↵ort s⇤, we can write the profit of the decision-maker as

⇡✓(s
⇤) =

�rs⇤↵r

1� �rs⇤
+

s⇤G1(✓)

1� �ps⇤
� ⌧(s⇤). (15)

Taking the derivative with respect to ✓, we get

d⇡✓(s⇤)

d✓
=


�r↵r

(1� �rs⇤)2
+

G1(✓)

(1� �ps⇤)2
� ⌧ 0(s⇤)

�
ds⇤

d✓
+

s⇤

1� �ps⇤
dG1(✓)

d✓
. (16)

Using (14), we have

d⇡✓(s⇤)

d✓
=

d⇡✓

ds

���
s=s⇤

⇥ ds⇤

d✓
+

s⇤

1� �ps⇤
dG1(✓)

d✓
. (17)

As s⇤ is the optimal learning e↵ort, it should satisfy

d⇡✓

ds

���
s=s⇤

= 0,

if it is an interior solution. Thus, we have

d⇡✓(s⇤)

d✓
=

s⇤

1� �ps⇤
dG1(✓)

d✓
. (18)

It is easy to see that d⇡✓(s
⇤
)

d✓
 0, because dG1(✓)

d✓
 0. Formally, we have the following result.

Proposition 4 The profit of the decision-maker decreases with ✓.

Figure 6, shows that the profit of the decision-maker decreases with an increase in ✓. Also, for a

given value of ✓, the profit decreases as the market becomes more risky (as �p/↵p increases). When

the market is too risky, the decision-maker’s profit goes down to zero and it ceases to exist. Under

a lower value of ✓, the decision maker can continue to operate for a much riskier market, with a

positive profit.

We now proceed to analyze the e↵ect of the general fairness notion on the welfare of the regular

group. Specifically, we analyze the impact of the general fairness notion on the coverage rate for the

regular group. We can write the coverage rate for regular group as

�r(✓) =
1� cr

1� �rs⇤(✓)
=

�rs⇤(✓)

1� �rs⇤(✓)
.

From Theorem 4 we know that s⇤(✓) decreases with ✓. Thus, it is easy to see that the coverage rate

for the regular group, i.e., �r(✓), decreases with ✓. Formally, we have the following result
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Figure 6 The profit of the decision-maker decreases with an increase in ✓. Also, for a given value of ✓, the profit

decreases as the market becomes more risky (as �p/↵p increases). When the market is too risky, the

decision-maker’s profit goes down to zero and it ceases to exist. Under a lower value of ✓, the decision-

maker can continue to operate for a much riskier market, with positive profit.

Proposition 5 The coverage rate for the regular group, i.e., �r(✓), decreases with ✓.

We now proceed to analyze the impact of the general fairness notion on the coverage rate for the

protected group. We know that

�p(✓) =
1� cp

1� �ps⇤(✓)
=

✓�rs⇤(✓)

1� �ps⇤(✓)
. (19)

The general fairness notion will hurt the protected group if it leads to a lower coverage rate

for the protected group compared to the coverage rate under equal treatment fairness notion,

i.e., �p(✓)  �p(1). This condition simplifies to

�p

↵p
� r̂, (20)

where r̂ = �r [A2(✓)�✓B2(✓)]
(�r��p)A2(✓)�(✓�r��p)B2

, A2(✓) =
✓2(s⇤(✓))2

(s⇤(1))2 , and B2(✓) =
1��rs

⇤
(✓)

1��rs⇤(1)
. Formally, we have the

following result

Theorem 5 The general fairness notion will hurt the protected group if the market is riskier than

r̂. That is, �p(✓) �p(1) 8 ✓� 1, if �p
↵p

� r̂.
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Figure 7 The figure on the left illustrates that when the market is risky (i.e., when �p/↵p is high), the coverage

rate for the protected group is highest when ✓= 1, i.e., under equal treatment. In other words, a general

fairness notion, which requires ✓ > 1, can eventually hurt the protected group in a risky market. The

figure on the right gives the intuition of this result. Under a risky market, firms have lower incentive to

learn.

The left-hand-side of Figure 7 plots the coverage rate �p for ✓ = 1, 1.2 and equal opportunity. We

see that when the market is risky, i.e., when � is high, equal opportunity and all higher values of ✓

lead to a lower coverage rate compared to ✓= 1 (equal treatment). In other word, in a risky market

a fairness notion that aims to lower the threshold for the protected group can actually hurt the

protected group. The right-hand side of Figure 7 gives the intuition behind the result. This figure

plots the learning e↵ort s⇤(✓) for ✓= 1, 1.2 and equal opportunity.

6. Robustness Check Under Additional Features

In this section, we check the robustness of our base model by adding the following features:

• Two-Period Model: Our base model is a single period model. We extend this to a dynamic

two-period model and show that our results continue to hold for a dynamic setting.

• Same Default Rate for Both Groups: In our base model, we assumed that the default rate

for the protected group is higher than that of the regular group (i.e., dp > dr). We now relax

this assumption and show the robustness of our results when the default rate is the same for

both the groups (dp = dr = d).

