Discussion of “Competition and Incentives in Mortgage Markets: The Role of Brokers”

Jean-François Houde
UW-Madison

November 14, 2019
What is the paper doing?

- Estimate a model of demand and competition between banks with different levels of vertical integration (brokers)
- **Goal:** Quantify the impact of vertical integration and (wholesale) discrimination on market-power and efficiency
What is the paper doing?

- Estimate a model of demand and competition between banks with different levels of vertical integration (brokers)
- **Goal:** Quantify the impact of vertical integration and (wholesale) discrimination on market-power and efficiency
- **Data:** (i) commissions (upstream prices), (ii) shopping mode choice, (iii) retail prices and fees (downstream prices), and (iv) vertical network
- **Model highlights:**
 - Resale price maintenance (sort of)
 - Price discrimination (commissions)
 - Agency problems
 - Bargaining: Relax price-taking assumption
What do Brokers do?

Competition:
- Provide access to "mortgage specialists"

Transaction cost:
- ↓ shopping cost

Efficiency:
- Lower origination cost (mostly)

Agency problem:
- Distorts lender/product choice

\[y_i = \begin{cases}
1 & \text{if } -\theta c_1 > -\theta c_2 + (1 - \theta) r_2 \\
2 & \text{else.}
\end{cases} \]

Double markup:
- Potentially through broker fees (assumed away)

Bottom line:
- Brokers ↓ market-power and ↑ consumer surplus (vertical integration is bad!)

HSBC UK

Broker

Aldermore

Borrower

\[c_1 \]

\[r_1 + \kappa_i \]

\[f + r_1 \text{ or } r_2 \]

\[c_2 \]
What do Brokers do?

- **Competition**: Provide access to “mortgage specialists”
- **Transaction cost**: ↓ shopping cost κ
- **Efficiency**: Lower origination cost (mostly)
- **Agency problem**: Distorts lender/product choice

$y_i = \begin{cases} 1 & \text{If } -\theta r_1 + (1 - \theta)c_1 > -\theta r_2 + (1 - \theta)c_2 \\ 2 & \text{Else.} \end{cases}$

- **Double markup**: Potentially through broker fees (assumed away)
What do Brokers do?

- **Competition**: Provide access to “mortgage specialists”
- **Transaction cost**: ↓ shopping cost κ
- **Efficiency**: Lower origination cost (mostly)
- **Agency problem**: Distorts lender/product choice

$y_i = \begin{cases}
1 & \text{If } -\theta r_1 + (1 - \theta)c_1 > -\theta r_2 + (1 - \theta)c_2 \\
2 & \text{Else.}
\end{cases}$

- **Double markup**: Potentially through broker fees (assumed away)

Bottom line: Brokers ↓ market-power and ↑ consumer surplus (vertical integration is bad!)
Demand and Shopping Mode Choice

- Lender/product choice: Direct and Broker channels

\[
P^d_{ij} = \frac{\exp(\delta_j - \alpha r_j + \lambda \text{Branches}_{ij} - \kappa_i)}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha r_{j'} + \lambda \text{Branches}_{ij'} - \kappa_i))}
\]

\[
P^b_{ij} = \frac{\exp(\delta_j - \alpha (r_j + f_b) + \lambda \text{Branches}_{ij} + \frac{\theta}{1-\theta}(\delta^b_{j} + \alpha^b c_j))}{\sum_{j'} \exp(\delta_{j'} - \alpha (r_{j'} + f_b) + \lambda \text{Branches}_{ij'} + \frac{\theta}{1-\theta}(\delta^b_{j'} + \alpha^b c_{j'}))}
\]

- Common search cost \(\kappa_i\) → Does not affect lender/product choice
- \(\theta > 0\) allow small banks to “steer” business away from large banks
- What is the reference group normalization (i.e. no outside option)?
Demand and Shopping Mode Choice

