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Abstract 

We study the impact of a voluntary monitoring program by a major U.S. auto insurer, 
in which drivers accept short-term tracking in exchange for potential discounts on 
future premiums. We acquire a detailed proprietary dataset from the insurer and 
match it with competitor price menus. We frst quantify the degree to which mon-
itoring incentivizes safer driving and allows more accurate risk-based pricing. We 
then model the demand and supply forces that determine the amount of information 
revealed in equilibrium: structural demand estimates capture correlations among 
cost and demand for insurance and for monitoring; a dynamic pricing model links 
the frm’s information on driver risk to prices. We fnd large proft and welfare gains 
from introducing monitoring. Safer drivers self-select into monitoring, with those 
who opt in becoming 30% safer when monitored. Given resource costs and price 
competition, a data-sharing mandate would have reduced short-term welfare. 
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New technologies and data privacy regulations have led to a proliferation of direct 
transactions of consumer data. Firms directly incentivize consumers to voluntarily 
reveal information, while keeping the collected data as proprietary. How does 
this type of data collection infuence frm proft and consumer welfare? 

In this paper, we develop an empirical framework to answer this question and 
quantify the impact of an auto-insurance monitoring program (“pay-how-you-drive”) 
in the U.S. New customers are invited to plug a simple device into their cars, which 
tracks and reports their driving behavior for up to six months (Figure A.1). In ex-
change, the insurer uses the data to better assess accident risk and adjust future 
premiums. Unlike most traditional pricing factors such as age or claim history, 
monitoring data is not shared with other frms. In 2017, insurers serving over 
60% of the $267 billion U.S. auto insurance industry o˙ered monitoring programs.1 

Similar programs have been introduced in other industries, such as life insurance 
and lending (Figure A.2).2 Despite this growing relevance, empirical evidence on 
the economic impact of monitoring programs or other types of direct transactions 
of consumer data is sparse. 

We construct a novel dataset by merging proprietary individual-level data from a 
major U.S. auto insurer (hereinafter referred to as “the Firm”) with prices charged 
by its competitors. The resulting panel data details drivers’ characteristics, the set 
of price menus that they face from top insurers, insurance contracts purchased, 
and realized insurance claims. Our research window covers the introduction of the 
frm’s monitoring program. For each driver who opts in, we observe a monitoring 
score and the corresponding premium adjustments. Taken together, our analysis 
uses a panel dataset of over 1 million drivers and 50 million insurance quotes. 

We take a two-step approach in our empirical analysis. First, we evaluate the mon-
itoring technology by quantifying its ability to both incentivize safer driving and 
allow more accurate risk-based pricing. Second, we model the demand and supply 
forces that shape the amount of information revealed in equilibrium. Our demand 
model jointly captures self-selection into monitoring, into coverage plans, and into 
the Firm. On the supply side, proprietary data allow the Firm to raise markups, but 
it faces resource costs and price competition to “produce the data in the frst place” 
(Posner 1978). We capture both factors with a two-period pricing model that make 
the Firms’ information on driver risk dependent on prices. Our model allows us 
to jointly characterize market and information structures in counterfactuals. Us-

12017 annual report of the National Association of Insurance Commissioners. 
2The Vitality program from life insurer John Hancock tracks and rewards exercise and health-related behaviors. Ant 

Financial incentivizes users to conduct more personal fnance transactions in exchange for borrowing discounts. 
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ing this, we evaluate the impact of introducing monitoring, optimal pricing for the 
program, and a counterfactual regulation that eliminates proprietary data.3 

We fnd three main results: (i) data collection changes consumer behavior. Drivers 
become 30% safer when monitored. (ii) Safer drivers are more likely to opt in, even 
holding fnancial risk and rewards fxed. (iii) But monitoring take-up remains low 
due to both demand frictions against monitoring and attractive outside options 
from other insurers. Overall, compared to a counterfactual with no monitoring, 
short-term consumer welfare and proft both increase. Forcing the frm to make 
monitoring data public would have done the opposite and reduced the amount of 
monitoring information revealed by consumers in equilibrium. 

We start with a pair of reduced-form facts that characterize the relationship be-
tween consumers’ accident risk and behavior under the monitoring technology. 
We frst show that drivers become safer when monitored – an incentive e˙ect. 
Monitoring is only done during the frst semester of insurance for any new cus-
tomer who opts in. We capture the corresponding within-driver across-period 
variation in claims with a di˙erence-in-di˙erences estimator. We fnd that the av-
erage opt-in driver becomes 30% safer when monitored. However, this incentive 
e˙ect only explains 64% of the risk di˙erence between monitored and unmoni-
tored groups in the frst period. Furthermore, monitoring scores remain highly 
predictive of risk in subsequent periods conditional on observables. These pat-
terns suggest that the monitoring program captures previously unobserved risk 
di˙erences across consumers, driving advantageous selection into monitoring. 

The bulk of our analysis relies on a structural model of demand. In order to capture 
the correlation between cost, demand, and monitoring, we adopt a choice frame-
work with three interrelated parts. First, a stochastic cost model maps claims into 
drivers’ latent risk types. It also explains how risk covaries with observable char-
acteristics and how it changes during monitoring. Second, a signal model formal-
izes how monitoring scores can further inform the Firm about driver risk. Third, 
a choice model connects consumers’ information (monitoring opt-in) and prod-
uct (insurer and coverage) choices by mapping both into a unifed set of demand 
primitives. 

Taken together, the model allows monitoring opt-in to depend on several forces. 
Drivers anticipate risk reduction during monitoring. Meanwhile, safer drivers ex-

3The General Data Protection Regulation (2016) in the EU aims to curb the accumulation of proprietary data by allow-
ing consumers to rescind consent and take their data to other frms, and by requiring frms to be transparent about how 
consumer data is used in pricing (see EUGDPR (2018)). Similar regulatory proposals are being considered in the U.S. (see 
press release NTIA (2018)). 
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pect higher future discounts, but the monitoring signal noise raises reclassifcation 
risk. Lastly, drivers incur unobserved privacy, e˙ort, or decision costs from being 
monitored. We model these jointly with a disutility term for monitoring. 

To achieve this, our model augments the canonical insurance framework a la Co-
hen and Einav (2007) to feature inertia costs (path dependence in choices), as well 
as heterogeneous monitoring disutility and renewal price expectation across un-
observed consumer risk types. Identifcation of demand parameters leverages rich 
time and geographic variation in prices and in coverage options, conditional on 
other observables used in frms’ pricing rules. This includes variations in the eli-
gibility and pricing of the monitoring program, which pin down monitoring disu-
tility. Our estimates produce a close ft to the empirical distribution of monitoring 
scores and opt-in choices. It also makes good predictions out-of-sample, in which 
the mandatory minimum coverage changed in one (U.S.) state. 

We fnd that the average driver su˙ers a $93 disutility from being monitored, con-
tributing to the low opt-in rate in the data. But this disutility is lower for safer 
drivers, enhancing advantageous selection beyond what is implied by fnancial 
risk and rewards alone. Meanwhile, the average driver forgoes $284 in fnancial 
gain annually by not exploiting outside options from competitors. This suggests 
that the market may remain imperfectly competitive even with perfect information 
on driver risk. Further, drivers are only modestly risk-averse. Monitoring score’s 
(signaling) precision therefore has little infuence on monitoring demand. 

To evaluate the impact of the monitoring program, we compare the current regime 
with a counterfactual one without monitoring, holding baseline prices fxed.4 In-
troducing monitoring raises both frm proft and consumer welfare. Total annual 
surplus increases by $13.3 (1.7% of premium), 64% of which can be attributed to 
the risk reduction during monitoring. Without the incentive e˙ect, overall proft 
drops in the market, highlighting that better information facilitates direct cream-
skimming that push the market towards the frst-best benchmark.5 

Next, we propose a pricing model that endogenizes the production of monitoring 
data and therefore the frm’s information set. This is used to study (i) the optimal 
pricing of the monitoring program given its observed marginal cost, and (ii) the 
equilibrium impact of a mandate forcing the frm to share its proprietary data with 
competitors. The two-period two-product model features an “invest-and-harvest” 

4Appendix B shows that the frm did not raise prices for unmonitored drivers when introducing monitoring. 
5This is in contrast to Rothschild and Stiglitz (1976), in which cream-skimming leads to unraveling when asymmetric 

information is present and fxed, while frms conduct competitive screening by o˙ering lower coverage. 
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pricing dynamic.6 Holding fxed competitor prices, the Firm reaches optimal pric-
ing by reducing ex-post rent-sharing with monitored drivers while increasing ex-
ante e˙ort to produce monitoring data. The latter is achieved primarily with a 
large opt-in discount because price competition limits the Firm’s ability to prof-
itably surcharge unmonitored drivers. Moreover, a regulation that requires the 
frm to share monitoring data curbs ex-post markups but undermines ex-ante in-
centives for the Firm to produce monitoring data. Despite driver risk reduction 
during monitoring and high frm-switching inertia (imperfect competition), the 
Firm reduces the incentives it o˙ers for monitoring opt-in. Compared to the equi-
librium without data-sharing, this leads to a large drop in monitoring opt-in rate. 
Annual consumer welfare and frm proft both decrease. 

Related Literature Our research contributes to several literatures. First, we ex-
tend the empirical literature on insurance and selection markets. We are among the 
frst to investigate frms’ strategy to acquire – and consumers’ willingness to reveal 
– risk information, formalizing the linkage between (product) market and infor-
mation structures.7 Specifcally, consumers self-select into monitoring, while the 
frm can unilaterally mitigate information asymmetry and enhance market power 
through monitoring. Our work thus extends the literature on competitive screen-
ing with predetermined asymmetric information on consumer risk (Rothschild 
and Stiglitz 1976; Hendren 2013; Jeziorski, Krasnokutskaya, and Ceccarini 2019) 
or on changes in public information in the market.8 

Second, we are related to the literature on dynamic contracting and information 
revelation. Monitoring allows the Firm to learn about consumer risk over time 
(Hart 1983; Cohen 2012; Hendel 2017). We empirically show that this distorts con-
sumer incentives and behavior.9 Third, our study contributes to the economics 

6This is common in markets with high switching costs, see Beggs and Klemperer (1992), Farrell and Klemperer (2007), 
and Dubé, Hitsch, and Rossi (2009). 

7Screening is multi-dimensional in our setting (Cohen and Einav 2007; Fang, Keane, and Silverman 2008; Barseghyan, 
Molinari, O’Donoghue, and Teitelbaum 2013; Handel 2013; Handel, Kolstad, and Spinnewijn forthcoming). We also allow 
consumers to be forward-looking, related to studies on reclassifcation risk (Hendel and Lizzeri 2003; Handel, Hendel, and 
Whinston 2015; Aron Dine, Einav, Finkelstein, and Cullen 2015). 

8Regulations such as community-rating mandates (limits to risk categorization) are most common (Finkelstein, 
Poterba, and Rothschild 2009; Einav, Finkelstein, and Schrimpf 2010; Einav, Levin, and Jenkins 2012; Agarwal, Chom-
sisengphet, Mahoney, and Stroebel 2015; Cox 2017; Nelson 2018). Lewis (2011) and Tadelis and Zettelmeyer (2015) examine 
disclosure rule change in online auctions. Mahoney and Weyl (2017) posit that market power further depresses quantity 
under adverse selection, which is contradicted empirically by Crawford, Pavanini, and Schivardi (2018)’s study in the Italian 
small-business lending market. 

9A related theory literature focuses on price discrimination enabled by consumers’ online purchase histories. See Rossi, 
McCulloch, and Allenby (1996), Acquisti and Varian (2005), Taylor (2004), Fudenberg and Villas-Boas (2006), and Bonatti 
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of privacy by characterizing the equilibrium (implicit) price and quantity of con-
sumer information in a competitive market, as well as its social value. Specifcally, 
we extend the literature by studying not only consumers’ privacy choices,10 but 
also how their choice environments are a˙ected by product market competition 
and by data property rights (Posner 1978; Stigler 1980; Hermalin and Katz 2006). 

The rest of the paper proceeds as follows. Section I describes our data and pro-
vides background information on auto insurance and the monitoring program we 
study. Section II conducts reduced-form tests that measure monitoring’s ability to 
reduce risk and to mitigate information asymmetry. Section III presents our struc-
tural model, identifcation arguments, and estimation procedures to recover key 
demand and cost parameters. Section VI discusses estimation results and counter-
factual simulation procedures for welfare analyses. Section V proposes a model of 
monitoring pricing and investigates equilibrium implications for optimal pricing 
and information sharing. Section VI concludes. 

1 Background and Data 

In this section, we provide background information on U.S. auto insurance and the 
monitoring program we study. We also describe our datasets. 

and Cisternas (2018). Some empirical work have looked at monitoring among truck drivers and consumer lending (Hubbard 
2000; Wei, Yildirim, Van den Bulte, and Dellarocas 2015). Soleymanian, Weinberg, and Zhu (2019) is closest to our setting. 
They analyze driving data, as opposed to claim outcomes, from a U.S. auto insurance monitoring program and fnd that 
monitoring reduces several dimensions of unsafe driving behaviors but not the amount driven. Another literature focus on 
usage-based pricing (Narayanan, Chintagunta, and Miravete 2007; Chung, Steenburgh, and Sudhir 2013; Lambrecht, Seim, 
and Skiera 2007; Liu, Montgomery, and Srinivasan 2014; Nevo, Turner, and Williams 2016). The main di˙erence being that 
the temporary nature of monitoring and its dynamic price impact turn our problem from a standard moral hazard one into 
one with a signaling equilibrium. 

10See Milgrom (1981), Jovanovic (1982), Jin and Leslie (2003), Dranove and Jin (2010), and Lewis (2011) about imperfect 
advantageous selection in information disclosure. See Goldfarb and Tucker (2011), Goldfarb and Tucker (2012), Tucker 
(2012), Acquisti, John, and Loewenstein (2012), Burtch, Ghose, and Wattal (2015), Acquisti, Taylor, and Wagman (2016), 
Kummer and Schulte (2019), and Lin (2019) for privacy preference. 
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1.1 Auto Insurance 

Auto insurers in the U.S. collected $267 billion dollars of premiums in 2017.11 There 
are two main categories of insurance: liability and property. Property insurance 
covers damage to one’s own car in an accident, regardless of fault. Liability insur-
ance covers injury and property liability associated with an at-fault accident. In 
all states we study, liability insurance is mandatory, with the minimum required 
coverage ranging from $25,000 to $100,000.12 

Insurance prices are heavily regulated. Major insurers collect large amount of con-
sumer information in risk-rating, most of which is public or shared across frms. 
Firms are required to publish flings that detail their pricing algorithms. In most 
states, the insurance commissioner needs to approve such flings.13 An important 
focus of the regulator is deterring excessive price discrimination based on demand 
elasticity.14 In general, a pricing rule can be summarized by the following equation, 
where price p for a (single-driver-single-vehicle) policy choosing certain liability 
coverage is:15 

p = base rate × driver factor × vehicle factor× location factor 
× tier factor × coverage factor + markups and fees (1) 

Within each frm, price variation is based on observable characteristics, time, and 
coverage choice. Base rates vary only by state and calendar time. Driver, vehi-
cle, and location factors include age, vehicle model, and zipcode-level population 
density, etc. This information is verifed and cross-referenced among various pub-
lic and industry databases. Tier factors incorporate information from claim and 
credit databases, which include accident, traÿc violation (DUI, speeding, etc.), or 
fnancial (delinquency, bankruptcy, etc.) records in the past.16 Choosing a higher 
coverage scales prices by a positive factor. Lastly, frms charge a fee that includes 
markups and overhead for operational and marketing expenditures.17 

As in Figure 1a, new customers to the frm must report observable characteristics at 
time t = 0. This facilitates risk rating, based on which the frm generates individu-
alized price menu. Consumers make coverage choice or go to other frms. There is 

11This is according to the National Association of Insurance Commissioners. This number is calculated as premiums 
from property annual statements plus state funds. 

