Discussion of "Competition and Incentives in Mortgage Markets: The Role of Brokers"

> Jean-François Houde UW-Madison

November 14, 2019

What is the paper doing?

- Estimate a model of demand and competition between banks with different levels of vertical integration (brokers)
- **Goal:** Quantify the impact of vertical integration and (wholesale) discrimination on market-power and efficiency

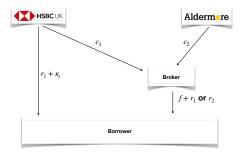
What is the paper doing?

- Estimate a model of demand and competition between banks with different levels of vertical integration (brokers)
- **Goal:** Quantify the impact of vertical integration and (wholesale) discrimination on market-power and efficiency
- Data: (i) commissions (upstream prices), (ii) shopping mode choice, (iii) retail prices and fees (downstream prices), and (iv) vertical network

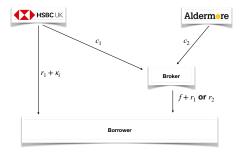
Model highlights:

- Resale price maintenance (sort of)
- Price discrimination (commissions)
- Agency problems
- Bargaining: Relax price-taking assumption

What do Brokers do?



What do Brokers do?

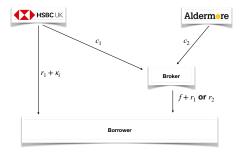


- Competition: Provide access to "mortgage specialists"
- Transaction cost: \downarrow shopping cost κ
- Efficiency: Lower origination cost (mostly)
- Agency problem: Distorts lender/product choice

$$y_i = \begin{cases} 1 & \text{If } -\theta r_1 + (1-\theta)c_1 \\ & > -\theta r_2 + (1-\theta)c_2 \\ 2 & \text{Else.} \end{cases}$$

• **Double markup:** Potentially through broker fees (assumed away)

What do Brokers do?



- Competition: Provide access to "mortgage specialists"
- Transaction cost: \downarrow shopping cost κ
- Efficiency: Lower origination cost (mostly)
- Agency problem: Distorts lender/product choice

$$y_i = \begin{cases} 1 & \text{If } -\theta r_1 + (1-\theta)c_1 \\ & > -\theta r_2 + (1-\theta)c_2 \\ 2 & \text{Else.} \end{cases}$$

- **Double markup:** Potentially through broker fees (assumed away)
- Bottom line: Brokers ↓ market-power and ↑ consumer surplus (vertical integration is bad!)

Demand and Shopping Mode Choice

• Lender/product choice: Direct and Broker channels

$$P_{ij}^{d} = \frac{\exp(\delta_j - \alpha r_j + \lambda \text{Branches}_{ij} - \kappa_i)}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha r_{j'} + \lambda \text{Branches}_{ij'} - \kappa_i)}$$

$$\mathsf{P}_{ij}^{b} = \frac{\exp(\delta_{j} - \alpha(r_{j} + f_{b}) + \lambda \mathsf{Branches}_{ij} + \frac{\theta}{1 - \theta}(\delta_{j}^{b} + \alpha^{b}c_{j}))}{\sum_{j'} \exp(\delta_{j'} - \alpha(r_{j'} + f_{b}) + \lambda \mathsf{Branches}_{ij'} + \frac{\theta}{1 - \theta}(\delta_{j'}^{b} + \alpha^{b}c_{j'}))}$$

- Common search cost $\kappa_i \rightarrow$ Does not affect lender/product choice
- $\theta > 0$ allow small banks to "steer" business away from large banks
- What is the reference group normalization (i.e. no outside option)?

Demand and Shopping Mode Choice

• Lender/product choice: Direct and Broker channels

$$P_{ij}^{d} = \frac{\exp(\delta_{j} - \alpha r_{j} + \lambda \text{Branches}_{ij} - \kappa_{i})}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha r_{j'} + \lambda \text{Branches}_{ij'} - \kappa_{i})}$$

$$P_{ij}^{b} = \frac{\exp(\delta_{j} - \alpha(r_{j} + f_{b}) + \lambda \text{Branches}_{ij} + \frac{\theta}{1 - \theta}(\delta_{j}^{b} + \alpha^{b}c_{j}))}{\sum_{j'} \exp(\delta_{j'} - \alpha(r_{j'} + f_{b}) + \lambda \text{Branches}_{ij'} + \frac{\theta}{1 - \theta}(\delta_{j'}^{b} + \alpha^{b}c_{j'}))}$$

