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Abstract 

I study the welfare and price implications of consumer privacy. A consumer discloses in-

formation to a multi-product seller, which learns about his preferences, sets prices, and makes 

product recommendations. While the consumer benefts from accurate product recommenda-

tions, the seller may use the information to price discriminate. I show that the seller prefers 

to commit to not price discriminate to encourage information disclosure. However, this com-

mitment hurts the consumer, who could be better off by precommitting to withhold some in-

formation. In contrast to single-product models, equilibrium is typically ineffcient even if the 

consumer can disclose any information about his preferences. 

1 Introduction 

This paper studies the welfare and price implications of consumers’ privacy in online marketplaces, 

which are frst-order issues in the Internet economy. Online sellers can observe detailed informa-
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tion about consumers, such as their browsing histories, purchases, and characteristics; however, 

consumers can often affect whether and to what extent this information is revealed. For instance, 

they can disable cookies in order not to disclose their web-browsing activities, or they can use their 

social networking accounts to log in to online shopping websites. For policymakers, information 

disclosure by consumers is an important consideration in formulating policies concerning online 

privacy. 

In this paper, I focus on the following economic trade-off: The beneft for consumers to disclose 

information is that sellers can recommend or advertise appropriate products. The cost is that sellers 

may use this information to price discriminate. For instance, Amazon, Netfix, Spotify, and other 

e-commerce sellers use consumers’ personal data to offer product recommendations, which help 

consumers discover items that they might not have found otherwise. However, these frms could 

potentially use such information to obtain estimates of consumers’ willingness to pay and, in turn, 

set prices on this basis. 

I study a simple model capturing this trade-off. The model consists of a monopolistic seller of 

K products and a consumer with unit demand. The consumer is initially uninformed of his value 

of each product. At the beginning of the game, he chooses a disclosure rule, which determines 

what the seller learns about his value for each product. After learning about the valuations, the 

seller recommends one of the products. Finally, the consumer observes the value and the price of 

the recommended product and decides whether to buy it. 

One novel aspect of my analysis is to consider two versions of the model that differ in whether 

the seller can price discriminate. Under the discriminatory pricing regime, the seller sets prices 

after observing the information disclosed by the consumer. Under the nondiscriminatory pricing 

regime, the seller posts a price for each product before observing the information. Considering two 

pricing regimes enables us to study the interaction between the seller’s ability to price discriminate 

and the consumer’s disclosure incentive. 

Information disclosure is modeled in a similar way to Bayesian persuasion (Kamenica and 

Gentzkow, 2011): Without observing his valuations, the consumer chooses what information to be 

disclosed to the seller. The idea is that while it is diffcult for consumers themselves to determine 

which item in a huge set of available products is most appropriate for them, sellers can often do 

this using consumers’ personal data. For instance, sellers might analyze browsing histories by 
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using their knowledge of the products’ characteristics, the prior experiences of other consumers, 

and their computing power. These enable sellers to map a given consumer’s personal data into 

estimates of his willingness to pay, even though the consumer himself cannot evaluate all products 

in the market. 

I obtain three main fndings, which sharply contrast with the classical theory of price dis-

crimination and have implications for understanding observed facts, privacy regulations, and the 

theoretical literature of information disclosure. First, the seller is better off under nondiscrimi-

natory pricing. The seller’s inability to price discriminate encourages the consumer to disclose 

information, which makes recommendations more accurate and increases revenue. This result 

gives a potential economic explanation of an observed puzzle: “The mystery about online price 

discrimination is why so little of it seems to be happening” (Narayanan, 2017). Namely, price 

discrimination by online sellers seems to be uncommon despite their potential ability to use con-

sumers’ personal data to obtain estimates of their willingness to pay and, in turn, vary prices on 

this basis to capture more of the surplus.1 

Second, the consumer is worse off under nondiscriminatory pricing. When the seller can price 

discriminate, the consumer decides what information to reveal taking into account how information 

affects prices. In contrast, under nondiscriminatory pricing, the consumer discloses much infor-

mation to obtain better recommendations without worrying about price discrimination. However, 

expecting this greater level of disclosure and resulting accurate recommendations, the seller prefers 

to set a high price for each product upfront.2 As a result, the consumer discloses more information 

and obtains a lower payoff under nondiscriminatory pricing. 

Third, equilibrium is often ineffcient even if the consumer can disclose any information about 

his valuations. This contrasts with the single-product case of Bergemann, Brooks, and Morris 

(2015), in which equilibrium is effcient under discriminatory pricing. In my model, discrimina-

tory pricing discourages information disclosure and makes product mismatch more likely. The 

proof is based on a “constrained” Bayesian persuasion problem, in which the consumer chooses 

1There have been several attempts by researchers to detect price discrimination by e-commerce websites. For 
instance, Iordanou et al. (2017) examine around two thousand e-commerce websites and they “conclude that the 
specifc e-retailers do not perform PDI-PD (personal-data-induced price discrimination).” 

2Formally, I show that if the consumer reveals more information about which product is more valuable, the val-
uation distribution for the recommended product shifts in the sense of a lower hazard rate, which gives the seller an 
incentive to charge a higher price. Note that the frst-order stochastic shift is not suffcient to conclude that the seller 
prefers to set high prices. 
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a disclosure rule subject to the constraint that the outcome is effcient. This proof strategy could 

be useful for analyzing complex information design problems where it is diffcult to characterize 

optimal information structures. 

The main insights are also applicable to offine transactions. For example, consider a consumer 

looking for a car. He may talk to a salesperson and reveals some information—such as his lifestyle, 

favorite color, and preferences for fuel effciency versus horsepower—which is indicative of his 

tastes; even his clothes and smartphone may reveal his preferences. Based on this information and 

her knowledge about available cars, the salesperson gives recommendations. On the one hand, the 

consumer benefts from the recommendations because he can avoid extra search and test-driving. 

On the other hand, disclosing too much information may put him in a disadvantageous position 

in price negotiation, because knowing that he loves a particular car, the salesperson would be un-

willing to compromise on prices. To consumers, this paper provides a relevant trade-off regarding 

how much and what kind of information to reveal. To dealers, it gives a normative prescription 

for pricing strategy—giving salespersons discretion in pricing could hurt revenue, because it gives 

consumers an incentive to mask some information crucial to improving the match quality between 

consumers and products. 

The remainder of the paper is organized as follows. In Section 2, after discussing related work, 

I present the baseline model. I also provide a second interpretation of the model as information 

disclosure by a continuum of consumers. In Section 3, I restrict the consumer to choosing from a 

simple class of disclosure rules and show that the seller is better off and the consumer is worse off 

under nondiscriminatory pricing. Section 4 allows the consumer to choose any disclosure rule. I 

show that equilibrium is typically ineffcient and use the ineffciency results to establish the main 

result. This section also shows that nondiscriminatory pricing can be more effcient. In Section 5, 

I discuss several extensions including markets for personal data. Section 6 concludes. 

1.1 Related Work 

My work relates to two strands of literature: The literature on information design and that on the 

economics of privacy. In terms of modeling, one related work is Bergemann, Brooks, and Morris 

(2015), who consider a single-product monopoly pricing in which a monopolist has additional in-
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formation about a consumer’s valuation. I consider a multi-product seller with product recommen-

dations, which renders information useful not only for price discrimination but also for improving 

product match quality. These new elements overturn the welfare consequences of information dis-

closure and discriminatory pricing. In contrast to Bergemann et al. (2015), who characterize the 

entire set of attainable surplus, I restrict attention to the consumer disclosing information to max-

imize his own payoff. Part of my analysis employs their “greedy algorithm,” which generates a 

consumer-optimal information disclosure rule given any prior valuation distribution. 

My work also relates to the economics of privacy literature. As a growing number of transac-

tions are based on data about consumers’ behavior and characteristics, recent strands of literature 

have devoted considerable attention to the relationship between personal data and intertemporal 

price discrimination (Acquisti and Varian, 2005; Conitzer et al., 2012; Fudenberg and Tirole, 2000; 

Fudenberg and Villas-Boas, 2006; Taylor, 2004; Villas-Boas, 1999, 2004). In these models, sellers 

learn about a consumer’s preferences from his purchase record, which arises endogenously as a 

history of a game. A consumer’s attempt to hide information is often formulated as delaying pur-

chase or erasing purchase history. In my model, the consumer is endowed with his personal data 

at the outset. 

Several papers, such as Conitzer et al. (2012) and Montes et al. (2017), examine consumers’ 

endogenous privacy choices. Braghieri (2017) studies a consumer search model in which a con-

sumer can choose to be targeted by revealing his horizontal taste to sellers instead of engaging in 

costly search. In the model, targeting plays a similar role to information disclosure in this paper: 

It enables consumers to fnd their favored products at low cost, but it can also hurt them because 

of discriminatory pricing. A similar trade-off arises in De Corniere and De Nijs (2016), who study 

a platform’s choice of disclosing consumers’ preferences to advertisers. 

