Welcome
We Will Be Starting Shortly
Welcome

Ruth Yodaiken
Federal Trade Commission
Office of Policy Planning
Introductory Remarks

Alden Abbott
Federal Trade Commission
Office of General Counsel
Technological Developments in Broadband Networking

Evolution of Broadband Networking: 2008 to 2018

kc claffy
University of California, San Diego
Center for Applied Internet Data Analysis
Outline

• Technology primer: traffic, topology, transit
• Evolution: platforms, interconnection, complexity
• Implications: competition, potential harms
• Technology attempts to measure/mitigate potential harms
• What's different this decade?
Aim to address this question

• Which (recent and expected) technological developments, or lack thereof, are important for understanding the competitiveness of the industry or impacts on the public interest?
Global public IP platform

Traffic routed across global Internet platform, i.e., devices reachable via an IP address.

Anyone (two) can interconnect!

Layered “hourglass” protocol architecture of TCP/IP Internet
Internet interconnection

- IP addresses grouped (on routers and) into networks
- Organized by Autonomous Systems (ASes)
- 70K+ ASes independently interconnect to form global Internet
Traffic flows through transit providers between access and content providers.
One can conceptualize interconnection structure based on (inferred) money flows.

- Customer pays provider to transit their traffic
- Peers do not pay to accept each other’s traffic (assumed symmetric traffic flow)

IX(P): neutral facility for traffic exchange (was “point”)

---

AT&T → CENIC → Nysernet → Stanford → MIT

Customer → $→ Provider

Peer → $→ Peer

Traffic flow:

- UCSD
- Stanford
- MIT

-$-$
Internet routing (simplified)

- Each router **locally optimizes** choice of next hop along path
- Applies network operator’s routing policy to known topology; computes & propagates best paths
- Network operators balance: cost, performance, path length
- Often results in asymmetric routes
- Many edge networks (blue) only have *default route*, to transit provider
2010s: Content moves closer to consumer

- **Access**
  - 1990s
  - 2000s
  - 2010s

- **Content**
  - 1990s
  - 2000s
  - 2010s

- **Transit**
  - 1990s
  - 2000s
  - 2010s

**Optimizes performance, reliability, availability cost**

**In face of relentless growth in demand (mostly video)**
Consolidation in content distribution

• While there continue to be small local content providers (UCSD), most traffic now handled by a few giant content providers (Google) or content distribution networks (Akamai)

• CDN business: transiting traffic from point where it enters CDN platform to an exit near consumer. At low cost.

• Key driver: Internet eating TV, gaming
Content distribution strategies

Large companies may combine all three strategies.
Does not reduce complexity..

“death of transit”?

Dense Interconnection

Hard to measure
Internet platform layers

Allows the integration of multiple technologies below the platform and support of multiple services above it. (whole idea of IP.)

Can serve as internal or industry platform

Facebook

FarmVille

“The web”

Single-firm IP platform

Global Internet

VoIP | IPTV

MPLS (for example)

Lambda's

Fibers
Dueling definitions

• **Online platform**: An online marketplace that places one party in touch with another, such as buyers and sellers. E.g., eBay, Craigslist, Amazon Marketplace, Airbnb, app store
  • Emphasis—multisided

• **Online platform**: a group of technologies that are used as a base upon which other apps or technologies are developed. E.g., IP, iOS, Android, AWS
  • Emphasis—programmable, service component, generality
Growing: Cloud Service Platforms

- Externalizing internal industry platform
- New platform layer through which to distribute content and services
- Provide service replication and distribution
- Many web applications/services now first built upon “Internet giants” cloud service platforms

Infrastructure as a service (e.g., AWS)
- Processors, storage, networks
- Physical assets (machine rooms, HVAC, etc)

Platform as a service

Software as a service

Games, email, reservations

service distribution
Interconnection *across* platform layers

Interconnection with content provider crosses platform layer boundary; creates conflict of interest.

In 2007: regulatory attention to broadband access: discrimination, misrepresentation.
Implications of cross-platform-layer interconnection dynamics for competition

Smaller ISPs have less opportunity to interconnect with BigContent

→ Must access content providers via exchange points (85%)
→ Less likely to vertically integrate themselves
→ Cannot leverage transit and content cost savings
  → Particularly hard in rural areas, with 10-40X buildout cost
→ Cannot give customers a better experience in accessing content
Like with video programming…

American Cable Association (smaller ISPs) survey:
Potential Interconnection Harms

• Carrier and third-party services on top of single-firm IP platform can compete with third-party services running over “common” Internet.
• Interconnection points enable exercise of market power
  • Technical discrimination of traffic across the link.
    • Selective dropping or rate limiting
  • Inadequate capacity leading to impaired QoE
  • Discriminatory pricing or business terms (more likely?..)
These are not new concerns

“Principally, … concern about the following issues:

- blockage, degradation, and discrimination of content/apps
- vertical integration
- effects on innovation at edges
- lack of "last-mile" access competition
- legal and regulatory uncertainty
- diminution of political and other expression on the Internet”

Broadband Connectivity Competition Policy, FTC Staff Report, 2007, p.5.  

