
Panoptispy:
Characterizing Audio and Video

Exfiltration from Android Applications

Elleen Pan, Jingjing Ren, Martina Lindorfer*, Christo Wilson, and David Choffnes
Northeastern University, *TU Wien

Motivation
+ internet connectivity …

ultrasonic beacons for cross-device linking

patents for recognizing user emotion

listening for unlicensed broadcasting

photos taken surreptitiously by shrinking preview to 1x1 pixel

263

Goals
• Identify & measure media (audio, images, video)

exfiltration at scale
– Large number of apps & broad coverage of app stores

• Focus on exfiltration over network
• Is the exfiltration a leak (undisclosed/unexpected)?

• How do apps use sensors?
– Permissions requested
– APIs called
– First or third-parties

264

Definition of media leak
Suspicious or unexpected

265

1. Does it further the primary purpose of the app?
2. Is it disclosed to the user?

– Privacy policies
3. Is it employed by similar apps?
4. Is it encrypted over the internet?

No? It’s a leak

App Selection
• Apps from Google Play + 3 third-party app stores that requested camera

and/or record audio permissions = 17,260 apps​

266

Static Analysis
• Permission analysis (camera, record audio)
• Media API references (camera, record audio, video, screen capturing)

• References found in third-party libraries

Dynamic Analysis
• Android phones w/ automated, random interaction
• Recorded network traffic

• Extracted media using file magic numbers
• E.g. JPEG files: FF D8 FF …

• Validation: test app, known apps, verified detected
media

267

Results

268

• 21 cases of detected media – 12 considered leaks
– Unexpected or unencrypted

• 9 shared with third parties

Case Study: Photography Apps

269

• Server-side photo editing
– Photos are sent to servers
– Users not notified

• App has no other functionality requiring internet connection
• Privacy policy vaguely disclosed (5 apps) or didn’t mention (1 app)

Case Study: Screen Recording

• Screen recording of user interaction, where PII was
exposed

• Leaked to an Appsee domain

• Screen recording as a feature
• Developers are responsible for hiding sensitive screens
• Few apps use the API method to do so – 5/33 apps

• Server-side way exists, unknown how many apps use it

270

Responsible Disclosure
• Pulled Appsee from Android & iOS builds
• Updated privacy policy

271

• Reviewed GoPuff & Appsee
• “Google constantly monitors apps and analytics providers to ensure

they are policy-compliant. When notified of our findings,
they reviewed GoPuff and Appsee and took the appropriate
actions.”

• Removed additional apps beyond our findings
¯_(ツ)_/¯

272

Recommendations
• Access to the screen should be protected by OS

– Or, users should at least be notified & able to opt out
• Main app & third-party permissions should be separated
• Need for independent, automated testing to audit apps

273

Conclusion
• 12 cases of unexpected or unencrypted media

– 9 cases of third party sharing
• Screen recording video sent to a third party library

– Sensitive input fields
– No permissions or notification to the user
– Could leak credit card numbers, passwords, unsent messages…

• More work needs to be done on iOS - screen recording behavior also
found in major iOS apps

https://recon.meddle.mobi/panoptispy/

274

https://recon.meddle.mobi/panoptispy/