This paper differs from these works at least in two ways. First, in addition to discriminatory 

pricing, I consider sellers who cannot price discriminate. Comparing these two scenarios helps 

us explain, for instance, why sellers might want to commit to not price discriminate, and why 

price discrimination can lower effciency. Second, in contrast to the literature where a consumer’s 

privacy choice is typically full or no disclosure, I assume that he can choose how much and what 

kind of information to disclose. This enables me to study the relationship between pricing regimes 

and types of information revealed in equilibrium. 
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Beyond the context of online disclosure, this paper relates to voluntary information disclosure 

in bilateral transactions (Glode et al., 2016). Also, as information disclosure with commitment 

can be interpreted as a combination of information gathering and truthful disclosure, my work also 

relates to information gathering by buyers before trade (Roesler, 2015; Roesler and Szentes, 2017). 

Finally, several papers, such as Calzolari and Pavan (2006a,b), and Dworczak (2017), study 

the privacy of agents in mechanism design problems. In their models, a principal can commit to 

a mechanism which elicits an agent’s private type and a disclosure rule which reveals information 

about an outcome of the mechanism to other players. Relative to these works, the consumer in my 

model has more commitment power regarding what information to provide, and the seller has less 

commitment power in determining allocation and pricing. 

2 Baseline Model 

There is a monopolistic seller of K ∈ N products with the set of products denoted by K = 

{1, . . . , K}. There is a single consumer with unit demand, in that he eventually consumes one of 

K products or nothing. The consumer’s value for product k, denoted by uk, is drawn independently 

and identically across k ∈ K according to probability distribution x0 supported on V ⊂ R+.3 For 

the moment, I do not impose any assumptions on x0, except that all the relevant integrals exist. Let 

u := (u1, . . . , uK ) denote the vector of valuations. 

The consumer’s preferences are quasi-linear: If he buys product k at price p, his ex post payoff 

is uk − p. If he buys no products, he obtains a payoff of zero. The seller’s payoff is its revenue. 

The consumer and the seller are risk-neutral. 

At the beginning of the game, before observing u, the consumer chooses a disclosure rule 

(M, φ) from an exogenously given set D. Each element of D is a pair of a message space M 

and a function φ : V K → Δ(M), where Δ(M) is the set of the probability distributions over 

M . After the consumer chooses a disclosure rule (M, φ), Nature draws u ∈ V K and a message 

m ∈ M according to φ(·|u) ∈ Δ(M). In the application of online disclosure, D consists of 

consumers’ privacy choices, such as whether to share one’s browsing history or not. As in Section 

4, ifD consists of all disclosure rules, information disclosure takes the form of Bayesian persuasion 

3See Remark 5 for how the results extend to correlated values. 
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studied by Kamenica and Gentzkow (2011). Hereafter, I sometimes write a disclosure rule as φ 

instead of (M, φ). 

Next, I describe the seller’s pricing. I consider two games that differ in whether the seller can 

price discriminate on the basis of information. Under the discriminatory pricing regime, the seller 

sets the price of each product after observing a disclosure rule (M, φ) and a realized message m. 

Under the nondiscriminatory pricing regime, the seller sets the price of each product simultane-

ously with the consumer’s choice of a disclosure rule (M, φ).4 Note that under nondiscriminatory 

pricing, the seller not only does not base prices on a realized message m but also does not base 

prices on a disclosure rule φ.5 

Under both pricing regimes, after observing a disclosure rule (M, φ) and a realized message 

m, the seller recommends one of K products. The consumer observes the value and price of the 

recommended product and decides whether to buy it. 

The timing of the game under each pricing regime, summarized in Figure 1, is as follows. 

First, the consumer chooses a disclosure rule (M, φ) ∈ D. Under the nondiscriminatory pricing 

regime, the seller simultaneously sets the price of each product. Then Nature draws the consumer’s 

valuations u and a message m ∼ φ(·|u). After observing (M, φ) and m, the seller recommends 

a product. Under the discriminatory pricing regime, the seller sets the price of the recommended 

product at this point. Finally, the consumer decides whether to buy the recommended product. 

My solution concept is subgame perfect equilibrium that satisfes three conditions. First, the 

seller breaks a tie in favor of the consumer whenever it is indifferent. Second, under nondiscrim-

inatory pricing, I focus on equilibrium in which each product has the same price. Third, if there 

are multiple equilibria which give the consumer identical expected payoff, I focus on an equilib-

rium which gives the seller the highest payoff. The third condition eliminates the multiplicity of 

equilibria due to the consumer’s indifference among disclosure rules, which is not the main focus 

4I can alternatively assume that under nondiscriminatory pricing, the seller sets prices frst, and after observing 
them, the consumer chooses a disclosure rule. This assumption does not change equilibrium if the consumer can 
only reveal information about which product has the highest valuation as in Section 3. In contrast, it could change 
equilibrium if the consumer can disclose information in an arbitrary way as in Section 4, because the seller may 
set different prices for different products to induce an asymmetric disclosure rule. (An example is available upon 
request.) However, the main result continues to hold: The seller is better off and the consumer is worse off under 
nondiscriminatory pricing. This is because the seller setting prices strictly before the consumer only increases the 
seller’s revenue under nondiscriminatory pricing. 

5For example, if e-commerce frms adopt this regime, they set prices based on neither browsing history nor whether 
consumers share their browsing history. 
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Consumer Consumer 
Consumer Nature Firm Firm observes decides 
chooses draws observes recommends the value whether to 
φ ∈ D (u, m) (φ, m) a product and price purchase 

Firm sets Firm sets 
prices a price 

(nondiscriminatory) (discriminatory) 

Figure 1: Timing of moves under each pricing regime 

of the paper. Hereafter, “equilibrium” refers to SPE with these conditions. 

Remark 1 (Other Applications). As I discuss in the introduction, there are many applications 

beyond online privacy choices. Consider markets for cars, houses, and fnancial products, in which 

the variety of available products is huge. In these markets, consumers often reveal information 

to sellers to obtain product recommendations, which enable consumers to focus on a small subset 

of products; however, sellers may also base prices on the information. The model captures the 

interaction between consumers’ incentives to reveal information and sellers’ pricing strategies in 

those markets. 

Indeed, the application is not even restricted to ordinary buyer-seller interactions. Consider 

the following situation, which is mathematically equivalent to the baseline model: An employer 

assigns his worker one of K tasks, the completion of which delivers a fxed value to the employer. 

The worker can disclose information about cost ck that he incurs to complete each task k. In this 

case, two pricing regimes could correspond to whether the wage is set contingent on the revealed 

information. 

Remark 2 (Discussion of Modeling Assumptions). The model departs from the economics of 

privacy literature by being agnostic about what personal data a consumer is endowed with and 

what privacy choices he has. Instead, the consumer’s choice set is defned as a set of Blackwell 

experiments about his valuations. This formulation calls for several implicit assumptions; for ex-

ample, the consumer understands how his privacy choice affects the frm’s posterior belief. While 

such an assumption might be restrictive, it enables us to draw general insights on consumers’ in-

formational incentives in online and offine transactions without referring to specifc disclosure 
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technologies. 

Relatedly, it is crucial to my results that the consumer chooses a disclosure rule before ob-

serving his valuations u. This would be suitable, for instance, if the consumer is not informed 

of the existence or characteristics of products, but understands that his personal data enable the 

seller to learn about which product is valuable to him. It would also be natural to assume that the 

consumer cannot manipulate message realizations ex post, as consumers or regulators typically set 

disclosure rules up front and incentives to distort or misrepresent one’s browsing history or charac-

teristics seem to be less relevant. In Section 5, I provide a microfoundation for this idea in a model 

of two-sided private information, where the consumer is informed of his subjective taste and the 

seller is informed of its products’ characteristics. 

There are also two substantial assumptions on the recommendation and purchasing decision. 

First, the seller recommends one product and the consumer decides whether to buy it. Although this 

assumption would be empirically false, it parsimoniously captures situations in which the variety 

of available products is large and sellers make product recommendations to help consumers focus 

on a strict subset of the products.6 The main insights continue to hold if a consumer can examine 

more than one but strictly less than K products. 

Second, the consumer observes his willingness to pay for the recommended product when he 

decides whether to buy it. One way to interpret this assumption is that the consumer does not 

know what products exist, and has not thought about how much he would be willing to pay for 

each possible bundle of characteristics; however, once he is shown a particular product and sees 

its characteristics, he is able to compute a value for it. In practice, the assumption is reasonable 

if a consumer can learn the value after the purchase and return it for a refund whenever the price 

exceeds the value. 