See also: http://www.cyber telecom.org/notes/cc_history.htm
Technology Approach Tried in 2015

• **Measure** the key characteristics of interconnection links.
  • Or mandate the reporting of those parameters
  • FCC used this approach in ATT/DirecTV merger
  • Outsourced to “Independent Measurement Expert”

• That approach begs many questions:
  • Is measuring individual links actually the right approach?
  • How does one measure the key characteristics of a link?
  • How well does that map to consumer harm?
  • Note: no agreed methods to measure QoE!
“The balance between competing incentives on the part of broadband providers to engage in, and the potential benefits and harms from, discrimination and differentiation in the broadband area raise complex empirical questions and may call for substantial additional study of the market generally, of local markets, or of particular transactions. Again, further evidence of particular conduct would be useful for assessing both the likelihood and severity of any potential harm from such conduct.”

FTC’s “Broadband Connectivity Competition Policy”, 2007
Technology to detect harmful discrimination

• Not clear what FCC learned from AT&T reporting exercise
• Several other approaches to interconnection measurement
  • Each provides a part of a very complex picture
  • Need objective perspective to integrate and cross-validate
• No silver measurement bullet
• Limited ability for academics to sustain this kind of work
  • And yet much of it is research

[Feb 27 11:31:03 2019] Shutting down Netalyzr
“After nearly a decade of providing this service we have decided to shut down Netalyzr in the first week of March 2019.... We simply no longer have the resources to advance Netalyzr or to provide reasonable support for your many questions about connectivity problems.
What FCC is measuring: access bandwidth

(4K video = 15-25 Mbps/sec)

<table>
<thead>
<tr>
<th></th>
<th>Downstream bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>12-25Mbps</td>
</tr>
<tr>
<td>DSL</td>
<td>3-45Mbps</td>
</tr>
<tr>
<td>Cable</td>
<td>100-200Mbps</td>
</tr>
<tr>
<td>Fiber</td>
<td>100-100Mbps (sym, stable)</td>
</tr>
</tbody>
</table>

Limitations:
Rural regions not well sampled (see recent Microsoft data)
Does not measure interconnection performance
Does not capture many things consumers care about performance to top 10 sites, privacy, data caps
Does not measure mobile (mobile data released 2019, no analysis/report)

FCC MBA program, “8th Measuring Broadband America Fixed Broadband Report” (2017 data, 10K homes)
Since 2007, same concerns have expanded

• To multiple platform layers
  • Gathering & analyzing evidence difficult. Validating harder.
  • Complex sector. And complexity increasing.
  • More at stake → more at risk

Concerns from 2007 FTC broadband report

- blockage, degradation, and discrimination of content/apps
- vertical integration
- effects on innovation at edges
- lack of "last-mile" access competition
- legal and regulatory uncertainty
- diminution of political and other expression on the Internet
Why so complex?

• Market, technology, legal, political, cultural, social forces interact in co-evolving adaptive systems

• Topology & traffic shifts not primarily driven by technology

• But if we do not understand the role, capabilities, and limitations of technology to create and solve problems, attempted interventions are likely to fail
Evidence-based policy needs to understand:

• Internet operates as set of layered, multi-sided, platforms, interconnecting across layers, e.g., content to transit
• Platform structure and dynamics, including market sides and incentives
• How to achieve relevant transparency and public accountability related to specific potential harms
• How to find/fund sources of objective, unbiased expertise
Technological Developments in Broadband Markets

Internet Interconnection and Interdomain Routing: The Changing Landscape

Nick Feamster
Princeton University
Department of Computer Science
Internet Routing in a Nutshell

The Internet

- **Large-scale**: Thousands of autonomous networks
- **Self-interest**: Independent economic and performance objectives
- But, must cooperate for global connectivity

Architecture: Loose Coordination

• There is no central authority that manages Internet interconnection.

• The Internet ecosystem arises from many bilateral and multilateral decisions of interconnecting networks.
Internet Economics in a Nutshell

- **Transit**: One network pays for reachability to some set of destinations. (e.g., the rest of the Internet)

- **Peering**: Networks change traffic with one another
  - Peering can be “settlement free” or “paid”
A Brief History of the Internet
The Pre-Commercial Internet (pre-1995)
Internet Topology 1995-2005: Commercial Hierarchy

National Backbone Operators

Regional Access Providers

Local Access Providers

Customer IP Networks

Backbone Provider

Regional ISP

ISP 1

ISP 2

ISP 3

ISP 4

...
Today’s Internet: “Flat”, Bilateral
Market (and Performance) Trends

• Pre-2013: Transit and Direct Interconnect
  • Network performance determined by network path

• 2013 – Present: Distributed Cloud Services
  • Performance determined by proximity of content to the user
  • “The network is the computer.”
Two Significant Ongoing Developments

• Traffic volumes are growing.
  • Video traffic dominates
  • Video resolution is increasing.