• Di↵erent Population Sizes: We also relax the assumption that both protected and regular

groups are of equal size and show the validity of our results when one group is larger than the

other.
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Figure 8 A dynamic two-period model: The learning rate in the second-period depends on the cut-o↵s chosen

in the first period. Specifically, a lower cut-o↵ in the first period (more accepted applicants) leads to a

higher learning rate in the next period.

• Non-Linear Learning: Our base model assumes that the separation of “good” and “bad”

applicants happens at a linear rate (�p and �r for the protected and regular groups, respectively).

We now show that our results continue to hold for a non-linear learning rate.

• Competition: Our base model is a monopoly setting. We extend this to a competitive setting

and show the robustness of our main results.

Figure 8 pictorially depicts the two-period model. The decision-maker dynamically makes decisions

in two periods. The left sub-figure in Figure 8 represents the distribution of good and bad applicants

in both the groups in the first period. Similarly, the sub-figure on the right represents this distribution

in the second period. Specifically, s1 and s2 represents the learning e↵ort exerted by the decision-

maker in the first and second periods respectively. Similarly, the cut-o↵s chosen in the first and

second period are represented by {cr1, cr2} for regular applicants and by {cp1, cp2} for protected

applicants.

In Figure 8, we also note that the rate of separation of good and bad applicants in the first

period depend on the learning e↵ort (s1) in a quadratic fashion (�rs21 and �ps21). More impor-

tantly, in the second period, the rate of separation of good and bad applicants is represented by

fr(cr1, s2) and fp(cp1, s2) for regular and protected applicants, respectively. Note that these rates
�
fr(cr1, s2) and fp(cp1, s2)

�
depend on the cut-o↵s chosen in the previous period (cr1 and cp1). Specif-

ically, we use the following functional forms for tractability:

fr(cr1, s2) = q� cr1 + �rs
2

2
(21)

and

fp(cp1, s2) = q� cp1 + �ps
2

2
. (22)
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Note that a lower cut-o↵ in the first period help in better separation in the second period. This

captures the idea that more applicants accepted in the current period helps in better identification

of good applicants in the future (similar to the exploration-exploitation trade-o↵).

Also note that the fraction of bad applicants is the same in both groups (d). The number of regular

applicants is Nr and there are Np protected applicants (in the base model Np and Nr were normalized

to 1). The scores of applicants is now distributed between 0 and q. We analyze the general fairness

notion discussed in Section 5. That is, the cut-o↵s chosen by the decision-maker should satisfy the

following constraints corresponding to two periods:

q� cp1
q� cr1

= ✓, (23)

and

q� cp2
q� cr2

= ✓. (24)

Let ~c = (cr1, cr2, cp1, cp1, ) and ~s = (s1, s2). The profit of the decision-maker can be written as

follows:

⇡(~c,~s) = ⇡1 +⇡2, (25)

where ⇡1 is the profit in the first period and ⇡2 is the profit in the second period. Let d̄ = 1� d.

Using Figure 8 we have

⇡1 =
(q� cr1)d̄↵Nr

q� �rs21
� (q� �rs21 � cr1)d�Nr

q� �rs21

+
(q� cp1)d̄↵Np

q� �ps21
� (q� �ps21 � cp1)d�Np

q� �ps21
� ⌧(s1) (26)

and

⇡2 =
(q� cr2)d̄↵Nr

q� fr(cr1, s2)
� (q� fr(cr1, s2)� cr2)d�Nr

q� fr(cr1, s2)

+
(q� cp2)d̄↵Np

q� fp(cp1, s2)
� (q� fp(cp1, s2)� cp2)d�Np

q� fp(cp1, s2)
� ⌧(s2). (27)

The decision-maker solves the following problem:

max
~c,~s

⇡(~c,~s)

s.t.
q� cp1
q� cr1

= ✓,
q� cp2
q� cr2

= ✓.
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We now proceed to the analysis of this general model. Similar to Section 4, we focus on the case

when � is large enough such that the optimal cut-o↵s in both the periods are as follows:

c⇤r1 = q� �rs
2

1
,

c⇤r2 = q� fr(c
⇤
r1, s2).

Using (23) and (61) we have

c⇤p1 = q� ✓(q� c⇤r1),

c⇤p2 = q� ✓(q� c⇤r2).

Thus, we have

q� c⇤r1 = �rs
2

1
, q� c⇤r2 = �r(s

2

1
+ s2

2
),

q� c⇤p1 = ✓�rs
2

1
, q� c⇤p2 = ✓�r(s

2

1
+ s2

2
).

