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Algorithmic collusion

* How serious is the risk of collusion among Al pricing algorithms?
* Answer crucial for policy

e lowrisk —s lasseiz faire
e Somerisk —s ex post intervention (antitrust)
* Highrisk ——  exanteintervention (regulation)



Al pricing algorithms

* Two vintages of software:

1. Rule-based software
» Similar to Stockfish in chess
* Can collude only to the extent that they are designed or instructed to do so
* No really new antitrust issues
2. Reinforcement learning algorithms (based on Artificial Intelligence)
* Similar to AlphaZero
* Learn from scratch (experimentation)

* Programmers just specify the objective function (e.g., profits) and what variables to
condition strategies on (e.g., past prices)



Early debate

e Concerned

e Algorithms can change prices very quickly
» As if discount factor was close to one

 Skeptics
* Price coordination is a very difficult task, especially in the presence of
asymmetries, uncertainty, many players etc.

* Early computer science literature finds that algorithms fail to learn optimal
strategies



Method

 Theoretical
* Unfeasible

* Empirical
e Very hard
* Experimental (numerical simulations)



Experimental approach

* Build simple reinforcement learning algorithms

* Have them interact repeatedly over time in controlled economic
environments
* Observe outcomes

* Challenges
* Economic environments must be realistic
* Algorithms must be representative of those used in practice



Findings

* We find that even relatively simple pricing algorithms (Q-learning)
systematically learn to play sophisticated collusive strategies

* Such strategies involve punishments that have a finite duration, with a
gradual return to the pre-deviation prices

* The algorithms leave no trace of explicit collusion

* They learn to play collusive strategies by trial and error, with no prior
knowledge of the environment in which they operate

* They have not been designed or instructed to collude
* They do not communicate with each other



Findings

* Previous literature (in both computer science and economics) has
sometimes found supra-competitive prices

e But high prices might be the result of the algorithms' failure to learn a

Nash equilibrium

* For example, Waltman and Kaymak (2008) find that prices are higher when
algorithms are short-sighted and have no memory than when they are patient

and can condition on past prices

* We document rational collusion, not simply high prices, among
pricing algorithms



Q-learning

* We focus on Q-learning algorithms

* Q-learning is
» designed expressly to maximize the present value of a ow of rewards in
problems of repeated choice

» guaranteed to deliver the optimal policy in single decision making (but not in
games)

* popular among computer scientists
* simple so that can be fully characterized by few parameters
 the building block of the more sophisticated programs
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Q-learning

e State (past prices) and action (current prices) spaces must be
discretized

* A value is attached to each possible action in each possible state
* Initial values may be arbitrary

* As the game unfolds, each Q-value is updated giving weight a to new
information (« is the learning rate) and 1 — a to old information

* The action with the highest Q-value is chosen with probability 1 — €
whereas the algorithm randomizes uniformly across all possible
actions (explores) with probability €

* € declines with speed f and eventually goes to 0



Economic model

* An infinitely repeated Bertrand oligopoly game
* n firms, Logit demand and constant marginal costs ¢;
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* Firms observe past prices and can condition current prices on them
(however, finite memory)



Baseline experiment

*m =15
c ¢ =10%
k=1
n=>2
« § =0.95
ca; =2
*ay=0
c¢; =1
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Convergence

* We let the algorithms interact and experiment until they settle to a
constant pair of strategies
e That is, until the perceived optimal strategy does not change for 100,000
periods in a row
* This typically requires that exploration has almost completely faded
away

* We focus on outcomes upon convergence

* Convergence is not guaranteed in theory but almost always achieved in
practice



T—mN

M _ N

Average profit gain A =

0.90
0.20 0.85
0:15 — 0.80

(o]
010 4 - 0.75
- 0.70

0.05

B x10°



Prices

)
i
o
L

- 0,24

- 0,20

- 0,16

- 0,12

- 0,08




Collusion?

