China's Industrial Policy: An Empirical Evaluation

Panle Jia Barwick Cornell and NBER Myrto Kalouptsidi Harvard and NBER

Nahim Zahur Cornell

November 2019

China's Rapid Expansion

• These industries grew by 20-30 times during a 15-yr period

These expansions are partially fueled by China's massive industrial policies

- National and regional five-year plans
- "Made in China 2025": dominate industries of the future by 2025
 - ► Major push in 10 sectors, including robotics, aerospace and clean-energy cars
 - World leader in latest-generation ships and marine equipment

Low concentration, excess capacity, and regional "industry duplication"

- Despite the importance of industrial policies, few welfare analyses exist
- We examine China's industrial policy and the global shipbuilding industry
 - Quantify government support to domestic production, investment, and firm entry using a dynamic model
- And conduct counterfactual analysis:
 - Benchmark effectiveness of different policies on revenue, profit, and welfare
 - Simulate industry evolution and welfare under alternative policies

Summary of Findings

- Magnitude of industrial policies large:
 - Subsidy for production, investment, and entry is 159/51/330 bn RMB 2006-2013 (aggregate industry revenue 1700 bn RMB)
 - Boosted China's investment by 270% and entry by 200%
 - Enhanced China's world market share by 40%
- Significant impact on world ship prices:
 - ▶ 2006-08, reduction on price of bulk (8%), tanker (6%), and container (3%)
 - ▶ 2009-13, reduction on price of bulk (17%), tanker (11%), and container (4%)
 - Bigger impact in later periods due to increased capacity, num. of firms

Findings: II

- Evaluation of different policies
 - Effectiveness in boosting profit/revenue mixed: production and investment subsidies can be justified by output considerations; entry subsidies are wasteful
 - Industry (discounted lifetime) profit increased by 145 bill RMB; subsidy 'rate of return' merely 18%
 - \blacktriangleright Subsidy reduces HHI by 40% and lowers capacity utilization by 20%
- Insights from this study:
 - Distortions are convex and deteriorate with the magnitude of subsidies
 - Dynamic sorting and targeting instrumental
 - Timing (pro-cyclical vs. counter-cyclical) highly relevant

Outline

- Industry Description and Facts
- Ø Model
- Oata and Empirical Strategy
- Stimation results
- Ounterfactual analysis
- Onclusion

(Chinese) Shipbuilding

History of Shipbuilding

- Shipbuilding a classic target and one of major subsidy recipients
- 1850s Britain; 1950s Japan; 1970s S. Korea; 2000s China

Major Policies in China

Table: Shipbuilding National Industrial Policies

Year	Shipbuilding National Industrial Policies	Plan Period
2003	National Marine Economic Development Plan	2001-2010
2006 2006 2007 2007 2007 2007 2007	The 11th Five-Year Plan for National Economic and Social Development The Medium and Long Term Development Plan of Shipbuilding Industry The 11th Five-Year Plan for the Development of Shipbuilding Industry The 11th Five-Year Plan for the Development of Shipbuilding Technology 11th Five-Year Plan for the Development of Ship Equipment Industry Guideline for Comprehensive Establishment of Modern Shipbuilding (2006-2010) Shipbuilding Operation Standards	2006-2010 2006-2015 2006-2010 2006-2010 2006-2010 2006-2010 2007-
2009 2010 2012 2013	Plan on the Adjusting and Revitalizing the Shipbuilding Industry The 12th Five-Year Plan for National Economic and Social Development The 12th Five-Year Plan for the Development of the Shipbuilding Industry Plan on Accelerating Structural Adjustment and Promoting Transformation and Upgrading of the Shipbuilding Industry	2009-2011 2011-2015 2011-2015 2013-2015
2013	Shipbuilding Industry Standard and Conditions	2013-

China's Market Share Expansion

Entry of New Shipyards

Investment

Capital Expansion
 Capital Expansion of Existing Firms

• Capacity expansion is universal across firm age, ownership status, and geographical area

Model

Model Overview

• Agents:

