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Abstract 
Privacy policies are the primary channel through which 
companies inform users about their data collection and 
sharing practices. These policies are often long and diffi-
cult to comprehend. Short notices based on information 
extracted from privacy policies have been shown to be 
useful but face a significant scalability hurdle, given the 
number of policies and their evolution over time. Com-
panies, users, researchers, and regulators still lack usable 
and scalable tools to cope with the breadth and depth of 
privacy policies. To address these hurdles, we propose an 
automated framework for privacy policy analysis (Poli-
sis). It enables scalable, dynamic, and multi-dimensional 
queries on natural language privacy policies. At the core 
of Polisis is a privacy-centric language model, built with 
130K privacy policies, and a novel hierarchy of neural-
network classifiers that accounts for both high-level as-
pects and fine-grained details of privacy practices. We 
demonstrate Polisis’ modularity and utility with two ap-
plications supporting structured and free-form querying. 
The structured querying application is the automated as-
signment of privacy icons from privacy policies. With 
Polisis, we can achieve an accuracy of 88.4% on this 
task. The second application, PriBot, is the first free-
form question-answering system for privacy policies. We 
show that PriBot can produce a correct answer among 
its top-3 results for 82% of the test questions. Using an 
MTurk user study with 700 participants, we show that at 
least one of PriBot’s top-3 answers is relevant to users 
for 89% of the test questions. 

1 Introduction 
Privacy policies are one of the most common ways of 

providing notice and choice online. They aim to inform 
users how companies collect, store and manage their 
personal information. Although some service providers 
have improved the comprehensibility and readability of 
their privacy policies, these policies remain excessively 
long and difficult to follow [1, 2, 3, 4, 5]. In 2008, Mc-

Donald and Cranor [4] estimated that it would take an 
average user 201 hours to read all the privacy policies 
encountered in a year. Since then, we have witnessed 
a smartphone revolution and the rise of the Internet of 
Things (IoTs), which lead to the proliferation of ser-
vices and associated policies [6]. In addition, emerging 
technologies brought along new forms of user interfaces 
(UIs), such as voice-controlled devices or wearables, for 
which existing techniques for presenting privacy policies 
are not suitable [3, 6, 7, 8]. 
Problem Description. Users, researchers, and regula-
tors are not well-equipped to process or understand the 
content of privacy policies, especially at scale. Users are 
surprised by data practices that do not meet their expec-
tations [9], hidden in long, vague, and ambiguous poli-
cies. Researchers employ expert annotators to analyze 
and reason about a subset of the available privacy poli-
cies [10, 11]. Regulators, such as the U.S. Department of 
Commerce, rely on companies to self-certify their com-
pliance with privacy practices (e.g., the Privacy Shield 
Framework [12]). The problem lies in stakeholders lack-
ing the usable and scalable tools to deal with the breadth 
and depth of privacy policies. 

Several proposals have aimed at alternative methods 
and UIs for presenting privacy notices [8], including 
machine-readable formats [13], nutrition labels [14], pri-
vacy icons (recently recommended by the EU [15]), and 
short notices [16]. Unfortunately, these approaches have 
faced a significant scalability hurdle: the human effort 
needed to retrofit the new notices to existing policies and 
maintain them over time is tremendous. The existing re-
search towards automating this process has been limited 
in scope to a handful of “queries,” e.g., whether the pol-
icy mentions data encryption or whether it provides an 
opt-out choice from third-party tracking [16, 17]. 
Our Framework. We overcome this scalability hurdle 
by proposing an automatic and comprehensive frame-
work for privacy policy analysis (Polisis). It divides a 
privacy policy into smaller and self-contained fragments 
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of text, referred to as segments. Polisis automatically an-
notates, with high accuracy, each segment with a set of 
labels describing its data practices. Unlike prior research 
in automatic labeling/analysis of privacy policies, Poli-
sis does not just predict a handful of classes given the 
entire policy document. Instead, Polisis annotates the 
privacy policy at a much finer-grained scale. It predicts 
for each segment the set of classes that account for both 
the high-level aspects and the fine-grained classes of em-
bedded privacy information. Polisis uses these classes to 
enable scalable, dynamic, and multi-dimensional queries 
on privacy policies, in a way not possible with prior ap-
proaches. 

At the core of Polisis is a novel hierarchy of neural-
network classifiers that involve 10 high-level and 122 
fine-grained privacy classes for privacy-policy segments. 
To build these fine-grained classifiers, we leverage tech-
niques such as subword embeddings and multi-label 
classification. We further seed these classifiers with a 
custom, privacy-specific language model that we gener-
ated using our corpus of more than 130,000 privacy poli-
cies from websites and mobile apps. 
Polisis provides the underlying intelligence for re-

searchers and regulators to focus their efforts on merely 
designing a set of queries that power their applications. 
We stress, however, that Polisis is not intended to replace 
the privacy policy – as a legal document – with an auto-
mated interpretation. Similar to existing approaches on 
privacy policies’ analysis and presentation, it decouples 
the legally binding functionality of these policies from 
their informational utility. 

Applications. We demonstrate and evaluate the modu-
larity and utility of Polisis with two robust applications 
that support structured and free-form querying of privacy 
policies. 

The structured querying application involves extract-
ing short notices in the form of privacy icons from pri-
vacy policies. As a case study, we investigate the Dis-
connect privacy icons [18]. By composing a set of sim-
ple rules on top of Polisis, we show a solution that can 
automatically select appropriate privacy icons from a pri-
vacy policy. We further study the practice of companies 
assigning icons to privacy policies at scale. We empiri-
cally demonstrate that existing privacy-compliance com-
panies, such as TRUSTe (now rebranded as TrustArc), 
might be adopting permissive policies when assigning 
such privacy icons. Our findings are consistent with 
anecdotal controversies and manually investigated issues 
in privacy certification and compliance processes [19, 20, 
21]. 

The second application illustrates the power of free-

form querying in Polisis. We design, implement and 
evaluate PriBot, the first automated Question-Answering 
(QA) system for privacy policies. PriBot extracts the 

relevant privacy policy segments to answer the user’s 
free-form questions. To build PriBot, we overcame the 
non-existence of a public, privacy-specific QA dataset by 
casting the problem as a ranking problem that could be 
solved using the classification results of Polisis. PriBot 
matches user questions with answers from a previously 
unseen privacy policy, in real time and with high accu-
racy – demonstrating a more intuitive and user-friendly 
way to present privacy notices and controls. We evalu-
ate PriBot using a new test dataset, based on real-world 
questions that have been asked by consumers on Twitter. 
Contributions. With this paper we make the following 
contributions: 

• We design and implement Polisis, an approach for au-
tomatically annotating previously unseen privacy poli-
cies with high-level and fine-grained labels from a pre-
specified taxonomy (Sec. 2, 3, 4, and 5). 

• We demonstrate how Polisis can be used to assign pri-
vacy icons to a privacy policy with an average accu-
racy of 88.4%. This accuracy is computed by com-
paring icons assigned with Polisis’ automatic labels to 
icons assigned based on manual annotations by three 
legal experts from the OPP-115 dataset [11] (Sec. 6). 

• We design, implement and evaluate PriBot, a QA sys-
tem that answers free-form user questions from pri-
vacy policies (Sec. 7). Our accuracy evaluation shows 
that PriBot produces at least one correct answer (as in-
dicated by privacy experts) in its top three for 82% of 
the test questions and as the top one for 68% of the test 
questions. Our evaluation of the perceived utility with 
700 MTurk crowdworkers shows that users find a rele-
vant answer in PriBot’s top-3 for 89% of the questions 
(Sec. 8). 

• We make Polisis publicly available by providing three 
web services demonstrating our applications: a ser-
vice giving a visual overview of the different aspects 
of each privacy policy, a chatbot for answering user 
questions in real time, and a privacy-labels interface 
for privacy policies. These services are available at 
https://pribot.org. 

2 Framework Overview 
Fig. 1 shows a high-level overview of Polisis. It com-

prises three layers: Application Layer, Data Layer, and 
Machine Learning (ML) Layer. Polisis treats a privacy 
policy as a list of semantically coherent segments (i.e., 
groups of consecutive sentences). It also utilizes a tax-
onomy of privacy data practices. One example of such a 
taxonomy was introduced by Wilson et al. [11] (see also 
Fig. 3 in Sec. 4). 

Application Layer (Sec. 5, 6 & 7): The Applica-
tion Layer provides fine-grained information about the 
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Fig. 1: A high-level overview of Polisis. 

privacy policy, thus providing the users with high mod-
ularity in posing their queries. In this layer, a Query 
Module receives the User Query about a privacy policy 
(Step 1 in Fig. 1). These inputs are forwarded to lower 
layers, which then extract the privacy classes embedded 
within the query and the policy’s segments. To resolve 
the user query, the Class-Comparison module identifies 
the segments with privacy classes matching those of the 
query. Then, it passes the matched segments (with their 
predicted classes) back to the application. 

Data Layer (Sec. 3): The Data Layer first scrapes the 
policy’s webpage. Then, it partitions the policy into se-
mantically coherent and adequately sized segments (us-
ing the Segmenter component in Step 2 of Fig. 1). Each 
of the resulting segments can be independently con-
sumed by both the humans and programming interfaces. 