Finally, it is not without loss of generality to assume that production costs are equal across 

products. (Assuming that they are equal, it is without loss to normalize them to zero.) For example, 

if the seller can produce product 1 more cheaply, it has a greater incentive to recommend product 

1 even if it is less valuable to the consumer than other products. Correspondingly, heterogeneous 

production costs are likely to affect the consumer’s incentive to disclose information. I leave this 

6Several papers, such as Salant and Rubinstein (2008) and Eliaz and Spiegler (2011), formulate consumers’ limited 
attention in a similar manner. 
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δ 

u1 ≥ u2 
δ 

message 1 

1 − δ 

1 − δ 

u1 ≤ u2 
message 2 

Figure 2: Disclosure rule for δ ∈ [1/2, 1] 

extension for future research. 

3 Restricted Information Disclosure 

In this section, I simplify the baseline model as follows. First, assume that the seller sells two 

products (K = 2). Then, let D = [1/2, 1] and call each δ ∈ [1/2, 1] a disclosure level. Each δ 

corresponds to the following disclosure rule ({1, 2} , φδ): φδ(·|u1, u2) draws message k ∈ {1, 2} 

with probability δ whenever uk = max(u1, u2) and u1 6 u1 = u2, φδ uniformly randomizes = u2; if

between messages 1 and 2. Figure 2 depicts the disclosure rule corresponding to δ. Note that the 

greater δ is, the more informative φδ is in the sense of Blackwell. 

Remark 3. Assuming K = 2 is to simplify the analysis. For instance, one can obtain similar 

results with the following assumption: There are K products, and φδ sends message k with prob-

ability δ if k ∈ arg maxk∈K uk, and it sends any message k ∈ {1, . . . , K} with probability 1−δ . I 
K 

can also relax the assumption that, at the most informative disclosure rule (δ = 1), a message real-

ization is a deterministic function of the valuations (except for u1 = u2). A similar result holds, for 

instance, if the consumer can choose from any garblings of the disclosure rule that sends message 

k whenever k ∈ arg maxk(uk + εk) where εk is IID across k. Section 5 more generally defnes a 

disclosure rule that reveals horizontal information and shows that the identical results hold if the 

consumer can choose any garblings of such a disclosure rule. 
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3.1 Equilibrium Analysis 

The analysis consists of three steps. First, I show that greater disclosure levels lead to more accurate 

product recommendations. Second, under discriminatory pricing, disclosure also leads to higher 

prices for recommended products. Finally, I combine these lemmas and prove the main result: The 

seller is better off and the consumer is worse off under nondiscriminatory pricing. 

The following lemma states that, to maximize revenue, the seller recommends the product that 

the consumer is more likely to prefer. See Appendix A for the proof. 

Lemma 1. Fix a pricing regime. Take any equilibrium and consider a subgame in which the 

consumer has chosen a disclosure level δ > 1/2. Then, the seller recommends product k ∈ {1, 2} 

after observing message k. 

The equilibrium behavior in Lemma 1 encourages the consumer to disclose information, as 

it increases the chance that the seller recommends the most valuable product. Indeed, disclosure 

level δ is precisely the probability that the consumer is recommended the preferred product. 

Now, how does information disclosure affect product prices? Let F MAX and F MIN denote the 

cumulative distribution functions of max(u1, u2) and min(u1, u2), respectively.7 Conditional on a 

disclosure level δ and a realized message k ∈ {1, 2}, the value distribution of the recommended 

product (i.e. product k) is given by δF MAX + (1 − δ)F MIN . Given this value distribution, the frm 

sets an optimal price. 

To study how the optimal price depends on δ, I show that F MAX is greater than F MIN in the 

hazard rate order: F MAX has a lower hazard rate than F MIN . This is stronger than the frst-order 

stochastic dominance, which has no implications on the behavior of the monopoly price.8 The 

following defnition does not require distributions to have densities. 

Defnition 1. Let G0 and G1 be two CDFs. G1 is greater than G0 in the hazard rate order if 1−G1(z) 
1−G0(z) 

increases in z ∈ (−∞, max(s1, s0)).9 Here, s0 and s1 are the right endpoints of the supports of G0 

7In this paper, I defne CDFs as left-continuous functions. Thus, for instance, F MAX (p) is the probability of 
max(u1, u2) being strictly lower than p. 

8For example, suppose that distribution F0 puts equal probability on values 1 and 3 and that distribution F1 puts 
equal probability on 2 and 3. Though F1 frst-order stochastically dominates F0, the monopoly price under F0 is 3, 
while the one under F1 is 2. 

9a/0 is taken to be equal to +∞ whenever a > 0. 
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and G1, respectively.10 

The proof of the next lemma is in Section 5, where I prove the same result for a more general 

formulation of “horizontal information,” the information that is useful for accurate recommenda-

tions. 

Lemma 2. F MAX is greater than F MIN in the hazard rate order. 

The intuition is as follows. Suppose that the consumer prefers to buy a product at price p. 

Conditional on this event, if the seller marginally increases the price by ε, how likely the consumer 

is to stop buying? If the product is his preferred one so that the value is max(u1, u2), he stops 

buying only when both u1 and u2 are below p + ε; if the product is his less preferred one so that the 

value ismin(u1, u2), he stops buying whenever one of u1 and u2 is below p+ε. Thus, the consumer 

is less likely to stop buying after observing a marginal price increment, if the recommended product 

is his preferred one. This implies that the value distribution F MAX has a lower hazard rate than 

F MIN . 

This intuition suggests that the hazard rate order relates to price elasticity of demands. Indeed, 

for two CDFs F1 and F0, F1 is greater than F0 in the hazard rate order if and only if the “demand 

curve” for F1 has a lower price elasticity of demand than the one for F0. Here, as in Bulow and 

Roberts (1989), the demand curve for F is given by D(p) = 1 − F (p), and thus the demand 

elasticity is −d log D(p) = f(p) p. Thus, the previous lemma states that the consumer’s demand for 
d log p 1−F (p) 

the more preferred product is less elastic. 

We are ready to prove the key comparative statics: More information disclosure leads to higher 

prices for recommended products under discriminatory pricing.The result holds for any prior dis-

tribution x0. 

Lemma 3. Consider discriminatory pricing. Let p(δ) denote the equilibrium price for the recom-

mended product given a disclosure level δ. 11 Then, p(δ) is increasing in δ. 

10If G0 and G1 have densities g0 and g1, the above defnition is equivalent to 

g0(z) g1(z)≥ , ∀z ∈ (−∞, max(s1, s0)). 
1 − G0(z) 1 − G1(z) 

11The lowest optimal price p(δ) exists and is uniquely defned given the frm’s tie-breaking rule for recommendation 
and pricing. 
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Proof. By Lemma 1, the seller recommends the best product with probability δ. Then, at price p, 

trade occurs with probability 1 − δF MAX (p) − (1 − δ)F MIN (p). Thus, the set of optimal prices is 

P (δ) := p[1 − δF MAX (p) − (1 − δ)F MIN (p)]. To show that p(δ) = min P (δ) is increasing in δ, 

note that 

log p[1 − δF MAX (p) − (1 − δ)F MIN (p)] − log p[1 − δ0F MAX (p) − (1 − δ0)F MIN (p)] 

1 − δF MAX (p) − (1 − δ)F MIN (p)
= log . (1)

1 − δ0F MAX (p) − (1 − δ0)F MIN (p) 

, δF MAX By Theorem 1.B.22 of Shaked and Shanthikumar (2007), if δ > δ0 + (1 − δ)F MIN is 

greater than δ0F MAX + (1 − δ0)F MIN in the hazard rate order. Then, (1) is increasing in p. This 

implies that log p[1−δF MAX (p)−(1−δ)F MIN (p)] has increasing differences in (p, δ). By Topkis 

(1978), P (δ) is increasing in the strong set order.12 Therefore, p(δ) is increasing in δ. 

Combining the previous lemmas, I obtain the main result. 

Theorem 1. Each pricing regime has a unique equilibrium. Moreover, the seller obtains a higher 

payoff and the consumer obtains a lower payoff under nondiscriminatory pricing than under dis-

criminatory pricing. 

Proof. If the consumer is recommended his preferred and less preferred products at price p, his R 
expected payoffs are uMAX (p) := 

R 
p 
+∞
(v−p)dF MAX (v) and uMIN (p) := 

p 
+∞
(v−p)dF MIN (v), 

respectively. 
∗Consider nondiscriminatory pricing. Let p denote the equilibrium price for each product.13 If 

the consumer chooses δ, his expected payoff is 

δuMAX (p MIN (p ∗ ) + (1 − δ)u ∗ ). 

δ = 1 maximizes this expression and is a unique disclosure level consistent with our equilibrium 

constraint. Thus, the equilibrium price is p ∗ = p(1), and the consumer’s payoff is uMAX (p(1)). 