- Chinese firms
- Foreign firms (Japanese and S. Korean shipyards)
- Decisions:
 - Capital accumulation; entry and exit (dynamic)
 - Production (static)
- \bullet Products: M ship types
 - Segregated markets
 - Ships homogeneous within a type

Chinese Industrial Policy

- Chinese central and regional government policies (T_t) may provide:
 - Production subsidies that lower $C(q_{jt})$
 - \star input subsidy, export credits, preferential buyer financing
 - Capital subsidies that lower $C^{I}(i_{jt})$
 - $\star\,$ low-interest credit, tax credits for accelerated capital depreciation
 - Entry subsidies that lower κ_{jt}
 - * cheap land, simpler registration procedure
- A simple model of T_t :
 - Two policy shocks (2006 and 2009)
 - They arrive unexpectedly and are considered permanent
- The transition process of payoff relevant variables (including prices) are assumed to satisfy the Markovian property pre- and post- policy intervention.

Model: Static Decisions

• Market demand for ships (omitting subscript on ship type):

$$Q_t^d = d_t - \eta P_t$$

- \blacktriangleright d_t is "market size", determined by world demand shifters, such as freight rates, commodity prices, total fleet
- Shipyard j solves (s_{jt} denotes cost shifters):

 $\max_{q\geq 0} P_t q - C\left(q, s_{jt}\right)$

which leads to profit

$$\pi\left(P_t, s_{jt}, q^*(P_t, s_{jt})\right)$$

- The market clears when total supply $Q_t = \sum_j q^* \, (P_t, s_{jt})$ equals demand $Q^d_t = d_t \eta P_t$
 - Equilibrium ship price $P(s_t, d_t)$

Model: Dynamic Decisions

- Each incumbent receives a random scrap value ϕ_{jt} and decides whether to exit
- Shipyard j with capital k_{jt} invests i_{jt} to accumulate capital:

$$k_{jt+1} = (1-\delta)k_{jt} + i_{jt}$$

• Bellman equation $(s_{jt} \text{ includes all state variables})$:

$$V(s_{jt}, \phi_{jt}) = \pi(s_{jt}) +$$

$$\max_{\chi_{jt}} \begin{cases} \phi_{jt}, \\ \max_{i_{jt}} \left(-C^{I}(i_{jt}, s_{jt}) + \beta E\left[V(s_{jt+1})|s_{jt}, i_{jt}\right] \right) \end{cases}$$

- Investment cost is $C^{I}(i_{jt}, s_{jt})$, inclusive of adjustment costs
- Optimal policies:

 $\chi^{*}(s_{jt},\phi_{jt}), i^{*}(s_{jt}), \text{ and similarly } \chi^{e*}(s_{jt},\kappa_{jt}) \bullet \text{Bellman for entry}$

Data

- Clarksons (1998-2014) :
 - Quarterly level data on prices P_{mt}
 - Orders received by type for each shipyard q_{mjt}
 - Characteristics for Japan and S. Korea shipyards
- Annual survey of Chinese Manufacturing firms (1998-2013)
- Official documents on industrial policies (1998-2013)
- More than 10,000 firm-quarterly observations in total

Ship Prices

Empirical Estimation

Empirical Estimation

- Primitives to recover:
 - Shipyard production costs:

 $C\left(q_{jt},T_t\right)$

Investment cost:

 $C^{I}(i_{jt};T_t)$

Distribution of entry and exit costs:

 $\phi_{jt}, \kappa_{jt}(T_t)$

Ship demand curves (for counter-factual analysis):

$$P_m\left(d_{mt}, Q_{mt}^d\right)$$

Estimate Cost Function

• The marginal cost of producing q_{jmt} equals:

$$MC(q_{jmt}) = z_{jmt}\beta_m + \delta_m q_{jmt} + \omega_{jmt}$$

- > z_{jmt} : capital, backlog, age, province, size, ownership, and subsidies
- Backlog captures economies of scale and learning
- ω_{jmt}: a cost (productivity) shock
- Firms are price takers. Largest firm's market share < 5%.
- Results incorporating market power (via Cournot) are similar.
- There are J_t^c Chinese firms and J_t^f foreign firms (in Japan and S. Korea)
 - foreign firms' marginal cost function similar $MC_f(q_{jmt})$