• Methods of delivering traffic are evolving.
  • Internet traffic is increasingly being delivered via CDNs.
  • The “old Internet” was hierarchical. Now, mostly bilateral.
  • Distinction between CDNs and cloud services is smaller.
Traffic Volumes are Growing
Traffic is Growing, Driven by Video

<table>
<thead>
<tr>
<th>Year</th>
<th>Global internet traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>100 GB per day</td>
</tr>
<tr>
<td>1997</td>
<td>100 GB per hour</td>
</tr>
<tr>
<td>2002</td>
<td>100 GB per second</td>
</tr>
<tr>
<td>2007</td>
<td>2,000 GB per second</td>
</tr>
<tr>
<td>2017</td>
<td>46,600 GB per second</td>
</tr>
<tr>
<td>2022</td>
<td>150,700 GB per second</td>
</tr>
</tbody>
</table>

Source: Cisco VNI, 2018.

26% CAGR 2017–2022

Exabytes per Month

* Figures (n) refer to 2017, 2022 traffic share
Source: Cisco VNI Global IP Traffic Forecast, 2017–2022
Methods of Delivering Traffic are Evolving
Content Delivery Networks

Single Server

Content Delivery Network (CDN)
The Rise of Content Delivery

- Content placement affects performance more than network paths.
- Content delivery affects traffic volumes, traffic balance on interconnects.
The “Peering Playbook” (Hint: Everybody Wants to Win)
Traffic Manipulation: Increase Transit Load

The most devious of all tactics…

One network targets a another by sending traffic over that network’s transit links, to drive up costs.

The targeted network decides to peer.

---

The Chicken tactic is employed to abruptly change the peering relationship, and as the case above demonstrates, can have operational impact if neither side succumbs to the change and de-peers. It is worth pointing out that the aggressor of the Chicken Tactic rarely increases revenue from this tactic; the disruption is usually so significant and the destruction of relationship so severe that the “loser” does not choose the aggressor as a supplier of transit services.

Traffic Manipulation: Increase Peer Transit Load

Traffic manipulation stops about a month after peering is established. Since only a very small percentage of ISPs do the traffic analysis necessary to detect this maneuver, this tactic often goes undetected.

The Traffic Manipulation Tactic is most effectively deployed by network savvy Content Providers. Since web traffic is asymmetric, the producer of the responses (the content player) has the greater ability to force a larger amount of traffic along one path or another.

Traffic Manipulation is used by some ISPs as a way to manage Traffic Volume Ratio requirements for peering with the Tier 1 ISPs.

---

Notes:

1. Conversations with the parties involved in the conflict.
2. It was also interesting to hear the heated debates over the definition of “loser” in this scenario. 
3. http://www.online-literature.com/conten/activ/boost15/Lesson22.html The rising of birds in their flight is the sign of an ambuscade. [Chung’s explanation is doublet right: “Where birds that are flying along in a straight line suddenly shoot sprays, it means that suddenly are in ambush at the spot beneath.”] Stuffed beasts indicate that a sudden attack is coming. Our analogy here is that the traffic influx may be the traffic manipulation tactic.
4. Lower cost in the financial sense, not necessarily the routing sense.
5. Anonymous, Multiple Content Companies have admitted to this maneuver.
6. “Internet Service Providers and Peering” research showed that fewer than 5% of ISPs have the resources for traffic analysis.
8. Comments to the Author Welcome <wbn@requinix.com>
Two Key Observations

• Traffic patterns (e.g., utilization) can be measured.
  • There are better and worse ways to do so.
  • Nothing is perfect yet, but computer scientists are working on it.

• At the core of this is business.
  • There is a lot of money at stake.
  • Interconnection costs money.
  • It’s much better if “the other guy” pays.
Looking Back:
Retrospective on Interconnection
2013: The Internet Wasn’t Ready for This

High Latencies Across the Internet

(Figure 1) Median download throughput achieved by customers of Comcast, Time Warner Cable, and Verizon in the New York City area when connecting across Transit ISP Cogent, January 2013 to September 2014.\textsuperscript{16}

Who’s to blame? (Corollary: Who should pay?)

- Access ISP?
- Transit provider?
- Both?
“It is important to note that while we can infer that performance degradation is interconnection-related, we do not have the contractual details and histories of individual interconnection agreements. As such, we cannot conclude whether parties apart from the two we identify are also involved. We leave this non-technical question open for further study by others and focus here on the impact of what we can observe on consumer performance through measurement.” – Mlab Report
Other Ways to Look at Interconnects

Actively measure the interconnects

• Pros: No special access, public data
• Cons: Cannot measure direct parameters (capacity, utilization)

Directly report on interconnect utilization

• Pros: Direct data
• Cons: Special access, privacy concerns

Interconnection Measurement Project

Aggregate interconnection capacity and utilization
Looking Ahead
The Death of Transit and Peering Disputes

- Content placement affects performance more than network paths.
- Traffic, business decisions, and investments are becoming dominated by cloud services.
- The era of peering disputes is over.
Market Consolidation Continually Shifts

- Access ISPs
- Transit ISPs
- CDN / Cloud services
- Private networks
- App stores
- Operating systems
- Software APIs

Control can consolidate in any one of these parts of the ecosystem.

Important to take a holistic view towards consumer protection. Five years ago, it was the interconnect.