12A ⊂ R is greater than B ⊂ R in the strong set order if a ∈ A and b ∈ B imply max(a, b) ∈ A and min(a, b) ∈ B. 
13As I focus on subgame perfect equilibrium in which the seller breaks tie in favor of the consumer, the seller 

always sets the lowest price among the optimal prices, which excludes the use of strictly mixed strategy in pricing. 
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Under discriminatory pricing, the consumer’s payoff from disclosure level δ is 

MIN (p(δ)).δuMAX (p(δ)) + (1 − δ)u (2) 

Thus, the equilibrium payoff is 

MIN (p(δ)) ≥ umax δuMAX (p(δ)) + (1 − δ)u MAX (p(1)). 
δ∈[1/2,1] 

That is, the consumer is worse off under nondiscriminatory pricing. 

Finally, consider the seller’s payoff. As δF MAX + (1 − δ)F MIN is stochastically increasing 

in δ, p[1 − δF MAX (p) − (1 − δ)F MIN (p)] is increasing in δ for any p. This implies that the 

maxp p[1 − δF MAX (p) − (1 − δ)F MIN (p)] is maximized at δ = 1: The seller is better off under 

nondiscriminatory pricing. 

The intuition is as follows. Under nondiscriminatory pricing, the consumer fully reveals infor-

mation to obtain good recommendations without worrying about price discrimination. Expecting 

this, the seller sets a high price for each product upfront. In contrast, under discriminatory pricing, 

the consumer chooses a disclosure level balancing the beneft of better product match and the cost 

of higher prices. As a result, the consumer withholds some information, which leads to lower 

prices and a higher payoff than under nondiscriminatory pricing. 

Theorem 1 gives an economic explanation of the observed puzzle: Online sellers seem to not 

use individual data to price discriminate,14 and consumers seem to casually share their information 

despite the growing concerns for personalized pricing.In light of the theorem, one may view the 

puzzle as sellers’ strategic commitment to encourage disclosure and consumers’ best response to 

nondiscriminatory pricing. However, the result also suggests that such a situation might not be 

desirable for consumers, because they could be better off were sellers less informed about their 

preferences. 

14For empirical studies indicative of this, see the discussion in the introduction. For another instance, in 2000 
Amazon CEO Jeff Bezos said, “We never have and we never will test prices based on customer demographics.” 
(http://www.e-commercetimes.com/story/4411.html). Of course, there could be other explanations 
for frms not price discriminating. For instance, frms might be worried that price discrimination infuriates consumers, 
who have fairness concerns. My result suggests that even if frms are able to frame personalized pricing in a way that 
consumer backlash is less likely to occur, they may still want to refrain from price discrimination to limit consumers’ 
(rational) incentives to game the system. 

14 

http://www.e-commercetimes.com/story/4411.html
http:pricing.In


Theorem 1 also has policy implications: Consumers could beneft from regulations that restrict 

the amount of information sellers can expect to acquire. To see this, suppose that the seller can 

commit to nondiscriminatory pricing, under which the consumer chooses the greatest disclosure 

level. Relative to this situation, he is better off if a regulator restricts the set D of available dis-

closure levels to [1/2, δ∗], where δ∗ is the equilibrium choice under discriminatory pricing (i.e., 

a maximizer of equation(2)). With this restriction, the seller is indifferent between two pricing 

regimes. The consumer chooses disclosure level δ∗ and obtains a greater payoff than without the 

regulation.15 

One may think that the seller preferring nondiscriminatory pricing is specifc to the current 

assumption on the set of available disclosure rules, D. On the one hand, this is partly true: D is 

a key parameter for my result. For example, if D consists only of the disclosure rule that reveals 

exact valuations, the seller is better off and the consumer is worse off under discriminatory pricing 

due to perfect price discrimination. On the other hand, the current restriction on D is not necessary 

for Theorem 1. First, D can be any subset of the disclosure levels [1/2, 1]. For example, we can set 

D = {1/2, 1}, which consists of, say, enabling cookies (δ = 1) and disabling cookies (δ = 1/2). 

Thus, the (unrealistic) assumption that the consumer can choose from a continuum of disclosure 

level is immaterial. Second, the result is not specifc to the assumption that the consumer can only 

disclose information about his ordinal preferences; in the next section, I establish essentially the 

same result assuming that the consumer can choose any disclosure rule. 

Remark 4 (Limited Ability to Evaluate Products vs. Ability to Choose Disclosure Rules). 

One might wonder how many of consumers, who cannot examine all the available products in the 

market, have enough time to fgure out optimal disclosure rules. I argue that these two assumptions 

do not contradict in most of the applications. 

First of all, e-commerce frms, such as Amazon and eBay, obviously sell more products than 

one can exhaustively examine. Then, it has to be an institutional feature of these platforms to 

display only a small subset of the whole universe of products. Similarly, offine markets for cars or 

houses seem to have more products than one can exhaustively test-drive or visit, even if consumers 

restrict their attention to a particular brand or geographic area. In such cases, we cannot conclude 

15One should note that such a regulation does not always reduce total surplus, because lower disclosure levels lead 
to lower prices which may increase the probability of trade. 
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that if consumers know how to use privacy tools or mask information from sellers, they should also 

be able to fnd relevant products without the help of search engines and recommendations. 

Second, in some situations, it is relatively easy to fgure out how to withhold information. For 

instance, on the Internet, it is increasingly common that pop-up windows ask users whether to 

enable cookies, likely because of the EU legislation on cookies. In offine markets, withholding in-

formation would be even easier—a consumer can disclose less by talking less about his tastes about 

cars, houses, and fnancial products.16 In this case, consumers need not be highly sophisticated to 

fgure out what “disclosure rules” are available to them. 

3.2 Disclosure by a Continuum of Consumers and Theorem 1 as a Tragedy 

of the Commons 

This subsection shows that we can interpret the current setting as a model with a continuum of 

consumers. This interpretation allows us to see Theorem 1 as a tragedy of the commons due to a 

negative externality associated with information sharing. 

Formally, suppose that there is a continuum of consumers, each of whom discloses information 

as in the baseline model. The values are independent across consumers.17 Under nondiscriminatory 

pricing, after observing the disclosure level and realized message of each consumer, the seller sets 

a single price for each product. Under discriminatory pricing, the seller can charge different prices 

to different consumers. Under both pricing regimes, the seller can recommend different products 

to different consumers. 

Equilibrium prediction in Theorem 1 persists: Each consumer chooses the highest disclosure 

level under nondiscriminatory pricing, where the seller sets higher prices and consumers obtain 

lower payoffs. To see this intuitively, consider nondiscriminatory pricing and an equilibrium in 

which consumer i ∈ [0, 1] chooses a disclosure level of δi. Note that δi maximizes each consumer’s 

payoff when choosing a disclosure level taking prices as given, because the choice of a single 

consumer in a large population has no impact on prices.18 This implies δi = 1. 
16The model of two-sided private information in Section 5 would capture this kind of information disclosure in 

offine transactions. 
17The independence of valuation vectors across a continuum of consumers might raise a concern about the existence 

of a continuum of independent random variables. Sun (2006) formalizes the notion of a continuum of IID random 
variables for which the “law of large numbers” holds, which is all what I need. 

18Appendix B formalizes this. 
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According to this interpretation, we can view Theorem 1 as a tragedy of the commons. If some 

consumers disclose more information, the seller prefers to set higher prices as it can offer accurate 

recommendations to a greater fraction of consumers. Because each product has a single price, 

these higher prices are shared by all consumers. To sum up, under nondiscriminatory pricing, 

information disclosure by some consumers lowers the welfare of other consumers through higher 

prices. As consumers do not internalize this negative impact, they prefer to fully reveal information 

and are collectively worse off. Appendix B formalizes this observation. 

Remark 5. Theorem 1 is robust to a variety of extensions. 

Correlated Values: If u1 and u2 are correlated, Theorem 1 holds as long as vector (u1, u2) is drawn 

from an exchangeable distribution whose multivariate hazard rate satisfes a condition in Theorem 

1.B.29 of Shaked and Shanthikumar (2007). The condition ensures thatmax(u1, u2) is greater than 

min(u1, u2) in the hazard rate order, which is suffcient for the theorem. 

Costly disclosure: Consumers may incur some intrinsic privacy costs by disclosing information. 

I can incorporate this by assuming that the consumer incurs a cost of c(δ) from a disclosure level 

δ.19 This may affect equilibrium but does not change the main conclusion: The consumer discloses 

more information and is worse off under nondiscriminatory pricing. Finding an equilibrium un-

der nondiscriminatory pricing requires a fxed-point argument, because the consumer may prefer 

different disclosure levels depending on prices he expects. 