12All states that we study follow an “at-fault” tort system and mandate liability insurance. In reality, liability insurance 
is specifed by three coverage limits. For example, 20/40/10 means that, in an accident, the insurer covers liability for bodily 
injuries up to $40,000 overall, but no more than $20,000 per victim; it also covers liability for property damage (cars or other 
infrastructure) for up to $10,000. We quote the highest number here. 

13Some states follow a “use-and-fle” system, which means that insurers can seek pricing approval ex-post as long as 
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(a) (b) 

(c) (d) 

Figure 1: Timing Illustration of Auto Insurance and Monitoring Program 

no long-term commitment in U.S. auto insurance. Each period lasts for six months, 
at the end of which consumers decide to stay or leave given the frm’s renewal 
quotes provided at the end of month fve. If an auto accident occurs (Figure 1b), 
the insured fles a claim immediately and, given evaluation and adjustment by 
the insurer, gets reimbursed and pays out-of-pocket accordingly. Meanwhile, the 
claim is recorded in industry databases in real time. The consumer will likely face 
a claim surcharge at renewal or higher prices when switching to other frms. 

Dataset 1 - Panel data from an auto insurer Our frst dataset comes from a na-
tional auto insurer in the U.S. It is a panel that spans 2012 to 2016, and covers 22 
states. For tractability, we focus only on single-driver-single-vehicle insurance poli-
cies sold online or via phone. Nonetheless, we observe more than 1 million drivers 

any price changes are refected in public flings. 
14“Price optimization” on top of risk rating is typically not allowed by state insurance commissioners. 
15See Appendix H, e.g. Figure H.1. 
16See Appendix H, Figures H.7 and H.8 
17The latter is often referred to as the loading factor in the literature. 
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for an average duration of 1.86 years (3.73 periods)18. The date range spans periods 
pre- and post-introduction of monitoring. 

At the beginning of each period, we observe each driver’s observable characteris-
tics19 as well as the price menu o˙ered, which include all available options from 
the frm and their prices. We also see the driver’s coverage choice. For simplicity, 
we limit our attention to liability coverage (limits). Not only is it the most expen-
sive coverage for the average driver, its mandatory nature also strongly infuences 
frms’ competitive strategy and monitoring’s allocative beneft. These cover auto 
accidents involving two or more parties, in which the policy holder is at least par-
tially at-fault. As such, our focus also mitigates concerns about under-reporting.20 

During renewals, those with a claim will experience a surcharge that ranges from 
10% to 50% (Figure A.4).21 Otherwise, the average driver experiences close to no 
price change in a typical renewal period. Overall, about 5% to 20% of drivers leave 
the frm after each period.22 

Table 1(a) presents summary statistics of prices, coverage levels, and claims. In 
addition, the average driver is 33 years old, drives a 2006 vehicle, lives in a zipcode 
area with average annual income of $142,000, and has 0.3 recorded accidents in the 
past 5 years. Per six-month period, he pays $380 in liability premium and fles 0.05 
liability claims (1 in ten years). We also observe his assigned risk class, which is 
the premium calculated for him before coverage factor, markups, and fees. 

Dataset 2 - Price menus of competitors based on price flings To understand 
competition, we need to account for drivers’ outside options. Therefore, we com-
plement our main dataset with the frm’s competitor price menus. Our data in-
clude quotes from all liability coverage options o˙ered by the frm’s top fve com-
petitors in each state based on price flings, harnessed using Quadrant Information 
Services’ proprietary software. We are able to achieve precise matches based on a 
rich set of consumer characteristics, including state and calendar day.23 Table 1(b) 

18The panel is right-censored, but the censoring is plausibly uninformative. 
19Main observables include driver gender, age, martial status, education, out-of-state status, home-ownership, vehicle 

model, year, and fnancing, license and vehicle history, violation and accident records, credit history, prior insurance history, 
and zipcode population density. See Table A.3 for a list of observables used in our estimation procedure. 

20In contrast, claim fling for single-car accidents is almost entirely discretionary. 
21The surcharge varies only based on existing claims and traÿc violation records. 
22The frst renewal sees some one-time discounts being removed, such as those for online processing. 
23We match based on available observable characteristics including those in Table A.3, violation records, zipcode, ve-

hicle make and model. 
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(a) Premium, Coverage and Claims (6-month Period) 

Statistic Mean St. Dev. Min Median Max 

Total premium ($) 632 364 69 548 22,544 
Liability premium ($) 380 208 32 336 10,177 
Risk class ($) 255 172 50 212 9,724 

Total claim ($) 323 2,822 0 0 544,814 
Claim count 0.18 0.67 0 0 12 
Liability claim ($) 164 2,209 0 0 513,311 
Liability claim count 0.05 0.32 0 0 7 

Liability coverage ($000) 126 119 25 60 500 
Liability coverage (index) 2.10 1.15 1 2 8 
Mandatory minimum ind. 0.36 0.48 0 0 1 

Renewal count 1.76 2.01 0 1 9 
Calendar year (index) 2.66 1.38 0 3 5 

Notes: Risk class is the pre-markups-pre-fees premium for liability coverage. Coverage index ranks coverage 
options in ascending order and sets the mandatory minimum in each state as 1. 

(b) By Coverage (a representative U.S. State) 

Liability coverage ($000) 40 50 100 300 500 

Quotes ($) 335.14 343.43 382.03 422.13 500.48 
- Competitor 1 482.68 506.11 564.34 626.81 730.56 
- Competitor 2 263.14 279.15 314.46 347.69 405.22 
- Competitor 3 319.42 348.97 388.48 428.64 464.36 
- Competitor 4 511.24 567.58 613.74 682.87 790.83 
- Competitor 5 421.84 363.96 403.64 433.17 497.79 

Share within frm (%) 19 39 20 19 3 

Liability claim ($) 154.98 155.54 154.16 143.43 107.54 
Liability claim count 0.05 0.05 0.04 0.03 0.03 

Notes: This table reports the average quotes and claims of the Firm and its top 5 competitors by market share. 
We focus on one U.S. state to avoid pooling across states with di˙erent coverage options. In this state, the 
mandatory minimum and the most popular coverage changed from $40,000 to $50,000 during the research 
window. 

Table 1: Summary Statistics 
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compares the quotes for the fve most common liability coverage options across 
competitors in a representative U.S. state. Due to large menu size, we end up with 
millions of quotes per state. While our reduced-form analysis and our cost model 
estimation utilize the full dataset, our demand estimation relies only on three ad-
jacent mid-western states, with 283,000 drivers and over 50 million quotes. 

Looking ahead, observing competitor prices enables us to understand consumers’ 
inertia to switch frms. In counterfactual analyses, we can then enumerate the full 
market (by simulating competitor quantities) and capture price competition under 
various information environments. 

1.2 Monitoring Program 

Our research focuses on the Firm’s one-time and voluntary monitoring program 
for new customers. The monitoring process is summarized in Figures 1c and 1d. 
When customers frst arrive, they choose whether to opt into monitoring imme-
diately before seeing the coverage price menu. They are provided with informa-
tion on the kinds of driving behavior that are tracked and rewarded, although the 
exact discount schedule is opaque. Specifcally, high mileage driven, driving at 
night, high speed, and harsh braking are highlighted as monitored behaviors. The 
frm also spells out an opt-in discount applied on the frst period premium as well 
as the mean and range of renewal discount that will be applied to all subsequent 
(renewal) periods.24 

Opt-in drivers will receive a simple device via mailed within a week. They then 
have until the end of month fve to accumulate around 100-150 days of monitored 
driving. If completed, the Firm evaluates their performance and includes an ap-
propriate renewal discount when giving out renewal quotes.25 If an accident oc-
curs, monitoring data do not infuence claim reporting, handling, or future pre-
mium adjustment. Monitoring continues after any disruptions from the accident. 

During the monitoring period, monitored drivers receive real-time feedback on 
their performance. The Firm posts key statistics of recorded trips online. It also 

24The average opt-in discount is 4.6% in our estimation dataset. We cannot disclose the renewal discount range exactly, 
but it centers around 7% and spans zero (-15% to 40%, for example). 

2527% of drivers who start monitoring do not fnish. Our main analysis ignores these drivers and focus on consumers’ 
decision to start and fnish monitoring. 97% of non-fnishers drop out during a two-month grace period (no penalty) in which 
the frm sends out emails about projected renewal discounts. Afterwards, dropping out results in the maximum amount 
of renewal surcharge. Our analysis does not account for the costs and benefts associated with this learning process. 
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o˙ers more active reminders, such as sending text messages, mobile app push no-
tifcations, or beeping from the monitoring device when punishable behaviors are 
records. 

Nevertheless, monitoring data is proprietary. We verify this by confrming that the 
Firm’s monitoring information appear nowhere in any of its competitors’ price fl-
ings. In reality, other frms face many practical hurdles in getting and using mon-
itoring information. First, verifying monitoring outcome with consumers alone is 
hard without heavy manual labor.26 More importantly, frms may have very dif-
ferent preexisting risk assessment, underlying costs, and markups for serving the 
same type of consumers.27 This greatly reduces how other frms can learn about 
consumer risk with the discount or price charged by our frm. 

The proprietary nature of monitoring data also prevents us from observing details 
of competitive monitoring programs. Public flings contain very limited informa-
tion on these programs; even the monitoring introduction dates often far lags be-
hind the proposed dates in public flings. However, during our research window, 
monitoring takes up a small fraction of the market in general. In addition, until the 
second half of 2016, the frm is the only one o˙ering monitoring in all three states 
in our estimation sample. We therefore do not consider this as a signifcant factor 
infuencing our empirical results. 

Dataset 3 - Monitoring Our data on the frm’s monitoring program includes its 
pricing schedule, drivers’ opt-in choices, and realized monitoring scores and re-
newal discounts for monitored drivers. The frm’s monitoring pricing is discussed 
in Section 5 as well as in Appendix B. Across calendar time and states, the average 
monitoring fnish rates are around 10 − 20% (Figure B.1). 

Monitored drivers’ performance is summarized by a score, the distribution of which 
is plotted in Figure 2(a). The more punishable behavior recorded for a given moni-
tored driver, the higher her score. We treat this score as the output of the monitoring 
technology that provides additional information on drivers’ future accident risk. To 
see this, Figure 3 plots the average claim count in period two based on monitoring 
choice and outcome in period one. Compared to unmonitored drivers, those who 
fnished monitoring are 22% safer. Among fnishers, the quintile of their monitor-
ing score strongly predicts their second-period risk, which ranges from 60% better 

26According to the privacy policy agreed upon when opting into monitoring, the frm cannot share personally identi-
fable data. 

27Cost di˙erences can come from competitive creaming or claim management. 
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(a) (b) 

Figure 2: Monitoring Score and Renewal Discounts 
Notes: (a) plots the density of the (natural) log of monitoring score for all monitoring fnishers. The lower the score 
the better. Drivers that received zero score plugged in the device continuously for enough days but did not drive. 
We ignore these drivers in all subsequent tests. (b) plots the benchmarked (per frm request) distribution of renewal 
price change at the frst renewal, by monitoring group. 1x represents the average renewal price change factor for the 
unmonitored group. The one-time monitoring opt-in discount is taken out in order to isolate the renewal discount 
for monitored drivers. “Mon” and “UnMon” are monitored and unmonitored groups, while “Mon (pre-disc)” is the 
renewal price change for monitored drivers without the monitoring discount. 

Figure 3: Comparison of subsequent claim cost across monitoring groups 
Notes: This is a binned-scatter plot comparing average claim count of the frst renewal period (t = 1, after monitoring 
ends) across various monitoring groups. The benchmark is the unmonitored pool, which is the “opt-out” group. 
Group “opt-in” includes all monitored drivers that fnished the program per defnition in section 1.2. Groups “1” to 
“5” breaks down the “fnish” group based on the quartile of the drivers’ monitoring score. Lower monitoring score 
means better performance. 
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to 40% worse than the opt-out pool. 

Monitoring fnishers face the same renewal choices as other drivers, except that 
their renewal quotes include appropriate monitoring discounts or surcharge. Fig-
ure Figure 2(b) compares the distribution of frst-renewal pricing change across 
monitoring groups. We benchmark the baseline price change to center around one. 
On average, monitored drivers received a 7% discount. Moreover, the monitoring 
discount is persistent after monitoring ends (Figure A.3). This is consistent with 
the frm’s upfront communication with consumers during their opt-in decision. 

2 Reduced-form Evidence 

This section documents two reduced-form facts on the degree to which monitoring 
mitigates incentive and information problems. Drivers that opt into monitoring 
become safer when they are monitored. Despite this change in behavior, monitor-
ing still reveals previously unobserved risk di˙erences across drivers, which leads 
to advantageous selection into monitoring. 

2.1 Risk Reduction and the Incentive E˙ect 

If monitoring technology is e˙ective, drivers may want to appear safer when mon-
itored.28 If this incentive e˙ect is important and if drivers’ risk is modifable, then 
we should expect the same drivers to be riskier in unmonitored periods than in the 
monitored one. 

Since monitoring is temporary, we can directly measure this e˙ect by comparing 
claim outcome for the same monitored drivers before and after monitoring ends. 
This exercise requires us to balance our panel. We focus on the frst three peri-
ods (18 months).29 There may be spurious trends in claim rate across periods that 
are irrelevant to monitoring. We account for this e˙ect with exhaustive observable 
controls and a di˙erence-in-di˙erences approach. Among monitored drivers, we 

28This e˙ect is studied in Fama (1980) and Holmström (1999). A similar setting is online tracking of consumers’ purchase 
history (Taylor 2004; Fudenberg and Villas-Boas 2006). If consumers know that buying expensive items online may label 
them as inelastic shoppers and lead to higher prices in the future, they may refrain from purchasing those items online. 

29In our robustness check, we show results with only two periods. Attrition is about 10 − 15% per period and our data 
is right-censored, so balancing the panel eliminates 46% of our data. 
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take the frst di˙erence in claim counts30 between post-monitoring and monitored 
periods. This di˙erence is then benchmarked against its counterpart among un-
monitored drivers (control group). 