Now, it is the CDN / distributed cloud.
Summary

• **Traffic volumes are growing.**
  - Video traffic dominates.
  - Video resolution is increasing.

• **Methods of delivering traffic are evolving.**
  - Internet traffic is increasingly being delivered via CDNs.
  - The “old Internet” was hierarchical.
  - Now, mostly bilateral, and driven by CDNs/distributed cloud.

• These developments are playing out in a dynamic economic, political landscape.
  - Measuring the access link “speed” is only part of the picture.
  - Even measuring the interconnect is only part of the picture.

• Technologists can help bridge the gap between what we can measure and what consumers care about (ultimately, a good Internet experience).
Break
10:15-10:30 am
Speed Advertising Claims, Substantiation, and Section 5

Session moderated by:

Kristin Williams
Federal Trade Commission
Bureau of Consumer Protection
The Federal Trade Commission Act

- Section 5 of the FTC Act, 15 U.S.C. § 45, prohibits unfair or deceptive acts or practices in or affecting commerce.
Deceptive Practices

• Representation or omission (failure to disclose)
• Likely to mislead consumers acting reasonably under the circumstances
• Material
Unfair Practices

• Substantial injury
• Not reasonably avoidable
• Not outweighed by benefits to consumers or competition
Advertising Law Basic Principles

• Advertising must be truthful and not misleading.
• Companies are responsible for all claims – express and implied – that reasonable consumers take from ad.
• Objective claims must be substantiated before they are made.
Speed Advertising Claims, Substantiation, and Section 5

Measuring Access Speed

David Clark
MIT Computer Science and
Artificial Intelligence Laboratory
Measures of quality

- **Speed**
  - More is better, up to a point.

- **Latency**
  - Less is better, down to a point.

- **Loss**
  - An idle link should not have packet loss.

- **Usage**
  - Video generates a lot of traffic
Focusing on Wireline Access

• Cellular service has different measures of quality.
  • Speed is normally not part of marketing.
  • Emphasize reliability, coverage.
• Another conversation
Summary

• Different measurement tools can give very different answers.
  • Different design, different objective, bugs.
• As speeds get higher, measurement becomes more difficult.
• Speed may not continue to be the flagship measure of quality.
Some Measurements From 2010

1. FCC/Samknows (on-net, 10 second test)
2. Ookla/Speedtest
3. Measurement Lab/NDT
4. Iperf
5. Iperf-multithreaded

All tests from residence with Samknows unit.

Tests 2-5 to same server at MIT.
Measuring a “Slow” Link

• Many different test methodologies will arrive at similar estimates of performance when the broadband access link is the bottleneck
• Increasingly not the case today
  • Gigabit broadband
  • Home WIFI problems
How To Measure a “Fast” link

Consider two polar cases:

1) **Gigabit everywhere**
2) **Gigabit locally** - Gigabit islands

Intermediate cases to highlight options:

3) **Gigabit in aggregate**
4) **Gigabit to select destinations**
Test Methodologies Differ

Only commonality across all these different popular tests is that they report speed test results in the same units (Mbps).
Comparison of measurement tools

• A single gigabit connection.
<table>
<thead>
<tr>
<th>Test</th>
<th>Flows</th>
<th>Destinations</th>
<th>Deployment</th>
<th>Server selection</th>
<th>Reported speed</th>
<th>IPv6</th>
<th>Implied performance expectation</th>
<th>Clear performance target</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDT</td>
<td>Single</td>
<td>Single</td>
<td>S/W, crowsource</td>
<td>Nearby and server load</td>
<td>Total bytes/</td>
<td>No</td>
<td>Single off-net destination</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHT</td>
<td>Sequential</td>
<td>Multiple</td>
<td>S/W, (NDT) crowsource</td>
<td>Nearby and server load</td>
<td>Average of all</td>
<td>No</td>
<td>Single off-net destination</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Parallel</td>
<td>Multiple</td>
<td>S/W, crowsource</td>
<td>Regular Netflix server selection algorithm</td>
<td>Average after</td>
<td>Yes</td>
<td>Aggregate performance to single</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ramp up</td>
<td></td>
<td>content provider</td>
<td></td>
</tr>
<tr>
<td>DSL Reports</td>
<td>Parallel</td>
<td>Multiple</td>
<td>S/W, crowsource</td>
<td></td>
<td>Total bytes /</td>
<td>No</td>
<td>Aggregate performance to multiple</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total time</td>
<td></td>
<td>cloud providers</td>
<td></td>
</tr>
<tr>
<td>Measuring</td>
<td>Parallel</td>
<td>Single</td>
<td>H/W, known sites</td>
<td>On-net / quality off-net</td>
<td>Average after</td>
<td>Yes</td>
<td>Single on-net destination</td>
<td>Contracted service tier</td>
</tr>
<tr>
<td>Broadband</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ramp up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xfinity</td>
<td>Parallel</td>
<td>Single</td>
<td>S/W, crowsource</td>
<td>On-net / off-net</td>
<td>Yes</td>
<td></td>
<td>Single on or off net destination</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ookla</td>
<td>Parallel</td>
<td>Single</td>
<td>S/W, crowsource</td>
<td>Nearby</td>
<td>Average after</td>
<td>No</td>
<td>Single on or off net destination</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ramp up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing Drawbacks