Machine Learning Layer (Sec. 4): In order to en-
able a multitude of applications to be built around Poli-
sis, the ML layer is responsible for producing rich and 
fine-grained annotations of the data segments. This layer 
takes as an input the privacy-policy segments from the 
Data Layer (Step 2) and the user query (Step 1) from the 
Application Layer. The Segment Classifier probabilisti-
cally assigns each segment a set of class–value pairs de-
scribing its data practices. For example, an element in 
this set can be information-type=location with probabil-
ity p = 0.65. Similarly, the Query Analyzer extracts the 
privacy classes from the user’s query. Finally, the class– 
value pairs of both the segments and the query are passed 
back to the Class Comparison module of the Application 
Layer (Steps 3 and 4). 

3 Data Layer 
To pre-process the privacy policy, the Data Layer em-

ploys a Segmenter module in three stages: extraction, list 
handling, and segmentation. The Data Layer requires no 
information other than the link to the privacy policy. 
Policy Extraction: Given the URL of a privacy pol-
icy, the segmenter employs Google Chrome in head-
less mode (without UI) to scrape the policy’s web-

Further useful privacy and security related materials can be found through Google’s policies 
and principles pages, including:
o Information about our technologies and principles, which includes, among other things, 

more information on
• how Google uses cookies.
• technologies we use for advertising.
• how we recognize patterns like faces.

o A page that explains what data is shared with Google when you visit websites that use our 
advertising, analytics and social products.

o The Privacy Checkup tool, which makes it easy to review your key privacy settings.
o Google’s safety center, which provides information on how to stay safe and secure online.
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Fig. 2: List merging during the policy segmentation. 

page. It waits for the page to fully load which hap-
pens after all the JavaScript has been downloaded and 
executed. Then, the segmenter removes all irrelevant 
HTML elements including the scripts, header, footer, 
side/navigation menus, comments, and CSS. 

Although several online privacy policies contain dy-
namically viewable content (e.g., accordion toggles and 
collapsible/expandable paragraphs), the “dynamic” con-
tent is already part of the loaded webpage in almost all 
cases. For example, when the user expands a collapsible 
paragraph, a local JavaScript exposes an offline HTML 
snippet; no further downloading takes place. 

We confirmed this with the privacy policies of the top 
200 global websites from Alexa.com. For each privacy-
policy link, we compared the segmenter’s scraped con-
tent to that extracted from our manual navigation of the 
same policy (while accounting for all the dynamically 
viewable elements of the webpage). Using a fuzzy string 
matching library,1 we found that the segmenter’s scraped 
policy covers, on average, 99.08% of the content of the 
manually fetched policy. 

List Aggregation: Second, the segmenter handles any 
ordered/unordered lists inside the policy. Lists require 
a special treatment since counting an entire lengthy list, 
possibly covering diverse data practices, as a single seg-
ment could result in noisy annotations. On the other 
hand, treating each list item as an independent segment 
is problematic as list elements are typically not self-
contained, resulting in missed annotations. See Fig. 2 
from Google’s privacy policy as an example2. 

Our handling of the lists involves two techniques: one 
for short list items (e.g., the inner list of Fig. 2) and an-
other for longer list items (e.g., the outer list of Fig. 2). 
For short list items (maximum of 20 words per element), 
the segmenter combines the elements with the introduc-
tory statement of the list into a single paragraph element 
(with <p> tag). The rest of the lists with long items are 
transformed into a set of paragraphs. Each paragraph is a 
distinct list element prepended by the list’s introductory 
statement (Step 3 in Fig. 2). 

1https://pypi.python.org/pypi/fuzzywuzzy 
2https://www.google.com/intl/en US/policies/ 

privacy/archive/20160829/, last modified on Aug. 29, 2016, 
retrieved on Jun. 27, 2018 
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Policy Segmentation: The segmenter performs an ini-
tial coarse segmentation by breaking down the policy 
according to the HTML <div> and <p> tags. The out-
put of this step is an initial set of policy segments. As 
some of the resulting segments might still be long, we 
subdivide them further with another technique. We use 
GraphSeg [22], an unsupervised algorithm that gener-
ates semantically coherent segments. It relies on word 
embeddings to generate segments as cliques of related 
(semantically similar) sentences. For that purpose, we 
use custom, domain-specific word embeddings that we 
generated using our corpus of 130K privacy policies (cf. 
Sec. 4). Finally, the segmenter outputs a series of fine-
grained segments to the Machine Learning Layer, where 
they are automatically analyzed. 

4 Machine Learning Layer 
This section describes the components of Polisis’ Ma-

chine Learning Layer in two stages: (1) an unsupervised 
stage, in which we build domain-specific word vectors 
(i.e., word embeddings) for privacy policies from unla-
beled data, and (2) a supervised stage, in which we train a 
novel hierarchy of privacy-text classifiers, based on neu-
ral networks, that leverages the word vectors. These clas-
sifiers power the Segment Classifier and Query Analyzer 
modules of Fig. 1. We use word embeddings and neural 
networks thanks to their proven advantages in text clas-
sification [23] over traditional techniques. 

4.1 Privacy-Specific Word Embeddings 
Traditional text classifiers use the words and their fre-

quencies as the building block for their features. They, 
however, have limited generalization power, especially 
when the training datasets are limited in size and scope. 
For example, replacing the word “erase” by the word 
“delete” can significantly change the classification result 
if “delete” was not in the classifier’s training set. 

Word embeddings solve this issue by extracting 
generic word vectors from a large corpus, in an unsu-
pervised manner, and enabling their use in new classifi-
cation problems (a technique termed Transfer Learning). 
The features in the classifiers become the word vectors 
instead of the words themselves. Hence, two text seg-
ments composed of semantically similar words would be 
represented by two groups of word vectors (i.e., features) 
that are close in the vector space. This allows the text 
classifier to account for words outside the training set, as 
long as they are part of the large corpus used to train the 
word vectors. 

While general-purpose pre-trained embeddings, such 
as Word2vec [24] and GloVe [25] do exist, domain-
specific embeddings result in better classification accu-
racy [26]. Thus, we trained custom word embeddings 
for the privacy-policy domain. To that end, we created a 
corpus of 130K privacy policies collected from apps on 

the Google Play Store. These policies typically describe 
the overall data practices of the apps’ companies. 

We crawled the metadata of more than 1.4 million An-
droid apps available via the PlayDrone project [27] to 
find the links to 199,186 privacy policies. We crawled 
the web pages for these policies, retrieving 130,326 poli-
cies which returned an HTTP status code of 200. Then, 
we extracted the textual content from their HTML us-
ing the policy crawler described in Sec. 3. We will refer 
to this corpus as the Policies Corpus. Using this corpus, 
we trained a word-embeddings model using fastText [28]. 
We henceforth call this model the Policies Embeddings. 
A major advantage of using fastText is that it allows train-
ing vectors for subwords (or character n-grams of sizes 3 
to 6) in addition to words. Hence, even if we have words 
outside our corpus, we can assign them vectors by com-
bining the vectors of their constituent subwords. This is 
very useful in accounting for spelling mistakes that occur 
in applications that involve free-form user queries. 

4.2 Classification Dataset 
Our Policies Embeddings provides a solid starting 

point to build robust classifiers. However, training the 
classifiers to detect fine-grained labels of privacy poli-
cies’ segments requires a labeled dataset. For that pur-
pose, we leverage the Online Privacy Policies (OPP-
115) dataset, introduced by Wilson et al. [11]. This 
dataset contains 115 privacy policies manually annotated 
by skilled annotators (law school students). In total, the 
dataset has 23K annotated data practices. The anno-
tations were at two levels. First, paragraph-sized seg-
ments were annotated according to one or more of the 
10 high-level categories in Fig. 3 (e.g., First Party Col-
lection, Data Retention). Then, annotators selected parts 
of the segment and annotated them using attribute–value 
pairs, e.g., information type: location, purpose: adver-
tising, etc. In total, there were 20 distinct attributes and 
138 distinct values across all attributes. Of these, 122 
values had more than 20 labels. In Fig. 3, we only show 
the mandatory attributes that should be present in all seg-
ments. Due to space limitation, we only show samples of 
the values for selected attributes in Fig. 3. 

4.3 Hierarchical Multi-label Classification 
To account for the multiple granularity levels in the 

policies’ text, we build a hierarchy of classifiers that 
are individually trained on handling specific parts of the 
problem. 

At the top level, a classifier predicts one or more high-
level categories of the input segment x (categories are the 
top-level, shaded boxes of Fig. 3). We train a multi-label 
classifier that provides us with the probability p(ci|x) of 
the occurrence of each high-level category ci, taken from 
the set of all categories C . In addition to allowing mul-
tiple categories per segment, using a multi-label classi-
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fier makes it possible to determine whether a category is 
present in a segment by simply comparing its classifica-
tion probability to a threshold of 0.5. 

At the lower level, a set of classifiers predicts one 
or more values for each privacy attribute (the leaves 
in the taxonomy of Fig. 3). We train a set of multi-
label classifiers on the attribute-level. Each classifier 
produces the probabilities p(v j|x) for the values v j ∈ 
V (b) of a single attribute b. For example, given the 
attribute b=information type , the corresponding clas-
sifier outputs the probabilities for elements in V (b): 
{financial, location, user profile, health, demographics, 
cookies, contact information, generic personal informa-
tion, unspecified, . . . }. 

An important consequence of this hierarchy is that in-
terpreting the output of the attribute-level classifier de-
pends on the categories’ probabilities. For example, the 
values’ probabilities of the attribute “retention period” 
are irrelevant when the dominant high-level category is 
“policy change.” Hence, for a category ci, one would 
only consider the attributes descending from it in the hi-
erarchy. We denote these attributes as A (ci) and the set 
of all values across these attributes as V (ci). 

