Online Tracking and Publishers Revenues:
An Empirical Analysis

Work in progress

Veronica Marotta (University of Minnesota)
Vibhanshu Abhishek (UC Irvine)
Alessandro Acquisti (Carnegie Mellon University)

Acknowledgements. We acknowledge support from a grant by the Sloan Foundation. For other grants not related to this work, see https://www.heinz.cmu.edu/~acquisti/grants.htm
To the extent that economic surplus is being generated by increasing (and increasingly sophisticated) consumer tracking, how is that surplus allocated?
Online advertising:

Frame 1

Consumers

Publishers

Data Economy
Intermediaries:
Reduce search costs

Merchants

Frame 2

Consumers

Publishers

Data Economy
Intermediaries:
Receive surplus

Market Concentration

Merchants

Finite budget and attention

High Competition

High Competition
The Online Advertising Market Puzzle

 - Growth rate of about 21.4%, relative to 2016

- However, revenues for about 40% of publishers – the final seller of ads – seem stagnant or shrinking (Econsultancy, 2015)

- Following GDPR enactment, NYT focused on contextual and geographical targeting and did not experience ad revenues drop (Jean-Christophe Demarta, SVP for global advertising at New York Times International, quoted by Digiday 2019b)

- A Digiday 2019 poll of publisher executives found that for 45% of respondents, behavioral ad targeting “has not produced any notable benefit, while 23% of publisher executives said behavioral targeting has actually caused their ad revenues to decline” (Digiday, 2019a)
Research Goals

• Provide insights on the relationship between advertisers ability to behaviorally target ads and publishers’ revenues

• We leverage a unique dataset to investigate increase in publisher’s revenues, after accounting for other factors, when the ads they sell can, or cannot, be behaviorally targeted via cookies to users
 – We focus on programmatic, open-auctions
 – We exploit the fact that if the user’s cookie is not available, audience-based targeting is not implemented (other types of targeting can still be possible)
Related Works

- Advertising effectiveness:
 - Purchase Probabilities, Click-Through rates (Manchanda et al., 2006; Sahni, 2015; Farahat and Bailey, 2012; Bleier and Eisenbeiss, 2015; Lewis and Reley, 2014)
 - Page visits and online searches (Ghose and Todri-Adamopoulos, 2016; Johnson et al., 2017; Fong, 2016)
- Publishers’ incentives and impact of targeting on revenues (Chen and Stallaert, 2014; Ghosh et al., 2015; Levin and Milgrom, 2010; Hummel and McAfee, 2016)
 - Theoretical predictions are mixed
- Empirical works on publishers’ side are lacking
How Targeting May Affect Publishers’ Revenue

- Advertisers willingness to pay increases if they can target audiences (Chen and Stallert, 2014; Board, 2009)
 - Ad prices increases, publisher’s revenue increases

- When targeting audiences, advertisers reach narrow markets with reduced competition (Levin and Milgrom, 2010; Hummel and McAfee, 2016)
 - Ad prices decreases, publisher’s revenue decreases
Data

- 2 million advertising transactions, over 60 different websites, 5,000 different advertisers, including:
 - Date and Time
 - Ad’s features (size, type, etc.)
 - Webpage where ad was shown
 - Advertiser’s name, industry, size
 - User’s geo-location, device features, demographics
 - User Cookie ID
 - Publisher’s revenue
Empirical Approach

- Observational data: a group of ads transactions has cookies associated and a group of transactions does not
 - Presence of cookies is associated with ability to behaviorally target (note, again, even in absence of cookies, other forms of targeting are possible – e.g. contextual targeting)
- Publisher’s revenue is the outcome of a deterministic, programmatic process based on a given set of information
- Whether or not a user’s cookie is available is outside the control of the publisher
 - Raw mean revenues are higher with cookie is present: average CPM $1.18 vs. $0.74
 - However, to isolate specific impact of cookie, we need to account for user’s selection, and control for other factors
Empirical Approach

- Augmented Inverse Probability Weighting (Robins et al., 1994)

1. Estimate the Probability Model: Probability that user has a cookie associated

\[\text{Prob}_i(\text{Cookie}) = F(\beta_1 \text{Demographics}_i + \beta_2 \text{Device}_i + \beta_3 \text{Location}_i + \beta_4 X_i) \]

Where:

- \(X \): vector of any other included features
- \(F \): Logit function
Empirical Approach

2. Estimate two outcome models, one for transactions with cookies, one for transactions without

\[Y_i(t) = \beta_0 + \alpha \text{Ad_feat}_i + \theta \text{Website_feat}_i + \gamma \text{User_feat}_i + \delta \text{Advertisers_feat}_i + \eta X_i + \epsilon_i, \quad t = (0, 1) \]

Where:
- \(Y_i \): Publisher Revenue for transaction \(i \)
- \(\text{Ad Features} \): Vector of ad level features
- \(\text{Website Features} \): Vector of website level features
- \(\text{User Features} \): Vector of user level features
- \(\text{Advertisers Features} \): Vector of advertisers’ features
- \(X \): Vector of any additional covariate
Empirical Approach

3. Compute weighted means of treatment-specific predicted outcomes

4. Compute average treatment effect

- \(\text{Prob} (\text{Cookie} | X) = \hat{c}_i \)
- \(m_1 = E(Y | T = 1, X), m_0 = E(Y | T = 0, X) \)

\[
\Delta_{DR} = \frac{1}{n} \sum_i T_i Y_i - \frac{(T_i - \hat{c}_i)m_1}{\hat{c}_i} \quad - \quad \frac{1}{n} \sum_i \frac{(1 - T_i)Y_i + (T_i - \hat{c}_i)m_0}{(1 - \hat{c}_i)}
\]

- **Double-robustness.** only needs either the probability model or outcome models to be correctly specified for the estimate to be consistent
Results

<table>
<thead>
<tr>
<th></th>
<th>AIPW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff. (Cookie)</td>
</tr>
<tr>
<td>Seller_Revenue</td>
<td>0.0857</td>
</tr>
<tr>
<td>E(SellerRevenue</td>
<td>cookie = 0)</td>
</tr>
<tr>
<td>E(SellerRevenue</td>
<td>cookie = 1)</td>
</tr>
</tbody>
</table>

- After controlling for other factors, when tracking cookie is available, revenue does increase – approximately by 4%, relative to when cookie is not available.
Limitations

• The result can be interpreted as the increase in value generated for publishers specifically by the presence of a cookie
 – It cannot be interpreted as the value generated by behavioral advertising in general
• Our data pertain to a sample of websites of one large media company
 – Results may not apply to the entire universe of websites
• We observe publisher’s revenue, already net of any intermediation fees
 – We do not have information on the actual amount of the fees
• We cannot capture presence of more sophisticated forms of tracking (e.g. device fingerprinting)