• Hardware based measurement:
  • Limited deployment

• Web/App based measurement:
  • Selection bias.
    • Frustrated people more likely to run test.
  • No knowledge of provisioned speed.
  • Host/home network impairments can limit utility.
Questions for Consideration

• Are gigabit speeds important today?
  • How do these speeds relate to the user experience?
• How should market and regulatory expectations evolve as broadband access speeds increase toward gigabit speeds?
  • Will speed continue to be the flagship metric of service quality?
• What changes are occurring or need to occur in the major measurement platforms to improve the measurement of gigabit broadband?
• What should the research agenda be to address the technical and policy challenges of gigabit broadband?
Further Reading


• Bauer, Steven and Lehr, William and Mou, Merry, *Improving the Measurement and Analysis of Gigabit Broadband Networks* (March 31, 2016). Available at SSRN: https://ssrn.com/abstract=2757050

Speed Advertising Claims, Substantiation, and Section 5

Measuring Internet Access “Speed”: Five Lessons

Nick Feamster
Princeton University
Department of Computer Science
Summary: Five Lessons

- “Speed” has many facets.
- Different techniques measure different aspects of speed.
- Many factors can limit a client-based speed test.
- Faster “speed” doesn’t mean better performance.
- As speeds get faster, speed testing gets harder.
“Speed” Has Many Facets

• Throughput (up, down)
• Latency
• Jitter
• Packet Loss
Different Techniques Measure Different Aspects of Speed

NDT Design: “Transport Capacity” (TCP New Reno)

Ookla, SamKnows Design: “Link Capacity”


Many Factors Limit a Client-Based Speed Test

- Client device (hardware, software)
- Home network
- Network path
- Measurement server infrastructure
- Test parameters (length, # connections)
The Device Can be the Bottleneck

Older iPhones do not support 802.11ac, so never exceed 100 Mbps!
The Home Network Can Be the Bottleneck

Wireless bottlenecks are common, especially as throughput increases

Access link bottlenecks are rare, only happens at low throughput

Homes with throughput greater than 35 Mbits/s almost never see access link bottleneck. (2015)

The Network Path can be the Bottleneck

Latencies from South Africa to Kenya, Brazil, India are 2x higher than latencies to Europe.

Connectivity to Australia, Japan also shows higher latency.

Page load time stops improving above 16 Mbits per second.
Application Performance Doesn’t Always Need “Top Speed”

Applications often do not consume link capacity.

![Graph showing daily peak utilization vs. weekly active measured capacity for various applications such as Spotify, HBO, Hulu, Youtube, Netflix, and Facebook. The graph illustrates that many applications do not operate at the peak capacity required.]
User Experience Depends on Application Performance

• **Startup delay:**
  How long does the video take to start playing?

• **Video resolution:**
  What is the resolution of the video?

• **Bitrate changes:**
  Does the video bitrate change during playback?

• **Rebuffering events:**
  Does the video re-buffer during playback?
As Speeds Get Faster, Speed Testing Gets Harder

• Measuring access links is getting harder.
• Conventional tests take more data.
• Bottlenecks are moving elsewhere.
• Apps don’t saturate the access network capacity.
The Gigabit Era: The Future is Passive

- Estimate application performance using mostly passive measurements without breaking encryption
- Device is in-line, between cable modem and user’s wireless router, or off-path
- Implemented in Go for low-cost devices (Raspberry Pi, Odroid) on home networks
- Pilot home network deployment: ~60 in US, ~10 in Paris
Summary

• “Speed” has many facets.
• Different techniques measure different aspects of speed.
• Many factors can limit a client-based speed test.
• Faster “speed” doesn’t mean better performance.
• As speeds get faster, speed testing gets harder.
• The future of testing is passive application monitoring.

feamster@cs.princeton.edu
https://www.cs.princeton.edu/~feamster/
Speed Advertising Claims, Substantiation, and Section 5

NAD Cases

Laura Brett
National Advertising Division
Advertising Self-Regulatory Council
Telecommunications Challenges

Companies that Participated in Self-Regulation:

AT&T, Verizon, T-Mobile, Sprint, Comcast, Charter, DIRECTV, DISH and Frontier.

34 Cases involving express or implied speed claims
NAD Telecom Cases by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>12</td>
</tr>
<tr>
<td>2015</td>
<td>10</td>
</tr>
<tr>
<td>2016</td>
<td>8</td>
</tr>
<tr>
<td>2017</td>
<td>6</td>
</tr>
<tr>
<td>2018</td>
<td>14</td>
</tr>
</tbody>
</table>
The results are in.

AT&T. The nation's FASTEST and
MOST RELIABLE 4G LTE network.

XFINITY delivers the fastest Internet
in America, based on over 60 million
consumer tests run at Speedtest.net.

INTERNET SPEEDS
20x FASTER.
Introducing AT&T Fiber.