0 Cit =α + τmi + ω1post,t + θmhmi · 1post,t + x itβ + �it (2) 

Here, i, t index driver and period in our panel dataset. C denotes claim count, and 
mi is a driver-specifc indicator for whether i has fnished monitoring. x is a rich 
set of observable characteristics that the frm uses in pricing.31 

Our main specifcation includes only monitored drivers who fnish monitoring 
in the frst period. To test for parallel trends of the monitored and unmonitored 
groups, we conduct the same test in subsequent periods after monitoring. In real-
ity, some monitored drivers do not fnish monitoring until subsequent periods.32 

To make use of this plausibly exogenous variation in monitoring duration and tim-
ing across the frst and subsequent periods, we introduce another specifcation, 
adding additional variation in relative monitoring duration in the pre-period, zi. 
It is calculated as the fraction of days monitored in the frst period minus the same 
fraction in post periods.33 

Results are reported in Table 2. We fnd a large and robust incentive e˙ect. Column 
(3) corresponds to the specifcation in Equation 2, with the addition of insurance 
coverage fxed e˙ects.34 It shows that monitored drivers’ average claim count is 
0.009 or 23% lower during the monitoring period, compared to after it. Adjusting 
for the average monitoring duration of frst-period monitoring fnishers (142 days), 
a fully-monitored period would be 29.5% less costly to insure for the same driver. 
Incorporating additional variations in monitoring duration generates similar re-
sults (Column (6)). We test for parallel trends between the monitored and unmon-
itored groups by repeating the baseline specifcation in subsequent (unmonitored) 

30Throughout our reduced-form analyses, we use claim count as our cost proxy. This is because claim severity is ex-
tremely noisy and skewed. This is also common practice in the industry, where many risk-rating algorithms are set to 
predict risk occurrence only. We therefore present our estimates mostly in percentage comparison terms. 

31See Table ?? for a list of main observable characteristics. We also include controls for trends and seasonality including 
third-order polynomials of the calendar year and the month when each driver i starts period t with the frm. 

32Based on interviews with managers, among fnishers, delays in fnishing is predominantly caused by device malfunc-
tion or delayed start of monitoring due to mailing issues, etc. 

33As discussed above, some drivers started monitoring but dropped out without fnishing. This would bias our results 
if claims itself leads to non-fnish. Out of more than 10,000 claims we observe among monitored drivers, only 13 occurs 
within 7 days before or after monitoring drop-out. In Table C.1, we further test the robustness of our results by repeating 
our main analyses on all drivers who started monitoring. This implies larger moral hazard e˙ect adjusting for monitoring 
duration. However, if some monitored drivers drop out as they discover that they cannot change their risk, the incentive 
e˙ect estimate would be contaminated by this selection e˙ect. 

34This soaks up any coverage adjustments between periods. 
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periods. As shown in Columns (7-10), no di˙erential claim change across periods 
can be detected between the two groups. 

We discuss two important caveats of our results. First, monitoring mitigates moral 
hazard because it signals drivers’ future risk after monitoring as opposed to be-
cause it directly rewards e˙ort (Fama 1980; Holmström 1999). The magnitude of 
risk reduction can be di˙erent in the latter setting.35 On the fip side, our result pro-
vides evidence that at least some drivers are forward-looking and respond greatly 
to future incentives. 

Second, our estimate measures a treatment-on-treated e˙ect. If signifcant hetero-
geneity in the incentive e˙ect exists across drivers and that it infuences consumers’ 
opt-in decision, the e˙ect we fnd may be larger than the population average (or 
the average treatment e˙ect) (Einav, Finkelstein, Ryan, Schrimpf, and Cullen 2013), 
raising external validity concerns in counterfactuals. 36 Our analysis therefore 
maintains the opt-in structure of the monitoring program and do not extrapolate 
to scenarios where the market monitoring rate is high. 

2.2 Private Risk and the Selection E˙ect 

Are drivers who choose monitoring safer than those who do not? Table 3 reports 
the results of regressing claim count in the frst period (t = 0) on monitoring indi-
cator, controlling for the same variables as in Column (3) of 2. The incentive e˙ect 
only accounts for 64% of the risk di˙erences across the two group. Had the mon-
itored drivers not been monitored in the frst semester, they would still be safer 
than the average unmonitored driver. It thus suggests that drivers possess pri-
vate information on their own risk. Therefore, there may be strong advantageous 
selection into monitoring. 

Selection into monitoring suggests that the technology is e˙ective at capturing pre-
viously unobserved di˙erences in drivers’ risk types, further allowing the frm to 

35We are also unable to disentangle the “Hawthrone e˙ect” from drivers’ responsiveness to fnancial incentives in our 
estimate. Since consumers must be aware of the data collection to be incentivized for it, we consider this e˙ect as part of 
the incentive e˙ect. 

36In equilibrium, the frm assesses the signal monitored drivers send based on future claim records when drivers are no 
longer monitored, which corresponds to the renewal discount it gives. Therefore, risk reduction is compensated only to the 
extent to which it correlates with drivers’ future risk type. If safer drivers’ risk levels are also more responsive to incentives, 
as suggested by a pure e˙ort cost model for example, selection on the incentive e˙ect can be important. In particular, perfect 
revelation of a continuum of risk types is possible, as characterized in Mailath (1987), with a monotonicity condition similar 
to the single-crossing condition. However, consumers likely have multidimensional heterogeneity in reality, so drivers’ 
performance during monitoring may not perfectly reveal their risk types (Frankel and Kartik 2016). 
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Table 3: First Period Claim Comparison 

Dependent variable: 
Claim Count (t = 0) 

constant −0.004∗∗ 

(0.009) 

monitoring indicator −0.014∗∗∗ 

(0.001) 

observable controls Y 
Notes: This table reports results of a regression where the dependent variable is frst period claim count, and the 
independent variables are the monitoring indicator and observable controls. This is done within all frst-period 
fnishers of the monitoring program. This variable is consistent with the monitoring indicator in the incentive 
e˙ect regression (2) (Table 2), so as to facilitate comparison and decomposition. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 

dynamically select safer drivers. The following regression examines both factors. 
It shows how average costs in future (unmonitored) periods vary based on moni-
toring choice and score among all drivers. 

0 Cit = αt + θm,tmi + θs,tsi + x itβt + �it (3) 

Again,m = 1 for monitored drivers who fnished within the frst period. s denotes 
monitoring score, which is normalized among monitored drivers and set to 0 for 
others. The estimates suggest that a monitored driver who scores one standard 
deviation above the mean has a 29% higher average claim count in the frst renewal. 
Further, controlling for claims does not alter our estimate much. The sparsity of 
claims therefore greatly limits its informativeness on driver risk in the short run. 
Figures A.6 and A.7 report θ̂m,t and θs,t for renewal periods t = 1 to 5 (three years). 

In order to further disentangle selection into monitoring and selective attrition, 
or to detect selection across various coverage options, structural assumptions are 
called for. This is because unilateral variation in the pricing of monitoring and cov-
erage options is rare. As in Equation 1, any price revision triggers inter-dependent 
price movements that activate several demand margins at once. Therefore, in the 
next section, we propose a structural model to jointly account for frm, coverage, 
and monitoring choices. 
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3 Cost and Demand Models of Auto Insurance and 
Monitoring 

This section develops a structural model for consumer risk and insurance demand. 
In the frst period, consumers observe their types and make three choices: frm, 
insurance coverage, and monitoring opt-in. Following this, claims are realized; 
the monitoring scores for opt-in drivers are revealed to the frm. Consumers are 
then o˙ered the corresponding renewal price for the second period. 

We describe our model in two parts. First, we characterize choice utility condi-
tional on the realization of claim and monitoring score (“realized choice utility”). 
It features risk aversion, path-dependence (choice inertia and disutility for mon-
itoring), and expectation for future prices. We then describe the data generating 
processes for claims and for monitoring scores in a cost model that features risk 
heterogeneity, the incentive e˙ect, and monitoring score’s signaling precision. We 
can then unify cost and demand factors with an expected utility framework to cap-
ture selection. We also discuss estimation procedures and sources of identifcation 
for key parameters, before demonstrating model ft and validation out-of-sample. 

Realized choice utility Besides consumers’ risk type, our choice model high-
lights three factors. (i) Risk aversion governs both preference for insurance and 
distaste from price fuctuations. (ii) Demand frictions: frm-switching inertia leads 
to imperfect competition among insurers. Consumers’ disutility from being moni-
tored accounts for factors such as privacy or e˙ort cost associated with monitoring. 
They also sustain partial pooling equilibrium, in which only a fraction of the pop-
ulation is monitored. (iii) Future prices contain most of the beneft of monitoring 
and depends on claims and monitoring score. 

Denote consumers, periods and decision menu options (“plans”) by i, t, and d, 
respectively.37 Plans, d = {f, y, m}, consist of frm (f ), coverage (y), and monitoring 
(m) choices. Consumer preferences are characterized by a standard von Neumann-
Morgenstern utility function uidt with absolute risk aversion, denoted by γ. 

Each driver i starts period t with annual income wit and evaluates insurance choices 
entirely based on their impacts on his utility through the consumption term hidt, 
as summarized below. 

37Monitoring takes place in the frst period (t = 0). 
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uidt(C, s) = uγ (wit + hidt(C, s)) (4) 
hidt(C, s) = −pidt − 1d,t−1 · ψidt − e(C, yd) − pidt · Ridt(C, s) (5) | {z } | {z } | {z } 

friction oop renewal price 

where ψidt = 1d,t−1 · η0 + 1fd,t−1 · ηit + 1md · 1t=0 · ξit (6) | {z } | {z } | {z }
baseline inertia frm-switching inertia monitoring disutility 

Consumption h spans a one-year horizon and consists of two types of components: 
upfront costs, p and ψ, and stochastic costs, e(C, y) and R(C, s).38 

pidt is the price for plan d at period t. The term ψidt captures the degree of path-
dependence in consumer choice in monetary terms. This includes a cost of over-
coming inertia: baseline η0 that hinders any choice adjustment (indicated by1d,t−1 = 
1), and a frm-switching inertia ηit that deters consumers from exploiting fnan-
cially lucrative outside options.39 It also includes disutility from monitored, ξit, 
which may refect unobserved factors such as hassle costs and privacy concerns.40 

Out-of-pocket expenditures, e, and renewal prices charged for each plan, Ridt, de-
pend on the realization of claims C and the monitoring score s. Consumer pay 
the portion of claims that exceed the plan’s coverage limit out-of-pocket. Renewal 
prices are adjusted by multiplying two factors: a baseline factor R0,idt(s) that may 
be infuenced by monitoring results, and a surcharge for claims, R1,C . We model 
the baseline factor by with a Gamma distribution with shape parameter βR and 
rate parameter αR,imt(s) that depends on observables and monitoring opt-in. 

Claim and monitoring score Claims arrive according to a Poisson distribution. 
The rate parameter, λimt, has a time-varying mean µλ,imt that depends on observ-
ables x and on monitoring choice m. It also contains an additive error �λ,i that is 
individual-specifc, persistent over time, and log-normally distributed with spread 
σλ. This error captures unobserved risk di˙erences across consumers. Further, 

38We assume that consumers are myopic beyond a one-year (two-period) horizon. This is the simplest model that 
captures the di˙erent types of costs and benefts of monitoring programs. In particular, dynamic premium risk (reclassif-
cation) is incorporated, as higher uncertainty regarding renewal prices diminishes ex-ante utility. Our model can also be 
interpreted as approximating a two-period dynamic model with infnite adjustment costs. See Kim, Sudhir, and Uetake 
(2018) for a fully dynamic approach in estimating linear models with private information and e˙ort provision. 

39These terms capture imperfect competition that supports the observed attrition rate given price dispersion in the data 
(??). Inertia accounts for the search and switching costs as well as potential brand di˙erentiation (Farrell and Klemperer 
2007; Honka 2012; Handel 2013). 

40Monitoring is a one-time o˙ering and choice for new customers, so ξ can only incur at t = 0. 
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each claim has a stochastic cost ̀ , drawn from an independent Pareto distribution. 
The monitoring score s is an informative signal of the consumer’s risk types. For 
opt-in drivers, a score is drawn once after the frst semester, according to a log-
normal distribution with an individual-specifc mean µs,i and precision σs. 

At each period t, consumer i chooses d from his feasible choice set Dit so as to max-
imize her expected utility, subject to a random coeÿcient ζidt on plans o˙ered by 
the monitoring frm f ?, and an independently drawn Type-1 extreme value error 
εidt.41 We evaluate utility using a normalized second-order Taylor approximation 
of vNM utility around income w: 42 

dit = arg max {vidt + εidt} 
d∈Dit 

(7) 

where vidt = EC,s [uidt(C, s)] (8) 
γ � � 

h2 = E [hidt] − E . idt 2 
(9) 

Econometric assumptions and heterogeneity We model individual heterogene-
ity across consumers in key drivers of choice. Heterogeneity is captured by a vector 
of driver attributes xit and individual random e˙ects.43 

Our demand parameters Θd include risk aversion γ, the type I error variance σ, base-
line inertia η0, linear coeÿcients on driver attributes for frm-switching inertia, θη, 
and for monitoring disutility, θξ, as well as parameters that characterize (expecta-
tion for) renewal pricing θR = (θR,0, θR,1): 

ηit = (1, xit)
0 θη 

ξit = (1, xit, ln λit)
0 θξ (

xR 0θR,0 m = 0 it αR,imt(s) = � �0 R xit , s θR,1 m = 1 

In order to fully capture selection into monitoring, we allow monitoring disutility 
to vary based not only on observables but also on unobserved risk λ. Without it, 

41The random coeÿcient ζ is drawn according to an independent normal distribution with mean zero and standard 
deviation σζ . 

42See Cohen and Einav 2007 and Barseghyan, Molinari, O’Donoghue, and Teitelbaum 2013 for further discussion of 
this approximation. The key underlying assumption is that third- or higher-order derivatives are negligible. 

43For each type of parameter, we use a set of driver attributes that is consistent with those used in related actual frm 
R s pricing rules: xit, x and xit i . 
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given an observable type of consumers, the propensity to opt-into monitoring is 
fully determined by the fnancial rewards (lower accident likelihood and potential 
monitoring discounts). To the extent that there is unobserved heterogeneity in pri-
vacy and hassle costs, or misperception of own risk or of the monitoring program, 
θξ,λ can capture it. 

Our cost parameters Θc include linear coeÿcients on driver attributes and moni-
toring status for claim arrival rate, θλ = (θλ,0, θλ,m), as well as for the monitoring 
score θs. In addition, they include the unobserved risk spread for new and old 
drivers, σλ,new and σλ,old, and the monitoring score precision σs, as well as the rate 
and location parameters of the accident loss Pareto distribution, ̀  0 and α`. 

For tractability, we abstract away from the structure of e˙ort provision underlying 
the incentive e˙ect. We assume that the e˙ect is homogeneous across drivers and 
that it enters risk in a mechanical and additively-separable fashion via θλ,m as in 
Equations 10 and 11.44 Under our specifcation, the monitoring score is informative 
of driver risk conditional on observables when (i) θs,λ 6 is fnite, and (3) s = 0, (2) σs 

s is not co-linear with xi . 