- Lender/product choice: Direct and Broker channels

\[P_{ij}^d = \frac{\exp(\delta_j - \alpha r_j + \lambda \text{Branches}_{ij} - \kappa_i)}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha r_{j'} + \lambda \text{Branches}_{ij'} - \kappa_i))} \]

\[P_{ij}^b = \frac{\exp(\delta_j - \alpha (r_j + f_b) + \lambda \text{Branches}_{ij} + \frac{\theta}{1-\theta} (\delta_{ij}^b + \alpha^b c_j))}{\sum_{j'} \exp(\delta_{j'} - \alpha (r_{j'} + f_b) + \lambda \text{Branches}_{ij'} + \frac{\theta}{1-\theta} (\delta_{ij'}^b + \alpha^b c_{j'}))} \]

- Common search cost \(\kappa_i \rightarrow \) Does not affect lender/product choice
- \(\theta > 0 \) allow small banks to “steer” business away from large banks
- What is the reference group normalization (i.e. no outside option)?

Implication 1: No selection on unobservables

- Consumers choose Broker if \(\kappa_i > \bar{\kappa} \)
- \(\bar{\kappa} \) is independent of unobserved “taste” for lenders/products
- Allow sequential estimation of \((\delta, \alpha, \lambda), (\delta^b, \theta, \alpha^b)\) and \(F(\kappa)\)
Demand and Shopping Mode Choice

- **Lender/product choice:** Direct and Broker channels

\[
P^d_{ij} = \frac{\exp(\delta_j - \alpha r_j + \lambda \text{Branches}_{ij} - \kappa_i)}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha r_{j'} + \lambda \text{Branches}_{ij'} - \kappa_i))}
\]

\[
P^b_{ij} = \frac{\exp(\delta_j - \alpha (r_j + f_b) + \lambda \text{Branches}_{ij} + \frac{\theta}{1-\theta}(\delta_{j}^b + \alpha^b c_j))}{\sum_{j'} \exp(\exp(\delta_{j'} - \alpha (r_{j'} + f_b) + \lambda \text{Branches}_{ij'} + \frac{\theta}{1-\theta}(\delta_{j'}^b + \alpha^b c_{j'})))}
\]

- Common search cost \(\kappa_i\) → Does not affect lender/product choice
- \(\theta > 0\) allow small banks to “steer” business away from large banks
- What is the reference group normalization (i.e. no outside option)?

Implication 1: No selection on *unobservables*

- Consumers choose Broker if \(\kappa_i > \bar{\kappa}\)
- \(\bar{\kappa}\) is independent of unobserved “taste” for lenders/products
- Allow sequential estimation of \((\delta, \alpha, \lambda), (\delta^b, \theta, \alpha^b)\) and \(F(\kappa)\)

Implication 2: IIA substitution patterns across loan types/lenders

- Unappealing substitution across loan sizes (LTV) and terms
Price (rate) competition

- Given commissions, banks compete in rates (assuming one product per lender):

\[
\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j})(r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j})(r_j - mc_j^b - c_j)
\]
Price (rate) competition

- Given commissions, banks compete in rates (assuming one product per lender):

\[
\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j})(r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j})(r_j - mc_j^b - c_j)
\]

- MC estimation: Invert FOC
 - How? \(J \) FOCs... but \(2J \) unknowns!
Price (rate) competition

- Given commissions, banks compete in rates (assuming one product per lender):

\[
\max_{r_j} F(\hat{\kappa}) D_j^d(r_j, r_{-j})(r_j - mc_j^d) + (1 - F(\hat{\kappa})) D_j^b(r_j, r_{-j})(r_j - mc_j^b - c_j)
\]

- MC estimation: Invert FOC
 \[\text{How? } J \text{ FOCs... but } 2J \text{ unknowns!}\]
 \[\text{Solution: Estimate different slopes for borrower/product } X' \text{ using}\]
 \[r_j = AMC_j + \text{Markup}_j\]