4G LTE
MORE SPEED. MORE POWER.
MORE CHOICES.
Verizon is the place with the largest selection of 4G LTE devices on
America's Fastest, Most Advanced 4G Network.

AMERICA'S FASTEST
4G LTE NETWORK

Clear Channel

An FTC Event | March 20, 2019 | ftc.gov/ftc-hearings | #ftchearings
Speed Advertising Claims, Substantiation, and Section 5

First Principles of Advertising: Implications for Speed Claims

Debra J. Ringold
Willamette University
Atkinson Graduate School of Management
“…Advertising Seeks to Persuade and Everyone Knows It” (Calfee 1997)

- Consumers are skeptical of claims designed to differentiate, generic claims, and advertising as an activity
- Consumers make distinctions between search, experience, and credence attribute claims
- Consumers use advertising claims to form working hypotheses they test in a variety of ways
Advertising Communicates Information and Shapes Markets

• Most effective when communicating “new” information of “value” to consumers

• Small numbers of information sensitive consumers can affect price, quality, etc. and market structure
Power Has Shifted to the Consumer

- Advertisers speak in the context of the Internet
- Consumers overcome traditional market asymmetries
- Consumers band together against producers
- Consumers shape the value chain, often in record time
“Do You Have the Internet Speed You Need?” (FTC 2019)

• Most/many consumers don’t trust/like their ISP
• 95% know what kind of Internet service they have
• Internet speed calculators, expert advice abounds
• Free on-line services evaluate Internet speed
Speed Advertising Claims, Substantiation, and Section 5

Panel Discussion:

Laura Brett, David Clark, Nick Feamster, Debra J. Ringold, Joshua Stager

Moderator: Kristin Williams
Break

12:00-1:00 pm
Evolving Markets and Technological Developments: Market Structure

Session moderated by:

Ruth Yodaiken
Federal Trade Commission
Office of Policy Planning
Evolving Markets and Technological Developments: Market Structure

Matthew A. Brill
Latham & Watkins LLP
Evolving Markets and Technological Developments: Market Structure

Smaller Cable Operator Views on Broadband Markets, Technologies and Competition

Thomas A. Whitaker
Shentel
Overview: Broadband Markets Served by Smaller Cable Operators

• In rural broadband markets served by smaller cable operators,* despite higher costs to serve, competition exists and supply is growing
  • Network and service investment by smaller operators has been substantial and will continue to grow
    • Today most housing units served by smaller operators can receive DOCSIS 3.0 service (at least 100 Mbps), and performance is certain to increase¹
  • Prices (as measured per Mbps) have declined rapidly²
  • New providers, including fixed and 4G wireless, satellite and electric coops, are constantly seeking to enter the broadband market in rural areas
• While smaller operators in rural markets have built to many unserved locations, consumers in more remote areas may be unserved; over the past 5 years, federal and state programs have reduced the number of unserved homes substantially, and these programs continue to work³

* Smaller cable operators initially provided traditional Pay TV service and moved into providing broadband service 25 years ago; today, as video margins have eroded, their predominant offering is broadband

¹ Prices (as measured per Mbps) have declined rapidly
² New providers, including fixed and 4G wireless, satellite and electric coops, are constantly seeking to enter the broadband market in rural areas
³ While smaller operators in rural markets have built to many unserved locations, consumers in more remote areas may be unserved; over the past 5 years, federal and state programs have reduced the number of unserved homes substantially, and these programs continue to work
Identifying Smaller Cable Operators That Provide Broadband Service

- Smaller cable operators serve about 8M broadband subscribers and pass about 17M housing units.
  - Shentel has ~75,000 broadband subscribers in VA, WV, and PA rural areas.
- Most smaller cable operators, like Shentel, provide broadband service in rural markets.
  - In general, smaller cable operators in rural markets for broadband service face more challenging economics because they lack network and operational scale, locations are less dense, and consumers are less well-off.
- Other smaller operators “overbuild” incumbents in more urban markets.
  - Overbuilders, like RCN and WOW!, further ensure robust competition but face challenging economics because they enter markets where incumbent providers already provide service, need to expend large amounts of capital upfront to build a network, and need to achieve scale rapidly to be viable.
Smaller Cable Operators Face Competition in Downstream Broadband Markets

- Smaller cable operators’ competitors in rural areas* in downstream markets --
  - **Incumbent telephone providers**
    - Virtually all smaller cable operators compete with an incumbent telco
    - For Shentel, the incumbent CenturyLink is a strong competitor because it provides 25 Mbps service at a low price point to loyal customers
  - **Other wireline entrants, like electric coops**
    - Electric coops have existing infrastructure (e.g., poles) and operations
    - In Virginia, CVEC is overbuilding Nelson County Cablevision with an all-fiber network
  - **Fixed wireless providers**
    - Fixed wireless providers have a low entry cost and tend to serve “value” customers with sufficient broadband speeds at prices 10-20% below wireline providers
  - **Satellite providers**
    - Satellite providers have capacity limits but a low entry cost and target “value” customers
  - **4G Mobile providers**
    - Many “value” customers can afford only one provider and often want mobile capability