Informational Externality: In practice, online sellers may infer the preferences of some consumers 

from those of others. To incorporate this “informational externality,” consider the model with 

a continuum of consumers, and assume that a “true” disclosure level of consumer i is given by 

¯Δ(δi, δ), an increasing function of i’s disclosure level δi and the average disclosure level of the 

¯population δ̄ = 
R 

δidi. Δ(δi, δ) captures the idea that the seller can learn about i’s preferences 
i∈[0,1] 

from information disclosed by others. In this case, I obtain essentially the same result as Theorem 

1. 

19More precisely, if the consumer chooses disclosure level δ and purchases product k at price p, his payoff is 
uk − p − c(δ). If he buys nothing, the payoff is −c(δ). 
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4 Unrestricted Information Disclosure 

In this section, I assume that the consumer can choose any disclosure rule and the seller sells K ≥ 2 

products. This “unrestricted model” enables us to study what kind of information is disclosed in 

equilibrium, and how it depends on pricing regimes. The previous model is not suitable for this 

purpose, as it assumes that the consumer reveals information about which product has a greater 

value, regardless of pricing regimes. 

The unrestricted model is also useful for studying whether the main result persists in an en-

vironment that does not a priori favor nondiscriminatory pricing.20 The previous assumption on 

D favors nondiscriminatory pricing, because the two pricing regimes yield equal revenue for any 

fxed δ. In general, for a fxed disclosure rule, the seller typically achieves a higher revenue under 

discriminatory pricing. For example, given a disclosure rule revealing u, the seller can extract full 

surplus only under discriminatory pricing. 

The model has a theoretical connection to Bergemann et al. (2015). Their fndings imply that 

a single-product monopolist is indifferent between the two pricing regimes if the information is 

disclosed to maximize consumer surplus; moreover, equilibrium is effcient under discriminatory 

pricing. I will show that introducing multiple products and recommendations substantively change 

the conclusion: equilibrium is typically ineffcient and the seller strictly prefers nondiscriminatory 

pricing. 

For ease of exposition, the prior distribution x0 of the value of each product is assumed to have 

a fnite support V = {v1, . . . , vN } with 0 < v1 < · · · < vN and N ≥ 2. For each x ∈ Δ(V ), x(v) 

denotes the probability that x puts on v ∈ V . Abusing notation slightly, let p(x) denote the lowest 

optimal price given x ∈ Δ(V ): 

( )X X 
p(x) := min p ∈ R : p x(v) ≥ p 0 x(v), ∀p 0 ∈ R . 

v≥p v≥p0 

Note that p(x) does not depend on K. To focus on the most interesting cases, I impose the follow-

ing assumption. Loosely speaking, it requires that x0 does not put too much weight on the lowest 

value of its support. 

20It is important to note that the unrestricted model is not a general version of the previous restricted model but a 
version of the baseline model with a different assumption on D. 
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Assumption 1. The lowest optimal price at the prior distribution strictly exceeds the lowest value 

of its support: p(x0) > v1. 

As the consumer can access a rich set of disclosure rules, the equilibrium analysis is more 

involved than before; however, there turns out to be a clear relationship between pricing regimes 

and kinds of information that the consumer is willing to disclose. The next subsection illustrates 

this by showing that different pricing regimes exhibit different kinds of ineffciency in equilibrium. 

I use these results to show that, again, the seller is better off and the consumer is worse off under 

nondiscriminatory pricing. 

4.1 Ineffciency of Equilibrium 

In this model, an allocation can be ineffcient in two ways. One is when the consumer decides not 

to buy any products; the other is when he buys some product other than the most valuable ones. 

The following result states that nondiscriminatory pricing leads to the frst kind of ineffciency. 

Proposition 1. Consider nondiscriminatory pricing. In any equilibrium, the seller recommends 

the most valuable product with probability 1. However, trade fails to occur with a positive proba-

bility.21 

Proof. Take any equilibrium under nondiscriminatory pricing. Because prices are the same across 

products and do not depend on information disclosure, it is optimal for the consumer to disclose 

information so that the seller recommends the most valuable products with probability 1.22 Now, 

given such a disclosure rule, consider the seller’s pricing decision. When the seller recommends 

product k, the posterior belief for the value is equal to the distribution of maxk∈K uk, because 

valuations are IID across products. Denoting the distribution by xMAX ∈ Δ(V ), we obtain 

X X 
MAX (v) ≥ p(x0)p(x0) x x0(v) > v1, 

v≥p(x0) v≥p(x0) 

21Note that I focus on subgame perfect equilibrium (SPE) in which the seller sets the same price for each product. 
Without this restriction, there could be a fully effcient SPE (An example is available upon request.) However, if 
the prior distribution has a density and satisfes Assumption 1, there is no effcient SPE. This is because in any SPE 
with effcient recommendations, the seller sets a price greater than p(x0) and trade may fail to occur with a positive 
probability. 

22Such a disclosure rule is not unique; we can consider any disclosure rules weakly more informative than the one 
disclosing arg maxk uk. 
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where the strict inequality follows from Assumption 1. Thus, the price for each product is strictly 

greater than v1, and the consumer buys no products with a probability of at least x(v1)K > 0. 

The intuition is analogous to Theorem 1: Under nondiscriminatory pricing, the consumer re-

veals information without worrying about price discrimination. This enables the seller to make 

accurate recommendations; however, because the seller cannot tailor prices to the consumer’s will-

ingness to pay, trade fails to occur if he has low values for all the products. 

Does discriminatory pricing eliminate ineffciency? The next result shows that equilibrium 

continues to be ineffcient: Although trade occurs whenever effcient, it is associated with product 

mismatch. The proof needs some work, which is contained in Appendix C. Below, I describe the 

basic idea of the proof. 

Proposition 2. Consider discriminatory pricing. In any equilibrium, trade occurs with probability 

1. However, for generic23 priors x0 satisfying Assumption 1, in any equilibrium, the consumer 

purchases some products other than the most valuable ones with a positive probability. 

A rough intuition is as follows. Under discriminatory pricing, the seller can lower prices if it 

learns that the consumer has low valuations. As discounted offers also beneft the consumer, he 

is indeed willing to disclose such information. As a result, trade occurs even if the consumer has 

low values. In contrast, the seller’s ability to price discriminate gives the consumer an incentive 

to withhold some information. What kind of information does the consumer want to mask? The 

second part of the proposition states that the information useful for product recommendations is 

exactly what the consumer prefers to obfuscate. 

As discussed earlier, Proposition 2 is in contrast to the single-product case of Bergemann et al. 

(2015) in which a single disclosure rule maximizes both consumer and total surplus. In light 

of this, the result has the following takeaway. Consider a regulator or an Internet intermediary, 

who cares about consumers and wants to release their information to sellers in order to maximize 

consumer welfare. If information is relevant not only for pricing but also for product matching, 

such a regulator or an intermediary may have to balance enhancing consumer welfare and potential 

effciency loss. 
23The following is the formal description of genericity: Defne X>v1 as the set of priors x0 such that p(x0) > v1. 

“Generic priors x0 satisfying Assumption 1” means that there is a Lebesgue measure-zero set X0 ⊂ Δ(V ) such that, 
for any x0 ∈ X>v1 \ X0, any equilibrium has a positive probability of product mismatch. 

20 



Now, I sketch the proof of Proposition 2, relegating the details to Appendix C. For ease of 

exposition, I use the following terminologies. 

Defnition 2. An equilibrium is vertically effcient if trade occurs with probability 1. An equilib-

rium is horizontally effcient if the seller recommends the most valuable products with probability 

1. 

We can rephrase Proposition 2 as follows: Under discriminatory pricing, equilibrium is verti-

cally effcient, but generically horizontally ineffcient. The proof of vertical effciency is by contra-

diction: If an equilibrium is vertically ineffcient, we can modify it to another equilibrium where 

both the consumer and the seller are better off, which is a contradiction.24 

To see this, suppose that in some equilibrium, the seller recommends product k at price p0 that 

the consumer rejects with a positive probability. Modify the disclosure rule so that, on such an 

event, the consumer additionally reveals whether uk < p0 or uk ≥ p0. (Note that this may reveal 

information about products other than k, because the equilibrium we initially choose may induce 

posteriors such that values are correlated across products.) If uk < p0, the consumer and the seller 

are better off because the seller can either lower the price or recommend another product. The 

key is to prove that if uk ≥ p0, the seller continues to recommend the same product at the same 

price.25 This shows that such a modifcation makes the consumer and the seller better off, which is 

a contradiction.26 

Proving horizontal ineffciency is more involved at least for three reasons. First, disclosing 

more information (in the sense of Blackwell) may not lead to higher prices once we consider the 

full set of disclosure rules. Thus, we do not have simple comparative statics as in the restricted 

model. Second, it is challenging to characterize equilibrium disclosure rules, as we have to solve 

a multidimensional Bayesian persuasion problem, which is known to be diffcult. Third, there can 

be multiple equilibria and we have to prove horizontal ineffciency for all of these. 
24The vertical effciency relates to Bergemann et al. (2015), which show that equilibrium is effcient if the seller 

sells a single product. In contrast to their work, which directly constructs a disclosure rule achieving an effcient 
outcome, my proof indirectly shows vertical effciency, because it is diffcult to characterize equilibrium. 