Let G1(✓) = �pd�� ✓�r(d�� d̄↵). Substituting above values in ⇡1 and ⇡2, we get

⇡1 =
�rs21d̄↵Nr

q� �rs21
+

s2
1
G1(✓)Np

q� �ps21
� ⌧(s1), (28)

⇡2 =
�r(s21 + s2

2
)d̄↵Nr

q� �r(s21 + s2
2
)

+
(s2

1
+ s2

2
)G1(✓)Np

q� �p(s21 + s2
2
)

� ⌧(s2). (29)

As ⇡= ⇡1 +⇡2, we have d⇡
ds1

= d⇡1

ds1
+ d⇡2

ds1
. Taking derivative with respect to s1, we have

d⇡1

ds1
=

2�rd̄↵s1qNr

(q� �rs21)2
+

2G1(✓)s1qNp

(q� �ps21)2
� ⌧ 0(s1),

d⇡2

ds1
=

2�rd̄↵s1qNr�
q� �r(s21 + s2

2
)
�2 +

2G1(✓)s1qNp�
q� �p(s21 + s2

2
)
�2 � ⌧ 0(s2).

Note that dG1(✓)
d✓

< 0. Using this, it is easy to verify that d
d✓

⇣
d⇡1

ds1

⌘
< 0 and d

d✓

⇣
d⇡2

ds1

⌘
< 0. Thus, we

have
d

d✓

✓
d⇡

ds1

◆
=

d

d✓

✓
d⇡1

ds1

◆
+

d

d✓

✓
d⇡2

ds1

◆
< 0.

Similarly, we have

d⇡

ds2
=

d⇡2

ds2
,

=
2�rd̄↵s2qNr�

q� �r(s21 + s2
2
)
�2 +

2G1(✓)s2qNp�
q� �p(s21 + s2

2
)
�2 � ⌧ 0(s2).

Again using dG1(✓)
d✓

< 0, it is easy to verify that d
d✓

⇣
d⇡
ds2

⌘
< 0. Formally, we have the following result.
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Figure 9 Comparison of learning e↵orts: (i) As ✓ increases, the optimal learning e↵orts in both the periods,

i.e., s⇤1 and s⇤2 decrease. (ii) The optimal learning e↵ort in the first period is greater than or equal to that

in the second period. Intuitively, this reflects the future-value of the learning e↵ort in the first period.

Theorem 6 Optimal learning e↵orts in both periods decrease with ✓. That is, s⇤
1
(✓) and s⇤

2
decrease

with ✓.

The proof and the intuition of the above theorem is similar to that of Theorem 1. Figure 9

represents the optimal learning e↵orts exerted by the decision-maker in the first and the second

period. The sub-figure on the left represents the optimal learning e↵ort in the first period (s⇤
2
) and

the sub-figure on the right represents the optimal learning e↵ort in the second period (s⇤
2
). Note that

(i) as ✓ increases, the optimal learning e↵orts in both the periods, i.e., s⇤
1
and s⇤

2
decrease, (ii) the

optimal learning e↵ort in the first period is greater than or equal to that in the second period.

Intuitively, this reflects the future-value of learning e↵ort in the first period.

Let �p(✓) represent the fraction of accepted protected applicants. Then, we can write

�p(✓) =
✓�rs⇤21

q� �ps⇤21
+

✓�r(s⇤21 + s⇤2
2
)

q� �p(s⇤21 + s⇤2
2
)
.

Figure 10 plots �p(✓) for di↵erent values of ✓. We see that in a risky market, a higher value of ✓ can

hurt the protected applicants.

Using 62, (63), and (64), we can obtain the optimal profit of the decision-maker. Figure 11 plots

the profit of the decision-maker for several values of ✓ and risk in the market. We see that the

profit of the decision-maker decreases with an increase in ✓. The lower learning e↵ort exerted by the

decision-maker at a higher value of ✓ can be attributed to the lower profit that the decision-maker

can expect to make as ✓ increases. In other words, the decision-maker doesn’t earn enough to bear
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Figure 10 In a risky market, fewer protected applicants are accepted as ✓ increases.

1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9

Risk: Expected Loss/Expected Profit (
p
/

p
)

0

0.02

0.04

0.06

0.08

0.1

0.12
Profit of Decision Maker

 = 1 (Equal Treatment)
 = 1.1
 = 1.2

Figure 11 Profit of the decision-maker decreases with ✓.

the cost of the learning e↵ort. An increase in ✓ represents that the fairness constraint is becoming

more stringent.

Learning Rate Dependent on Number of Selected Applicants: Recall that in (21) and (22),

the second-period learning rates, i.e., fr(cr1, s2) and fp(cp1, s2), depend on the cut-o↵s chosen in the

first period (cr1 and cp1). A lower cut-o↵ in the first period leads to a higher learning rate in the

second-period, reflecting the future value of accepting more applicants in the beginning. Another

approach to model the future value of accepting more applicants in the beginning is to make these

learning rates depend directly on the number of accepted applicants in the first period. However,
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this approach makes the model intractable. Thus, we now numerically analyze the two-period model

of this section, when the second-period learning rates directly depend on the number of accepted

applicants in the first period rather than on the cut-o↵s in the first period. Specifically, we now

assume the following function form for the second-period learning rates:

fr(nr1, s2) = �nr1 + �rs
2

2
(30)

and

fp(np1, s2) = �np1 + �ps
2

2
, (31)

where nr1 and np1 are the number of regular and protected applicants selected in the first period,

and � is a parameter representing the magnitude of learning carried over from one period to another.