* The key question is whether these high prices are the result of
genuine collusion, or of the algorithms' failure to learn the static Nash
equilibrium

* Policy implications would be radically different



Equilibrium play

* Do algorithms learn an optimal strategy (i.e., a Nash equilibrium)?
* No theoretical guarantee

* Representative experiment (&« = .15; v = 20)
* The algorithms play a Nash equilibrium about 50% of the times

* When the algorithms do not play Nash, they play a strategy which is pretty
close to a best response: the potential profit gain by playing a best response
to the rival's strategy is , on average, less than 0.1%



Tests of equilibrium play

* What do our algorithms learn when collusion cannot be an
equilibrium phenomenon?

* Two cases:
 k = 0 (no memory)
* 6 = 0 (myopic behavior)

* In both cases, we find that the average profit gain tends to O



Impulse response

* Upon convergence, we force one algorithm to undercut

* Deviation may last one or more period

* Deviation price may be static best response to the opponent’s price, or
different

* The other algorithm continues to play according to the learned
strategy, and so does the deviating algorithms when it regains control

of pricing
* We then look at what happens in the periods that follow
* In short, we derive "impulse-response" functions



Impulse response
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Impulse response

Deviating agent
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Unprofitability of deviations

| Colonna1 | freq | 143 | 147 | 251 | 154 | 158 | 162 | 166 | 170 | 174 [ 178 | 182 | 185 | 180 | 193 | 197 |

001 096 095 093  0.89 0.9 0 NA NA NA NA NA NA NA NA NA
005 098 097 096 095 095 096 0 NA  NA NA  NA NA NA NA NA
011 099 098 097 097 096 097 097 0 NA NA NA  NA NA NA NA
016 099 099 098 098 097 097 097 098 0 NA NA NA NA NA NA
019 099 099 098 098 097 097 097 097 098 0 NA NA NA NA NA
017 099 099 098 098 097 097 097 097 097 098 0 NA NA NA NA
014 099 098 098 098 097 096 096 097 097 097 098 0 NA NA NA
009 099 098 098 097 096 096 096 095 096 096 097 098 0 NA NA
005 099 098 097 097 095 095 094 094 094 095 096 097  0.98 0 NA
002 098 097 097 096 094 092 093 092 093 093 093 095 096 097 0



Robustness

* Changeind

* Asymmetric & and [

* Change in demand level

* Change in horizontal differentiation
e Stochastic demand

e Stochastic entry and exit

* More actions (m = 30,50,100)

* Longer memory (k = 2)

* Asynchronous learning



Time to convergence

* The algorithms do converge but convergence is slow

* For example, with ¢ = 0.125 and £ = 107> (the mid-point of our
grid) convergence takes on average 850,000 periods

* We give the algorithms all the time that is needed to complete they
learning



Transitional dynamics

* Algorithms may start to collude much before convergence is achieved
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Off-line learning

 Algorithms may be trained in artificial environments (i.e., off-line)
before being put to work in real market (i.e., on-line)
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Off-line learning

 Algorithms may be trained in artificial environments (i.e., off-line)
before being put to work in real market (i.e., on-line)



Faster learning

* More efficient algorithms exists and ought to be considered in future
work
* Value function approximation
* Deep learning



Implications for policy

 Collusion among Al pricing algorithms would defy current policy

* In most countries, tacit collusion is not regarded as illegal on the ground that
* It is unlikely (few false negatives under lasseiz faire)
* It would be hard to detect (many false positives with more active policy)

* Balance between type | and type Il errors may change with pricing
algorithms
* More false negatives under lasseiz faire

 When there are signs of algorithmic collusion, agencies may subpoena
* unlike human decision-makers, algorithms can be seized and studied in artificial markets

* This reduce the risk of false positives



More firms

* In the lab, supra-competitive prices disappear as soon as there are
three or more competing firms

* We have looked at thecasen = 3 andn =4
*Fora =0.15and f =4 X 1079, results are reported below

85% 64% 56%



Asymmetric firms

* Collusion is notoriously more difficult when firms are asymmetric
* We have considered both the case of cost and demand asymmetries
* Results are similar

* With¢c; = 1 and ¢, = 0.75 (which implies a market share for the
more efficient firm of almost 60%), fora = 0.15and f = 4 x 107°
we have

T T

A 85% 81%