025If the seller learns that the value exceeds p0, it continues to post price p , as the seller’s new objective function is 
P(u1 ≥p)p · , which has the same maximizer as the original objective p · P(u1 ≥ p).P(u1≥p0)
26The actual proof is a bit more subtle: First, I have to consider the case in which the consumer is exactly indifferent 

before and after the additional disclosure, in which case I use our equilibrium restriction. Second, I prove the existence 
of vertically effcient equilibrium, which is stronger than the claim that any equilibrium is vertically effcient (which 
can be vacuous). 
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The proof of horizontal ineffciency consists of two steps. First, solve a “constrained” Bayesian 

persuasion problem in which the consumer chooses a disclosure rule subject to the constraint that 

the resulting allocation is effcient (given the seller’s optimal behavior). Characterizing such a 

disclosure rule, denoted by φG, turns out to be simpler than the “unconstrained” maximization 

problem which the consumer solves in equilibrium. Second, modify φG to create disclosure rule 

φI that leads to an ineffcient allocation but gives the consumer a strictly greater payoff than φG . 

These two steps imply that any equilibrium is associated with ineffcient allocation. As we proved 

that equilibrium is vertically effcient, it must be horizontally ineffcient. 

The following example illustrates these two steps. 

Example 1. Suppose that K = 2, V = {1, 2}, and (x0(1), x0(2)) = (1/3, 2/3). 

Step 1: Consider disclosure rule φ in Table 1. (Each row is the distribution over messages 1 

and 2 for each valuation vector.) φ only discloses which product is more valuable, which is the 

φ(1|u1, u2) φ(2|u1, u2) 
(2, 2) 1/2 1/2 
(2, 1) 1 0 
(1, 2) 0 1 
(1, 1) 1/2 1/2 

Table 1: Disclosure rule φ revealing ordinal ranking 

information necessary to achieve horizontally effcient allocations. This implies that any effcient 

disclosure rules are weakly more informative than φ.27 

I fnd φG by maximizing the consumer’s payoff among disclosure rules weakly more infor-

mative than φ. Specifcally, for each k, I calculate the posterior distribution of uk conditional 

on message k ∼ φ(·|u), and apply Bergemann et al.’s (2015) “greedy algorithm” to it. In the 

single-product case, given any prior distribution, their greedy algorithm outputs a disclosure rule 

maximizing consumer surplus. In my multi-product case, applying it to each posterior belief in-

duced by φ is equivalent to maximizing the consumer’s payoff among the disclosure rules more 

informative than φ. 

Table 2 presents disclosure rule φG obtained in this way. The greedy algorithm decomposes 

27Precisely, I am restricting attention to “symmetric” disclosure rules such that permutating the indicies of the 
products do not change φ. In the proof, this is shown to be without loss of generality. 
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each message k (of φ) into messages k1 and k2.28 The seller’s best responses are as follows: After 

observing message k1 (k = 1, 2), the seller recommends product k at price 1, being indifferent 

between prices 1 and 2. After observing message k2 (k = 1, 2), the seller recommends product k 

at price 2. 

φG(11|u1, u2) φG(12|u1, u2) φG(21|u1, u2) φG(22|u1, u2) 
(2, 2) 0 1/2 0 1/2 
(2, 1) 1/4 3/4 0 0 
(1, 2) 0 0 1/4 3/4 
(1, 1) 1/2 0 1/2 0 

Table 2: Effcient disclosure rule φG . 

φG(11|u1, u2) φG(12|u1, u2) φG(21|u1, u2) φG(22|u1, u2) 
(2, 2) 0 1/2 ε0 1/2 − ε0 

(2, 1) 1/4 3/4 − ε ε 0 
(1, 2) 0 0 1/4 3/4 
(1, 1) 1/2 0 1/2 0 

Table 3: Horizontally ineffcient disclosure rule φI . 

Step 2: I modify φG twice to create φI in Table 3: First, at (u1, u2) = (2, 1), φI sends message 

21 instead of 12 with probability ε > 0. For a small ε, this modifcation does not reduce the 

consumer’s payoff: At the new message 12, the consumer continues to obtain a payoff of zero; 

at the new message 21, the seller continues to recommend product 2 at price 1. However, this 

modifcation relaxes the seller’s incentive, as it now strictly prefers to set price 1 at message 21. 

Second, I further modify φG so that, at (u1, u2) = (2, 2), φI sends message 21 instead of 22 with a 

small probability ε0 > 0. This strictly increases the consumer’s payoff: At (u1, u2) = (2, 2), where 

the consumer obtains a payoff of zero at the original φG, he now obtains a strictly positive payoff 

when message 21 is realized. Because the seller recommends product 2 when (u1, u2) = (2, 1) 

with a positive probability , φI is ineffcient. 

Finally, I discuss how the proof strategy extends to general parameters (K and x0). General-

izing Step 1 is straightforward. For Step 2, frst, I prove that disclosure rule φG obtained in Step 

1 (generically) sends messages m0 and m1 with the following properties: Conditional on message 
28As I discuss in the proof, the original greedy algorithm does not pin down the valuation distribution of the 

nonrecommended products. Table 2 is derived based on the procedure I defne in the proof, which uniquely pins down 
the joint distribution of (u1, . . . , uK ). 
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m0, the consumer obtains a payoff of zero and has the lowest value v1 for all the products that are 

not recommended; conditional on message m1, the seller prefers to set the lowest possible price 

v1, being indifferent to setting any prices in V . I modify φG so that it sends m1 instead of m0 with 

a small positive probability, in order to give the seller a strict incentive to set price v1 at the new 

m1. This does not lower the consumer’s payoff. Finally, I use the seller’s strict incentive to show 

that I can modify the disclosure rule to increase the consumer’s payoff. 

4.2 Firm Prefers Nondiscriminatory Pricing, Which Hurts Consumer 

In the model of restricted disclosure, the seller is better off and the consumer is worse off under 

nondiscriminatory pricing for any prior value distributions (Theorem 1). An initial intuition might 

suggest that such a result no longer holds in the unrestricted disclosure model, because discrimi-

natory pricing has a greater probability of trade (Proposition 2). 

The following result, however, shows that the seller prefers to commit to not price discriminate, 

which hurts the consumer. To state the result, let RND and UND denote the equilibrium payoffs 

of the seller and the consumer under nondiscriminatory pricing. Similarly, let RD and UD denote 

the payoffs of the seller and the consumer, respectively, in any equilibrium under discriminatory 

pricing. 

Theorem 2. Suppose that the consumer can choose any disclosure rule and Assumption 1 holds. 

Generically, the seller is strictly better off and the consumer is strictly worse off under nondiscrim-

inatory pricing: RND > RD and UND < UD. 

As the proof shows, without Assumption 1, the result continues to hold with the strict inequal-

ities replaced by weak ones. 

Proof. Let φH denote any equilibrium disclosure rule under nondiscriminatory pricing, where the 

seller recommends the most valuable products (Proposition 1). Also, let φG denote the disclosure 

rule constructed in the proof of Proposition 2: φG maximizes the consumer’s payoff among all 

the disclosure rules achieving effcient allocations. Under both disclosure rules, conditional on the 

event that the seller recommends product k, the value distribution of product k is equal to xMAX , 

the distribution of maxk uk. 
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Let p ∗ denote the equilibrium price of each product under φH . One observation is that p ∗ also 

maximizes revenue under any posteriors drawn by φG. (This is because I construct φG from φH 

using the Bergemann et al.’s (2015) greedy algorithm.) In other words, under φG, the seller can 

achieve the highest revenue by posting price p ∗ upfront for all products. Denoting the optimal 

revenue under φH and φG by RND and RG respectively, I obtain RND = RG. 

As φG is effcient, it can never consist of an equilibrium (Proposition 2). That is, the consumer’s 

equilibrium payoff under discriminatory pricing (UD) is strictly greater than the one from φG . 

Thus, the seller under discriminatory pricing is strictly worse off (RD < RG = RND). Finally, as 

the consumer’s payoff is greater under φG than φH , I obtain UD > UND. 

A rough intuition is as follows. As Proposition 2 shows, the consumer under discriminatory 

pricing obfuscates which product has the highest value. However, the seller might still beneft from 

discriminatory pricing as it makes trade more likely to occur when the consumer has low values. 