We use Convolutional Neural Networks (CNNs) in-
ternally within all the classifiers for two main reasons, 
which are also common in similar classification tasks. 
First, CNNs enable us to integrate pre-trained word em-
beddings that provide the classifiers with better gener-
alization capabilities. Second, CNNs recognize when a 
certain set of tokens are a good indicator of the class, in 
a way that is invariant to their position within the input 
segment. 

We use a similar CNN architecture for classifiers on 
both levels as shown in Fig. 4. Segments are split into to-
kens, using PENN Treebank tokenization in NLTK [29]. 
The embeddings layer outputs the word vectors of these 
tokens. We froze that layer, preventing its weights from 
being updated, in order to preserve the learnt seman-
tic similarity between all the words present in our Poli-
cies Embeddings. Next, the word vectors pass through a 
Convolutional layer, whose main role is applying a non-
linear function (a Rectified Linear Unit (ReLU)) over 

windows of k words. Then, a max-pooling layer com-
bines the vectors resulting from the different windows 
into a single vector. This vector then passes through the 
first dense (i.e., fully-connected) layer with a ReLU ac-
tivation function, and finally through the second dense 
layer. A sigmoid operation is applied to the output of 
the last layer to obtain the probabilities for the possible 
output classes. We used multi-label cross-entropy loss 
as the classifier’s objective function. We refer interested 
readers to [30] for further elaborations on how CNNs are 
used in such contexts. 
Models’ Training. In total, we trained 20 classifiers at 
the attribute level (including the optional attributes). We 
also trained two classifiers at the category level: one for 
classifying segments and the other for classifying free-
form queries. For the former, we include all the classes 
in Fig. 3. For the latter, we ignore the “Other” cate-
gory as it is mainly for introductory sentences or uncov-
ered practices [11], which are not applicable to users’ 
queries. For training the classifiers, we used the data 
from 65 policies in the OPP-115 dataset, and we kept 
50 policies as a testing set. The hyper-parameters for 
each classifier were obtained by running a randomized 
grid-search. In Table 1, we present the evaluation met-
rics on the testing set for the category classifier intended 
for free-form queries. In addition to the precision, re-
call and F1 scores (macro-averaged per label3), we also 
show the top-1 precision metric, representing the fraction 
of segments where the top predicted category label oc-

3A successful multilabel classifier should not only predict the pres-
ence of a label, but also its absence. Otherwise, a model that predicts 
that all labels are present would have 100% precision and recall. For 
that, the precision in the table represents the macro-average of the pre-
cision in predicting the presence of each label and predicting its ab-
sence (similarly for recall and F1 metrics). 
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Table 1: Classification results for user queries at the category 
level. Hyperparameters: Embeddings size: 300, Number of 
filters: 200, Filter Size: 3, Dense Layer Size: 100, Batch Size: 

Category Prec. Recall F1 
Top-1 
Prec. 

Support 

1st Party Collection 0.80 0.80 0.80 0.80 1267 

3rd Party Sharing 0.81 0.81 0.81 0.86 963 
User Choice/Control 0.76 0.73 0.75 0.81 455 
Data Security 0.87 0.86 0.87 0.77 202 
Specific Audiences 0.95 0.94 0.95 0.91 156 
Access, Edit, Delete 0.94 0.75 0.82 0.97 134 
Policy Change 0.96 0.89 0.92 0.93 120 
Data Retention 0.79 0.67 0.71 0.60 93 
Do Not Track 0.97 0.97 0.97 0.94 16 

Average 0.87 0.83 0.84 0.84 

curs in the annotators’ ground-truth labels. As evident in 
the table, our classifiers can predict the top-level privacy 
category with high accuracy. Although we consider the 
problem in the multi-label setting, these metrics are sig-
nificantly higher than the models presented in the origi-
nal OPP-115 paper [11]. The full results for the rest of 
classifiers are presented in the Appendix. The efficacy 
of these classifiers is further highlighted through queries 
that directly leverage their output in the applications de-
scribed next. 

5 Application Layer 
Leveraging the power of the ML Layer’s classifiers, 

Polisis supports both structured and free-from queries 
about a privacy policy’s content. A structured query 
is a combination of first-order logic predicates over 
the predicted privacy classes and the policy segments, 
such as: ∃s (s ∈ policy ∧ information type(s)=location ∧ 
purpose(s) = marketing ∧ user choice(s)=opt-out). On 
the other hand, a free-form query is simply a natural lan-
guage question posed directly by the users, such as “do 
you share my location with third parties?”. The response 
to a query is the set of segments satisfying the predicates 
in the case of a structured query or matching the user’s 
question in the case of a free-form query. The Appli-
cation Layer builds on these query types to enable an ar-
ray of applications for different privacy stakeholders. We 
take an exemplification approach to give the reader a bet-
ter intuition on these applications, before delving deeper 
into two of them in the next sections. 
Users: Polisis can automatically populate several of the 
previously-proposed short notices for privacy policies, 
such as nutrition tables and privacy icons [3, 18, 31, 32]. 
This task can be achieved by mapping the notices to 
a set of structured queries (cf. Sec. 6). Another pos-
sible application is privacy-centered comparative shop-
ping [33]. A user can build on Polisis’ output to auto-
matically quantify the privacy utility of a certain policy. 

For example, such a privacy metric could be a combi-
nation of positive scores describing privacy-protecting 
features (e.g., policy containing a segment with the la-
bel: retention period: stated period ) and negative scores 
describing privacy-infringing features (e.g., policy con-
taining a segment with the label: retention period: un-
limited ). A major advantage of automatically generat-
ing short notices is that they can be seamlessly refreshed 
when policies are updated or when the rules to generate 
these notices are modified. Otherwise, discrepancies be-
tween policies and notices might arise over time, which 
deters companies from adopting the short notices in the 
first place. 

By answering free-form queries with relevant policy 
segments, Polisis can remove the interface barrier be-
tween the policy and the users, especially in conver-
sational interfaces (e.g., voice assistants and chatbots). 
Taking a step further, Polisis’ output can be potentially 
used to automatically rephrase the answer segments to a 
simpler language. A rule engine can generate text based 
on the combination of predicted classes of an answer seg-
ment (e.g., “We share data with third parties. This con-
cerns our users’ information, like your online activities. We 
need this to respond to requests from legal authorities”). 

Researchers: The difficultly of analyzing the data-
collection claims by companies at scale has often been 
cited as a limitation in ecosystem studies (e.g., [34]). 
Polisis can provide the means to overcome that. For in-
stance, researchers interested in analyzing apps that ad-
mit collecting health data [35, 36] could utilize Polisis to 
query a dataset of app policies. One example query can 
be formed by joining the label information type: health 
with the category of First Party Collection or Third Party 
Sharing. 

Regulators: Numerous studies from regulators and 
law and public policy researchers have manually ana-
lyzed the permissiveness of compliance checks [21, 37]. 
The number of assessed privacy policies in these stud-
ies is typically in the range of tens of policies. For in-
stance, the Norwegian Consumer Council has investi-
gated the level of ambiguity in defining personal infor-
mation within only 20 privacy policies [37]. Polisis can 
scale such studies by processing a regulator’s queries on 
large datasets. For example, with Polisis, policies can 
be ranked according to an automated ambiguity met-
ric by using the information type attribute and differ-
entiating between the label generic personal information 
and other labels specifying the type of data collected. 
Similarly, this applies to frameworks such as Privacy 
Shield [12] and the GDPR [15], where issues such as 
limiting the data usage purposes should be investigated. 
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Table 2: The list of Disconnect icons with their description, our interpretation, and Polisis’ queries. 

Icon Disconnect Description Disconnect Color Assignment Interpretation as Labels Automated Color Assignment 

Discloses whether data it Red: Yes, w/o choice to 
Expected collects about you is opt-out. Or, undisclosed. Let S be the segments with category: Use used in ways other than 

Yellow: Yes, with choice to first-party-collection-use and purpose: 
you would reasonably 

opt-out. advertising. 
⎫ 
⎪ 

expect given the site’s 
Green: No. 

⎪ service? 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

Red: 
⎪ Let S be the segments with category: 
⎪ 
⎪ Yes, w/o choice to ⎪ Expected Discloses whether it third-party-sharing-collection, purpose: ⎪ 
⎪ 
⎪ opt-out. Or, undisclosed. ⎪ Collec- allows other companies ∈ [advertising,analytics-research ], and ⎪ 
⎪ 
⎪ 
⎪ tion like ad providers and Yellow: Yes, with choice to action-third-party ⎪ 
⎪ 
⎬ Yellow: All segments in S have analytics firms to track opt-out. ∈ [track-on-first-party-website-app,collect-

category: user-choice-control and users on the site? on-first-party-website-app]. 
⎪ Green: No. ⎪ 
⎪ choice-type ∈ 
⎪ 
⎪ 
⎪ 
⎪ [opt-in, opt-out-link, 

Red: 
⎪ 
⎪ 
⎪ Precise 
⎪ opt-out-via-contacting-company] Discloses whether the Yes, possibly w/o choice. 
⎪ 
⎪ 
⎪ Location site or service tracks a Let S be the segments with 
⎪ 
⎪ Green: S = φ Yellow: Yes, with choice. ⎪ 
⎪ user’s actual personal-information-type: location. 
⎪ 
⎪ 
⎪ Red: Otherwise geolocation? Green: No. ⎭ 

Red: 
Green: All segments in S have 

Data No data retention policy. retention-period: ∈ Discloses how long they Retention Let S be the segments with category: [stated-period, limited ]. retain your personal Yellow: 12+ months. data-retention. 
data? Red: S = φ 

Green: 0-12 months. 
Yellow: Otherwise 

Children 
Has this website received 

Gray: 
Let S be the segments with category: Privacy 

TrustArc’s Children’s Green: Yes. No. international-and-specific-audiences and 
Privacy Certification? audience-type: children 

Green: length(S) > 0 

Otherwise Red: 

Table 3: Prediction accuracy and κ for icon prediction, with 
the distribution of icons per color based on OPP-115 labels. 