Production Cost Estimates

	Bulk		Tanker		Container	
Type-specific	Coefficient	t-stat	Coefficient	t-stat	Coefficient	t-stat
MC (thousand RMB / CGT)						
β_q	7.34	9.52	13.60	5.54	9.69	5.63
σ_{ω}	8.49	10.43	14.40	7.08	12.14	5.71
Constant (1000 RMB/CGT)	19.26	15.88	36.58	9.18	32.30	8.39
Steel price (1000 RMB/Ton)	1.55	7.49	1.10	3.04	0.63	1.65
Capital (bill RMB)	-2.43	-2.96	-2.61	-1.80	-2.19	-2.01
Capital ²	0.19	0.83	0.06	0.25	0.06	0.32
Backlog	-1.56	-5.29	-4.44	-5.04	-2.88	-3.34
Backlog ²	0.07	4.04	0.24	3.43	0.18	1.97
Backlog of other types	0.13	0.94	0.35	1.65	0.46	2.66
Common						
2006-2008	-1.51	-2.62				
2009+	-1.38	-2.37				
Large firms	-3.85	-6.97				
Jiangsu	-2.64	-4.75				
Zhejiang	-1.42	-2.80				
Liaoning	-1.87	-2.05				
CSSC/CSIC	-0.77	-1.20				
Private	0.14	0.30				
Foreign JV	-0.78	-1.45				
Age	0.18	3.14				
Ν	4886		4977		2504	

Cost Function Estimates

- δ suggests firms are responsive to prices:
 - Bulk / tanker / container production goes up by 21% / 28% / 22% with a 10% price increase
 - Convex cost: at \bar{q} , $\delta * q$ accounts for 24-58% of a firm's marginal cost
- Larger capital associated with lower cost of production
 - Setting capital to 0 reduces profit by 38%
- Marginal cost decreases with backlog initially (economies of scale) and then increases (capacity constraints)
 - Increasing backlog by 100k CGT reduces marginal cost by 11-27%

Cost Function Estimates

- Production subsidy from 2006 to 2008 equals to 10-13% of the price
- MC for firms in Jiangsu/Liaoning/Zhejiang is lower by 18-22%, 13-16%, and 10-12%, respectively
- Fixed cost c_0 sizable (15% of profits)
- Results robust across alternative specifications
 - pooling across countries
 - drop new shipyards
 - firm- and industry-level learning by doing

Robustness

• Limited evidence of industry-wide spillovers

Empirical Estimation

- Primitives to recover:
 - Shipyard production costs:

 $C\left(q_{jt},T_t\right)$

Investment cost:

$$C^{I}(i_{jt};T_t)$$

Distribution of entry and exit costs:

$$\phi_{jt}, \kappa_{jt}(T_t)$$

Ship demand curves (for counter-factual analysis):

$$P_m\left(d_{mt}, Q_{mt}^d\right)$$

Bellman Equation

• The Bellman equation for incumbents is:

$$V(s_{jt}, \phi_{jt}) = \pi_{jt} + \max_{\chi_{jt}} \left\{ \phi_{jt}, CV(s_{jt}) \right\}$$

• Assume $\phi_{jt} \sim F_{\phi}(\sigma)$ (exponential), ex-ante value fn is:

$$V(s_{jt}) = \pi_{jt} + p^x \sigma + CV(s_{jt})$$

$$CV(s_{jt}) = E_{\nu_{jt}} \{ \max_{i_{jt}} [-C^I(i_{jt}, \nu_{jt}) + \beta E[V(s_{jt+1})|s_{jt}, i_{jt}]]$$

Cost of investment:

$$C^{I}(i_{jt},\nu_{jt}) = c_{1}i_{jt} + c_{2}\nu_{jt}i_{jt} + c_{3}i_{jt}^{2} + c_{4}T_{t}i_{jt}$$