µλ,imt = (1, xit)
0 θλ,0 + θλ,m · 1m=1 · 1t=0 (10) 

µs,i = (1, ln λi, x si )
0 θs (11) 

3.1 Estimation 

We estimate our model of driver cost and insurance demand using a two-step sim-
ulated maximum likelihood procedure.45 First, we estimate the cost parameters 
Θc using the full dataset of claims and monitoring scores. We then estimate the 
demand parameters Θd using menu options, plan choices, and prices, taking the 
point estimates of the frst stage as data.46 

The Type-1 extreme value distribution of εidt implies a mixed-logit structure on 

44For more careful treatment of moral hazard and risk determination, see Jeziorski, Krasnokutskaya, and Ceccarini 
(2014). 

45We adopt the two-step procedure due to computational constraints. This comes at the cost of eÿciency in the estima-
tor. 

46Standard errors for the demand estimates are not currently adjusted for two-step estimation. 

21 



plan choice with choice probabilities: 

Pr(dit|Θi) = Pr(�idt − �id0t > [vidt(Θi) − vid0t(Θi)] ∀d0 6= d 

exp [vidt(Θi)/σ] 
= P (12) 

d0 exp [vid0t(Θi)/σ] 

Our model includes random coeÿcients that enter utility nonlinearly. Private risk, 
in particular interacts with various observed monitoring and coverage character-
istics (renewal price, out-of-pocket expenditure), as well as unobserved demand 
parameters (risk aversion and monitoring cost). To account for this, we simulate 50 
independent draws of private risk (�λ) and the zero-mean frm dummy (ζ) for ev-
ery proposal of Θd.47 We then compute the likelihood for observed choices, claim 
count and severity, monitoring score, and renewal price change and average over 
the simulated draws.48 

3.2 Identifcation 

We now provide an informal discussion of the variation in our data that allows us 
to identify the parameters of our model. 

For the cost parametersΘc, variation in average claim counts and monitoring scores 
across observable groups help identify the associated slope parameters θλ and 
θs. Variation in claims between monitored and unmonitored periods and drivers 
helps identify θλ,m. Given the claim arrival rate of an observable group, the vari-
ance in claim counts may deviate from that implied by the Poisson structure and 
therefore identify the spread of risk across drivers σλ. The same quantities in the 
data, when conditioned on not only observables but also the monitoring score, 
help identify σs, the precision of the monitoring score signal. The rate parameter 
characterizing loss severity is identifed by observed claim amounts.49 

Identifcation of demand parameters Θd relies on price and contract space vari-
ation. Controlling for the attributes used in frms’ pricing rules, the remaining 

47We test the e˙ect of increasing the number of draws in estimation on a 10,000 sub-sample. The e˙ect of going from 
50 to 200 draws is minimal. 

48The Taylor approximation allows us to derive closed-form solutions for the frst two moments of out-of-pocket expen-
ditures and renewal prices. We therefore do not simulate claim losses or monitoring scores within each draw of random 
coeÿcients. 

49The claim amount is capped above by empirical coverage limits. The Pareto distribtion is suÿciently long-tailed so 
that loss events signifcantly larger than coverage limits still have non-degenerate support in consumer’s expectation. 
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price variation depends on location and calendar time. Specifcally, price changes 
associated with the Firm’s and its competitors’ rate revisions (back-end changes in 
pricing rules) as well as cross-zipcode variation that are plausibly exogenous from 
consumer demand.50 Notably, the Firm altered monitoring opt-in discount over 
time, generating a useful source of variation in monitoring incentives. 

We also observe variation in consumers’ contract space. Specifcally, monitoring 
eligibility di˙ers based on state, time, specifc vehicle models, and renewal pe-
riod. For instance, drivers arriving before monitoring introduction in their states 
or with vehicles older than 1995 are not eligible. Monitoring is also only available 
to new customers. Meanwhile, mandatory minimum coverage changed in two 
states within our research window. We use one in our demand estimation and 
reserve the other for cross-validation (see Table 4). 

Our primary concern is in identifying monitoring disutility (ξ) well. Given cost 
parameters and risk aversion, we can determine the relative attractiveness of the 
same coverage option with and without monitoring based on objective fnancial 
risk and rewards alone. On top of that, the monitoring disutility is pinned down 
by the actual monitoring share (under various pricing environments). The slope 
parameter on risk type (θξ,λ) controls the share of each risk type opting into moni-
toring. It therefore helps us ft both the share of monitoring and selection on risk.51 

Another parameter of interest is risk aversion γ. For a given i, t, di˙erent γ val-
ues imply di˙erent gradient of Δvidt across the multiple coverage options we ob-
serve in the data.52 Therefore, conditional on risk parameters, risk aversion can be 
identifed by how the empirical coverage share changes given contract space and 
pricing environment.53 In our demand estimation, the Pareto severity parameters 
can also a˙ect changes in coverage attractiveness. However, we restrict the Pareto 
distribution to approximate the actual (truncated) claim severity that we observe. 

We also need to separately identify baseline inertia (η0) and consumers’ frm-switching 

50To hone in on this variation, our model include each consumers’ assigned risk class in the cost model, and include 
controls for yearly trends, seasonality, and zipcode characteristics like income and population density in our demand pa-
rameters. 

51Simply raising baseline monitoring cost for all risk types (conditional on observables) enhances selection but also 
necessarily reduces monitoring share. 

52This is conditional on the fxed e˙ect for the mandatory minimum plan (ψ1). The fxed e˙ect adds an additional 
degree of freedom to more fexibly ft the gradient of willingness-to-pay across coverage options. 

53Specifcally, based on the company’s pricing rule in Equation 1, the price gradient across coverage options only de-
pends on the actuarial risk class assigned to each consumer and the coverage factor. The latter is heavily regulated. Each 
state o˙ers an oÿcial guidance on the coverage options that auto insurers should o˙er and the corresponding coverage fac-
tors. Firms need to provide actuarial support to deviate from the guidance in order to avoid regulatory scrutiny. Empirically, 
coverage factor is rarely changed in our demand estimation states based on rate revision flings. 
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inertia (η). Conditional on observables, di˙erent levels of these parameters imply 
unique combinations of the share of drivers who adjust coverage versus leaving 
the frm at renewals. We also observe rich variation in competitive pricing envi-
ronments conditional on observables. Under a given pricing environment, these 
parameters imply a corresponding threshold under which drivers would stay with 
the frm, and another one under which drivers would not adjust choices at all. 

3.3 Fit and Validation 

We demonstrate that our demand model is fexible enough to produce accurate 
ft for four critical moments of the data in Figure 4 and in Table A.5. As Table ?? 
shows, we match monitoring and coverage shares of the Firm well. Further, frst-
renewal attrition rates, the share of outside option, is also broadly consistent. More 
importantly, we also accurately ft the expected monitoring score. This demon-
strates that the model is capable of capturing selection as well as the e˙ectiveness 
of the monitoring score. Figure 4 confrms this graphically: we calculate the ex-
pected monitoring score for each driver over all random-coeÿcient draws. The red 
line plots the simulated score weighted by the corresponding monitoring choice 
probability in each draw. The orange line plots the full distribution of expected 
monitoring scores, had everyone in the data fnished monitoring. 

Using these estimates, we can calculate the expected unmonitored risk type (no in-
centive e˙ect) of monitored drivers in the frst period. Specifcally, when we numer-
ically integrate over private risk �λ, we simply weight it by the choice probability 
of monitoring. This gives us the expected (unmonitored) risk type in the moni-
tored pool. Vice versa for the unmonitored pool. The selection e˙ect is therefore a 
ratio between the two. The 21% ratio between the two pools is similar to the 17% 
back-of-the-envelope calculation we did in the reduced-form section.54 

We also cross validate our demand estimates. In particular, one state in our dataset 
increased its mandatory minimum from $30,000 to $50,000. In our demand estima-
tion, we draw from only the pre-change period for this state. The hold-out sample, 
however, contains all drivers in that state arriving in the post-period. As shown in 
Table A.6, our model performs well out of sample. 

54In Tables A.5 and A.6, we compare our model ft and cross validation to a basic model specifcation that excludes the 
Firm random coeÿcients ζ and the private monitoring disutility θξ,λ. 
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Figure 4: Monitoring Score - Fit and Extrapolation 
Notes: The green histogram is the empirical distribution of monitoring score for monitoring fnishers in our 
demand estimation data. The red line plots the ftted distribution as outlined above. The orange dotted line 
plots the density of the extrapolated distribution of monitoring scores had all drivers fnished monitoring. 

Table 4: Demand Model Fit and Cross Validation 

Model Fit Cross Validation 
Fit Data Prediction Hold-out Data 

Monitoring share (when eligible) 15.6% 15.3% 17.9% 17.6% 
Expected score 4.25 4.30 3.97 4.17 

Coverage share 
30K 12.5% 12.7% - -
40K 8.2% 8.5% 7.6% 7.2% 
50K 49.8% 47.1% 60.5% 58.1% 
100K 15.4% 17.0% 17.5% 19.6% 
300K 11.9% 12.3% 10.9% 12.8% 
500K 2.3% 2.4% 3.6% 2.4% 

First renewal attrition 15.6% 15.2% 15.4% 14.7% 

Notes: This table reports the ft of our demand model and cross validation results. Our demand estimation data pools across 
three states with di˙erent mandatory minimum. One state changed mandatory minimum from 30K to 50K; estimation 
data is drawn from only the pre-period of that state to capture monitoring introduction. First renewal attrition rate is 
benchmarked to data per the frm’s request (reporting percent di˙erences, not percentage point di˙erences). 
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4 Estimation Results and Welfare Calculations 

The raw estimates of our models are reported in Tables A.3 to A.2. In this section, 
we highlight some key results and provide intuition. In particular, we use a simu-
lation exercise to demonstrate the relative importance of di˙erent demand factors. 
We also conduct welfare calculations. Importantly, all simulation exercises in this 
section hold observed prices as fxed. 

The magnitude of private risk and the monitoring score’s signal precision are pre-
sented in the left panel of Table A.2. Compared to Cohen and Einav (2007), we fnd 
signifcantly more unobserved heterogeneity in driving.55 This can be attributed 
to our ability to capture information contained in an additional signal of private 
risk – the monitoring score. New drivers who do not have past claim records see 
particularly high spread of private risk. our estimates also capture the monitoring 
technology and the frm’s renewal prices well. In particular, monitoring score rises 
with driver risk, as do renewal prices for monitored drivers (Table A.4). 

We fnd that drivers are not risk averse in their auto insurance and monitoring 
choices. Our primary specifcation assumes homogeneous risk aversion, and the 
estimate of γ ˆ = 9.8 × 10−5 is broadly consistent with the literature.56 

Also consistent with prior literature, demand frictions are empirically important. 
This implies that many drivers who can beneft from monitoring do not partici-
pate. In Table 5, we show the empirical distribution of both frm-switching and 
monitoring costs in the population. The average driver foregoes $283 of gain by 
not choosing an outside option from other frms, which is 36% of annual premium 
(two periods). Monitoring cost is also large and is heterogeneous across drivers. 
In particular, the average driver needs to expect a gain of $93 to participate in mon-
itoring. 

Moreover, monitoring disutility increases with private risk.57 This further accel-
erates advantageous selection into monitoring, while suggesting that observed re-
newal prices alone are not enough to explain the empirical selection pattern. At 
the same time, we see that older and more educated drivers tend to have lower 

55Our private risk spread is 0.43 (exp(ln σλ)) for non-new drivers, compared to Cohen and Einav (2007)’s estimate of 
0.15. 

56Figure A.8 benchmarks our risk-aversion parameter against the literature. In the graph, risk aversion is interpreted 
as the indi˙erence value between inaction and taking a 50-50 bet on gaining $1000 versus losing that value. Barseghyan, 
Molinari, O’Donoghue, and Teitelbaum (2013), in particular, di˙erentiate between probability distortion (wrong belief about 
one’s own risk) and risk aversion. 

57Column (2) of table A.3 in the appendix reports the slope parameter for private risk. 
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monitoring costs, as well as those with newer cars, better prior insurance records 
and less traÿc violation points. 

Table 5: Latent Parameters 

Statistic Mean Std. Dev. Min Pctl(25) Median Pctl(75) Max 

frm-switching inertia (ηit, $) 284 35 158 265 286 307 407 
(% annual premium) 36 5 20 34 37 39 52 

monitoring disutility (ξit, $) 93 19 10 80 93 105 187 
(% annual premium) 12 2 1 10 12 14 24 

claim risk (λit) 0.05 0.05 0.001 0.02 0.03 0.06 1.48 

Notes: This table reports the distribution of heterogeneous latent parameters in our dataset. We simulate a distribution of 
private risk and calculate these parameters based on our demand estimates. 

Looking at the right panel of Table A.2, the fxed inertia cost that drivers need 
to overcome when adjusting coverages is $134. This adds to frm-switching and 
monitoring costs and further prevents safe drivers from being monitored. All 
else equal, the average driver only prefers the mandatory minimum coverage by 
$26, which seems low given that the plan commands almost 50% market share. 
This suggests that the rational amount of coverage for many drivers may be be-
low the mandatory minimum, which restricts how monitoring can a˙ect alloca-
tive changes across coverage. Appendix G calculate counterfactual demand pat-
tern and Firm proft of removing the incentive e˙ect, reclassifcation risk, frm-
switching inertia, and monitoring disutility from consumer demand. 

4.1 Fixed-price Counterfactuals and Welfare Calculations 

In this section, we simulate a counterfactual scenario in which monitoring was 
never introduced in order to calculate the proft and welfare impact of introducing 
monitoring. We observe the marginal cost of monitoring. Prices are held fxed 
here, and study equilibrium implication in the next section. 

We detail our simulation methodology in appendix F. We frst enumerate a mar-
ket, maintaining a no-brand-di˙erentiation assumption. This step makes use of our 
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demand model and observed competitor prices. In counterfactual scenarios, we 
calculate consumers’ frst-period choice probability for the Firm, for insurance cov-
erage, and for monitoring opt-in. In doing so, we obtain the annual (ex-ante) con-
sumer welfare because the utility horizon is over two periods. We also get the 
Firm’s frst-period proft. Next, we simulate claim and monitoring score realiza-
tions, pinning down the Firm’s second-period information set about consumers 
and the renewal prices charged. We then obtain second-period choice probabili-
ties and therefore the annual proft of the Firm. 

Welfare calculation We evaluate the welfare and total surplus of introducing 
monitoring by comparing the current monitoring regime to a simulated counter-
factual where no monitoring is o˙ered. As mentioned above, we take a certainty 
equivalent approach in calculating ex-ante welfare. Total surplus is the di˙erence 
between welfare and total expected cost over two periods. Profts are given by ob-
served prices (and renewal pricing parameters) minus the same expected cost. We 
also take into account the resource cost for the frm to administer monitoring. It 
is unobserved and is diÿcult to estimate since actual prices may be suboptimal. 
In our simulations, the resource cost is set at $35 per monitored period, based on 
interviews with the program manager and on industry estimates. This includes 
manufacturing, wireless data transmission, depreciation, inventory, and mailing 
costs as well as R&D, marketing, and other overheads. 