Icon Accuracy Cohen κ 
Hellinger 
distance N(G) N(Y) 

Exp. Use 
Exp. Collection 
Precise Location 
Data Retention 
Children Privacy 

92% 
88% 
84% 
80% 
98% 

0.76 
0.69 
0.68 
0.63 
0.95 

0.12 
0.19 
0.21 
0.13 
0.02 

41 
35 
32 
29 
12 

8 
12 
14 
16 
38 

1 
3 
4 
5 

NA 

N(R) 

6 Privacy Icons 

Our first application shows the efficacy of Polisis in 
resolving structured queries to privacy policies. As 
a case study, we investigate the Disconnect privacy 
icons [18], described in the first three columns of Table 2. 
These icons evolved from a Mozilla-led working group 
that included the Electronic Frontier Foundation, Cen-
ter for Democracy and Technology, and the W3C. The 
database powering these icons originated from TRUSTe 
(re-branded later as TrustArc), a privacy compliance 
company, which carried out the task of manually ana-
lyzing and labeling privacy policies. 

In what follows, we first establish the accuracy of Poli-
sis’ automatic assignment of privacy icons, using the 
Disconnect icons as a proof-of-concept. We perform 
a direct comparison between assigning these icons via 
Polisis and assigning them based on annotations by law 
students [11]. Second, we leverage Polisis to investi-

gate the level of permissiveness of the icons that Discon-
nect assigns based on the TRUSTe dataset. Our findings 
are consistent with the series of concerns raised around 
compliance-checking companies over the years [21, 38, 
39]. This demonstrates the power of Polisis in scalable, 
automated auditing of privacy compliance checks. 

6.1 Predicting Privacy Icons 

Given that the rules behind the Disconnect icons are 
not precisely defined, we translated their description into 
explicit first-order logic queries to enable automatic pro-
cessing. Table 2 shows the original description and color 
assignment provided by Disconnect. We also show our 
interpretation of each icon in terms of labels present in 
the OPP-115 dataset and the automated assignment of 
colors based on these labels. Our goal is not to reverse-
engineer the logic behind the creation of these icons but 
to show that we can automatically assign such icons with 
high accuracy, given a plausible interpretation. Hence, 
this represents our best effort to reproduce the icons, but 
these rules could easily be adapted as needed. 

To evaluate the efficacy of automatically selecting 
appropriate privacy icons, we compare the icons pro-
duced with Polisis’ automatic labels to the icons pro-
duced based on the law students’ annotations from the 
OPP-115 dataset [11]. We perform the evaluation over 
the same set of 50 privacy policies which we did not use 
to train Polisis (i.e., kept aside as a testing set). Each seg-
ment in the OPP-115 dataset has been labeled by three 

USENIX Association 27th USENIX Security Symposium  537 



experts. Hence, we take the union of the experts’ labels 
on one hand and the predicted labels from Polisis on the 
other hand. Then, we run the logic presented in Table 2 
(Columns 4 and 5) to assign icons to each policy based 
on each set of labels. 

Table 3 shows the accuracy obtained per icon, mea-
sured as the fraction of policies where the icon based on 
automatic labels matched the icon based on the experts’ 
labels. The average accuracy across icons is 88.4%, 
showing the efficacy of our approach in matching the 
experts’ aggregated annotations. This result is signif-
icant in view of Miyazaki and Krishnamurthy’s find-
ing [21]: the level of agreement among 3 trained human 
judges assessing privacy policies ranged from 88.3% to 
98.3%, with an average of 92.7% agreement overall. We 
also show Cohen’s κ , an agreement measure that ac-
counts for agreement due to random chance4. In our 
case, the values indicate substantial to almost perfect 
agreement [40]. Finally, we show the distribution of 
icons based on the experts’ labels alongside Hellinger 
distance5, which measures the difference between that 
distribution and the one produced using the automatic 
labels. This distance assumes small values, illustrating 
that the distributions are very close. Overall, these results 
support the potential of automatically assigning privacy 
icons with Polisis. 

6.2 Auditing Compliance Metrics 

Given that we achieve a high accuracy in assigning 
privacy icons, it is intuitive to investigate how they com-
pare to the icons assigned by Disconnect and TRUSTe. 
An important consideration in this regard is that sev-
eral concerns have been raised earlier around the level 
of leniency of TRUSTe and other compliance compa-
nies [19, 20, 38, 39]. In 2000, the FTC conducted a study 
on privacy seals, including those of TRUSTe, and found 
that, of the 27 sites with a privacy seal, approximately 
only half implemented, at least in part, all four of the fair 
information practice principles and that only 63% imple-
mented Notice and Choice. Hence, we pose the follow-
ing question: Can we automatically provide evidence of 
the level of leniency of the Disconnect icons using Poli-
sis? To answer this question, we designed an experiment 
to compare the icons extracted by Polisis’ automatic la-

bels to the icons assigned by Disconnect on real policies. 
One obstacle we faced is that the Disconnect icons 

have been announced in June 2014 [41]; many privacy 
policies have likely been updated since then. To ensure 
that the privacy policies we consider are within a close 
time frame to those used by Disconnect, we make use of 
Ramanath et al.’s ACL/COLING 2014 dataset [42]. This 

4https://en.wikipedia.org/wiki/Cohen%27s kappa 
5https://en.wikipedia.org/wiki/Hellinger distance 

dataset contains the body of 1,010 privacy policies ex-
tracted between December 2013 and January 2014. We 
obtained the icons for the same set of sites using the Dis-
connect privacy icons extension [18]. Of these, 354 poli-
cies had been (at least partially) annotated in the Discon-
nect dataset. We automatically assign the icons for these 
sites by passing their policy contents into Polisis and ap-
plying the rules in Table 2 on the generated automatic la-

bels. We report the results for the Expected Use and Ex-

pected Collection icons as they are directly interpretable 
by Polisis. We do not report the rest of the icons because 
the location information label in the OPP-115 taxonomy 
included non-precise location (e.g., zip codes), and there 
was no label that distinguishes the exact retention period. 
Moreover, the Children privacy icon is assigned through 
a certification process that does not solely rely on the pri-
vacy policy. 

Fig. 5 shows the distribution of automatically ex-
tracted icons vs. the distribution of icons from Discon-
nect, when they were available. The discrepancy be-
tween the two distributions is obvious: the vast majority 
of the Disconnect icons have a yellow label, indicating 
that the policies offer the user an opt-out choice (from 
unexpected use or collection). The Hellinger distances 
between those distributions are 0.71 and 0.61 for Ex-
pected Use and Expected Collection, respectively (i.e., 
3–5x the distance in the Table 3). 

This discrepancy might stem from our icon-
assignment strategy in Table 2, where we assign a 
yellow label only when “All segments in S (the con-
cerned subset)” include the opt-in/opt-out choice, which 
could be considered as conservative. In Fig. 6, we show 
the icon distributions when relaxing the yellow-icon 
condition to become: “At least one segment in S” in-
cludes the opt-in/opt-out choice. Intuitively, this means 
that the choice segment, when present, should explicitly 
mention advertising/analytics (depending on the icon 
type). Although the number of yellow icons increases 
slightly, the icons with the new permissive strategy are 
significantly red-dominated. The Hellinger distances 
between those distributions drop to 0.47 and 0.50 for 
Expected Use and Expected Collection, respectively. 
This result indicates that the majority of policies do 
not provide users a choice within the same segments 
describing data usage for advertising or data collection 
by third parties. 

We go one step further to follow an even more permis-
sive strategy where we assign the yellow label to any pol-
icy with S! = φ , given that there is at least one segment in 
the whole policy (i.e., even outside S) with opt-in/opt-out 
choice. For example, a policy where third-party adver-
tising is mentioned in the middle of the policy while the 
opt-out choice about another action is mentioned at the 
end of the policy would still receive a yellow label. The 
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(a) Exp. Use (b) Exp. Collection (a) Exp. Use (b) Exp. Collection (a) Exp. Use (b) Exp. Collection 

Fig. 5: Conservative icons’ interpretation Fig. 6: Permissive icons’ interpretation Fig. 7: Very permissive icons’ interpretation 

icon distributions, in this case, are illustrated in Fig. 7, 
with Hellinger distance of 0.22 for Expected Use and 
0.19 for Expected Collection. Only in this interpreta-
tion of the icons would the distributions of Disconnect 
and Polisis come within reasonable proximity. In order 
to delve more into the factors behind this finding, we 
conducted a manual analysis of the policies. We found 
that, due to the way privacy policies are typically written, 
data collection and sharing are discussed in dedicated 
parts of the policy, without mentioning user choices. The 
choices (mostly opt-out) are discussed in a separate sec-
tion when present, and they cover a small subset of the 
collected/shared data. In several cases, these choices 
are neither about the unexpected use (i.e., advertising) 
nor unexpected collection by third parties (i.e., advertis-
ing/analytics). Although our primary hypothesis is that 
this is due to TRUSTe’s database being generally permis-
sive, it can be partially attributed to a potential discrep-
ancy between our versions of analyzed policies and the 
versions used by TRUSTe (despite our efforts to reduce 
this discrepancy). 