Apart from these two new functional forms, the rest of the model in this section stays the same.

Thus, we have

nr1 =
(q� cr1)d̄

q� �rs21
+

(q� �rs21 � cr1)d

q� �rs21
(32)

and

np1 =
(q� cp1)d̄

q� �ps21
+

(q� �ps21 � cp1)d

q� �ps21
. (33)

Again assuming that � is large enough, such that we have

c⇤r1 = q� �rs
2

1
,

c⇤p1 = q� ✓�rs
2

1
,

c⇤p2 = q� ✓fr(nr1, s2),

c⇤r2 = q� fr(nr1, s2).

Let ⇡1 be the profit in the decision-maker in the first period. Then, we have

⇡1 =
�rs21d̄↵

q� �rs21
+

s2
1
G1(✓)

q� �ps21
� ⌧(s1), (34)

where G1(✓) = fp(np1, s2)d� � ✓(d� � d̄↵)fr(nr1, s2). Similarly, let ⇡2 represent the profit in the

second-period. Then, we have

⇡2 =
fr(nr1, s2)d̄↵

q� fr(nr1, s2)
+

Gf (✓)

q� fp(np1, s2)
� ⌧(s2). (35)
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Figure 12 Comparison of learning e↵orts: For all levels of risk in the market, (i) as ✓ increases, the optimal learning

e↵orts in both the periods, i.e., s⇤1 and s⇤2 decrease. (ii) The optimal learning e↵ort in the first period

is greater than or equal to that in the second-period. Intuitively, this reflects the future value of the

learning e↵ort in the first period.

The total profit is

⇡= ⇡1 +⇡2.

We now numerically optimize the profit of the decision-maker and plot the relevant quantities of

interest.

We can see that Figure 12 is qualitatively very similar to Figure 9. That is, as ✓ increases, the

optimal learning e↵orts in both the periods, i.e., s⇤
1
and s⇤

2
, decrease. Also, the optimal learning e↵ort

in the first period is greater than or equal to that in the second-period. Intuitively, this reflects the

future value of the learning e↵ort in the first period. Similarly, Figure 13 and Figure 10 are also

qualitatively similar. That is, in a risky market, fewer protected applicants are accepted when ✓ is

high. Also, Figure 14 and Figure 11 reflect that the profit of decision maker decreases with ✓. Overall,

our main results continue to hold when the second-period learning rate depends on the number of

accepted applicants in the first period.

We now proceed to analyzing a competitive setting to ensure the robustness of our main results

under competition.

6.1. Competition

Our model thus far assumes a monopolist decision-maker. We now relax this assumption and consider

a competitive setting. For tractability, we consider the model of Section 5 and assume that the
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Figure 13 In a risky market, fewer protected applicants are accepted as ✓ increases.
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Figure 14 Profit of the decision maker decreases with ✓.

decision-maker is operating under perfect competition. We assume that there are a large number of

identical decision-makers competing on the revenue they receive from applicants (e.g., the interest

charged by banks). In our model, this revenue is represented by ↵, because ↵ is the utility of selecting

a good applicant. As all the decision-makers are identical, we focus on a symmetric case in which

each decision maker chooses the same value of ↵. One di↵erence with the traditional models of

competition is that the decision-maker can choose the cost of learning, i.e., ⌧(s), by deciding the

learning e↵ort s. Therefore, all combinations of ↵ and s that lead to zero profit are equilibria. We
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show that as ✓ increases, the learning e↵ort exerted by the decision maker, i.e., s, decreases in all

equilibria.

Using ⇡✓ = 0 in (13), we get

⇡✓ =
�rs↵r

1� �rs
+

sG1(✓)

1� �ps
� ⌧(s) = 0. (36)

Substituting ⌧(s) = ks
1��rs

and solving for s, we get

s⇤ =
H1(✓)� 1

H1(✓)�r � �p
, (37)

where H1(✓) =
G1(✓)

k��r↵r
and G1(✓) = �p�p � ✓�r(�p �↵p). Taking derivative of s⇤ with respect to ✓ we

have

ds⇤

d✓
=

�r � �p
[H1(✓)�r � �p]2

dH1(✓)

d✓
. (38)

It is easy to see that ds⇤

d✓
< 0, because dH1(✓)

d✓
< 0. Formally, we have the following result.

Theorem 7 The optimal learning e↵ort s⇤(✓) decreases with an increase in ✓, under competition.

The above theorem shows that the decision makers have lower incentive to exert e↵ort in learning

about applicants in a competitive setting. Intuitively, because learning is costly, a stringent fairness

constraint under competition disincentivizes firms to invest in learning about the applicants.

6.2. Applicants’ Response

Our base model does not consider applicants’ strategic response to di↵erent fairness constraints

and assumes that the fraction of bad applicants in the two groups are fixed. In reality, applicants

may react to certain fairness constraints di↵erently, e.g., make more e↵orts to become good appli-

cants, and thus change the distribution of applicant types. In particular, Shimao et al. (2018) shows

that EO-based machine learning equally incentivizes two demographic groups to put in e↵orts and

improve skills, while other fairness constraints disproportionately discourage the protected groups

from making e↵orts. In this section, we consider applicants’ response and relax the assumption on

the fixed fraction of bad applicants.