(Note that this effect is absent in the previous restricted disclosure model.) The reason why this 

argument fails is that, when D consists of all the disclosure rules, the consumer can disclose partial 

information about his willingness to pay to increase the probability of trade without increasing the 

seller’s payoff. Thus, the seller prefers nondiscriminatory pricing, because while it leads to more 

accurate recommendations, the revenue loss from not being able to price discriminate is negligible. 

4.3 Nondiscriminatory Pricing Can Enhance Effciency 

Which pricing regime is more effcient? The previous analysis suggests that nondiscriminatory and 

discriminatory pricing regimes have different advantages in increasing total welfare: Nondiscrimi-

natory pricing leads to effcient recommendations, and discriminatory pricing leads to the greatest 

probability of trade; moreover, neither of them can achieve full effciency under Assumption 1. 

Indeed, which pricing regime is more effcient depends on the prior value distribution x0 of 

each product and the number K of products. For instance, if K = 1, discriminatory pricing is 

always (weakly) more effcient. 

The next result shows that, if there are a large number of products, nondiscriminatory pricing 

is more effcient. To focus on the interesting case in which it is strictly more effcient, I assume 

that x0 does not put too much weight on the highest value max V of its support V . (x0 is no longer 
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required to have a fnite support.) 

Assumption 2. The optimal price at the prior distribution is strictly lower than the highest value 

of its support: p(x0) < max V . 

Note that Assumption 2 holds whenever x0 has a density. The proofs of the next proposition 

and lemma are in Appendix D. 

Proposition 3. Take any prior distribution x0. Under nondiscriminatory pricing, as K → +∞, 

equilibrium total surplus converges to max V . Under discriminatory pricing, if Assumption 2 

holds, there is ε > 0 such that equilibrium total surplus is at most vN − ε for any K. 

The intuition is as follows. Under discriminatory pricing, with Assumption 2, the consumer 

can secure a positive information rent by hiding some information, which leads to ineffcient rec-

ommendations. In contrast, under nondiscriminatory pricing, recommendations are effcient; fur-

thermore, for a large K, the consumer’s values for recommended products are almost degenerate 

at vN . In this case, the seller can charge prices close to vN upfront to extract most of the surplus, 

which in turn leads to almost effcient outcomes. Thus, if there are a large number of products, 

nondiscriminatory pricing enhances total welfare at the expense of consumer welfare. 

Proposition 3 relies on the following lemma, which corresponds to the intuition. 

Lemma 4. Under nondiscriminatory pricing, as K → +∞, the seller’s equilibrium payoff con-

verges to max V and the consumer’s equilibrium payoff converges to 0. Under discriminatory 

pricing, if Assumption 2 holds, there is u > 0 such that the consumer’s equilibrium payoff is at 

least u for any K. 

5 Extensions 

5.1 Market for Personal Data 

An institution within which consumers can sell their information has been paid attention as a 

market-based solution for privacy problems. In my model, such a “market for data” indeed improve 

the surplus of the consumer and the seller simultaneously. 

26 



To see this, consider the following extension: At the beginning of the game, the seller can 

offer to buy information: Formally, the seller chooses a pair of a disclosure rule φ ∈ D and 

a transfer t ∈ R. Then, the consumer decides whether to accept it. If he accepts, he reveals 

valuations according to φ and receives t; if he rejects, he can choose any disclosure rule but receive 

no transfer. In either case, this stage is followed by a product recommendation and a purchasing 

decision. Again, I consider two pricing regimes that differ in whether the seller can base prices on 

information. 

How does this “market for data” affect equilibrium outcomes? Under nondiscriminatory pric-

ing, it has no impact because the consumer is willing to disclose full information without any 

compensation. In contrast, under discriminatory pricing, the market for data may (weakly) im-

prove the surplus of everyone. For example, if D consists of disclosure rule φ∗ fully revealing 

valuations u, the seller offers (φ∗ , t), where t makes the consumer indifferent between accepting 

and rejecting the offer. In equilibrium, the consumer accepts the offer and the seller engages in 

perfect price discrimination with effcient recommendations. 

Importantly, in the new setting, not only the consumer but also the seller may prefer discrimina-

tory pricing, because the market for data increases the seller’s payoff from discriminatory pricing 

without changing revenue from nondiscriminatory pricing. Thus, the market for data could align 

the preferences of the seller and the consumer over information can be used for pricing. 

5.2 A Model of Two-Sided Private Information 

It is crucial to my results that the consumer chooses a disclosure rule without observing the values 

of products. Intuitively, this would be suitable if the consumer is initially uninformed of product 

characteristics necessary to calculate his willingness to pay. I provide a microfoundation for this 

assumption, focusing on the model of restricted disclosure in Section 3. 

For ease of exposition, suppose that there are two products labeled as 1 and −1. At the begin-

ning of the game, the consumer privately observes his taste θ ∈ {1, −1}. Also, the seller privately 

observes product characteristics π ∈ {1, −1}. Each pair of (θ, π) is equally likely. Given a re-

alized (θ, π), the consumer draws values of products θ · π and −θ · π from (the distributions of) 

max {u1, u2} and min {u1, u2}, respectively. 
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The game proceeds as follows. After privately observing θ, the consumer (publicly) chooses a 

disclosure level δ: With probabilities δ and 1−δ, messages θ and −θ are realized, respectively. We 

interpret disclosure rules as any statistical information about his tastes. The seller observes δ and a 

realized message, and then recommends a product. As before, we can defne two pricing regimes 

analogously. 

Note that θ or π alone is not informative of product valuations, but (θ, π) is. This formulation 

captures situations in which sellers combine information abut a consumer’s tastes and product 

characteristics to learn about preferences and give product recommendations. 

This setting produces the same result as Theorem 1: Under nondiscriminatory pricing, the 

consumer with θ chooses a disclosure level of 1, by which the seller can recommend the best 

product with probability 1. Under discriminatory pricing, the consumer obtains a greater payoff 

by choosing δ∗, the equilibrium disclosure level derived in Section 3. 

5.3 General Formulation of Horizontal Information 

The model of restricted disclosure in Section 3 assumes that the most informative disclosure rule in 

D reveals whether u1 > u2 or u1 < u2. Here, I relax this assumption by providing a more general 

formulation of “horizontal information,” under which all the results in Section 3 hold. Hereafter, 

x0 denotes the prior CDF for the value of each product. 

¯ ¯Consider disclosure rule (M, ¯ φ̄) with the following properties: M = {1, 2}, φ(1|u1, u2) = R
¯ ¯φ(2|u2, u1) for any (u1, u2) ∈ V 2, and φ(1|u1, u2)dx0(u2) is strictly increasing in u1 ∈ V . 

u2∈V 

These are satisfed, for example, if a disclosure rule sends message 1 with probability h(u1 − u2) 

where h(·) is strictly increasing and satisfes h(x)+ h(−x) = 1. (Disclosure level δ = 1 in Section 

3 corresponds to h being a step function.) Intuitively, the more valuable product k ∈ {1, 2} is, the 

¯more likely φ sends message k. 

Because of the symmetry, the posterior distribution of uk conditional on message j depends 

only on whether k = j. Let F1 and F0 denote the posteriors of uk conditional on j = k and j = k, 

respectively. The following result extends Lemma 2. 

Lemma 5. F1 is greater than F0 in the hazard rate order. 
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R 
¯Proof. Because φ(1|u1, u2)dx0(u2) is increasing in u1, for any u+ ≥ u−, I obtain 

u2 R R R R 
φ(1|u1, u2)dx0(u2)dx0(u1) φ(1|u1, u2)dx0(u2)dx0(u1)u1>u+ u2 u1>u− u2≥ 
1 − x0(u+) 1 − x0(u−) 

1 − F1(u
+) 1 − F1(u

−)⇐⇒ ≥ . 
1 − x0(u+) 1 − x0(u−) 

Replacing φ(1|u1, u2) by φ(2|u1, u2), 

1 − F0(u
+) 1 − F0(u

−)≤ . 
1 − x0(u+) 1 − x0(u−) 

These inequalities imply 
1 − F1(u

+) 1 − F1(u
−)≥ 

1 − F0(u+) 1 − F0(u−) 

whenever the fractions are well-defned. Therefore, F1 is greater than F0 in the hazard rate order. 

Note that the proof of Theorem 1 only uses the fact that the value of the preferred product is 

greater than that of the less preferred product in the hazard rate order. Thus, I can conduct the same 

analysis assuming that the most informative disclosure rule in D is ( ¯ φ).M, ¯

5.4 Alternative Interpretation: Online Advertising Platform 

We can rewrite the model of restricted disclosure in Section 3 as a game between a consumer, 

an online advertising platform (such as Google or Facebook), and two advertisers. Advertisers 1 

and 2 sell products 1 and 2, respectively. The consumer makes a purchasing decision after seeing 

an advert. Which advert the consumer sees depends on the outcome of an ad auction run by the 

platform. 