*Overbuilders in more urban markets face competition from incumbent cable and telco providers, as well as mobile providers
Smaller Cable Operators Face Competition in Downstream Broadband Markets

• The existence of competition in downstream rural and “overbuild” markets served by smaller cable operators is indicated by –
  
  • **Increasing Supply (Investment)**
    • Smaller operators have invested over $12B in the past decade to upgrade their networks to DOCSIS 3.0/3.1 and continue to invest more than $1B annually\(^6\)
    • Shentel has invested more than $125M over the past 5 years and will invest another $25M this year
  
  • **Declining Prices (on a per Mbps basis)**
    • Broadband prices for smaller operators have declined substantially on a per Mbps basis\(^7\)
    • Shentel just reduced prices from $3/Mbps to $.50/Mbps; it offers 50 Mbps--$50/month, 150 Mbps--$80/month, and 300 Mbps--$110/month\(^8\)
  
  • **Good Customer Service**
    • Smaller cable operators are recognized for their customer service\(^9\)
    • Shentel was the independent operator of the year in 2017\(^{10}\)
Smaller Cable Operators Have No Leverage in Upstream Broadband Markets

• Because smaller cable operators in rural markets* have fewer subscribers (traffic and “eyeballs”) and networks with no, or at most limited, regional reach --
  • Most smaller operators seeking to interconnect and exchange traffic with peering providers, edge providers, and CDNs need to use and pay a transit provider to carry traffic to and from an internet exchange points (IEP)
  • Shentel is somewhat unique in that its networks are relatively proximate to major IEPs and it has sufficient traffic to justify building to IEPs, but even then, it must pay for peering

*Overbuilders in more urban markets generally carry traffic to IEPs but must pay for peering
Concluding Thoughts about Broadband Markets Served by Smaller Cable Operators

• By virtually any measure, broadband service in markets served by smaller cable operators is a “good news” story
• Government can further increase supply by –
  • Removing barriers to network deployment, including by ensuring providers have timely access at reasonable cost to poles/conduit/ducts and to public and private rights-of-way
  • Awarding subsidies efficiently in “unserved markets” for the deployment of robust broadband networks
• Government also should ensure consumers have reasonable access to clear, accurate, and sufficient information about broadband service rates, terms, and conditions to select a provider and service tier
End Notes

1 See Communications Market Report et al., GN Docket No. 18-231 et al., Report, FCC 18-181 at Fig. G-4 (Dec. 26, 2018)


3 Locations being served from FCC Connect America Fund Phase I – 638k; Phase II – 4.331M. Additional locations served from RUS Broadband Loan and Community Connect Grant programs and state programs such as the New York State Broadband program


6 Derived from ACA member public announcements, discussions with ACA members, and SEC filings

7 See note 2 above

8 *The FCC’s 2019 Urban Rate Benchmark: 50/5 Mbps for ~$100/month; 100/10 Mbps for ~$106/month; 250/25 Mbps for ~$129/month

9 See “Readers’ Choice Awards 2018: Internet Service Providers, PC Magazine (May 23, 2018)

10 Shentel, Cablefax’s Independent Operator of the Year (June 8, 2017) available at http://www.cablefax.com/eventsawardswebinars/cablefaxes-top-ops-luncheon
Evolving Markets and Technological Developments: Market Structure

Panel Discussion:

Matthew A. Brill, Thomas A. Whitaker, Tithi Chattopadhyay, John Bergmayer, kc claffy

Moderator: Ruth Yodaiken
Evolving Markets and Technological Developments: Market Structure

Tithi Chattopadhyay
Princeton University
Center for Information Technology Policy
Overview

Market Structure

- The Network – Stakeholders and their relationships
- Investments in Broadband – Factors impacting investments
- Outcomes – How does one assess competition in this market?

What is going on in State Governments?
Market Structure: The Network

• Different stakeholders
  • Broadband providers – access & backbone
  • Edge providers
  • Consumers – residential, business and CAIs

• Other considerations for broadband stakeholders
  • Different technologies
  • Rural and urban markets
Market Structure: The Network

Economic relationships in the network

• Factors that determine prices in two-sided markets
  • Relative size of the other group
  • Price sensitivity of user groups
  • Type of fee levied
Market Structure: Investments

Factors impacting investments in this market

• Price discrimination – quality, quantity and market segments
• Product differentiation
• Other investment challenges – density of subscribers, regulatory hurdles, competitive hurdles
Market Structure: Outcomes

• Competition in this market
  • Horizontal relationships
  • Vertical relationships

• What does this mean to a consumer?
  • Switching costs
  • Understanding commercial terms & performance
    • What’s changing?

• Application specific information
  • Disclosing leveraging practices
What is going on in State Governments?