Figure 5 plots the results in per-capita per-year terms. The average consumer gains 
$11.6 in certainty equivalent, or 1.5% of premium. Proft increases by $7.9 per 
capita, a 23.6% increase. Under our symmetric cost and no-brand-preference as-
sumptions, competitors see a proft decline of $6.2. This isolates the impact of 
cream skimming by the monitoring frm because the frm can o˙er lower prices 
to some monitored drivers despite charging higher markups. The combined total 
surplus increases by $13.3 (1.7% of premium) over the no-monitoring scenario. 

To disentangle the welfare consequence of the incentive e˙ect (risk reduction) and 
allocative changes from mechanical monetary transfers across drivers, we frst redo 
the welfare calculation without the incentive e˙ect. Consumers’ expected utility 
from monitoring and frms’ expected cost for monitored drivers will both su˙er, 
reducing the total surplus to $4.8 per capita. The top panel of Figure 6 plots this 
e˙ect. This attributes almost 64% of total surplus gain to better driving, implying 
small allocative eÿciency gains. To investigate this further, we look at changes in 
the quantity of insurance purchased, comparing the observed regime with the no-
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Figure 5: Welfare Calculations 

Notes: These fgures plot results from our welfare exercise outlined in Section 4.1. The amount denotes the 
change moving from a regime where no monitoring is o˙ered to one we observe in the data. We plot the 
di˙erences in ex-ante certainty equivalent, expected proft (across two-periods) for both the monitoring frm 
and its competitors, as well as total surplus (welfare minus expected cost). The top graph is a waterfall graph 
decomposing how the components of total surplus changes. The color green indicates an increase while red 
indicates a decrease. The box plot show 10/25/50/75/90 percentiles. 
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Figure 6: Incentive E˙ect and Coverage Reallocation 

Notes: The top fgure plots the same welfare calculation assuming away risk reduction during monitoring based 
on the incentive e˙ect, per our discussion in the main text. The bottom fgure plots average change in coverage 
amount in percentage across observable groups. “rc-q1” means risk class being in the frst quartile at time of 
choice. 
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monitoring one. Because liability insurance is mandatory, the result we fnd here 
is entirely due to changes in coverage levels. Overall, insurance coverage increases, 
but only by 0.28%. Looking across various observable pools, the safer risk classes 
stand out despite the fact that they already pay lower premiums. Meanwhile, with-
out risk reduction, overall proft in the industry falls as the monitoring frm o˙ers 
lower prices to good monitored drivers at the expense of its competitors’ proft. 

Importantly, our simulation in this section do not consider how the introduction of 
monitoring may have changed baseline frm prices for unmonitored drivers. This 
is because, as shown in Appendix B and Figure B.2, the frm did not raise prices 
on the unmonitored pool during the introduction of monitoring. Therefore, any 
cream-skimming e˙ect in our simulation would reduce proft in the unmonitored 
pool as opposed to reduce welfare of unmonitored drivers. In the next section, 
we propose a model for pricing where the frm can freely surcharge unmonitored 
drivers. 

5 Monitoring Pricing and Equilibrium Implications 

In this section, we propose a two-period two-product model of frm pricing that 
jointly considers the Firm’s ex-ante decision to produce monitoring data and its 
ex-post decision to extract rent from the data. The model endogenizes the Firm’s 
information set in counterfactual simulations. We use it to frst determine optimal 
pricing of the monitoring program without constraints, given observed resource 
costs and holding competitor prices fxed. This highlights an "invest-and-harvest" 
pricing dynamic. Next, we allow competitor prices to respond and simulate an 
equilibrium in which the frm must disclose monitoring data to competitors. This 
strips the frm of its property rights over the monitoring data, corresponding to 
real-world regulations that aim to curb ex-post markups by restricting proprietary 
data. 

5.1 Firm Pricing 

In our data, the Firm uses two pricing levers for the monitoring program. First, 
it uses upfront discounts to encourage monitoring opt-in. Second, it uses non-
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uniform markups in the form of monitoring discounts.58 These discounts are the 
levers by which the frm induces the selection and incentive e˙ects discussed ear-
lier in the paper.59 

We now specify the Firm’s action and proft (payo˙) function. In order to highlight 
the pricing dynamics associated with the monitoring program, we focus on di˙er-
ential pricing based on monitoring opt-in choice (pm,0), before monitoring takes 
place, and the ex-post monitoring score (pm,1), after additional risk information 
is revealed for opt-in drivers. For simplicity, we assume that the Firm maximizes 
proft over a two-period horizon and chooses a vector of pricing adjustments ~κ to 
form pm = {pm,0, pm,1}. 

X 

⎧ ⎪⎨ Z X 
⎡ 

|⎢⎣( (p ~0m,

|(pm,1(~
In the frst period, the Firm observes characteristics 

Pr (f ? |⎡ 
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· ⎪⎩ 
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⎪⎭ 

x and monitoring choice m for 
each potential customer (I0,i = {xi,m}), while its competitors see only x (I−f ? ,0,i = 
{xi}). Given these variables and the resulting conditional distribution of latent risk 
types λ, the Firm forms expectations over the consumer’s demand for its insurance 
products, as well the costs to insure and monitor her: c(λ, m) and cm = 35, respec-
tively. We allow the Firm to choose any discount κ1 and any surcharge κ0 for those 
that do and do not opt into monitoring, respectively. These are applied on top of 
a baseline price schedule p(x):60 

pm,0(κ0, κ1|x, m) =p(x) ·

(
κ0 m = 0 

κ1 m = 1 

58We conduct an event study around the introduction of monitoring to show that the frm did not raise prices for the 
unmonitored pool. Meanwhile, we show that the retention elasticity drops as the frm gives more discounts. See Appendix 
B for more details. 

59The prices ultimately charged to monitored drivers in our data may not fully refect proft maximization by the frm, 
largely because prices are heavily regulated in the insurance industry. 

60As the frm’s complete pricing rule is very complex with price flings that often span thousands of pages, we start from 
the Firm’s existing price rule p(x) for each set of observables x observed in the data, and parameterize price discrimination 
between the monitored and unmonitored pools through multiplicative adjustments κm to this price. 
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κ0 and κ1 infuence profts in three ways, ceteris paribus. First, they scale premi-
ums directly in the frst period. Second, they change the competitive share of all 
plans o˙ered by the Firm. Finally, they change the relative attractiveness of mon-
itoring among the Firm’s plans, thereby nudging drivers to opt-in and improving 
the Firm’s information set in the second period. In this way, {κ0, κ1} constitute an 
“investment" in the production of information for the Firm. 

In the second period, the Firm gains an informational advantage over its competi-
tors for all monitored consumers: I1,m,i(C, s) = {xi, C, m · s}, I−f? ,1,i(C) = {xi, C}. 
The monitoring score s a˙ords more precise estimate of the cost to insure each 
driver. Thus, for a monitored driver who is, say, 30% safer than previously ex-
pected, the Firm may be able to o˙er a discount that is much smaller than 30% and 
still be confdent that the driver would not leave for a competitor. 

As discussed in Section 3 (Equation 5), the renewal price o˙ered to a driver with 
observables x is given by frst period price multiplied by factor R(C, s) = R1

C
,C · 

R0,idt(s), whereR(C, 0) represent the factor for unmonitored consumers. The wedge 
between R(C, s) and R(C, 0) constitutes the amount of rent-sharing between the 
Firm and the monitored driver that is observed in the data. This is extent to which 
the Firm “harvests" the value of the monitoring data that is collected. We model 
the optimal level of rent-sharing by the choice of a parameter κs that adjusts the 
existing rent-sharing schedule linearly. (

1 m = 0 
pm,1(~κ|xi, C, s) = p(xi) · RC · � � 1,C 

1 − κs · (1 − R0,idt(s)) m = 1 

If κs = 0, then the Firm keeps all the rent: performance in monitoring has no 
bearing on renewal pricing. On the other hand, if κs > 1, then the Firm shares 
more rent with consumers than it does in the current regime. 

5.2 Equilibrium Implication 

Optimal pricing We fnd the optimal pricing rule {κ0, κ1, κs} that maximizes the 
Firm’s two-period proft under the demand and cost estimates in Section 4. Details 
on the procedures to compute proft under each pricing regime are outlined in 
Appendix F. Our results show that in the frst period, the Firm should optimally 
surcharge the unmonitored pool by 2.7%, while o˙ering a 22.1% upfront discount 
for opting into monitoring.61 

61Consistent with our model, this discount is given for all drivers that fnish monitoring. 
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Without competition, our model contains no outside option for consumers other 
than the Firm’s plans. This corresponds to the mandatory nature of auto liabil-
ity insurance. It also means that the Firm can arbitrarily surcharge unmonitored 
drivers (κ0) to force them into monitoring. By contrast, the optimal pricing only in-
cludes a modest κ0 surcharge of 2.7%. Price competition in the (insurance) product 
market therefore signifcantly limits the Firm’s ability to coerce drivers into mon-
itoring and to extract excessive rent. Instead, a large monitoring opt-in discount 
suggests that the Firm can beneft from more “investment” to elicit monitoring 
data, which not only enhances the Firm’s ex-post competitive advantage, but also 
directly reduces the cost to insure drivers in the frst period. 

In the renewal period, we fnd that optimal pricing implies 19.6% less rent-sharing 
than observed in the data, o˙ering a smaller discount for good drivers and a smaller 
surcharge for bad ones. This implies that the Firm should engage in more aggres-
sive price discrimination conditional on risk. Within the monitored driver pool, 
safe ones receive a discount only from the Firm and are therefore less prone to at-
trition. Surcharged drivers can avoid the surcharge by switching to a competitor 
and are therefore more price-sensitive. This pattern is documented descriptively 
in Appendix B. 

Overall, the monitoring opt-in rate increases to 4.4% (unconditional on coming to 
the Firm). Consumer welfare and market surplus both increase. Intuitively, al-
though the Firm is taking a larger share of the surplus, it also creates more surplus 
in the frst place by eliciting more monitoring data. 

Information sharing Building on the optimal pricing regime, we now endoge-
nize competitor prices to study the impact of a regulation that would have required 
the Firm to share its monitoring data with competitors. This is especially relevant 
for information and data regulations due to the non-rival nature of monitoring data 
and close-to-zero marginal cost of replication and distribution. 

In a data-sharing regime in which only the Firm controls the monitoring technol-
ogy, monitoring data becomes a public good. Competitors can poach monitored 
drivers of the Firm with more attractive rent-sharing schedules. This diminishes 
the extent to which the Firm can “harvest" the information produced by its (costly) 
monitoring program. However, it does not fully eradicate the returns from moni-
toring because (1) signifcant frm-switching inertia may form an e˙ective barrier 
against competitive poaching of monitored drivers, and (2) the Firm directly ben-
efts from the risk reduction during monitoring. In this section, we analyze the 
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Table 6: Counterfactual Equilibrium Simulations 

Current Regime Optimal Pricing Data Sharing 

Firm Proft 46.5 61.2 49.3 

Competitor Proft 149.2 138.2 147.1 

Consumer Welfare (CE) - +4.7 +2.2 

Total Surplus - +8.4 +2.9 

Monitoring Market Share 3.0% 4.4% 3.4% 

Invest 
Unmonitored surcharge 
Opt-in discount 
Harvest 
Rent-sharing (κs) 
Competitor rent-sharing (κs,−f ) 

0.0% 
4.6% 

1 
-

2.7% 
22.1% 

0.80 
-

1.6% 
8.3% 

1.14 
1.81 

Notes: This table reports results from our counterfactual equilibrium simulations in Section 5. The simulation procedure 
to calculate welfare, profts, and total surplus is outlined in Section 4.1. These quantities are reported in dollar per driver 
per year terms as we translate utility with a certainty equivalent approach. We further enumerate our sample of new 
customers to the full market by calculating driver weight as in Appendix Section F. The time frame we report is one year 
(two-period). The level of consumer welfare and total surplus is not identifed, so we report only the change in those values 
in counterfactual regimes compared to the current regime. “Optimal Pricing” represents our equilibrium simulation in 
Section 5.2. “Data Sharing” represents the equilibrium simulation in Section 5.2, where the monitoring frms is required 
to share monitoring data to competitors. The “Current Regime” uses monitoring pricing we observe in the data. The rent-
sharing parameter (κs) is indexed against the one observed in the “Current Regime”. Empirically, it is a scalar on top of 
the frm’s existing monitoring renewal schedule. κs = 0 means no rent sharing with consumers (fat pricing schedule 
regardless of monitoring outcome). κs > 1 means a steeper monitoring discount schedule than observed. This represents 
more rent-sharing with the consumers. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
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equilibrium e˙ects of the information-sharing regulation, when competitors can-
not o˙er their own monitoring program, but can adjust their prices in response to 
the monitoring Firm’s pricing and information production. 

We make two additional assumptions to facilitate this exercise. First, information 
sharing is complete and credible. Therefore, frms have symmetric knowledge 
about the expected cost of monitored drivers, given observables and monitoring 
scores. Second, competitors have symmetric proft functions and their action space 
only consists of setting a single competing rent-sharing schedule κ−f?,s for mon-
itored drivers. This eliminates baseline price adjustments in order to highlight 
the competitive poaching motive to “free-ride" on the monitoring information re-
vealed.62 Similarly, we do not allow for the competitive adoption of monitoring.63 

Results under competitive equilibrium are presented in Table 6. We fnd that com-
petitors o˙er an 81% "steeper" rent-sharing schedule than what the monitoring 
Firm o˙ers in the current regime. Consequently, the Firm is forced to share more 
rent with monitored drivers: 14% more compared to the current regime and 43% 
more compared to the optimal pricing regime. This diminishes the value of “in-
vestment” in the monitoring program for the Firm, and so it o˙ers only an 8.3% 
opt-in discount for monitoring uptake and reduces the surcharge to the unmon-
itored pool to 0.8%. Overall, as proft is reallocated across frms, consumer wel-
fare and total surplus decrease slightly compared to the equilibrium without the 
information sharing mandate (the optimal pricing regime). The positive impact 
of information sharing on curbing ex-post markups is outweighed by the Firm’s 
adjustments to its “investment” in monitoring, lowering participation and social 
surplus generation. This suggests that the existing levels of price competition and 
consumer demand frictions already signifcantly limit the frm’s pricing power. 

Limitations There are several important limitations to our equilibrium simula-
tions. First, our simplistic pricing framework may not fully capture the frm’s ac-
tion space. The latter can vary nonlinearly and interact with baseline prices in 
complex ways. We also restrict our simulation to two periods, as we fnd that 
the value of monitoring data diminishes dynamically (Figure A.7). Moreover, we 

62Note that re-optimizing competitors’ baseline prices largely captures the e˙ect of our symmetric cost assumption as 
opposed to competitive response to the pricing of the Firm’s monitoring program. 