Specifically, we assume that under ET, the fraction of bad applicants (e.g., default rate) for the

regular group and that for the protected group are still dr and dp, respectively, where dp > dr;

under EO the fraction of bad applicants is identical for both groups at dr. This reflects the idea

that compared with ET, EO decreases the proportion of bad applicants as it equally incentivizes

applicants from the two groups to put in e↵ort and become good applicants. We further assume

that the benefit of approving a good applicant (e.g., interest rate) would increase the overall default
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rate increases to balance the risk. Specifically, we fix the expected loss rate of approving a random

applicant:

�(
dp + dr

2
)�↵(1� dp + dr

2
) = c (39)

where c is a positive constant. This is equivalent to (�p +�r)� (↵p +↵r) = 2c and it specifies that

↵(dp) =
�(dp + dr)� 2c

2� dp � dr
(40)

Previous analysis has shown that when the two groups have the same default rate (i.e., dr = dp),

the optimal learning e↵ort is higher under ET than under EO. We now proceed to analyze how the

optimal learning e↵ort under ET changes as dp increases. Following the analysis in Section 4, we

know that the profit under ET is:

⇡ET =
↵r�rs

1� �rs
+

(↵p�r +�p�p ��p�r)s

1� �ps
� ⌧(s) (41)

Taking the derivative of the profit function with respect to s, we get

d⇡ET

ds
=

↵r�r
(1� �rs)2

+
↵p�r +�p�p ��p�r

(1� �ps)2
� ⌧ 0(s) (42)

= (
1

(1� �rs)2
� 1

(1� �ps)2
)↵r�r +

(↵r +↵p)�r +�p�p ��p�r
(1� �ps)2

� ⌧ 0(s) (43)

As ↵r +↵p = �r +�p � 2c, we have:

d⇡ET

ds
= (

1

(1� �rs)2
� 1

(1� �ps)2
)↵r�r +

(�r +�p � 2c)�r +�p�p ��p�r
(1� �ps)2

� ⌧ 0(s) (44)

= (
1

(1� �rs)2
� 1

(1� �ps)2
)↵r�r +

�p�p +�r�r � 2c�r
(1� �ps)2

� ⌧ 0(s) (45)

As

d↵r

ddp
= (1� dr)

d↵

ddp
> 0,

d�p

ddp
=

d�dp
ddp

= � > 0, (46)

it is easy to verify that d
ddp

(d⇡ET
ds

)> 0. Formally, we have the following result.

Theorem 8 Optimal learning e↵ort under ET increases with default rate in the protected group.

That is, sET increases with dp.

Intuitively, when the default rate is higher, the decision-maker is motivated to learn more because

the reward for separating good and bad applicants is larger. Combining this result with the previous

result that the optimal learning is higher under ET than under EO when dp = dr, we have that the

optimal learning e↵ort is still higher under ET when we consider the change in default rates as a

result of applicants’ response.
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7. Conclusion

Concerns about algorithmic bias have been raised since we realized that the seemingly innocuous

machine learning algorithms could automate or even magnify human bias and inequity encoded in

data. While trying our best to address these problems, we should be cautious about our approaches.

Apart from the debate on the ultimate meaning of fairness and the worry about reverse discrimina-

tion, some well-intended and appealing fairness constraints may not necessarily help the protected

group. When proposing the notion of equal opportunity, Hardt et al. (2016) argued that requiring

equal opportunity threshold “transfers the burden of uncertainty from the protected class to the

decision maker” and it “incentivizes the decision maker to invest additional resources toward build-

ing a better model.” However, a better model does not come for free. In this paper, we show that

when learning e↵ort is an endogenous decision variable, the decision-maker would actually choose to

invest fewer resources in building a good model under the constraint of equal opportunity compared

with under the current legislation that requires equal treatment. This strategic behavior could reduce

the decision-maker’s loss, but would harm the candidates. When the market is risky, the harm of

the reduced learning e↵ort outweighs the direct benefit of a lower threshold, and everyone, including

the very group that equal opportunity aims to protected, is worse o↵. More broadly, our results

suggest that any fairness constraint that tries to close the gap in prediction outcomes by lowering

the threshold for the protected would cause the same problem: reduced learning and potential harm

to everyone.

This work is closely related to the literature on discussion of fairness notions. Kleinberg et al.