6.3 Discussion 

There was no loss of generality when considering only 
two of the icons; they provided the needed evidence 
of TRUSTe/TrustArc potentially following a permissive 
strategy when assigning icons to policies. A developer 
could still utilize Polisis to extract the rest of the icons 
by either augmenting the existing taxonomy or by per-
forming additional natural language processing on the 
segments returned by Polisis. In the vast majority of the 
cases, whenever the icon definition is to be changed (e.g., 
to reflect a modification in the regulations), this change 
can be supported at the rules level, without modifying 
Polisis itself. This is because Polisis already predicts a 
comprehensive set of labels, covering a wide variety of 
rules. 

Furthermore, by automatically generating icons, we 
do not intend to push humans completely out of the loop, 
especially in situations where legal liability issues might 
arise. Polisis can assist human annotators by providing 
initial answers to their queries and the supporting evi-
dence. In other words, it accurately flags the segments of 
interest to an annotator’s query so that the annotator can 
make a final decision. 

7 Free-form Question-Answering 
Our second application of Polisis is PriBot, a sys-

tem that enables free-form queries (in the form of user 
questions) on privacy policies. PriBot is primarily moti-
vated by the rise of conversation-first devices, such as 
voice-activated digital assistants (e.g., Amazon Alexa 
and Google Assistant) and smartwatches. For these de-
vices, the existing techniques of linking to a privacy pol-
icy or reading it aloud are not usable. They might require 
the user to access privacy-related information and con-
trols on a different device, which is not desirable in the 
long run [8]. 

To support these new forms of services and the emerg-
ing need for automated customer support in this do-
main [43], we present PriBot as an intuitive and user-
friendly method to communicate privacy information. 
PriBot answers free-form user questions from a previ-
ously unseen privacy policy, in real time and with high 
accuracy. Next, we formalize the problem of free-form 
privacy QA and then describe how we leverage Polisis to 
build PriBot. 

7.1 Problem Formulation 
The input to PriBot consists of a user question q about 

a privacy policy. PriBot passes q to the ML layer and the 
policy’s link to the Data Layer. The ML layer probabilis-
tically annotates q and each policy’s segments with the 
privacy categories and attribute-value pairs of Fig. 3. 

The segments in the privacy policy constitute the pool 
of candidate answers {a1,a2, . . . ,aM }. A subset G of the 
answer pool is the ground-truth. We consider an answer 
ak as correct if ak ∈ G and as incorrect if ak ∈ / G . If G is 
empty, then no answers exist in the privacy policy. 

7.2 PriBot Ranking Algorithm 
Ranking Score: In order to answer the user question, 
PriBot ranks each potential answer6 a by computing a 
proximity score s(q,a) between a and the question q. 
This is within the Class Comparison module of the Ap-
plication Layer. To compute s(q,a), we proceed as fol-
lows. Given the output of the Segment Classifier, an an-
swer is represented as a vector: 

ααα = {p(ci|a)
2 × p(v j|a) | ci ∈ C ,v j ∈ V (ci)} 

6For notational simplicity, we henceforth use a to indicate an an-
swer instead of ak . 
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for categories ci ∈ C and values v j ∈ V (ci) descending 
from ci. Similarly, given the output of the Query Ana-

lyzer, the question is represented as: 

βββ = {p(ci|q)
2 × p(v j|q) | ci ∈ C ,v j ∈ V (ci)} 

The category probability in both ααα and βββ is squared to 
put more weight on the categories at the time of com-
parison. Next, we compute a certainty measure of the 
answer’s high-level categorization. This measure is de-
rived from the entropy of the normalized probability dis-
tribution (pn) of the predicted categories: 

cer(a) =  1 − (−∑ (pn(ci|a) × ln(pn(ci|a)))/ ln(|C |)) 
(1) 

Akin to a dot product between two vectors, we com-
pute the score s(q,a) as: 

∑i(βi × min(βi,αi)) 
s(q, a) =  × cer(a) (2) 

∑i β 2 
i 

As answers are typically longer than the question and 
involve a higher number of significant features, this score 
prioritizes the answers containing significant features 
that are also significant in the question. The min func-
tion and the denominator are used to normalize the score 
within the range [0,1]. 

To illustrate the strength of PriBot and its answer-
ranking approach, we consider the following question 
(posed by a Twitter user): 
“Under what circumstances will you release to 3rd parties?” 

Then, we consider two examples of ranked segments 
by PriBot. The first segment has a ranking score of 0.63: 
“Personal information will not be used or disclosed for pur-
poses other than those for which it was collected, except 
with the consent of the individual or as required by law. . . ” 
The second has a ranking score of 0: “All personal in-
formation collected by the TTC will be protected by using 
appropriate safeguards against loss, theft and unauthorized 
access, disclosure, copying, use or modification.” 

Although both example segments share terms such as 
“personal” and “information,” PriBot ranks them differ-
ently. It accounts for the fact that the question and the 

3rd first segment share the same high-level category: 
Party Collection while the second segment is categorized 
under Data Security. 
Confidence Indicator: The ranking score is an internal 
metric that specifies how close each segment is to the 
question, but does not relay PriBot’s certainty in report-
ing a correct answer to a user. Intuitively, the confidence 
in an answer should be low when (1) the answer is se-
mantically far from the question (i.e., s(q,a) is low), (2) 
the question is interpreted ambiguously by Polisis, (i.e., 
classified into multiple high-level categories resulting in 
a high classification entropy), or (3) when the question 

contains unknown words (e.g., in a non-English language 
or with too many spelling mistakes). Taking into consid-
eration these criteria, we compute a confidence indicator 
as follows: 

(cer(q)+  frac(q)) 
conf(q, a) =  s(q,a) ∗ (3) 

2 

where the categorization certainty measure cer(q) is 
computed similarly to cer(a) in Eq. (1), and s(q, a) is 
computed according to Eq. (2). The fraction of known 
words frac(q) is based on the presence of the question’s 
words in the vocabulary of our Policies Embeddings’ cor-
pus. 

Potentially Conflicting Answers Another challenge is 
displaying potentially conflicting answers to users. One 
answer could describe a general sharing clause while an-
other specifies an exception (e.g., one answer specifies 
“share” and another specifies “do not share”). To miti-
gate this issue, we used the same CNN classifier of Sec. 4 
and exploited the fact that the OPP-115 dataset had op-
tional labels of the form: “does” vs. “does not” to indi-
cate the presence or absence of sharing/collection. Our 
classifier had a cross-validation F1 score of 95%. Hence, 
we can use this classifier to detect potential discrepancies 
between the top-ranked answers. The UI of PriBot can 
thus highlight the potentially conflicting answers to the 
user. 

8 PriBot Evaluation 
We assess the performance of PriBot with two met-

rics: the predictive accuracy (Sec. 8.3) of its QA-ranking 
model and the user-perceived utility (Sec. 8.4) of the pro-
vided answers. This is motivated by research on the eval-
uation of recommender systems, where the model with 
the best accuracy is not always rated to be the most help-
ful by users [44]. 

8.1 Twitter Dataset 
In order to evaluate PriBot with realistic privacy ques-

tions, we created a new privacy QA dataset. It is worth 
noting that we utilize this dataset for the purpose of test-
ing PriBot, not for training it. Our requirements for this 
dataset were that it (1) must include free-form questions 
about the privacy policies of different companies and (2) 
must have a ground-truth answer for each question from 
the associated policy. 

To this end, we collected, from Twitter, privacy-related 
questions users had tweeted at companies. This approach 
avoids subject bias, which is likely to arise when elicit-
ing privacy-related questions from individuals, who will 
not pose them out of genuine need. In our collection 
methodology, we aimed at a QA test set of size be-
tween 100 and 200 QA pairs, as is the convention in 
similar human-annotated QA evaluation domains, such 
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as the Text REtrieval Conference (TREC) and SemEval-
2015 [45, 46, 47]. 

To avoid searching for questions via biased keywords, 
we started by searching for reply tweets that direct 
the users to a company’s privacy policy (e.g., using 
queries such as ”filter:replies our privacy policy” and 
”filter:replies our privacy statement” ). We then back-
tracked these reply tweets to the (parent) question tweets 
asked by customers to obtain a set of 4,743 pairs of 
tweets, containing privacy questions but also substan-
tial noise due to the backtracking approach. Following 
the best practices of noise reduction in computational 
social science, we automatically filtered the tweets to 
keep those containing question marks, at least four words 
(excluding links, hashtags, mentions, numbers and stop 
words), and a link to the privacy policy, leaving 260 pairs 
of question–reply tweets. This is an example of a tweet 
pair which was removed by the automatic filtering: 
Question: “@Nixxit your site is very suspicious.” 
Answer: “@elitelinux Updated it with our privacy policy. 
Apologies, but we’re not fully up yet and running shoe 
string.” 

Next, two of the authors independently validated each 
of the tweets to remove question tweets (a) that were 
not related to privacy policies, (b) to which the replies 
are not from the official company account, and (c) with 
inaccessible privacy policy links in their replies. The 
level of agreement (Cohen’s Kappa) among both anno-
tators for the labels valid vs. invalid was almost perfect 
(κ = 0.84) [40]. The two annotators agreed on 231 of the 
question tweets (of the 260), tagging 182 as valid and 49 
as invalid. This is an example of a tweet pair which was 
annotated as invalid: 
Question: “What is your worth then? You can’t do it? 
Nuts.” 
Answer: “@skychief26 3/3 You can view our privacy policy 
at http://t.co/ksmaIK1WaY. Thanks.” 