- Random investment shocks v_{jt}
- Quadratic adjustment costs (c₃).
- Investment subsidy (c₄)
- Other types of adjustment costs (^{i²}/_k, random fixed costs, irreversibility) insignificant

Investment Cost Estimates

$$C^{I}(i_{jt},\nu_{jt}) = c_{1}i_{jt} + c_{2}\nu_{jt}i_{jt} + c_{3}i_{jt}^{2} + c_{4}T_{t}i_{jt}$$

	Coeff.	t-stat
c_1	1.00	
c_2	1.55	8.27
c_3	21.72	10.57
c_4 2006-08	-0.25	-1.89
c_4 Post 2009	-0.49	-4.07
N	4286	

- Standard errors from 500 block bootstrap simulations
- Importance of ν_{jt}

Goodness of Fit for Investment

• Quadratic adj. costs: 28% of investment costs; >50% for large investments (> 50mill)

• Proportion of investment costs subsidized high

	κ_{pre}	κ_{06-08}	% of pre-06 cost	$\mid \kappa_{09+}$	% of pre-2006 costs
Jiangsu	60	22	36%	69	114%
Zhejiang	91	37	41%	194	214%
Liaoning	56	29	51%	-	-
Other	25	10	38%	44	172%

Table: Entry Cost Distribution (Mean), billion RMB

- $\kappa_{jt}(T_t)$ (exponentially distributed) differs across regions and policy regimes
- Subsidies during 06-08 reduced entry costs by 50-60%, robust to $ar{N}^e$
- Mean entry cost paid per entrant is 2.3 bn RMB; close to accounting estimates
- Mean of the scrap value distribution is 0.69 bill RMB, t-stat 11.8

Empirical Estimation

- Primitives to recover:
 - Shipyard production costs:

 $C\left(q_{jt},T_t\right)$

Investment cost:

$$C^{I}(i_{jt};T_t)$$

Distribution of entry and exit costs:

$$\phi_{jt}, \kappa_{jt}(T_t)$$

Ship demand curves (for counter-factual analysis):

$$P_m\left(d_{mt}, Q_{mt}^d\right)$$

Evaluation of China's Industrial Policy

Number of Firms

- From 2006-2013, 148 firms enter with subsidies vs. 65 without
- Subsidies depress number of exits (37 vs. 46) and change distribution of exitting firms: fewer incumbents exit but more entrants exit in downturn

Investment

• Total investment during 2006-2013 is 114 bill RMB with subsidies vs. 42 bill RMB without subsidies

Concentration

- HHI is 40% lower with subsidies in 2009-2013 (more fragmentation)
- Q/K is 20% lower with subsidies in 2009-2013

Impact on World Prices

	Bulk	Tanker	Container
Subsidies, 2006-08	16.3	20.0	17.2
No subsidies, 2006-08	17.6	21.2	17.7
% difference	8.2%	6.2%	3.1%
Subsidies, 2009-13	8.8	8.1	9.2
No subsidies, 2009-13	10.2	9.0	9.5
% difference	16.5%	10.6%	3.7%

Table: Impact of Subsidy on World Price

Note: Prices in 1000 RMB/CGT

- Magnitude depends on supply and demand elasticity
 - Demand for containers more elastic hence effect smaller
- Effect larger in later period due to increased capacity and larger num. of firms

- $\bullet\,$ Subsidies increased China's market share by $40\%\,$
 - China stole roughly equal market share from Japan and S. Korea
 - Profits by Japanese and South Korean shipyards reduce by 140 bn RMB
- Worldwide shippers benefit by 230 bill RMB
 - China accounts for less than 10% of world shippers

- How effective are these policies in generating profit and/or revenue?
- Production subsidy is static, while investment and entry subsidies have dynamic consequences
 - More investment and entry today imply more production and higher profit tomorrow
- Simulate long-run industry equilibrium from 2006-2099 (discounted profit post 2099 negligible)
 - Turning on and off subsidies as needed
 - Equilibrium prices are determined by supply and demand