Where, \(AMC_j \approx \rho_j mc_j^d + (1 - \rho_j)(mc_j^b + \gamma c_{jb})\)

→ Weights depend on demand/prices
→ Why does \(c\) (commission) enters the MC function (\(\gamma\))?
Price (rate) competition

- Given commissions, banks compete in rates (assuming one product per lender):

\[
\max_{r_j} F(\hat{\kappa}) D^d_j(r_j, r_{-j})(r_j - mc^d_j) + (1 - F(\hat{\kappa})) D^b_j(r_j, r_{-j})(r_j - mc^b_j - c_j)
\]

- MC estimation: Invert FOC
 - How? \(J \) FOCs... but \(2J \) unknowns!
 - Solution: Estimate different slopes for borrower/product \(X' \) using

\[
r_j = AMC_j + \text{Markup}_j
\]

Where, \(AMC_j \approx \rho_j mc^d_j + (1 - \rho_j)(mc^b_j + \gamma c_{jb}) \)

→ Weights depend on demand/prices
→ Why does \(c \) (commission) enters the MC function (\(\gamma \))?

- Potential concerns:
 - Simultaneity problem (paper uses rival shares as IVs)
 - Unobserved cost differences between \(d \) and \(b \)?
Commission bargaining

- Nash-in-Nash:

$$\max_{c_{jb} \in [c_{jb}, \bar{c}_{jb}]} \left[\pi_j(c_{jb} | B_j) - \pi_j(B_j \setminus b) \right]^{\beta_{jb}} \left[W_b(c_{jb} | L_b) - W_b(L_b \setminus j) \right]^{1-\beta_{jb}}$$

Where $W_b(c_{jb}) = \sum_{j' \in L_b} \pi_b D_j^b(r, c) \cdot$ [Broker utility].

What is broker "utility"? Answer: $\delta_{jb} + \alpha_{bic} \cdot$ [from demand-side.]

Why not use revenue? $(c_{b} + f_{b}) \times$ [Loan size]

Estimation:

- β_{jb} is "inverted" from the FOCs ($\approx J \times B$) (as in Grennan)
- Stackelberg: How is the pass-through matrix $d_r/\partial c_{jb}$ incorporated?
- Participation: Are there "broken" links? If so, does this violate the N-in-N assumption?
Commission bargaining

- Nash-in-Nash:

\[
\max_{c_{jb} \in [c_{jb}, \bar{c}_{jb}]} \left[\pi_j(c_{jb}|B_j) - \pi_j(B_j \setminus b) \right]^{\beta_{jb}} \left[W_b(c_{jb}|L_b) - W_b(L_b \setminus j) \right]^{1-\beta_{jb}}
\]

Where \(W_b(c_{jb}) = \sum_{j' \in L_b} \pi_b D^b_{j'}(r, c) \cdot \text{[Broker utility]} \).

- What is broker “utility”? Answer: \(\delta_j^{b} + \alpha^b c_{j'}^b \) (from demand-side.)
 - Why not use revenue? \((c_b + f_b) \times \text{Loan size}\)
Commission bargaining

- Nash-in-Nash:

$$\max_{c_{jb} \in [\underline{c}_{jb}, \bar{c}_{jb}]} \left[\pi_j (c_{jb} | B_j) - \pi_j (B_j \setminus b) \right]^{\beta_{jb}} \left[W_b (c_{jb} | L_b) - W_b (L_b \setminus j) \right]^{1-\beta_{jb}}$$

Where $W_b (c_{jb}) = \sum_{j' \in L_b} \pi_{bj} D_{j'}^b (r, c) \cdot [\text{Broker utility}]$.