This is an example of a tweet pair annotated as valid: 
Question: “@myen Are Evernote notes encrypted at rest?” 
Answer: “We’re not encrypting at rest, but are en-
crypting in transit. Check out our Privacy Policy here: 
http://bit.ly/1tauyfh.” 

As we wanted to evaluate the answers to these ques-
tions with a user study, our estimates of an adequately-
sized study led us to randomly sample 120 tweets out of 
the tweets which both annotators labeled as valid ques-
tions. We henceforth refer to them as the Twitter QA 
Dataset. 

8.2 QA Baselines 
We compare PriBot’s QA model against three baseline 

approaches that we developed: (1) Retrieval reflects the 
state-of-the-art in term-matching retrieval algorithms, (2) 
SemVec representing a single neural network classifier, 

and (3) Random as a control approach where questions 
are answered with random policy segments. 

Our first baseline, Retrieval, builds on the BM25 algo-
rithm [48], which is the state-of-the-art in ranking mod-
els employing term-matching. It has been used success-
fully across a range of search tasks, such as the TREC 
evaluations [49]. We improve on the basic BM25 model 
by computing the inverse document frequency on the 
Policies Corpus of Sec. 4.2 instead of a single policy. 
Retrieval ranks the segments in the policy according to 
their similarity score with the user’s question. This score 
depends on the presence of distinctive words that link a 
user’s question to an answer. 

Our second baseline, SemVec employs a single clas-
sifier trained to distinguish among all the (mandatory) 
attribute-values (with > 20 annotations) from the OPP-
115 dataset (81 classes in total). An example segment is 
“geographic location information or other location-based 
information about you and your device”. We obtain a 
micro-average precision of 0.56 (i.e., the classifier is, on 
average, predicting the right label across the 81 classes 
in 56% of the cases – compared to 3.6% precision for 
a random classifier). After training this model, we ex-
tract a “semantic vector”: a representation vector that 
accounts for the distribution of attribute values in the in-
put text. We extract this vector as the input to the sec-
ond dense layer (shown Fig. 4). SemVec ranks the sim-
ilarity between a question and a policy segment using 
the Euclidean distance between semantic vectors. This 
approach is similar to what has been applied previously 
in image retrieval, where image representations learned 
from a large-scale image classification task were effec-
tive in visual search applications [50]. 

8.3 Predictive Accuracy Evaluation 
Here, we evaluate the predictive accuracy of PriBot’s 

QA model by comparing its predicted answers against 
expert-generated ground-truth answers for the questions 
of the Twitter QA Dataset. 

Ground-Truth Generation: Two of the authors gener-
ated the ground-truth answers to the questions from the 
Twitter QA Dataset. They were given a user’s question 
(tweet) and the segments of the corresponding policy. 
Each policy consists of 45 segments on average (min=12, 
max=344, std=37). Each annotator selected indepen-

dently, the subset of these segments which they consider 
as best responding to the user’s question. This annota-
tion took place prior to generating the answers using our 
models to avoid any bias. While deciding on the answers, 
the annotators accounted for the fact that multiple seg-
ments of the policy might answer a question. 

After finishing the individual annotations, the two an-
notators consolidated the differences in their labels to 
reach an agreed-on set of segments; each assumed to be 
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Fig. 8: Accuracy metrics as a function of k. 

answering the question. We call this the ground-truth 
set for each question. The annotators agreed on at least 
one answer in 88% of the questions for which they found 
matching segments, thus signifying a substantial over-
lap. Cohen’s κ , measuring the agreement on one or more 
answer, was 0.65, indicating substantial agreement [40]. 
We release this dataset, comprising the questions, the 
policy segments, and the ground-truth answers per ques-
tion at https://pribot.org/data.html. 

We then generated, for each question, the predicted 
ranked list of answers according to each QA model (Pri-
Bot and the other three baselines). In what follows, we 
evaluate the predictive accuracy of these models. 

Top-k Score: We first report the top-k score, a widely 
used and easily interpretable metric, which denotes the 
portion of questions having at least one correct answer 
in the top k returned answers. It is desirable to achieve a 
high top-k score for low values of k so that the user has 
to process less information before reaching a correct an-
swer. Fig. 8a shows how the top-k score varies as a func-
tion of k. PriBot’s model has the best performance over 
the other three models by a large margin, especially at the 
low values of k. For example, at k = 1, PriBot has a top-k 
score of 0.68, which is significantly larger than the scores 
of 0.39 (Retrieval), 0.27 (SemVec), and 0.08 (Random) 
(p-value < 0.05 according to pairwise Fisher’s exact test, 
corrected with Bonferroni method for multiple compar-
isons). PriBot further reaches a top-k score of 0.75, 
0.82, and 0.87 for k ∈ {2,3,4}. To put these numbers in 
the wider context of free-form QA systems, we note that 
the top-1 accuracy reported by IBM Watson’s team on a 
large insurance domain dataset (a training set of 12,889 
questions and 21,325 answers) was 0.65 in 2015 [51] and 
was later improved to 0.69 in 2016 [52]. Given that Pri-
Bot had to overcome the absence of publicly available 
QA datasets, our top-1 accuracy value of 0.68 is on par 
with such systems. We also observe that the Retrieval 
model outperforms the SemVec model. This result is not 
entirely surprising since we seeded Retrieval with a large 
corpus of 130K unsupervised policies, thus improving its 
performance on answers with matching terms. 

Policy Length We now assess the impact of the policy 
length on PriBot’s accuracy. First, we report the Nor-

malized Discounted Cumulative Gain (NDCG) [53]. In-
tuitively, it indicates that a relevant document’s useful-
ness decreases logarithmically with the rank. This met-
ric captures how presenting the users with more choices 
affects their user experience as they need to process 
more text. Also, it is not biased by the length of the 
policy. The DCG part of the metric is computed as 
DCGk = ∑k reli , where reli is 1 if answer ai is cor-i=1 log2(i+1) 
rect and 0 otherwise. NDCG at k is obtained by normal-
izing the DCGk with the maximum possible DCGk across 
all values of k. We show in Fig. 8b the average NDCG 
across questions for each value of k. It is clear that Pri-
Bot’s model consistently exhibits superior NDCG. This 
indicates that PriBot is poised to perform better in a sys-
tem where low values of k matter the most. 

Second, to further focus on the effect of policy length, 
we categorize the policy lengths (#segments) into short, 
medium, and high, based on the 33rd and the 66th per-
centiles (i.e., corresponding to #segments of 28 and 46). 
We then compute a metric independent of k, namely, the 
Mean Average Precision (MAP), which is the mean of 
the area under the precision-recall curve across all ques-
tions. Informally, MAP is an indicator of whether all the 
correct answers get ranked highly. We see from Fig. 9 
that, for short policies, the Retrieval model is within 15% 
of the MAP of PriBot’s model, which makes sense given 
the smaller number of potential answers. With medium-
sized policies, PriBot’s model is better by a large margin. 
This margin is still considerable with long policies. 
Confidence Indicator Comparing the confidence (using 
the indicator from Eq. (3)) of incorrect answers predicted 
by PriBot (mean=0.37, variance=0.04) with the confi-
dence of correct answers (mean=0.49, variance =0.05) 
shows that PriBot places lower confidence in the answers 
that turn out to be incorrect. Hence, we can use the con-
fidence indicator to filter out the incorrect answers. For 
example, by setting the condition: conf(q,a) ≥ 0.6 to ac-
cept PriBot’s answers, we can enhance the top-1 accu-
racy to 70%. This indicator delivers another advantage: 
its components are independently interpretable by the ap-
plication logic. If the score s(q,a) of the top-1 answer is 
too low, the user can be notified that the policy might not 
contain an answer to the question. A low value of cer(q) 
indicates that the user might have asked an ambiguous 
question; the system can ask the user back for a clarifica-
tion. 
Pre-trained Embeddings Choice As discussed in 
Sec. 4, we utilize our custom Policies Embeddings, 
which have the two properties of (1) being domain-
specific and (2) using subword embeddings to handle 
out-of-vocabulary words. We test the efficacy of this 
choice by studying three variants of pre-trained embed-
dings. For the first variant, we start from our Policies 
Embeddings (PE), and we disable the subwords mode, 
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Fig. 9: Variation of MAP 
across policy lengths. 

Fig. 10: top-k score of 
PriBot with different pre-
trained embeddings. 

thus only satisfying the first property; we call it PE-
NoSub. The second variant is the fastText Wikipedia Em-
beddings from [54], trained on the English Wikipedia, 
thus only satisfying the second property; we denote it as 
WP. The third variant is WP, with the subword mode 
disabled, thus satisfying neither property; we call it WP-
NoSub. In Fig. 10, we show the top-k score of PriBot 
on our Twitter QA dataset with each of the four pre-
trained embeddings. First, we can see that our Policies 
Embeddings outperform the other models for all values 
of k, scoring 14% and 5% more than the closest vari-
ant at k = 1 and k = 2, respectively. As expected, the 
domain-specific model without subwords embeddings 
(PE-NoSub) has a weaker performance by a significant 
margin, especially for the top-1 answer. Interestingly, the 
difference is much narrower between the two Wikipedia 
embeddings since their vocabulary already covers more 
than 2.5M tokens. Hence, subword embeddings play a 
less pronounced role there. In sum, the advantage of us-
ing subwords embeddings with the PE model originates 
from their domain specificity and their ability to compen-
sate for the missing words from the vocabulary. 