(2016) and Chouldechova (2017) proved that several popular fairness notions cannot be satisfied

simultaneously, and pointed out the inherent trade-o↵s among them. Liu et al. (2018) showed that

equal opportunity and demographic parity sometimes may cause harm to the protected group in

the long term due to the delayed impact of decisions. They used loan application as an example

and considered the fact that a defaulted loan not only reduces the decision maker’s profit, but

also hurts the borrower’s score. Even though the a�rmative action of giving more loans to the

protected group seems to be a blessing at the time of granting loans, it could eventually harm the

score distribution in the group and put the protected candidates into a worse situation if many of

the approved candidates are bad candidates. Kleinberg and Mullainathan (2018) showed that while

we often favor a simple and interpretable model, a simplified model su↵ers from less accuracy and

reduces utility for the disadvantaged (protected) group, and therefore creates inequity. Corbett-

Davies and Goel (2018) criticized a family of fairness definitions called “classification parity,” which

includes equal opportunity and demographic parity. They argued that single threshold applied to the

true risk distribution is optimal and it satisfies the compelling notion of equity that everyone is held
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to the same standard, but it inevitably violates classification parity when the true risk distribution

di↵ers for two groups, which is almost always the case. While prior studies have pointed out the

problems associated with the new fairness notions from di↵erent perspectives, this paper, to our best

knowledge, is the first study that focuses on the dynamics of learning e↵ort and considers decision

makers’ strategic behavior in response to fairness policies.

It is important to note that our paper does not intend to speak for the status quo of equal treatment

requirement. Instead, we aim to highlight the importance of understanding the causes of algorithmic

bias and considering strategic responses to fairness policies. Apparently our stylized model does not

capture all the important elements in the decision-making process. For example, we do not consider

the case where the firm is biased and gains utility from favoring the regular candidates, which is the

primary reason for which we need anti-discrimination law. Nonetheless, the model illustrates that

when the learning e�ciency gap drives the discriminatory outcomes, forcefully closing the gap on the

final decisions according to a simple statistic would bring unintended consequences and may even

cause larger problems. We believe the more e↵ective and e�cient approaches to fairness requires

addressing the source of biased outcomes, which in our case means reducing the learning e�ciency

gap. This requires e↵orts in a broader perspective than adjusting thresholds. With careful designs

and regulations, algorithms could potentially improve both equity and e�cacy, and therefore help

use make better decisions.
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Appendix A Proofs of Results

Proof of Theorem 1: To prove Theorem 1, we first prove the following statement: Let f(x) and

g(x) be two unimodal continuous and di↵erentiable functions on a closed interval [a, b], and x⇤
f and

x⇤
g be the x values that maximize f(x) and g(x), respectively. If f 0(x)� g0(x) for all x in the domain,

then x⇤
f � x⇤

g.

Because f 0(x) � g0(x), we have f 0(x⇤
g) � g0(x⇤

g). It means that the value of f(x) can increase by

choosing the value of x above x⇤
g. Thus, there exists a better feasible solution for optimizing f(x),

and that feasible solution is higher than x⇤
g. Since f(x) is a unimodal function, we have x⇤

f � x⇤
g.

We now proceed to proving the main result in Theorem 1. The derivative of the two profit functions

are:

⇡0
ET

(s) =
↵p�r

(1� �ps)2
+

↵r�r
(1� �rs)2

+
�p�p

(1� �ps)2
� �p�r

(1� �ps)2
� ⌧ 0(s), s2 [0,

1

2�r
];

⇡0
EO

(s) =
↵p�r

(1� �rs)2
+

↵r�r
(1� �rs)2

+
�p�p

(1� �ps)2
� �p�r

(1� �rs)2
� ⌧ 0(s), s2 [0,

1

2�r
].

It is easy to verify that for ⌧(s) = ks
1��rs

, ⇡ET(s) and ⇡EO(s) are both unimodal functions. Using

above equations, 8s2 [0, 1

2�r
] we have

⇡0
ET

(s)�⇡0
EO

(s) =
� ↵p�r
(1� �ps)2

� �p�r
(1� �ps)2

�
�
� ↵p�r
(1� �rs)2

� �p�r
(1� �rs)2

�
,

= �r(�p �↵p)
� 1

(1� �rs)2
� 1

(1� �ps)2
�
� 0.

Using the statement proven in the beginning of this proof, we have sET � sEO. ⌅

Proof of Proposition 2: For any given s2 [0, 1

2�r
], we have

⇡ET(s)�⇡EO(s) =
� ↵p�rs

1� �ps
� �p�rs

1� �ps

�
�
� ↵p�rs

1� �rs
� �p�r

1� �rs

�

= �r(�p �↵p)
� s

1� �rs
� s

1� �ps

�
� 0.

Therefore,

⇡ET(s
EO)� ⇡EO(s

EO).

Since sET is the optimal amount of learning e↵ort under ET,

⇡ET(s
ET)� ⇡ET(s

EO).

By transitivity,

⇡ET(s
ET)� ⇡EO(s

EO),

i.e., ⇡⇤
ET

� ⇡⇤
EO

. ⌅
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Proof of Proposition 3:

�ET
r =

1� cET

r

1� �rsET
=

�rsET

1� �rsET
,

�EO
r =

1� cEO

r

1� �rsEO
=

�rsEO

1� �rsEO
.