- What is broker “utility”? Answer: $\delta_{j'}^b + \alpha_{j'} c_{j'} \text{ (from demand-side.)}$
 - Why not use revenue? $(c_b + f_b) \times \text{Loan size}$

- Estimation:
 - β_{jb} is “inverted” from the FOCs ($\approx J \times B$) (as in Grennan)
 - Stackelberg: How is the pass-through matrix dr_k / dc_{jb} incorporated?
 - Participation: Are there “broken” links? If so, does this violate the N-in-N assumption?
Additional comments/suggestions

What do brokers do?
- Shop for better rates? If so, how much dispersion?
- Find qualifying lenders?
- “Advices”: Long-term relationship beyond first term (refinancing)

Motivating facts: Somewhat disconnected from the model
- NHB vs refinancing consumers
- Commission dispersion? Correlation with branch presence (conditional on bank FEs)?
- Within broker lender share distribution: (Semi)-Exclusive relationships?

Price elasticity: Fees vs Rates
- Rates determine monthly payments (discounted)
- Fees are paid upfront
- Might want to estimate two separate price coefficients
Additional comments/suggestions

- What do brokers do?
 - Shop for better rates? If so, how much dispersion?
 - Find qualifying lenders?
 - “Advices”: Long-term relationship beyond first term (refinancing)

- Motivating facts: Somewhat disconnected from the model
 - NHB vs refinancing consumers
 - Commission dispersion? Correlation with branch presence (conditional on bank FEs)?
 - Within broker lender share distribution: (Semi)-Exclusive relationships?
Additional comments/suggestions

- **What do brokers do?**
 - Shop for better rates? If so, how much dispersion?
 - Find qualifying lenders?
 - “Advices”: Long-term relationship beyond first term (refinancing)

- **Motivating facts:** Somewhat disconnected from the model
 - NHB vs refinancing consumers
 - Commission dispersion? Correlation with branch presence (conditional on bank FEs)?
 - Within broker lender share distribution: (Semi)-Exclusive relationships?

- **Price elasticity:** Fees vs Rates
 - Rates determine monthly payments (discounted)
 - Fees are paid upfront
 - Might want to estimate two separate price coefficients
Additional comments/suggestions

- Broker fees:
 - Many brokers wave fees for (all?) borrowers. Broker competition? Negotiation?
 - Welfare: Broker ban (VI) should have additional efficiency gains due to double marginalization

There is a lot of moving pieces...

- Product choice:
 - Why not take the LTV/term choice as given, and focus solely on the lender/broker choice? What about the cost of mortgage insurance?

- Broker preferences:
 - Are borrowers using brokers choosing different products because of biases, or because of unobserved heterogeneity?
 - Clarify identification of cost difference between broker/direct

- Alternative strategy: Infer cost difference from commission choice

- Use common Nash-bargaining parameter

Similar to Gowrisankaran, Nevo and Town (AER, 2015)
Additional comments/suggestions

- Broker fees:
 - Many brokers wave fees for (all?) borrowers. Broker competition? Negotiation?
 - Welfare: Broker ban (VI) should have additional efficiency gains due to double marginalization

- There is a lot of moving pieces...
 - Product choice: Why not take the LTV/term choice as given, and focus solely on the lender/broker choice? What about the cost of mortgage insurance?
 - Broker preferences: Are borrowers using brokers choosing different products because of biases, or because of unobserved heterogeneity?
Additional comments/suggestions

- Broker fees:
 - Many brokers wave fees for (all?) borrowers. Broker competition? Negotiation?
 - Welfare: Broker ban (VI) should have additional efficiency gains due to double marginalization

- There is a lot of moving pieces...
 - *Product choice:* Why not take the LTV/term choice as given, and focus solely on the lender/broker choice? What about the cost of mortgage insurance?
 - *Broker preferences:* Are borrowers using brokers choosing different products because of *biases*, or because of unobserved heterogeneity?

- Clarify identification of cost difference between broker/direct
 - Alternative strategy: Infer cost difference from commission choice
 - Use common Nash-bargaining parameter
 - Similar to Gowrisankaran, Nevo and Town (AER, 2015)