Subsidy Comparison

Table: Comparison of Different Subsidies: Bill RMB

	All	Only	Only	Only	No
	Subsidies	Production	Investment	Entry	Subsidies
Lifetime Revenue 2006-2099	2320	2091	1796	1830	1696
Lifetime Profits 2006-2099	854	788	618	<mark>590</mark>	570
Production Subsidies	256	216	0	0	0
Investment Subsidies	86	0	44	0	0
Entry Subsidies	302	0	0	171	0
$\begin{array}{l} \Delta \ {\sf Revenue/Subsidy} \\ \Delta \ ({\sf Profit-Inv.\ Cost})/{\sf Subsidy} \\ \Delta \ {\sf Net\ Profit/Subsidy} \end{array}$	97% 44% 18%	183% 93% 56%	226% 148% 87%	78% 11% 24%	

• Net Profit = (Profits-Investment Cost+Scrap Value-Entry Cost)

• Entry subsidies from 2006 to 2008 while production and investment subsidies from 2006 to 2099

- Production and investment subsidies can be justified by output considerations
- Entry subsidies attract high-cost firms and are wasteful
- Aggregate return to subsidies merely 18%
- Subsidies lead to higher aggregate fixed costs incurred, which augment inefficiency
 - Absent fixed costs, rate of return would increase from 18% to 29%
- Convexity: subsidies much more distortionary when combined

Comparing Production and Investment Subsidies

Table: Production vs. Investment Subsidies: Bill RMB

	100% Production subsidies	50% Production subsidies	Investment subsidies
Lifetime Revenue 2006-	2104	1937	1851
Lifetime Profits 2006-	783	682	641
Production subsidies	219	97	0
Investment subsidies	0	0	93
Entry subsidies	0	0	0
$\begin{array}{l} \Delta \ {\rm Revenue} \ / {\rm Subsidies} \\ \Delta \ ({\rm Profit-Invest} \ {\rm Cost}) / {\rm Subsidies} \\ \Delta \ {\rm Net} \ {\rm Profit} / {\rm Subsidies} \end{array}$	161%	192%	106%
	82%	93%	98%
	51%	62%	82%

• The larger the magnitude of subsidies, the lower the per-unit return

- Investment subsidies lead to higher industry net profits
- Production subsidies more effective instrument for achieving output/revenue targets

Targeting

	Inefficient Firms	Efficient Firms
Lifetime Revenue 2006-2099	406	1911
Lifetime Profits 2006-2099	70	779
Production Subsidies	40	215
Investment Subsidies	26	60
Entry Subsidies	157	146
$\begin{array}{l} \Delta \ {\sf Revenue/Subsidies} \\ \Delta \ ({\sf Profit-Invest \ Cost})/{\sf Subsidies} \\ \Delta \ {\sf Net \ Profit/Subsidies} \end{array}$	71% 19% -4%	113% 58% 29%

Table: Subsidizing Efficient vs. Inefficient Firms: Bill RMB

• Subsidizing efficient firms based on initial attributes more effective

Efficient firms less likely distorted in all margins: entry, production, investment, exit

- Efficient firms benefit more from economies of scale: backlog and capital
- Entry subsidies particularly poorly targeted: over 50% go to low-profit firms

Business Cycle

	Subsidize During Boom (2006-2008)	Subsidize During Recession (2009-2013)
Lifetime Revenue 2006-2099	1792	1795
Lifetime Profits 2006-2099	609	624
Production Subsidies	34	35
Investment Subsidies	16	16
$\begin{array}{l} \Delta \ {\rm Revenue/Subsidies} \\ \Delta \ ({\rm Profit-Invest \ Cost})/{\rm Subsidies} \\ \Delta \ {\rm Net \ Profit/Subsidies} \end{array}$	222% 86% 29%	225% 126% 78%