Theorem 1 shows

sET � sEO,

therefore,
�rsET

1� �rsET
� �rsEO

1� �rsEO
,

i.e, �ET
r � �EO

r . ⌅

Proof of Theorem 2: First Order Condition gives us:

⇡0
ET

(sET) =
↵p�r

(1� �psET)2
+

↵r�r
(1� �rsET)2

+
�p�p

(1� �psET)2
� �p�r

(1� �psET)2
� k

(1� �rsET)2
= 0; (47)

⇡0
EO

(sEO) =
↵p�r

(1� �rsEO)2
+

↵r�r
(1� �rsEO)2

+
�p�p

(1� �psEO)2
� �p�r

(1� �rsEO)2
� k

(1� �rsEO)2
= 0. (48)

Multiply (47) by (1� �rsET)2 and arrange the equation:

(
1� �rsET

1� �psET
)2 · (↵p�r +�p�p ��p�r) = k�↵r�r (49)

Note that

1� �rsET

1� �psET
= 1� (�r � �p)

sET

1� �psET
, (50)

Substituting (50) into (49), with some algebra we have

�ET

p ⌘ �rsET

1� �psET
=

�r
�r � �p

[1� (
k�↵r�r

↵p�r +�p�p ��p�r
)
1

2 ] (51)

Similarly, from (48) we derive the expression for the coverage rate under equal opportunity:

�EO

p ⌘ �rsEO

1� �rsEO
=

�r
�r � �p

[(
�p�p

k�↵r�r +�p�r �↵p�r
)
1

2 � 1] (52)

Therefore, we have:

�ET

p ��EO

p =
�r

�r � �p
[2� (

k�↵r�r
↵p�r +�p�p ��p�r

)
1

2 � (
�p�p

k�↵r�r +�p�r �↵p�r
)
1

2 ] (53)

=
1

�r � �p
[2��� (

�p�p
�2�p�p +(1��2)(�p�r �↵p�r)

)
1

2 ] (54)
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When ↵p

�p
 1� 1�(2��)2)�2

(1��2)(2��)2
· �p
�r
, we have

(�p �↵p)�r �
1� (2��)2)�2

(1��2)(2��)2
·�p�p, (55)

[1� (2��)2�2]�p�p  (1��2)(2��)2(�p�r �↵p�r), (56)

�p�p  (2��)2�2�p�p +(2��)2(1��2)(�p�r �↵p�r), (57)

�p�p
�2�p�p +(1��2)(�p�r �↵p�r)

 (2��)2, (58)

therefore,

(
�p�p

�2�p�p +(1��2)(�p�r �↵p�r)
)
1

2  2��, (59)

which implies that �ET

p > �EO

p , since �r � �p > 0. ⌅

Proof of Theorem 3: Let NSET

p and NFET

p be the number of successful acceptance and the number

of failed acceptance in the protected group under equal treatment, respectively. Then,

NSET

p =
1� cET

1� �psET
(1� dp) =

�rsET

1� �psET
(1� dp);

NFET

p =
1� �psET � cET

1� �psET
dp =

(�r � �p)sET

1� �psET
d.

Therefore, we have

�ET

p =
NSET

p

NSET
p +NFET

p

=
(1� dp)�r
�r � �pdp

.

Similarly, under equal opportunity, we have

NSEO

p =
1� cEO

p

1� �psEO
(1� dp) =

�rsEO

1� �rsEO
(1� dp)

NFEO

p =
1� �psEO � cEO

p

1� �psEO
dp = (

�rsEO

1� �rsEO
� �psEO

1� �psEO
) · dp

Thus,

�EO

p =
NSEO

p

NSET
p +NFET

p

=
(1� dp)�r

�r � 1��rsEO

1��psEO · �pdp
<

(1� dp)�r
�r � �pdp

= �ET

p .

⌅

Appendix B Proofs of the Results in the Two Other Cases

B.1 Medium Expected Loss

In this section, we show that our results hold for the case of medium expected loss, i.e.,

↵p +↵r < �p  ↵p +
1� �ps

1� �rs
↵r.
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From the analysis in section 3, we know that in this case

cET

p = cET

r = 1� �rs, ⇡ET(s) =
↵p�rs

1� �ps
+

↵r�rs

1� �rs
+

�p�ps

1� �ps
� �p�rs

1� �ps
� ⌧(s)

cEO

p = 1� �ps, c
EO

r = 1� 1� �rs

1� �ps
�ps, ⇡EO(s) =

↵p�ps

1� �ps
+

↵r�ps

1� �ps
� ⌧(s);

Learning

The derivative of the two profit functions are:

⇡0
ET

(s) =
↵p�r

(1� �ps)2
+

↵r�r
(1� �rs)2

+
�p�p

(1� �ps)2
� �p�r

(1� �ps)2
� ⌧ 0(s)

⇡0
EO

(s) =
↵p�p

(1� �ps)2
+

↵r�p
(1� �ps)2

� ⌧ 0(s);

Therefore,

⇡0
ET

(s)�⇡0
EO

(s) =
↵p�r

(1� �ps)2
+

↵r�r
(1� �rs)2

+
�p�p

(1� �ps)2
� �p�r

(1� �ps)2
� ↵p�p

(1� �ps)2
� ↵r�p

(1� �ps)2

=
(�p �↵p �↵r)�p

(1� �ps)2
+ [

↵r

(1� �rs)2
� �p

(1� �ps)2
]�r

As

�p  ↵p +
1� �ps

1� �rs
↵r,

we have

�p <
1� �ps

1� �rs
↵r < (

1� �ps

1� �rs
)2↵r,

thus,

�p

(1� �ps)2
<

↵r

(1� �rs)2
.