8.4 User-Perceived Utility Evaluation 

We conducted a user study to assess the user-perceived 
utility of the automatically generated answers. This as-
sessment was done for each of the four different con-
ditions (Retrieval, SemVec, PriBot and Random). We 
evaluated the top-3 responses of each QA approach to 
each question. Thus, we assess the utility of 360 answers 
to 120 questions per approach. 

Study Design: We used a between-subject design by 
constructing four surveys, each corresponding to a differ-
ent evaluation condition. We display a series of 17 QA 
pairs (each on a different page). Of these, 15 are a ran-
dom subset of the pool of 360 QA pairs (of the evaluated 
condition) such that a participant does not receive two 
QA pairs with the same question. The other two ques-
tions are randomly positioned anchor questions serving 
as attention checkers. Additionally, we enforce a mini-
mum duration of 15 seconds for the respondent to eval-
uate each QA pair, with no maximum duration enforced. 
We include an open-ended Cloze reading comprehension 

Fig. 11: An example of a QA pair displayed to the respon-
dents. 

test [55]; we used the test to weed out the responses with 
a low score, indicating a poor reading skill. 

Participant Recruitment: After obtaining an IRB ap-
proval, we recruited 700 Amazon MTurk workers with 
previous success rate >95%, to complete our survey. 
With this number of users, each QA pair received eval-
uations from at least 7 different individuals. We com-
pensated each respondent with $2. With an average 
completion time of 14 minutes, this makes the average 
pay around $8.6 per hour (US Federal minimum wage 
is $7.25). While not fully representative of the general 
population, our set of participants exhibited high intra-
group diversity, but little difference across the respon-
dent groups. Across all respondents, the average age is 
34 years (std=10.5), 62% are males, 38% are females, 
more than 82% are from North America, more than 87% 
have some level of college education, and more than 88% 
reported being employed. 

QA Pair Evaluation: To evaluate the relevance for a 
QA pair, we display the question and the candidate an-
swer as shown in Fig. 11. We asked the respondents to 
rate whether the candidate response provides an answer 
to the question on a 5-point Likert scale (1=Definitely Yes 
to 5=Definitely No), as evident in Fig. 11. We denote a 
respondent’s evaluation of a single candidate answer cor-
responding to a QA pair as relevant (irrelevant) if s/he 
chooses either Definitely Yes (Definitely No) or Partially 
Yes (Partially No). We consolidate the evaluations of 
multiple users per answer by following the methodology 
outlined in similar studies [10], which consider the an-
swer as relevant if labeled as relevant by a certain frac-
tion of users. We took this fraction as 50% to ensure a 
majority agreement. Generally, we observed the respon-
dents to agree on the relevance of the answers. Highly 
mixed responses, where 45–55% of the workers tagged 
the answer as relevant, constituted less than 16% of the 
cases. 

User Study Results: As in the previous section, we com-
pute the top-k score for relevance (i.e., the portion of 
questions having at least one user-relevant answer in the 
top k returned answers). Table 4 shows this score for 
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Table 4: top-k relevance score by evaluation group. 

top-k Relevance Score 
Group N 

k = 1 k = 2 k = 3 

Random 180 0.37 0.59 0.76 
Retrieval 184 0.46 0.71 0.79 
SemVec 153 0.48 0.71 0.85 
PriBot 183 0.70 0.78 0.89 

the four QA approaches with k ∈ {1,2,3}, where PriBot 
clearly outperforms the three baseline approaches. The 
respondents regarded at least one of the top-3 answers as 
relevant for 89% of the questions, with the first answer 
being relevant in 70% of the cases. In comparison, for 
k = 1, the scores were 46% and 48% for the Retrieval 
and the SemVec models respectively (p-value <= 0.05 
according to pairwise Fishers exact test, corrected with 
Holm-Bonferroni method for multiple comparisons). An 
avid reader might notice some differences between the 
predictive models’ accuracy (Section 8.3) and the users’ 
perceived quality. This is actually consistent with the ob-
servations from research in recommender systems where 
the prediction accuracy does not always match user’s sat-
isfaction [44]. For example, the top-k score metric for 
accuracy differs by 2%, -3%, and 6% with respect to the 
perceived relevance in the PriBot model. Another ex-
ample is that the SemVec model and the Retrieval have 
smaller differences in this study than Sec. 8.3. We con-
jecture that the score shift with SemVec model is due 
to some users accepting answers which match the ques-
tion’s topic even when the actual details of the answer 
are irrelevant. 

9 Discussion 

Limitations Polisis might be limited by the employed 
privacy taxonomy. Although the OPP-115 taxonomy 
covers a wide variety of privacy practices [11], there are 
certain types of applications that it does not fully cap-
ture. One mitigation is to use Polisis as an initial step 
in order to filter the relevant data at a high level before 
applying additional, application-specific text processing. 
Another mitigation is to leverage Polisis’ modularity by 
amending it with new categories/attributes and training 
these new classes on the relevant annotated dataset. 

Moreover, Polisis, like any automated approach, ex-
hibits instances of misclassification that should be ac-
counted for in any application building on it. One way to 
mitigate this problem is using confidence scores, similar 
to that of Eq. (3) to convey the (un)certainty of a reported 
result, whether it is an answer, an icon, or another form of 
short notice. Last but not least, Polisis is not guaranteed 
to be robust in handling an adversarially constructed pri-
vacy policy. An adversary could include valid and mean-
ingful statements in the privacy policy, carefully crafted 

to mislead Polisis’ automated classifiers. For example, 
an adversary can replace words, in the policy, with syn-
onyms that are far in our embeddings space. While the 
modified policy has the same meaning, Polisis might mis-
classify the modified segments. 

Deployment: We provide three prototype web applica-
tions for end-users. The first is an application that visual-
izes the different aspects in the privacy policy, powered 
by the annotations from Polisis (available as a web ap-
plication and a browser extension for Chrome and Fire-
fox). The second is a chatbot implementation of Pri-
Bot for answering questions about privacy policies in 
a conversational interface. The third is an application 
for extracting the privacy labels from several policies, 
given their links. These applications are available at 
https://pribot.org. 

Legal Aspects We also want to stress the fact that Polisis 
is not intended to replace the legally-binding privacy pol-
icy. Rather, it offers a complementary interface for pri-
vacy stakeholders to easily inquire the contents of a pri-
vacy policy. Following the trend of automation in legal 
advice [56], insurance claim resolution [57], and privacy 
policy presentation [58, 16], third parties, such as auto-
mated legal services firms or regulators, can deploy Poli-
sis as a solution for their users. As is the standard in such 
situations, these parties should amend Polisis with a dis-
claimer specifying that it is based on automatic analysis 
and does not represent the actual service provider [59]. 

Companies and service providers can internally de-
ploy an application similar to PriBot as an assistance 
tool for their customer support agents to handle privacy-
related inquiries. Putting the human in the loop allows 
for a favorable trade-off between the utility of Polisis 
and its legal implications. For a wider discussion on 
the issues surrounding automated legal analysis, we re-
fer the interested reader to the works of McGinnis and 
Pearce [60] and Pasquale [61]. 

Privacy-Specificity of the Approach: Finally, our ap-
proach is uniquely tailored to the privacy domain both 
from the data perspective and from the model-hierarchy 
perspective. However, we envision that applications with 
similar needs would benefit from extensions of our ap-
proach, both on the classification level and the QA level. 

10 Related Work 
Privacy Policy Analysis: There have been numerous at-
tempts to create easy-to-navigate and alternative presen-
tations of privacy policies. Kelley et al. [32] studied us-
ing nutrition labels as a paradigm for displaying privacy 
notices. Icons representing the privacy policies have also 
been proposed [31, 62]. Others have proposed standards 
to push service providers to encode privacy policies in 
a machine-readable format, such as P3P [13], but they 
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have not been adopted by browser developers and ser-
vice providers. Polisis has the potential to automate the 
generation of a lot of these notices, without relying on 
the respective parties to do it themselves. 

Recently, several researchers have explored the poten-
tial of automated analysis of privacy policies. For ex-
ample, Liu et al. [58] have used deep learning to model 
the vagueness of words in privacy policies. Zimmeck 
et al. [63] have been able to show significant incon-
sistencies between app practices and their privacy poli-
cies via automated analysis. These studies, among oth-
ers [64, 65], have been largely enabled by the release of 
the OPP-115 dataset by Wilson et al. [11], containing 
115 privacy policies extensively annotated by law stu-
dents. Our work is the first to provide a generic sys-
tem for the automated analysis of privacy policies. In 
terms of the comprehensiveness and the accuracy of the 
approach, Polisis makes a major improvement over the 
state of the art. It allows transitioning from labeling of 
policies with a few practices (e.g., the works by Zim-
meck and Bellovin [16] and Sathyendra et al. [17]) to a 
much more fine-grained annotation (up to 10 high-level 
and 122 fine-grained classes), thus enabling a richer set 
of applications. 

Evaluating the Compliance Industry: Regulators and 
researchers are continuously scrutinizing the practices of 
the privacy compliance industry [21, 38, 39]. Miyazaki 
and Krishnamurthy [21] found no support that partici-
pating in a seal program is an indicator of following pri-
vacy practice standards. The FTC has found discrepan-
cies between the practical behaviors of the companies, as 
reported in their privacy policies, and the privacy seals 
they have been granted [39]. Polisis can be used by these 
researchers and regulators to automatically, and contin-
uously perform such checks at scale. It can provide the 
initial evidence that could be processed by skilled experts 
afterward, thus reducing the analysis time and the cost. 