63In our setting, competitive adoption can mitigate the beneft of introducing monitoring if competing programs cream 
skim a large portion of the market. But monitoring is voluntary and monitoring rates are very low in our simulations and 
empirically during our research window. Therefore, we believe that our results will be robust to competitive adoption of 
similar monitoring programs. 
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maintain our assumption of symmetric cost and zero-brand-di˙erentiation across 
frms due to data constraints. In reality, competitors have di˙erent preexisting be-
liefs about driver risk given observables. Similarly, we hold competitors’ baseline 
prices fxed and do not allow them to adjust in response to the data-sharing reg-
ulation. Further, our myopia assumptions hold that di˙erent regimes infuence 
consumers’ ex-ante expected utility only by altering accident risk and by changing 
the prices (including renewal prices) that they face at the monitoring Firm. This is 
because they do not anticipate potential adjustments after the frst period in our 
model. Lastly, frms’ proft function do not take into account loading factors (over-
head and administrative expenses unrelated to monitoring) on top of claim costs 
because we cannot separate loading factors from markups charged in our micro 
data. We may therefore exaggerate the frm’s marginal proft. 

6 Conclusion 

Firms are increasingly collecting consumer data in direct transactions. This in-
fuences social surplus and its division in complex ways. Beyond testing for the 
presence of various economic forces, it is important to quantify the underlying 
primitives and incentives to understand the formation of information structure 
and its interaction with prices and with market structure. 

In this paper, we acquire novel datasets that give us direct visibility into how valu-
able proprietary data are collected and used by frms. We also develop an empir-
ical framework that links together the information market in which data transac-
tions occur with the underlying product market. We conclude by revisiting our 
main results and discussing their real-world implications. 

First, data collection changes consumer behavior. Drivers become 30% safer when 
monitored. This is the primary reason why the monitoring program boosts total 
surplus in the short run. In general, frms learning about consumers can change 
consumer incentives and behavior, depending on how consumers perceive their 
information will be used.64 

64In other settings, consumer behavior may be distorted in a way that harms social surplus. For example, if consumers 
know that buying expensive items may label them as inelastic shoppers and lead to higher prices in the future, they may 
delay or refrain from purchasing those items. 
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Without the incentive e˙ect, the overall allocative eÿciency gain from monitoring 
repricing is small, mostly due to path dependence, the popularity of the manda-
tory minimum plan, and a lack of unmonitored surcharge. Nonetheless, overall 
proft decreases with signifcant proft shift from competitors to the Firm, pushing 
the market towards the frst-best benchmark. 

Further, despite strong advantageous selection into monitoring, most drivers who 
would expect a monitoring discount do not. One reason is large demand friction 
against monitored, implying inelastic supply frms face when buying consumer 
data.65 Another reason is price competition in the product market. Attractive out-
side options from other insurers limits the frm’s ability to coerce drivers into mon-
itoring by raising prices on unmonitored drivers. This highlight the intuition that 
frms’ product market power can spillover to increase their buyer power when elic-
iting consumer data.66 

Lastly, our counterfactual simulation demonstrates that, despite the non-rival na-
ture of consumer information, the government should protect the Firm’s owner-
ship to the monitoring data in the short run in order to preserve its incentives to 
produce the data. In the long run, however, markup implications may dominate, 
in which case the optimal regulation for proprietary data may resemble a patent 
mechanism. 
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A Additional Figures and Tables 

Figure A.1: Examples of Telematics Devices in U.S. Auto Insurance 
Notes: These are some examples of the in-vehicle telecommunication devices (or “telematics”) technology used 
in monitoring programs in U.S. auto insurance. These devices can be easily installed by plugging them into 
the on-board diagnostics (OBD) port. The OBD-II specifcation that these monitoring devices rely on has been 
mandatory for all cars (passenger cars and light trucks) manufactured or to be sold in the U.S. since 1996. 

Figure A.2: Other Examples of Direct Transactions of Consumer Data 
Notes: Examples of direct transactions of consumer data in other settings. The Vitality program from life insurer 
John Hancock tracks and rewards exercise and health-related behaviors in exchange for discounts on life insur-
ance premiums. Ant Financial incentivizes users to conduct more personal fnance transactions through the 
platform, such as setting up direct deposit or paying utility bills, in exchange for discounts on various borrow-
ing and rental services. The Uber credit card o˙ers much larger incentives for consumers to use it intensively 
than the transaction fees charged. One of the plausible business rationales is that the transaction data can be 
linked back to improve Uber’s main businesses in ride sharing and in food delivery. 
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Table A.1: Summary Statistics on Select Observable Characteristics 

Statistic Mean St. Dev. Min Median Max 

Number of Drivers 1 0 1 1 1 
Number of Vehicles 1 0 1 1 1 
Calendar month 6.25 3.43 1 6 12 
Female Ind. 0.49 0.50 0 0 1 
Driver Age 33.42 11.68 15 30 103 
Adult Ind. 0.96 0.19 0 1 1 
Age <25 Ind. 0.22 0.41 0 0 1 
Age <60 Ind. 0.04 0.20 0 0 1 
Years of Education 14.46 2.05 9 14 18 
College Ind. 0.73 0.44 0 1 1 
Post Graduate Ind. 0.41 0.49 0 0 1 
Years of License 2.44 1.14 0 3 3 
Driver Credit Tier 106 26 0 101 239 
Credit Available Ind. 0.96 0.19 0 1 1 
Credit Report Ind. 0.83 0.38 0 1 1 
Homeowner Ind. 0.17 0.38 0 0 1 
Garage Verifcation Ind. 0.84 0.37 0 1 1 
Out-of-state Ind. 0.11 0.32 0 0 1 
Population Density Percentile 51 21 0 54 99 
Vehicle Model Year 2006 6.05 1928 2007 2018 
Vehicle on Lease Ind. 0.51 0.50 0 1 1 
Length of Ownership 0.42 0.92 0 0 4 
Class C Vehicle indicator 0.89 0.31 0 1 1 
ABS Ind. 0.13 0.34 0 0 1 
Safe Device Ind. 0.35 0.48 0 0 1 
Accident Point 1.53 2.80 0 0 82 
At-Fault Accident Count 0.33 0.65 0 0 11 
DUI Count 0.05 0.23 0 0 8 
Clean Record Ind. 0.64 0.48 0 1 1 
Prior Insurance - Some 0.08 0.27 0 0 1 
Prior Insurance - Yes 0.57 0.49 0 1 1 
Length of Prior Insurance 1.59 1.45 0 2 4 
Zipcode AGI (’$000) 142 162 1 114 100,508 

Notes: Our data only consist of single-driver-single-vehicle insurance policies. Years of license data is capped 
at 3 in compliance with regulations that limit risk rating. Zipcode AGI is merged into the dataset by researchers 
based on zipcode. 45 



Figure A.3: Persistence of Monitoring Discount 
Notes: This graph plots the empirical progression of monitoring discount for all monitoring fnishers in one 
state that stayed with the frm till at least the end of the 5th periods (so we observe monitoring discount in the 
renewal quote for the 6th period). The benchmark is monitoring discount in the frst renewal quote (t = 0). 
Fluctuations and noises are due to ex-post adjustments. Firm may change their discount schedule slightly. 
Monitored drivers can also report mistakes in their records and have their discount adjusted. 

Figure A.4: Renewal Price Claim Surcharge 
Notes: This graph plots the empirical claim surcharge function for at-fault accidents. Claim surcharge varies 
with existing violation points and calendar time. 0.1 means 10% surcharge. This di˙ers from the fled factors 
because the latter is applied on the base rate only, while this function represents the surcharge percentage on 
top of overall premium. This is done by regressing renewal price change on violation point last period and 
current period at-fault claim, controlling for all other observables. 
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Figure A.5: Distribution of monitoring tier 
Notes: This fgure plots the empirical density of monitoring tier for all monitored drivers who fnished moni-
toring. It is calculated as the quotient of realized monitoring score over ex-ante expected monitoring score. For 
monitored driver i, the expected score is derived based on the average driver in i’s observable (xi) group. It 
does not take into account the fact that i has selected into monitoring. The graph has a long right tail and is 
truncated at 200%. 

Figure A.8: Risk Aversion Parameter Estimates - Benchmark 
Notes: This fgure benchmarks our risk aversion parameter estimate to the literature. Heterogeneity indicator 
means that the author allows risk aversion to vary across people, in which case we plot the range of risk aversion 
paramters in the population. Otherwise we plot the 95% confdence interval of the homogeneous risk aversion 
parameter. 
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Figure A.6: Estimates - dynamic informativeness of monitoring participation 

Figure A.7: Estimates - dynamic informativeness of monitoring score 
Notes: Figures A.6 and A.7 report the estimate for θt and γt from regression (3) in percent increase terms. 
Monitoring participation is an indicator for fnishing monitoring. For each t > 0, we take all drivers who 
stayed with the frm till at least the end of period t. θt is the coeÿcient of claim count of driver i in period t on 
monitoring score of i, and γt is that on monitoring fnish indicator of i. Monitoring score is normalized, and 
defaulted as 0 for unmonitored drivers. So θt measures the e˙ect of getting a score one standard deviation above 
the mean during the monitoring period (t = 0). γt compares unmonitored drivers with the average monitoring 
fnisher. To further translate these e˙ects into percent increase terms, we divide the estimate of θt and γt by 
the average claim count in period tof all monitored drivers. The horizontal axis represents di˙erent regressions 
for di˙erent renewal period t > 0. Di˙erent colors within each t value represent di˙erent specifcations of 
control variables (xit). The grey (left-most) series represents estimates from regressions with the full set of xit; 
the orange (middle) one includes only claim records revealed since t = 0; the blue (right) series includes no 
control. 48 



Table A.2: Estimates: Homogeneous Parameters 

Cost 

ln σλ,new driver −0.266∗∗∗ 

(0.060) 

ln σλ,old driver −0.840∗∗∗ 

(0.070) 

ln α` −1.480∗∗∗ 

(0.063) 

Score & Pricing Demand 

ln σs −0.081∗∗∗ 

(0.007) 
ln γ −9.235∗∗∗ 

(0.089) 

βR,new 66.953∗∗∗ 

(0.403) 
η0 134.262∗∗∗ 

(2.228) 

βR,monitoring 59.680∗∗∗ 

(0.902) 
σζ 98.989∗∗∗ 

(2.303) 

βR,renw 78.571∗∗∗ 

(0.315) 
σ 39.213∗∗∗ 

(0.632) 

Note: This table reports estimates for homogeneous parameters of our structural model. Cost: spread of private risk 
σλ,new driver and σλ,old driver (new drivers are defned as those licensed in the past three years), claim severity Pareto dis-
tribution parameters ̀  0 and α` (` 0 is set at $3,000 per discussion in the text). Score and Pricing: monitoring score’s signal 
precision σs, rate parameters for the renewal price change (R0) Gamma distribution βR’s. Demand: absolute risk aversion 
coeÿcient γ, baseline inertia η0 in dollar term, variance of own frm random coeÿcient σζ , scale of the logit error σ. ∗ p<0.1; 
∗∗ p<0.05; ∗∗∗ p<0.01 ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 
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Table A.3: Estimates: Heterogeneous Latent Parameters 

Log Monitoring 
Claim Rate Disutility 

(µλ) (ξ/$) 

Firm-switching 
Inertia 
(η/$) 

Intercept 

Private Risk 

−3.294∗∗∗ 

(0.080) 
96.773∗∗∗ 

(2.813) 
25.238∗∗∗ 

228.559∗∗∗ 

(6.213) 

Monitoring Ind. 

Monitoring Duration 

Driver 

0.404∗∗∗ 

(0.063) 
−0.796∗∗∗ 

(0.081) 

(1.657) 

Driver Age 

– Square 

Age < 25 

Age > 21 

Age > 60 

Year of Education 

−0.240∗∗∗ 

(0.053) 
0.156∗∗∗ 

(0.055) 
0.081∗∗ 

(0.032) 
−0.064 
(0.053) 
−0.046 
(0.068) 
0.001 

−1.049∗∗ 

(0.437) 
−1.047∗∗∗ 

(0.309) 
0.326 

(0.339) 
−0.059 
(0.403) 
−0.139 
(1.689) 
−2.452∗∗∗ 

4.526∗∗∗ 

(1.641) 
3.816∗∗ 

(0.742) 
−0.500 
(0.922) 
3.195∗∗∗ 

(0.449) 
−0.275 
(0.340) 
−7.526∗∗∗ 

College Ind. 

Post Grad Ind. 

(0.025) 
−0.00001 
(0.038) 
0.005 

(0.331) 
−0.952∗∗∗ 

(0.339) 
−0.728 

(0.915) 
0.234 

(0.237) 
−1.547 

Female Ind. 
(0.039) 
0.099∗∗∗ 

(1.644) 
−0.261 

(1.686) 
1.007 

Driver License Year 
(0.021) 
−0.018 

(1.643) 
−0.016 

(1.686) 
16.776∗∗∗ 

Home Ownership 

Out-of-State License 

(0.019) 
−0.020 
(0.038) 
−0.104∗∗∗ 

(0.905) 
−0.039 
(0.447) 
−0.380 

(0.338) 
0.058 

(1.653) 
−0.406 

Location 
(0.030) (0.339) (0.922) 

Garage Verifed Ind. 

Population Density 

Zipcode Income 

−0.069∗ 

(0.036) 
0.076∗∗∗ 

(0.015) 
−0.058∗∗∗ 

(0.017) 

0.008 
(0.521) 
0.359 

(0.419) 
0.610 

(1.615) 

1.847∗∗ 

(0.922) 
−4.902∗∗∗ 

(0.445) 
−2.936∗ 

(1.677) 
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µλ ξ/$ η/$ 
Log Zipcode Income 

Vehicle 

0.031∗∗∗ 

(0.008) 
0.284 

(2.949) 
−0.808 
(1.850) 

Length of Ownership 0.017 
(0.012) 

Vehicle on Lease Ind. 0.092∗∗∗ 

−0.918 
(0.887) 
−1.058 

−0.084 
(0.338) 
4.789∗∗∗ 

Model Year 
(0.024) 
−0.026∗ 

(1.677) 
−1.621∗∗∗ 

(0.343) 
3.211∗∗∗ 

ABS Ind. 
(0.014) 
−0.058∗ 

(0.421) 
0.034 

(0.445) 
−1.626∗∗∗ 

Airbag Ind. 

Class C Ind. 

(0.035) 
0.014 

(0.021) 
0.023 

(0.741) 
0.199 

(1.644) 
0.079 

(0.422) 
1.225 

(1.686) 
3.843∗∗ 

Tier 
(0.053) (0.448) (1.655) 

Credit Report Ind. 

Delinq. Score∗ 

Prior Ins. Length 

Has Prior Ins. 