Also

�p > ↵p +↵r.

Therefore,

⇡0
ET

(s)�⇡0
EO

(s)> 0.

By the statement shown in the proof of Theorem 1, we have sET � sEO. ⌅

Impact on the decision-maker

For any given s2 [0, 1

2�r
], we have

⇡ET(s)�⇡EO(s) =
(�p �↵p �↵r)�ps

1� �ps
+ [

↵r

1� �rs
� �p

1� �ps
]�rs� 0
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Therefore,

⇡ET(s
EO)� ⇡EO(s

EO).

Since sET is the optimal amount of learning e↵ort under ET,

⇡ET(s
ET)� ⇡ET(s

EO).

By transitivity,

⇡ET(s
ET)� ⇡EO(s

EO),

i.e., ⇡⇤
ET

� ⇡⇤
EO

. ⌅

Impact on the Regular Group

�ET
r =

1� cET

r

1� �rsET
=

�rsET

1� �rsET
,

�EO
r =

1� cEO

r

1� �rsEO
=

�psEO

1� �rsEO
.

Since

sET � sEO,�r � �p

therefore,
�rsET

1� �rsET
� �rsEO

1� �rsEO
� �psEO

1� �rsEO
,

i.e, �ET
r � �EO

r .

Since cET

p , cEO

p � 1� �rs, we have �ET

r = �EO

r = 1. ⌅

Impact on the Protected Group

�ET
p =

1� cET

p

1� �psET
=

�rsET

1� �psET
,

�EO
r =

1� cEO

p

1� �psEO
=

�psEO

1� �psEO
.

Since

sET � sEO,�r � �p,

we have �ET
p � �EO

r . ⌅
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B.2 Large Expected Loss

In this section, we show that our results hold for the case of large expected loss, i.e.,

�p > ↵p +
1� �ps

1� �rs
↵r.

From the analysis in section 3, we know that in this case

cET

p = cET

r = 1� �ps, ⇡ET(s) =
↵p�ps

1� �ps
+

↵r�ps

1� �rs
� ⌧(s);

cEO

p = 1� �ps, c
EO

r = 1� 1� �rs

1� �ps
�ps, ⇡EO(s) =

↵p�ps

1� �ps
+

↵r�ps

1� �ps
� ⌧(s).

Learning

The derivative of the two profit functions are:

⇡0
ET

(s) =
↵p�p

(1� �ps)2
+

↵r�p
(1� �rs)2

� ⌧ 0(s);

⇡0
EO

(s) =
↵p�p

(1� �ps)2
+

↵r�p
(1� �ps)2

� ⌧ 0(s).

Therefore,

⇡0
ET

(s)�⇡0
EO

(s) =
↵r�p

(1� �rs)2
� ↵r�p

(1� �ps)2
� 0.

By the statement shown in the proof of Theorem 1, we have sET � sEO. ⌅

Impact on the decision maker

For any given s2 [0, 1

2�r
], we have

⇡ET(s)�⇡EO(s) =
↵r�ps

1� �rs
� ↵r�ps

1� �ps
� 0

Therefore,

⇡ET(s
EO)� ⇡EO(s

EO).

Since sET is the optimal amount of learning e↵ort under ET,

⇡ET(s
ET)� ⇡ET(s

EO).

By transitivity,

⇡ET(s
ET)� ⇡EO(s

EO),

i.e., ⇡⇤
ET

� ⇡⇤
EO

. ⌅
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Impact on the Regular Group

�ET
r =

1� cET

r

1� �rsET
=

�psET

1� �rsET
,

�EO
r =

1� cEO

r

1� �rsEO
=

�psEO

1� �psEO
.

Since

sET � sEO,�r � �p

therefore,
�psET

1� �rsET
� �psET

1� �psET
� �psEO

1� �psEO
,

i.e, �ET
r � �EO

r .

As cET

p , cEO

p � 1� �rs, we have �ET

r = �EO

r = 1. ⌅

Impact on the Protected Group

�ET
p =

1� cET

p

1� �psET
=

�psET

1� �psET
,

�EO
r =

1� cEO

p

1� �psEO
=

�psEO

1� �psEO
.

Since

sET � sEO

we have �ET
p � �EO

r . ⌅


	Introduction
	Equal Treatment versus Equal Impact
	Main Results Synopsis
	Contributions

	Model
	Analysis
	Equal Treatment
	Equal Opportunity

	Comparisons
	Learning
	Impact on the Decision Maker
	Impact on the Regular Group
	Impact on the Protected Group

	A General Fairness Notion
	Robustness Check Under Additional Features
	Competition
	Applicants' Response

	Conclusion
	Proofs of Results
	Proofs of the Results in the Two Other Cases
	Medium Expected Loss
	Large Expected Loss