• Section 706 - Pertained to encouraging and incentivizing deployment of broadband technology

• After the 2017 FCC ruling – Four different strategies employed
  • Do nothing
  • Sue the FCC
  • Enhancing requirements for state contracts and grants
  • Direct state level laws

• Transparency and data collection
  • Passive testing and deployments

• Rural deployments
Evolving Markets and Technological Developments: Market Structure

Panel Discussion:

Matthew A. Brill, Thomas A. Whitaker, Tithi Chattopadhyay, John Bergmayer, kc claffy

Moderator: Ruth Yodaiken
Evolving Markets and Technological Developments: Market Structure

John Bergmayer
Public Knowledge
Evolving Markets and Technological Developments: Market Structure

Panel Discussion:

Matthew A. Brill, Thomas A. Whitaker, Tithi Chattopadhyay, John Bergmayer, kc claffy

Moderator: Ruth Yodaiken
Break
2:15-2:30 pm
Evolving Markets and Technological Developments: Policy Applications

Session moderated by:

Suzanne Munck
Federal Trade Commission
Office of Policy Planning
Evolving Markets and Technological Developments: Policy Applications

Christopher S. Yoo
University of Pennsylvania
Evolving Markets and Technological Developments: Policy Applications

Gigi Sohn
Georgetown Law Institute for Technology Law & Policy
Evolving Markets and Technological Developments: Policy Applications

Berin Szoka
TechFreedom
Evolving Markets and Technological Developments: Policy Applications

Mitch Stoltz
Electronic Frontier Foundation
Evolving Markets and Technological Developments: Policy Applications

Tom Struble
R Street Institute
Evolving Markets and Technological Developments: Policy Applications

Tejas N. Narechania
University of California, Berkeley
School of Law
Evolving Markets and Technological Developments: Policy Applications

Panel Discussion:

Christopher S. Yoo, Gigi Sohn, Berin Szoka, Mitch Stoltz, Tom Struble, Tejas N. Narechania

Moderator: Suzanne Munck
Break
4:00-4:15 pm
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

Session moderated by:

Suzanne Munck & Katherine Ambrogi
Federal Trade Commission
Office of Policy Planning
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

Howard Shelanski
Georgetown University Law Center
Davis Polk & Wardwell LLP
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

Michelle P. Connolly
Duke University
Department of Economics
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

William Blumenthal
Sidley Austin LLP
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

Jonathan B. Sallet
Benton Foundation
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

Michael L. Katz
University of California, Berkeley
Haas School of Business
Identifying Efficiencies and Remedying Competitive Harms in Broadband Markets

Panel Discussion/Hypotheticals:

Howard Shelanski, Michelle P. Connolly, William Blumenthal, Jonathan B. Sallet, Michael L. Katz

Moderators: Suzanne Munck & Katherine Ambrogi
Hypothetical 1

An ISP supports a videoconferencing application for two years, until it discontinues support of the application. As a result, the ISP’s customers no longer can access the videoconferencing program.

The ISP says that it discontinued service because the program uses too much data.

The press reports that the ISP is developing a competing videoconferencing service, although that service is not yet available to consumers.
Hypothetical 1

An ISP supports a videoconferencing application for two years, until it discontinues support of the application. As a result, the ISP’s customers no longer can access the videoconferencing program.

The ISP says that it discontinued service because the program uses too much data.

The press reports that the ISP is developing a competing videoconferencing service, although that service is not yet available to consumers.

• **What if**: The ISP has supported multiple videoconferencing applications for two years, including its own service. Now that its own service is more established, it discontinues support of previously supported competing services.
An ISP has 60% share in the relevant market. It does not provide a voice over internet protocol (VoIP) service, but several VoIP providers offer over the top service available via the ISP. The ISP enters into a contract with a VoIP provider who pays a fee to the ISP in exchange for preferred network management. A public interest group files a complaint with the FTC that customers of the OTT VoIP Services are experiencing service disruptions.
Hypothetical 2

An ISP has 60% share in the relevant market. It does not provide a voice over internet protocol (VoIP) service, but several VoIP providers offer over the top service available via the ISP. The ISP enters into a contract with a VoIP provider who pays a fee to the ISP in exchange for preferred network management. A public interest group files a complaint with the FTC that customers of the OTT VoIP Services are experiencing service disruptions.

• *What if*: The ISP prevents customers from using the OTT VoIP services.
Hypothetical 3

An ISP and a content delivery network (CDN) each have 60% share of their relevant markets. The ISP and CDN enter into a merger agreement. There is no direct overlap between the services offered by the merging parties. The ISP plans to integrate the CDN service into its network, and only offer the CDN content to its customers.
Hypothetical 3

An ISP and a content delivery network (CDN) each have 60% share of their relevant markets. The ISP and CDN enter into a merger agreement. There is no direct overlap between the services offered by the merging parties. The ISP plans to integrate the CDN service into its network, and only offer the CDN content to its customers.

• **What if**: the ISP offers the CDN to its customers as part of their fee-for-service, but creates a pay-wall for customers who access the CDN content via other ISP services?
Hypothetical 4

Two IP platforms operate their own private IP networks. The platforms also serve content to the public internet. The platforms create a joint venture by which they create a private platform for customers through which they offer prioritized network management for paying clients.
Thank You

Hearing #11: March 25-26
The FTC’s Role in a Changing World
Federal Trade Commission, Headquarters

Hearing #12: March 25
Roundtable with
State Attorneys General
Federal Trade Commission, Constitution Center