0.044 
(0.035) 
−0.016 
(0.014) 
−0.038∗∗ 

(0.017) 
−0.067∗ 

0.414 
(0.429) 
2.114∗∗∗ 

(0.331) 
−2.293 
(1.648) 
−1.183∗∗∗ 

1.832∗∗∗ 

(0.448) 
10.959∗∗∗ 

(0.917) 
−3.993∗∗∗ 

(0.338) 
−0.759∗ 

– w/ Lapse 

Violation Points 

(0.035) 
−0.050 
(0.043) 
−0.032 

(0.427) 
0.204 

(1.686) 
1.084∗∗∗ 

(0.448) 
0.001 

(0.620) 
4.333∗∗∗ 

Clean Record Ind. 
(0.030) 
−0.097∗∗∗ 

(0.337) 
−0.909 

(0.429) 
−1.392∗∗∗ 

(0.035) 
Total Accident Count 0.115∗∗∗ 

(0.916) 
0.470 

(0.342) 
−0.139 

Total DUI Count 
(0.029) 
−0.233∗∗∗ 

(1.638) 
0.031 

(1.690) 
0.326 

Log Risk Class 

Risk Class 

(0.065) 
0.275∗∗∗ 

(0.046) 
0.042 

(0.922) (0.536) 

– Square 

– Cube 

(0.074) 
−0.124∗ 

(0.073) 
0.0002 

Seasonality 
(0.046) 
0.026∗∗ 

(0.011) 
−0.764∗∗ 

(0.331) 
−1.585∗∗∗ 

(0.427) 
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µλ ξ/$ η/$ 
– Square 

Trend Year 

0.063 
(0.046) 
0.083∗ 

−0.364 
(0.340) 
−1.570 

−0.519 
(0.430) 
7.417∗∗∗ 

– Square 
(0.043) 
−0.102∗∗∗ 

(0.039) 

(1.660) 
−1.413 
(1.830) 

(0.338) 
6.199∗∗∗ 

(1.674) 
Note: This table reports intercept and slope estimates for het-
erogeneous latent parameters. Continuous covariates are nor-
malized (except λ and monitoring duration). Discrete variables
with more than two values are normalized so that the minimum
is zero. Deliq. (delinquency) Score is based on records from
a credit bureau. Higher scores mean worse records. ∗p<0.1; 
∗∗p<0.05; ∗∗∗p<0.01 

Table A.4: Estimates: Renewal Pricing and Monitoring Score 

E[R0,m=0,t=0] µs E[R0,m=0,t=1] 

Intercept 

Log Risk Class 

Risk Class 

−0.362∗∗∗ 

(0.001) 
−0.413∗∗∗ 

(0.018) 
0.367∗∗∗ 

11.367∗∗∗ 

(0.506) 
−0.384∗∗ 

(0.155) 
−0.077 

−1.131∗∗∗ 

(0.132) 
−0.080∗∗∗ 

(0.018) 
0.063 

– Square 

– Cube 

(0.051) 
−0.290∗∗∗ 

(0.054) 
−0.229∗∗∗ 

(0.304) 
0.245 

(0.308) 
−0.039 

(0.034) 
−0.155∗∗∗ 

(0.036) 
0.031 

ln λ 
(0.022) (0.140) 

1.859∗∗∗ 
(0.019) 

log(Monitoring Score) 
(0.094) 

0.150∗∗∗ 

(0.005) 
Notes: This table reports estimates for the renewal pricing and monitoring score model. Instead of modeling 
the Gamma shape parameters (α), we use a change-of-variables technique to directly estimate the expected 
renewal rate. It is modeled with a Sigmoid function between 0.5 (50% cheaper) and 2 (twice as expensive). 
That is, E[R0] = σ(x0θR) × 1.5 + 0.5. We include the appropriate Jacobian adjustments in estimation, and 
winsorize away extremely large or small renewal price change. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 
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Table A.5: Demand Model Fit 

Basic Specifcation Primary Specifcation Data 

Monitoring share (when eligible) 17.7% 15.6% 15.3% 
Expected score 5.46 4.25 4.30 
Selection e˙ect (risk) 6.7% 21.2% -

Coverage share
30K 13.7% 12.5% 12.7% 
40K 9.1% 8.2% 8.5% 
50K 53.2% 49.8% 47.1% 
100K 13.0% 15.4% 17.0% 
300K 9.3% 11.9% 12.3% 
500K 1.8% 2.3% 2.4% 

First renewal attrition (indexed) 133.0% 102.9% 100.0% 

Notes: This table reports the ft of our demand model as described above. The primary specifcation is outlined in our 
econometric model section. Monitoring share is conditional on eligibility. For coverage shares, our demand estimation 
data pools across three states with di˙erent mandatory minimum. One state changed mandatory minimum from 30K to 
50K; estimation data is drawn from only the pre-period of that state to capture monitoring introduction. First renewal 
attrition rate is benchmarked to data per the frm’s request (reporting percent di˙erences, not percentage point di˙erences). 

Table A.6: Cross Validation 

Basic Specifcation Primary Specifcation Hold-Out Data 

Monitoring share (when eligible) 21.2% 17.9% 17.6% 
Expected score 5.23 3.97 4.17 
Selection e˙ect (risk) 5.2% 23.7% -

Coverage share
30K - - -
40K 9.4% 7.6% 7.2% 
50K 66.3% 60.5% 58.1% 
100K 13.4% 17.5% 19.6% 
300K 9.7% 10.9% 12.8% 
500K 1.3% 3.6% 2.4% 

First renewal attrition 132.2% 104.2% 100.0% 

Notes: This table reports our cross-validation result. All measures are calculated analogously as Table A.5. For the state that 
changed mandatory minimum, the hold-out data include all post-period data. For the other two states, the hold-out data 
include all observations that are not in our demand estimation data. 
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B Analysis of Actual Firm Pricing 

Cream skimming e˙ect Advantageous selection into monitoring may cream skim 
from the frm’s unmonitored pool. As a result, frms may choose to raise prices 
in the unmonitored pool. In addition, they may also want to surcharge the un-
monitored pool to indirectly encourage monitoring participation. To test the e˙ect 
of monitoring introduction on the unmonitored pool more formally, we take ad-
vantage of the staggered introduction of monitoring across states. This gives rise 
to a regression discontinuity strategy that evaluates how prices and average cost 
changed in the unmonitored pool. We focus on a year before and after monitor-
ing introduction; our observable characteristics also include state fxed e˙ects and 
fexible controls for trends and seasonality. We only focus on the frst semester 
(t = 0) to avoid contamination from attrition67. We therefore drop the t subscript, 
and run the following regression 

dep. var.i = α + γQtri + κ1post,i + θ · Qtri × 1post,i + x 0 iβ + ξy,i + �i (13) 

We use price pi and claim count Ci as our dependent variable. Qtr is the run-
ning variable, which denotes the calendar quarter when driver i arrived at the 
frm68. 1post is an indicator for whether i arrived at the frm after the introduction 
of monitoring. x and a coverage fxed e˙ect ξy soak up compositional changes in 
observable risk class and coverage plans. The coeÿcient θ reveals treatment e˙ect 
of monitoring introduction on prices and claims in the unmonitored pool. 

Estimates for θ ̂across various specifcations are reported in fgure B.2. The frm 
did not raise prices around monitoring introduction. We also fnd no evidence 
that the average cost of the unmonitored pool deteriorated by more than 2%. 

In reality, monitoring is only a small fraction of the market. As our demand es-
timates will reveal in the next section, even when monitored drivers are signif-
cantly better, its infuence on the unmonitored pool is signifcantly limited by its 
small size. Further, the frm does not make follow-up o˙ers to customers who 
initially opted out monitoring, which is necessary for unraveling to occur empiri-
cally. Lastly, monitoring programs are subject to approval by state commissioners. 
And a new program that a˙ects baseline pricing may be subject to more regula-
tory scrutiny. On the fip side, this suggests that the current monitoring regime is 
largely welfare-neutral for unmonitored drivers. 

67This regression does not include monitored drivers, so there is no contamination from moral hazard. 
68It is normalized so that the quarter immediately after monitoring introduction is indexed as 0. 
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Dynamic and non-uniform pricing Monitored drivers have 35% higher prof-
itability overall, controlling for observables. On top of the risk reduction (during 
monitoring) and better risk rating, this can also be a result of higher proft margin 
and retention rate when information is revealed. We provide descriptive evidence 
on pricing and dynamic retention in this section. 

First, the Firm faces a dynamic pricing problem as information is revealed at the 
end of the frst period. It o˙ers a opt-in discount to encourage all drivers to partic-
ipate in monitoring. This averages to around 5% across states and time. 

When monitoring information is revealed, the frm can use it to set non-uniform 
prices. Here, the frm’s pricing schedule is based on a monitoring tier that mea-
sures how “surprising” a given driver’s monitoring score is to the frm. In fg-
ure A.5, we plot the empirical distribution of monitoring tier, which is realized 
monitoring score divided by frm’s expected score given observables69. Consis-
tent with our fndings above, the average monitored driver performed much better 
than expected70. 

Figure B.3 presents the discount schedule the frm uses given the percentile of 
monitoring tier as defned above. Surprisingly good drivers are on the left, who are 
o˙ered the highest renewal discount, while around 25% of drivers that performed 
poorly (compared to frm’s expectation) received a surcharge. 

Figure B.4 plots the corresponding retention rate. It is clear that as discounts ap-
proach zero or negative, retention rate drops signifcantly. In fact, we can regress 
renewal choice (binary) on prices with monitoring discount, controlling for ob-
servables and price level without the discount. θ then measures the slope of the 
residual (retention) demand. 

0 1renew,i = α + δpi + θdisci + x iβ + �i (14) 

The estimates for θ ̂are reported in fgure B.5. Without monitoring discount, a $1 
increase in price (decrease in discount given) causes the retention rate to drop by 
0.07 percentage points (7 basis points). When frms give discounts, however, the 
slope of the demand decreases, and by 56% when the discount given is larger than 
10%. This suggests that 

69For monitored driver i, the expected score is derived based on the average driver in i’s observable (xi) group. It also 
does not take into account the fact that i has selected into monitoring. The graph has a long right tail and is truncated at 
200%. 

70It is important to note that a driver with a monitoring tier of 30% is not necessarily 70% safer than the average person 
in her pool, especially in renewal period. This is because monitoring score does not capture risk perfectly, and it is also 
stochastic. Our structural model quantifes these e˙ects more formally. 
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Figure B.1: Monthly monitoring fnish rate around monitoring introduction 

Figure B.2: Event Study: treatment e˙ect of monitoring introduction on the un-
monitored pool 

Notes: fgure B.1 the progression of monthly monitoring fnish rate around the introduction of monitoring. The 
monthly fnish rate are below 0.1% in all months before monitoring introduction. The reason why it is not ex-
actly zero before monitoring introduction is due to small-scale trial and experimentation. We throw out states 
that introduced monitoring in the frst three months or the last 12 months of our research window. This ensures 
that the trend we see do not pick up changes in state composition. 
fgure B.2 reports regression-discontinuity estimate θ of equation (13), where the horizontal axis distinguishes 
dependent variable used. These e˙ects are translated in percentage terms by dividing the average of the depen-
dent variable in the period immediately before monitoring introduction. We look at only frst period outcomes, 
and include all unmonitored drivers arriving at the frm a year before or after the frm. States that introduced 56 monitoring within a year after the beginning or a year before the end of our research window are excluded. 
The running variable is quarter since monitoring introduction. Di˙erent colors and positions represent di˙er-
ent specifcations of control variables (xit). The grey (left-most) series represents estimates from regressions 
with the full set of xit; the orange (middle) one includes a full set of observables, including fexible controls for 
trend and seasonality. 



Figure B.3: Monitoring Discount Schedule 

Figure B.4: Indexed Retention Rate 

Notes: fgure B.3 plots the frm’s pricing schedule for giving monitoring discount. On the horizontal axis, we 
plot the percentile of monitoring tier, which is monitoring score divided by that expected by the frm given 
observables. 74% of people received a discount. The vertical axis is scaled by a factor between 0.5 and 1.5. This 
is to protect the frm’s identity while demonstrating the scale and shape of the pricing algorithm. The frm went 
through two pricing schedules. This graph plots the second pricing schedule. The frst one is similar, except 
that no surcharge was given. 
fgure B.4 uses the same horizontal axis, and non-parametrically plots the retention rate for the semester imme-
diately after drivers fnish monitoring (and thus when they frst got monitoring discounts). Bandwidth is set 
as 5, and all numbers are benchmarked/normalized against the mean retention rate of the lowest 5 monitoring 
tiers. For 93% of monitored drivers, this is the frst renewal period.57 



Figure B.5: Comparison of subsequent claim cost across monitoring groups 

Notes: This fgure plots the estimate of θ from equation (14) in various subsamples. These subsamples are 
represented on the horizontal axis. Notice that although we segment the data using discount percentage, we use 
the actual discount amount in the regression to measure demand elasticity. The results are scaled to percentage 
point terms. Therefore, −0.05 means that the slope of retention demand is such that a one dollar increase in 
price would lead to a 0.05 percentage point drop in retention rate. 
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D Estimation Details 

Intercept and slope parameters We parameterize heterogeneous latent param-
R s eters linearly. Broadly consistent with actual frm pricing rules, xit and xi only 

include a polynomial and the log of risk class, which represents frm’s risk assess-
ment without monitoring information. 

Nest structure Incorporating additional alternative-level random e˙ects can fur-
ther enrich our model. In our primary specifcation, we add a random coeÿcient, 
ζ , on all choices within f ?. This allows us to capture correlations between choices 
within the frm. Here, we assume ζ is an independently normally distributed with 
mean zero and standard deviation σζ (Train 2009). This allows us to escape the In-
dependence of Irrelevant Alternatives property of a simple logit model. The model 
can therefore achieve better ft on attrition rate di˙erences across consumers facing 
di˙erent contract spaces across states or when mandatory minimum changes. 

Taylor approximation approach for nonlinear utility Next, following the liter-
ature on auto insurance choices (Cohen and Einav 2007; Barseghyan, Molinari, 
O’Donoghue, and Teitelbaum 2013), we start with an approximation approach to 
model the utility function . Assuming that third- or higher-order derivatives are 
negligible, the utility function can be expressed by a second-order Taylor approx-
imation of the utility function around income w. Normalizing by marginal utility 
evaluated at w, we get the following expression, in which γ is the absolute-risk-
aversion term: 

γ � � 
h2 vidt(λ, ζ) =E [hidt| λ, ζ] − E |λ, ζ (15) idt2 

This further simplifes product di˙erentiation into consumption bundles with dif-
ferent mean and variance profles. It also allows us to interpret v in monetary val-
ues, as the second term of Equation 15 is exactly the risk premium, while the frst 
is expected consumption. We are currently running robustness checks for alterna-
tive utility assumptions such as CARA and CRRA, as well as to allow for richer 
heterogeneity in risk preference. 

Estimation Our model includes random coeÿcients that enter utility nonlin-
early. Private risk, in particular interacts with various observed monitoring and 
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coverage characteristics (renewal price, out-of-pocket expenditure), as well as un-
observed demand parameters (risk aversion and monitoring cost). Therefore, we 
use a simulated maximum likelihood approach (Train 2002; Handel 2013). In par-
ticular, the mix logit structure implies that the choice probability is numerically 
integrated as follows: 

Pr(dit|λ) = Pr(�idt − �id0t > [vidt(λ) − vid0t(λ)] ∀d0 6= d 

exp [vidt(λ)/σ] 
= P (16) 

d0 exp [vid0t(λ)/σ] Z 
Pr(dit) = Pr(dit|λ)fλ(λ)dλ (17) 

In general, for each parameter proposal Θd, we simulate 50 independent draws 
of private risk (�λ) and the zero-mean frm dummy (ζ).71 Then, we compute the 
likelihood for observed choices, claim count and severity, monitoring score, and 
renewal price change. These are averaged over to get the simulated log likelihood. 
The estimator θ? maximizes the log likelihood. Notice that the Taylor approxima-
tion allows us to derive closed-form solutions for the frst two moments of out-
of-pocket expenditures and renewal prices.72 We therefore do not simulate claim 
losses or monitoring scores within each draw of random coeÿcients. 