Automated Question Answering: Our QA system, Pri-
Bot, is focused on non-factoid questions, which are usu-
ally complex and open-ended. Over the past few years, 
deep learning has yielded superior results to traditional 
retrieval techniques in this domain [51, 52, 66]. Our 
main contribution is that we build a QA system, with-
out a dataset that includes questions and answers, while 
achieving results on par with the state of the art on other 
domains. We envision that our approach could be trans-
planted to other problems that face similar issues. 

11 Conclusion 
We proposed Polisis, the first generic framework that 

enables detailed automatic analysis of privacy policies. 
It can assist users, researchers, and regulators in process-
ing and understanding the content of privacy policies at 
scale. To build Polisis, we developed a new hierarchy 

of neural networks that extracts both high-level privacy 
practices as well as fine-grained information from pri-
vacy policies. Using this extracted information, Polisis 
enables several applications. In this paper, we demon-
strated two applications: structured and free-form query-
ing. In the first example, we use Polisis’ output to ex-
tract short notices from the privacy policy in the form 
of privacy icons and to audit TRUSTe’s policy analysis 
approach. In the second example, we build PriBot that 
answers users’ free-form questions in real time and with 
high accuracy. Our evaluation of both applications re-
veals that Polisis matches the accuracy of expert analysis 
of privacy policies. Besides these applications, Polisis 
opens opportunities for further innovative privacy policy 
presentation mechanisms, including summarizing poli-
cies into simpler language. It can also enable compar-
ative shopping applications that advise the consumer by 
comparing the privacy aspects of multiple applications 
they want to choose from. 
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Appendix: Full Classification Results 
We present the classification results at the category 

level for the Segment Classifier and at 15 selected at-
tribute levels, using the hyperparameters of Table 1. 

Classification results at the category level for the Segment Classifier 

Sup-
Top-1 

Label Prec. Recall F1 port 
Prec. 

Data Retention 0.83 0.66 0.71 0.68 88 
Data Security 0.88 0.83 0.85 0.79 201 
Do Not Track 0.94 0.97 0.95 0.88 16 
1st Party Collection 0.79 0.79 0.79 0.79 1211 
Specific Audiences 0.96 0.94 0.95 0.93 156 
Introductory/Generic 0.81 0.66 0.70 0.75 369 
Policy Change 0.95 0.84 0.88 0.93 112 
Non-covered Practice 0.76 0.67 0.70 0.60 280 
Privacy Contact Info 0.90 0.85 0.87 0.88 137 

3rd Party Sharing 0.79 0.80 0.79 0.82 908 
Access, Edit, Delete 0.89 0.75 0.80 0.87 133 
User Choice/Control 0.74 0.74 0.74 0.69 433 

Average 0.85 0.79 0.81 0.80 

Classification results for attribute: change-type 

Label Prec. Recall F1 Support 

privacy-relevant-change 0.78 0.76 0.77 77 
unspecified 0.79 0.76 0.76 90 

Average 0.78 0.76 0.76 

Classification results for attribute: notification-type 

Label Prec. Recall F1 Support 

general-notice-in-privacy-policy 0.80 0.77 0.78 76 
general-notice-on-website 0.64 0.62 0.62 52 
personal-notice 0.69 0.66 0.67 50 
unspecified 0.81 0.72 0.75 24 

Average 0.73 0.69 0.71 

Classification results for attribute: identifiability 

Label Prec. Recall F1 Support 

aggregated-or-anonymized 0.89 0.89 0.89 284 
identifiable 0.81 0.81 0.81 492 
unspecified 0.63 0.63 0.63 98 

Average 0.77 0.78 0.77 
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Classification results for attribute: do-not-track-policy Classification results for attribute: third-party-entity 

Label Prec. Recall F1 Support Label Prec. Recall F1 Support 

honored 
not-honored 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

8 
26 

collect-on-first-party-website-
app 0.78 0.64 0.68 113 

Average 1.00 1.00 1.00 receive-shared-with 0.87 0.87 0.87 843 
see 0.83 0.79 0.81 63 

Classification results for attribute: security-measure 

Label Prec. Recall F1 

data-access-limitation 0.89 0.78 0.81 

Support 

35 

track-on-first-party-website-app 
unspecified 

Average 

0.75 
0.60 

0.77 

0.86 
0.51 

0.74 

0.79 
0.52 

0.73 

107 
57 

generic 
privacy-review-audit 
privacy-security-program 
secure-data-storage 
secure-data-transfer 

0.84 
0.97 
0.87 
0.82 
0.91 

0.83 
0.58 
0.69 
0.64 
0.80 

0.83 
0.62 
0.73 
0.69 
0.84 

102 
13 
31 
17 
26 

Classification results for attribute: access-type 

Label Prec. Recall F1 

edit-information 0.65 0.62 0.63 

Support 

172 
secure-user-authentication 0.97 0.58 0.63 

Average 0.90 0.70 0.74 

Classification results for attribute: personal-information-type 

12 unspecified 
view 

Average 

0.98 
0.55 

0.73 

0.64 
0.53 

0.60 

0.71 
0.53 

0.62 

14 
47 

Label Prec. Recall F1 Support Classification results for attribute: audience-type 

computer-information 
contact 

0.84 
0.90 

0.80 
0.89 

0.82 
0.90 

88 
342 

Label Prec. Recall F1 Support 

cookies-and-tracking-elements 
demographic 
financial 

0.95 
0.93 
0.89 

0.92 
0.90 
0.86 

0.94 
0.92 
0.87 

272 
86 
99 

californians 
children 
europeans 

0.98 
0.98 
0.97 

0.97 
0.97 
0.95 

0.98 
0.97 
0.96 

60 
161 
23 

generic-personal-information 
health 

0.82 
1.00 

0.79 
0.56 

0.80 
0.61 

441 
8 Average 0.98 0.97 0.97 

ip-address-and-device-ids 
location 
personal-identifier 
social-media-data 

0.93 
0.88 
0.67 
0.73 

0.93 
0.88 
0.61 
0.84 

0.93 
0.88 
0.63 
0.78 

104 
107 
31 
23 Label 

Classification results for attribute: choice-scope 

Prec. Recall F1 Support 

survey-data 0.77 0.86 0.81 
unspecified 0.71 0.70 0.71 
user-online-activities 0.80 0.82 0.81 
user-profile 0.79 0.68 0.72 

Average 0.84 0.80 0.81 

Classification results for attribute: purpose 

Label Prec. Recall F1 

22 
456 
224 
96 

Support 

both 
collection 
first-party-collection 
first-party-use 
third-party-sharing-collection 
third-party-use 
unspecified 
use 

Average 

0.61 
0.74 
0.63 
0.80 
0.81 
0.57 
0.55 
0.62 

0.67 

0.53 
0.68 
0.55 
0.68 
0.60 
0.51 
0.55 
0.55 

0.58 

0.54 
0.70 
0.56 
0.71 
0.64 
0.50 
0.55 
0.56 

0.59 

71 
302 
109 
236 
98 
60 
76 

140 

additional-service-feature 
advertising 
analytics-research 
basic-service-feature 
legal-requirement 
marketing 
merger-acquisition 
personalization-customization 
service-operation-and-security 
unspecified 

0.75 
0.92 
0.88 
0.76 
0.92 
0.86 
0.95 
0.79 
0.81 
0.72 

0.76 
0.91 
0.86 
0.73 
0.91 
0.83 
0.96 
0.80 
0.77 
0.68 

0.75 
0.92 
0.87 
0.74 
0.91 
0.84 
0.95 
0.80 
0.79 
0.70 

374 
286 
239 
401 
79 
312 
38 
149 
200 
249 

Classification results for attribute: action-first-party 

Label Prec. Recall F1 

collect-in-mobile-app 0.84 0.75 0.79 
collect-on-mobile-website 0.58 0.54 0.56 
collect-on-website 0.65 0.65 0.65 
unspecified 0.61 0.60 0.60 

Average 0.67 0.64 0.65 

Support 

68 
11 

739 
294 

Average 0.84 0.82 0.83 Classification results for attribute: does-does-not 

Label 

Classification results for attribute: choice-type 

Prec. Recall F1 Support 

Label 

does 
does-not 

Prec. 

0.82 
0.82 

Recall 

0.93 
0.93 

F1 

0.86 
0.86 

Support 

1436 
200 

browser-device-privacy-controls 
dont-use-service-feature 

0.89 
0.69 

0.95 
0.65 

0.92 
0.67 

171 
213 

Average 0.82 0.93 0.86 

first-party-privacy-controls 
opt-in 
opt-out-link 
opt-out-via-contacting-company 
third-party-privacy-controls 
unspecified 

0.75 
0.78 
0.82 
0.87 
0.82 
0.65 

0.62 
0.81 
0.74 
0.81 
0.62 
0.54 

0.66 
0.79 
0.77 
0.84 
0.66 
0.56 

71 
406 
167 
127 
99 
117 

Label 

indefinitely 
limited 

Classification results for attribute: retention-period 

Prec. Recall F1 

0.45 0.48 0.47 
0.74 0.75 0.75 

Support 

8 
27 

Average 0.78 0.72 0.73 stated-period 
unspecified 

0.94 
0.82 

0.94 
0.77 

0.94 
0.77 

10 
41 

Average 0.74 0.74 0.73 
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