- Common search cost $\kappa_i \rightarrow$ Does not affect lender/product choice
- ▶ $\theta > 0$ allow small banks to "steer" business away from large banks
- What is the reference group normalization (i.e. no outside option)?
- Implication 1: No selection on *unobservables*
 - Consumers choose Broker if $\kappa_i > \bar{\kappa}$
 - $\bar{\kappa}$ is independent of unobserved "taste" for lenders/products
 - Allow sequential estimation of $(\delta, \alpha, \lambda)$, $(\delta^b, \theta, \alpha^b)$ and $F(\kappa)$

Demand and Shopping Mode Choice

• Lender/product choice: Direct and Broker channels

$$P_{ij}^{d} = \frac{\exp(\delta_{j} - \alpha r_{j} + \lambda \text{Branches}_{ij} - \kappa_{i})}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha r_{j'} + \lambda \text{Branches}_{ij'} - \kappa_{i})}$$

$$P_{ij}^{b} = \frac{\exp(\delta_{j} - \alpha(r_{j} + f_{b}) + \lambda \text{Branches}_{ij} + \frac{\theta}{1 - \theta}(\delta_{j}^{b} + \alpha^{b}c_{j}))}{\sum_{j'} \exp(\delta_{j'} - \alpha(r_{j'} + f_{b}) + \lambda \text{Branches}_{ij'} + \frac{\theta}{1 - \theta}(\delta_{j'}^{b} + \alpha^{b}c_{j'}))}$$

- Common search cost $\kappa_i \rightarrow$ Does not affect lender/product choice
- ▶ $\theta > 0$ allow small banks to "steer" business away from large banks
- What is the reference group normalization (i.e. no outside option)?
- Implication 1: No selection on *unobservables*
 - Consumers choose Broker if $\kappa_i > \bar{\kappa}$
 - $\bar{\kappa}$ is independent of unobserved "taste" for lenders/products
 - Allow sequential estimation of $(\delta, \alpha, \lambda)$, $(\delta^b, \theta, \alpha^b)$ and $F(\kappa)$
- Implication 2: IIA substitution patterns across loan types/lenders
 - Unappealing substitution across loan sizes (LTV) and terms

• Given commissions, banks compete in rates (assuming one product per lender):

$$\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j})(r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j})(r_j - mc_j^b - c_j)$$

• Given commissions, banks compete in rates (assuming one product per lender):

$$\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j}) (r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j}) (r_j - mc_j^b - c_j)$$

- MC estimation: Invert FOC
 - ► How? J FOCs... but 2J unknowns!

• Given commissions, banks compete in rates (assuming one product per lender):

 $\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j}) (r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j}) (r_j - mc_j^b - c_j)$

- MC estimation: Invert FOC
 - How? J FOCs... but 2J unknowns!
 - Solution: Estimate different slopes for borrower/product X' using

 $r_j = AMC_j + Markup_j$

Where,
$$AMC_j \approx \rho_j mc_j^d + (1 - \rho_j)(mc_j^b + \gamma c_{jb})$$

 \rightarrow Weights depend on demand/prices \rightarrow Why does *c* (commission) enters the MC function (γ)?

• Given commissions, banks compete in rates (assuming one product per lender):

 $\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j}) (r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j}) (r_j - mc_j^b - c_j)$

- MC estimation: Invert FOC
 - How? J FOCs... but 2J unknowns!
 - Solution: Estimate different slopes for borrower/product X' using

$$r_j = AMC_j + Markup_j$$

Where,
$$AMC_j \approx \rho_j mc_j^d + (1 - \rho_j)(mc_j^b + \gamma c_{jb})$$

 \rightarrow Weights depend on demand/prices

 \rightarrow Why does *c* (commission) enters the MC function (γ)?

- Potential concerns:
 - Simultaneity problem (paper uses rival shares as IVs)
 - Unobserved cost differences between d and b?