As discussed above, our cost model is easier to estimate but requires a large amount 
of data to estimate precisely. Our demand model faces the opposite challenge, be-
ing computationally demanding but also making use of rich variations in choice 
environment and outcome. Therefore, we adopt a two-step estimation procedure. 
First, risk and monitoring score parameters (θλ, σλ, θs, σs) are estimated in the full 
dataset (except the loss severity parameter, per the discussion above). We then 
feed the estimates into the demand models as truth.73 We lose precision by doing 
so, but both models are identifed standalone. 

Our model includes unobserved state variables (random coeÿcients) that enter 
utility non-linearly. Therefore, we use a random coeÿcient simulated maximum 

71We test the e˙ect of increasing the number of draws in estimation on a 10,000 sub-sample. The e˙ect of going from 
50 to 200 draws is minimal. 

72Further, we restrict α` to be larger than 2 so that the mean and variance of the distribution are both fnite, as both 
moments enter consumers’ utility. The mean of the Pareto distribution is thus no more than 2` 0. Therefore, to ft the average 
cost to the frm well, we set ̀  0 = 3000, roughly half the empirical mean of the claim distribution. This parameter is selected 
in cross-validation, om which we compare model performance in a hold-out dataset by directly calculating the likelihood. 
In a robustness check, we are also ftting a Gamma model for calculating the frm’s cost only. 

73Standard errors for the demand estimates are current not adjusted for two-step estimation. In a robustness check, we 
are correcting those standard errors and implementing a joint estimation. 
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likelihood approach (Train 2009; Handel 2013) to estimate the model. 

For each parameter proposal θ, we simulate the model 50 times using Halton draws 
and compute the likelihood for all observations in the data. We then average over 
these to get the “simulated log likelihood”, denoted as L̂sim(θ). The estimator θ? 

maximizes the log likelihood. Simulated maximum likelihood su˙er from simu-
lation bias 

Likelihood Function The log likelihood are sample analogs of four types of data 
likelihoods (denoted as L) - claims, monitoring score, choices (of frm, coverage 
and monitoring participation), as well as renewal price. Utilities are history-dependent 
in our model. Therefore, we need to simulate choice sequence for each driver i. For 
notational simplicity, we suppress frm-dummy random e˙ect ζ as in our baseline 
specifcation. The log likelihood function can then be expressed as follows. Z X 

Li ≡ L(Rit, si, Cit, dit|λ, ψ, xit, pit, Dit, di,t−1; Θ ) · gλ(λ|xit; θλ, σλ) dλ | {z } | {z } λ t≤Ti (A):obs. stoc outcome (B):latent var. 

The simulation procedure allows us to numerically integrate over λ given param-
eter proposals θλ and σλ. We follow the timing of the model to decompose the 
likelihood component A as follows. 

(A) = ln Pr(dit|λ, xit, pit, Dit, di,t−1; a, ψ0, ψ1, θη, θξ, α, θβ) + 

+ ln Pr(Cit|λ, xit) + ln g(` it|dit, xit; α, θβ ) 

+ ln gs(si|λ, xit; θs, σs) + ln gR(Ridt|Cit, si, λ, xit, pit; θR, θR,m, σR) 

Each component of (A) is modeled in the main text and given distributional as-
sumptions. 

Choice probability Our choice probability requires integration over all possible 
C, ̀ , R0 and s. In our model, we assume away uncertainty in s, and our Poisson-
Gamma model gives analytical solutions for expectation over C and ̀ . 

For simplicity, in people’s expectation, we only consider the possibility of one claim 
occurrence per term (Cohen and Einav 2007; Barseghyan et al. 2013). We can then 
capitalize on the attractive analytical property of gamma distributions and avoid 
numerical integration over C, `, R0 and s. 
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E Simulation Analysis of the Informativeness of Mon-
itoring Signal 

We can conduct a simple simulation exercise to quantify the spread of private risk 
and monitoring’s e˙ectiveness. To do so, we frst simulate a large risk pool by tak-
ing the mean of all observable characteristics and simulating each driver’s private 
risk. Figure E.1 plots the density of simulated true risk.74 Next, Figure E.2 plots 
the frm’s prior mean for all drivers in the risk pool. The frm has a fat prior for all 
drivers in the frst period, which is far from the perfect belief (represented by the 
dotted and zoomed in 45-degree line). In Figure E.3, we calculate the evolution of 
frm belief (posterior mean) in subsequent periods as the frm observes potential 
claim realization. The frm’s belief evolves towards the truth as claim is a direct 
measure of risk. However, the sparsity of claims, especially among safe drivers, 
dramatically slows down the frm’s belief updating. 

Monitoring score provides an immediate signal for driver risk after the frst period. 
In Figure E.4, we plot, in orange, how the frm’s belief updates after observing a 
one-time monitoring score. It is clear that monitoring is far more informative than 
observing a period of potential claim realization (dark grey line). Monitoring is 
especially useful in distinguishing the large mass of safe drivers, in which claims 
are even rarer. To quantify this measure, we can calculate the absolute deviation 
of frm belief from the true risk in our simulated risk pool. Overall, observing the 
monitoring score gets the frm 12.3% closer to the perfect belief (45-degree line). 

74Our fgures use private risk spread among new drivers for illustrative clarity. 
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Figure E.1: A simulated mean risk pool given our cost estimate 

Notes: This fgure plots the distribution of a simulated mean risk pool given our cost estimates. 

Figure E.2: Firm’s prior on simulated risk pool 

Notes: This fgure plots frm’s belief (prior mean / risk rating) for drivers in our simulated pool. In the frst 
period, they are by defnition pooled together. Therefore, frm has a fat prior for all drivers in the pool. The 
dotted line is the 45 degree line, which represents perfect belief. 
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Figure E.3: Firm’s posterior updating based on claims 

Notes: This fgure plots the evolution of frm belief (posterior mean) for drivers in our simulated pool based on 
liability claims alone. To make the updating analytically feasible, we frst ft a gamma distribution on our risk 
pool by matching the mean and variance. Since gamma distribution is a conjugate prior for poisson updating, 
we are able to analytically derive the posterior mean. 

Figure E.4: Firm’s posterior updating based on monitoring vs. claims 

Notes: This fgure plots the evolution of frm belief (posterior mean) for drivers in our simulated pool based 
on claims versus monitoring. Since lognormal distribution is a conjugate prior for lognormal updating, we are 
able to analytically derive the posterior mean. 
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F Counterfactual Simulation Methodology 

Consistent with our demand model, we take a one-year horizon. The following 
procedure is used to calculate ex-ante and expected realized (ex-post) quantities. 

1. For each driver i, simulate random coeÿcients (private risk and frm dummy) 
L ∈ N+ times. 

2. For each draw l ∈ {1, ..., L}, calculate ex-ante utility directly and the cor-
responding certainty equivalent.75 First-period choice probabilities are also 
calculated, which gives us the monitoring share. Expected cost of the frst 
semester can be calculated directly. But we also need to form an expectation 
of the second-period cost (and prices) in order to calculate total surplus (and 
proft): 

3. Simulate K ∈ N+ draws of frst-period claim occurrence and monitoring 
score based on private risk.76 Each draw pins down the renewal price change 
that driver i would face in the second period. All other prices remain con-
stant. For each frst-period choice d, we can then calculate the second period 
choice probability and the corresponding expected cost. 

Sample enumeration Since we observe new customers’ origins, as well as the 
competitive prices they face when coming to the frm, we can use our model to 
enumerate a full sample of potential new customers (Train 2009). To do so, we frst 
calculate the probability of each new customer arriving at the frm. We then follow 
the same procedure as outlined above, but weight each driver by the inverse of the 
calculated probability. The simulation is carried out assuming that monitoring is 
available for all new customers.77 Overall, our simulated dataset is expanded by a 
factor of 4.03, which gives us a market share (among the top six frms for which we 
have data) close to the reality in the states we study.78 This also allows us to derive 
a realistic proxy for competitor proft under a symmetric cost assumption; that is, 
the distribution of risk that we estimate in our dataset is valid when extrapolated 
to the simulated market. 

75Due to our Taylor approximation, this should be the negative root of the polynomial. 
76For simplicity, we assume thatR0 is deterministic conditional on C and s. In reality, the spread of baseline R0 without 

claims and monitoring may have subtle nonlinear e˙ects on consumer choice, which we assume away. 
77Part of the estimation data is pre-monitoring introduction. We use the average opt-in discount for these drivers. 
78We winzorize the re-weighting scaling factor to be between 1 and 20 to deal with outliers. 
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In order to enumerate the market, we need to extrapolate the estimated attrition 
elasticity the frm faces to understand how the frm competes with other frms in 
the frst period. To do so, we make a no-brand-di˙erentiation assumption: liability in-
surance contracts o˙ered by di˙erent frms only di˙er fnancially. This means that 
our frm-switching inertia estimate consists only of search and switching costs that 
are state-dependent (on consumers’ preexisting frm choice) and that consumers 
have no unobserved preference for our frm, which is not state-dependent. In the 
context of our counterfactual simulations, this assumption essentially maintains 
that the price elasticity the frm’s competitors face when the frm tries to poach 
customers away from them (in the frst period) is the same as the price elasticity 
the frm faces when trying to retain existing customers. 

This assumption follows naturally from our data limitation: we do not observe 
comprehensive micro-level choice or quantity data for the frm’s competitors. But 
it is also supported by empirical evidence. Honka (2012) uses a survey dataset 
that includes individual consumer choices across auto insurers. She is then able 
to tease out switching cost from frm-specifc preferences. She fnds that the mean 
frm preferences are not signifcantly di˙erent from 0 for all companies.79 

79Her estimate of search and switching cost is lower than our estimate. However, for the frm from which our adminis-
trative dataset comes from, the reported attrition rate in her dataset is more than three times as large as what we observe. 
Her estimate is therefore likely biased downwards. 
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G Counterfactual Demand Models 

In this section, we show simulation results of removing key components of the de-
mand model, as an illustration of their relative importance in determining moni-
toring share and the frm’s proftability. 

Second, the "Perfect Sig." model assumes that the monitoring signal is perfect in 
consumers’ expectation by setting σs to zero. The market share, unconditional and 
conditional monitoring shares increase by 0.4pp, 0.6pp, and 2.6pp, respectively. In 
reality, our specifcation is consistent with a dynamic framework in which frm-
switching is infnitely costly within a year. This will likely overstate the e˙ect of 
reclassifcation risk. Nevertheless, the impact of a perfect signal on demand is 
small compared to that of other forces.80 

Demand frictions are the most important deterrent against monitoring participa-
tion. The third model removes frm-switching inertia, which dramatically lowers 
the barrier for drivers with good private risk to participate in monitoring. How-
ever, It also clears the way for drivers to explore attractive outside options. We fnd 
that the frm is able to gain market share by 12.6pp, while increasing its monitoring 
share by 12.1pp so that 5.9% of drivers in the market has monitoring. Lastly, we 
remove monitoring cost. This generates the biggest impact on monitoring by far. 
In particular, any driver with good private risk would prefer monitoring with any 
coverage within the frm. The monitoring share rises to 61.3%, with 16.2% of the 
market opting in the frm’s monitoring program. 

Firm proft is infuenced not only by its market share, but also by risk selection. 
To directly visualize this, we isolate the risk selection e˙ect from the overall proft 
impact in Figure G.6. It plots the expected private risk parameter (�λ,i, mean 0) for 
the frm’s customers, both monitored and unmonitored. This clarifes the changes 
in the private risk of the marginal customers that come to the frm as we relax de-
mand factors, which is crucial in understanding competition in selection markets. 
As the frm cream-skims better drivers in its monitored pool, the unmonitored 
pool in and outside of the frm deteriorates. These pool may therefore eventually 
unravel as frms adjust prices. 

80A caveat is that we assume rational expectation in our model. This means that the e˙ect of a systematic over- or 
under-estimation of the monitoring signal’s noise would show up in drivers’ monitoring cost instead of be attributed to 
reclassifcation risk. 
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Figure G.5: Demand Share Simulation Across Demand Model Assumptions 

Notes: These fgures correspond to our analyses in ??. The top graph plots the counterfactual market share of 
the frm, as well as the unconditional share of monitored drivers in the market, when prices are fxed but the 
demand model changes. The bottom graph plots the conditional monitoring share within the frm. See main 
text for defnitions of each model - importantly, changes in model features are not cumulative from left to right. 
We also enumerate our sample of new customers to the full market with model-predicted likelihood of each 
new customer being in our dataset. 
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Figure G.6: Simulation - Proft Under Di˙erent Demand Model Assumptions 

Notes: Corresponding to the fgure above, these graphs plot frm proft and competitor proft, holding prices 
fxed. The top graph plots the expected private risk among the frm’s customers. Notice that private risk has 
mean zero in the population. It is numerically integrated over in the counterfactual simulations. With each 
draw, we weight each person’s private risk with her probability of arriving at the frm to get the number shown 
above. It therefore represents both the monitored and the unmonitored pools of the frm. 
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H Regulatory Filing Examples 

Figure H.1: Pricing Algorithm - Insurer 1 OH 
Notes: This page is taken from an insurer’s Ohio rate fling, which demonstrates their pric-
ing algorithm. 72 



Figure H.2: Pricing Algorithm - Insurer 2 OH 1/2 
Notes: These pages are taken from a an insurer’s rate fling in Ohio, which demonstrate 
their pricing algorithm. 
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Figure H.3: Pricing Algorithm - Insurer 2 OH 2/2 
Notes: These pages are taken from an insurer’s rate fling in Ohio, which demonstrate their 
pricing algorithm. 
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Figure H.4: Pricing Algorithm - Insurer 3 OH 
Notes: These pages are taken from an insurer’s rate fling in Ohio, which demonstrate their 
pricing algorithm. 
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Figure H.5: Variable Defnition and Interactions 
Notes: This is an excerpt from an insurer’s rate fling on how observable information is 
used and interacted. 
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Figure H.6: Rating Factors based on Observables 
Notes: This is an excerpt from an insurer’s rate fling on how observable information is 
translated into pricing factors. 

77 



Figure H.7: Violation Captured in OH 
Notes: This is an excerpt from an insurer’s rate fling on the kinds of violations recorded in 
tier rating in Ohio. 
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Figure H.8: Tier Factors 
Notes: This is an excerpt from an insurer’s rate fling on how tier information is rated. 
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Figure H.9: Violation Captured in OH 
Notes: This is an excerpt from an insurer’s rate fling on how monitoring pricing is fled. 
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Figure H.10: Tier Factors 
Notes: This is an excerpt from an insurer’s rate fling on how limit choices infuence pricing. 
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