Table: Pro-Cyclical vs. Counter-Cyclical Industrial Policy: Bill RMB

• Timing important: counter-cyclical policies out-perform pro-cyclical policies

- expansion more costly during boom; firm composition different
- Actual policy mix is pro-cyclical: 442 bn of subsidies during boom, 106 bn during recession

Dynamic Composition

Subsidizing during recession selects more efficient firms over the long run

• Through more efficient entry and exit

Discussion

Traditional rationale of industrial policies:

- Marshallian externality
 - No evidence of industry wide learning-by-doing
- Strategic trade considerations
 - Market power negligible
- Spillover to other sectors and the labor market
 - Shipbuilding a small component of steel demand and total employment
 - Input-Output table suggests little spillover to other sectors
 - China is not a big player in international transportation service
- Impact on trade volume
 - Could be considerable but welfare benefit difficult to quantify
- Military (national security) considerations and the desire to be world no. 1
 - We provide cost estimates for achieving these objectives

Conclusion

- Massive (and wasteful) subsidies for the shipbuilding industry 2006-2013
 - China's world market share increased by 40%
 - At the cost of low concentration and capital utilization
- Effectiveness of the policies mixed:
 - Prod/inv subsidies could be justified by market share considerations
 - Entry subsidies are wasteful and increase fragmentation and idleness cost
 - Prod subsidy better at raising revenue; inv subsidy delivering a higher return
- Broad lessons:
 - Distortions are convex and deteriorate with the magnitude of subsidies
 - Dynamic sorting and targeting instrumental
 - Timing (pro-cyclical vs. counter-cyclical) highly relevant

Thanks and Comments Welcome!

Appendix

Capital Expansion

► Go Back

Capital Expansion of Existing Firms

- J^e potential entrants. Each with a random entry cost κ_{jt}
- Value function

$$\begin{aligned} VE\left(s_{jt},\kappa_{jt}\right) &= \\ \max_{\chi_{jt}^e} \left\{ \begin{array}{c} \kappa_{jt}, \\ -C^I(K_{jt}) + \beta E\left[V(s_{jt+1})|s_{jt},\chi_{jt}^e = 1\right] \end{array} \right. \end{aligned}$$

• Optimal entry policy

 $\chi^{e*}\left(s_{jt},\kappa_{jt}\right)$

Estimate Cost Function: Alternative Approach

 $\bullet\,$ One approach is to back out the cost function using the estimated production function (OP/LP)

$$q_{jt} = f(k_{jt}, l_{jt}, m_{jt}, \omega_{jt})$$

- Construct $C_{jt} =$ labor costs + material costs + capital costs associated with quantity q_{jt}
- Challenge: data quality low
 - Reported costs unreliable
 - ► No inputs after 2007, etc. Go Back

Production Cost: Other Specifications

	Baseline		Trend		Existing yards		Learning	
	(1) Coeff.	t-stat	(2) Coeff.	t-stat	(3) Coeff.	t-stat	(4) Coeff.	t-stat
Bulk Capital Backlog Cumul. Q.	-2.92 -2.09	-3.06 -6.63	-2.91 -2.09	-3.11 -6.41	-3.33 -3.16	-3.18 -6.38	-1.94 -1.45 0.07	-2.12 -5.05 4.72
Tanker Capital Backlog Cumul. Q.	-2.06 -4.50	-1.55 -6.38	-2.06 -4.50	-1.56 -6.42	-2.49 -5.15	-1.41 -6.13	-1.95 -4.41 0.09	-1.52 -5.06 5.59
Container Capital Backlog Cumul. Q.	-1.41 -3.06	-1.33 -4.40	-1.41 -3.06	-1.33 -4.40	-0.44 -3.66	-0.40 -4.25	-1.11 -0.90 0.01	-1.22 -1.30 4.00
Common China 2006-2008 China 2009+ Trend	-2.79 -0.90	-4.57 -1.56	-2.78 -0.89 -0.02	-4.19 -1.35 -0.03	-2.08 -1.01	-2.72 -1.25	-2.43 -0.95	-4.43 -1.73