Commission bargaining

• Nash-in-Nash:

$$\max_{c_{jb} \in [\underline{c}_{jb}, \overline{c}_{jb}]} [\pi_j(c_{jb} | \mathcal{B}_j) - \pi_j(\mathcal{B}_j \setminus b)]^{\beta_{jb}} [W_b(c_{jb} | \mathcal{L}_b) - W_b(\mathcal{L}_b \setminus j)]^{1 - \beta_{jb}}$$

Where $W_b(c_{jb}) = \sum_{j' \in \mathcal{L}_b} \pi_b D_j^b(r, c) \cdot [Broker utility].$

Commission bargaining

• Nash-in-Nash:

$$\max_{c_{jb} \in [\underline{c}_{jb}, \overline{c}_{jb}]} [\pi_j(c_{jb}|\mathcal{B}_j) - \pi_j(\mathcal{B}_j \setminus b)]^{\beta_{jb}} [W_b(c_{jb}|\mathcal{L}_b) - W_b(\mathcal{L}_b \setminus j)]^{1-\beta_{jb}}$$

Where $W_b(c_{jb}) = \sum_{j' \in \mathcal{L}_b} \pi_b D_j^b(r, c) \cdot [Broker utility].$

- What is broker "utility"? Answer: $\delta^b_{j'} + \alpha^b c_{j'b}$ (from demand-side.)
 - Why not use revenue? $(c_b + f_b) \times \text{Loan size}$

Commission bargaining

Nash-in-Nash:

$$\max_{c_{jb} \in [\underline{c}_{jb}, \overline{c}_{jb}]} [\pi_j(c_{jb}|\mathcal{B}_j) - \pi_j(\mathcal{B}_j \setminus b)]^{\beta_{jb}} [W_b(c_{jb}|\mathcal{L}_b) - W_b(\mathcal{L}_b \setminus j)]^{1 - \beta_{jb}}$$

Where $W_b(c_{jb}) = \sum_{j' \in \mathcal{L}_b} \pi_b D_j^b(r, c) \cdot [Broker utility].$

- What is broker "utility"? Answer: $\delta^{b}_{i'} + \alpha^{b}c_{j'b}$ (from demand-side.)
 - Why not use revenue? $(c_b + f_b) \times \text{Loan size}$
- Estimation:
 - β_{jb} is "inverted" from the FOCs ($\approx J \times B$) (as in Grennan)
 - Stackelberg: How is the pass-through matrix dr_k/dc_{jb} incorporated?
 - Participation: Are there "broken" links? If so, does this violate the N-in-N assumption?

- What do brokers do?
 - Shop for better rates? If so, how much dispersion?
 - Find qualifying lenders?
 - "Advices": Long-term relationship beyond first term (refinancing)

- What do brokers do?
 - Shop for better rates? If so, how much dispersion?
 - Find qualifying lenders?
 - "Advices": Long-term relationship beyond first term (refinancing)
- Motivating facts: Somewhat disconnected from the model
 - NHB vs refinancing consumers
 - Commission dispersion? Correlation with branch presence (conditional on bank FEs)?
 - Within broker lender share distribution: (Semi)-Exclusive relationships?

- What do brokers do?
 - Shop for better rates? If so, how much dispersion?
 - Find qualifying lenders?
 - "Advices": Long-term relationship beyond first term (refinancing)
- Motivating facts: Somewhat disconnected from the model
 - NHB vs refinancing consumers
 - Commission dispersion? Correlation with branch presence (conditional on bank FEs)?
 - ▶ Within broker lender share distribution: (Semi)-Exclusive relationships?
- Price elasticity: Fees vs Rates
 - Rates determine monthly payments (discounted)
 - Fees are paid upfront
 - Might want to estimate two separate price coefficients

- Broker fees:
 - Many brokers wave fees for (all?) borrowers. Broker competition? Negotiation?
 - Welfare: Broker ban (VI) should have additional efficiency gains due to double marginalization

- Broker fees:
 - Many brokers wave fees for (all?) borrowers. Broker competition? Negotiation?
 - Welfare: Broker ban (VI) should have additional efficiency gains due to double marginalization
- There is a lot of moving pieces...
 - Product choice: Why not take the LTV/term choice as given, and focus solely on the lender/broker choice? What about the cost of mortgage insurance?
 - Broker preferences: Are borrowers using brokers choosing different products because of *biases*, or because of unobserved heterogeneity?

- Broker fees:
 - Many brokers wave fees for (all?) borrowers. Broker competition? Negotiation?
 - Welfare: Broker ban (VI) should have additional efficiency gains due to double marginalization
- There is a lot of moving pieces...
 - Product choice: Why not take the LTV/term choice as given, and focus solely on the lender/broker choice? What about the cost of mortgage insurance?
 - Broker preferences: Are borrowers using brokers choosing different products because of *biases*, or because of unobserved heterogeneity?
- Clarify identification of cost difference between broker/direct
 - Alternative strategy: Infer cost difference from commission choice
 - Use common Nash-bargaining parameter
 - Similar to Gowrisankaran, Nevo and Town (AER, 2015)