In this interpretation, frst, the consumer chooses a disclosure level δ (e.g., whether to accept 

a cookie) and visits the platform. Each advertiser k ∈ {1, 2} chooses a price of product k and 

a bidding rule bk : {1, 2} → R. Here, bk(j) is the bid by advertiser k for the impression of the 

consumer with a realized message j ∈ {1, 2}. I assume that advertisers choose bidding rules after 

observing δ and a realized message. If advertiser k wins the auction, the advert of product k is 

shown to the consumer. The consumer sees an advert, learns the value and price of the advertised 
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product, and decides whether to buy it. 

I show that the same result as Theorem 1 holds. Suppose that the consumer chooses disclosure 

level δ. First, If advertisers can base product prices on disclosure levels, each advertiser chooses 

price p(δ) and bidding rule bk where bk(k) = p(δ)[1 − δF MAX (p(δ)) − (1 − δ)F MIN (p(δ))] 

and bk(j) < bk(k) for j 6 k.= The platform sets reserve price p(δ)[1 − δF MAX (p(δ)) − (1 − 

δ)F MIN (p(δ))] to extract full surplus from advertisers. Given these strategies, the consumer sees 

the ad of his preferred product with probability δ. Second, if advertisers have to set prices without 

observing δ, the consumer chooses disclosure level 1 and each advertiser sets price p(1). Thus, the 

consumer’s disclosure decision and its welfare and price implications are identical as before. 

6 Concluding Discussion 

This paper studies consumers’ privacy choices and their welfare and price implications. The key of 

the analysis is the following trade-off: Consumers may beneft from revealing about themselves, 

because sellers can offer product recommendations, which help consumers focus on a smaller 

subset of the huge variety of products. However, sellers may also use the information to price 

discriminate. This trade-off would be present in many real-life settings such as online shopping 

and buying cars or fnancial products. 

I consider a model in which a consumer discloses information about his valuations to a multi-

product seller. The consumer does not yet know his vector of values for the products and can eval-

uate only a small number of products relative to the number of available products. As a result, the 

seller can use disclosed information not only to extract surplus through pricing, but also to create 

surplus through product recommendations. Here, not only the consumer but the seller encounters a 

trade-off: Given available information, the seller profts from price discrimination; however, being 

able to price discriminate could affect the consumer’s incentive to provide information. 

The paper’s contributions are threefold. One is to give an economic explanation of a somewhat 

puzzling observation in the Internet economy: Firms seem to not use individual data to price 

discriminate, and consumers seem to casually share their information with online sellers. The 

model explains this phenomenon as sellers’ strategic commitment and consumers’ best response. 

I show that this outcome robustly arises in two settings that differ in the information-disclosure 
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technologies available to consumers. 

The second contribution is to provide a framework for use in the design of privacy regulations. 

For instance, the model shows that nondiscriminatory pricing and the resulting full information 

revelation are consumer-suboptimal. Restricting the amount of information sellers can possess 

could beneft consumers, even if consumers are rational and can decide on their own what infor-

mation to disclose. 

The third contribution is to expand the theory of information disclosure by consumers. The 

model of unrestricted disclosure reveals that even with fne-grained control of information, con-

sumers or a regulator cannot simultaneously achieve effcient price discrimination and effcient 

matching of products without sacrifcing consumer welfare. 

There are various interesting directions for future research. For example, the models could be 

extended to consider information sharing between sellers or the presence of data brokers, which is 

likely to add new policy implications. Moreover, this paper highlights the value of the equilibrium 

analysis to study consumers’ privacy choices in the Internet economy. It would also be fruitful to 

study how consumers’ information disclosure collectively affects welfare in other aspects of online 

privacy. 

Appendix For Online Publication 

A Proof of Lemma 1 

Without loss of generality, suppose that message 1 is realized. If the seller recommends products 1 

and 2 to the consumer, he draws values from δF MAX + (1 − δ)F MIN and δF MIN + (1 − δ)F MAX , 

respectively. The former is greater than the latter in the frst-order stochastic dominance, because 

> 1/2 and F MAX F MIN δ frst-order stochastically dominates . This implies that, under both 

pricing regimes, it is optimal for the seller to recommend product 1 because it maximizes the 

probability of trade given any prices. Finally, the seller’s tie-breaking rule implies that only this 

recommendation strategy satisfes my equilibrium constraints. The tie-breaking rule matters if, for 

any δ, an optimal price is equal to the lowest possible value (inf V ). 
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B Presence of “Negative Externality” with a Continuum of Consumers 

I show that in the alternative interpretation of the model, information disclosure by a positive mass 

of consumers lowers the welfare of other consumers. To see this, note that if each consumer i 

chooses a disclosure level δi and the seller sets price p for each product, then the total revenue is 

given by 

Z 
p[1 − δiF MAX (p) − (1 − δi)F MIN (p)]di 

i∈[0,1] 

δF MAX (p) − (1 − δ̄)F MIN (p)]=p[1 − ¯

R
¯where δ = δidi is the average disclosure level. This implies that the optimal price under 

i∈[0,1] 

nondiscriminatory pricing is given by p(δ̄). If a positive mass of consumers disclose more infor-

¯mation, δ increases. This increases p(δ̄) and decreases the payoffs of other consumers who have 

not changed disclosure levels. 

C Proof of Proposition 2 

First, I show that there is a vertically effcient equilibrium. Take any (M∗, φ∗) which leads to a 

vertically ineffcient allocation given the seller’s best response. Let x ∈ Δ(V K ) denote a realized 

posterior at which trade may not occur.29 Without loss of generality, suppose that product 1 is 

recommended at price v` at x. I show that there is another disclosure rule φ∗∗ which gives a weakly 

greater payoff than φ∗ to the consumer and achieves a strictly greater total surplus. Suppose that 

φ∗∗ discloses whether the value for product 1 is weakly greater than v` or not whenever posterior 

x realizes, in addition to the information disclosed by φ∗ . Let x+ and x− ∈ Δ(V K ) denote the 

posterior beliefs of the seller after the consumer discloses that the value for product 1 is weakly 

above and strictly below v`, respectively. Then, x = αx+ + (1 − α)x− holds for some α ∈ (0, 1). 

φ∗∗I show that weakly increases the payoff of the consumer. First, conditional on the event 

that the value is below v`, the consumer gets a greater payoff under φ∗∗ than under φ∗ because the 

consumer obtains a payoff of zero under φ∗. Second, I show that, conditional on the event that the 

29Because |V K | < +∞, without loss of generality, I can assume |M ∗| < +∞. Then, each message is realized 
with a positive probability from the ex-ante perspective. Thus, there must be a posterior x ∈ Δ(V K ) which is realized 
with a positive probability and trade may fail to occur given x. 
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value is weakly above v`, the seller continues to recommend product 1 at price v`. To show this, 

suppose to the contrary that the seller strictly prefers to recommend another product m at price vk. 
+ +If m = 1, vk is different from v`. Let x1 ∈ Δ(V ) and xm ∈ Δ(V ) be the marginal distributions of 

ui and ui given x+, respectively. Because the seller prefers recommending a product m at price 1 m 

vk to recommending a product 1 at price v`, I obtain 

K K

+ + vk xm(vj ) > v` x1 (vj ), 
j=k j=` 

which implies 

XX 

XXK K K K

vk αx+ (vj )+(1−α)x − (vj) ≥ vk αx+ (vj) > v` αx+(vj ) = v` αx+(vj )+(1−α)x −(vj ).m m m 1 1 1 

j=k j=k j=` j=` 

−The last equality follows from x1 (v) = 0 for any v ≥ v`. This contradicts that the seller prefers to 

X 

recommend product 1 at price v` at x. 

Consider the following mapping Φ : D → D: given any disclosure rule φ ∈ D, Φ chooses a 

posterior belief x induced by φ at which trade fails to occur with a positive probability. If there 

are more than one such belief, Φ chooses the posterior belief corresponding to the lowest price and 

the smallest index k ∈ K.30 Φ(φ) is a disclosure rule which discloses whether the value for the 

recommended product is weakly greater than the price or not whenever posterior x is realized, in 

addition to the information disclosed by φ. 

To show that there exists a vertically effcient equilibrium, take any equilibrium disclosure rule 

X 

φ0. Defne Φ1(φ0) = Φ(φ0) and Φn+1(φ0) = Φ(Φn(φ0)) for each n ≥ 1. Because |V K | < +∞, 
∗there exists n such that Φn ∗ 

= Φn ∗+1. Defne φ∗ := Φn ∗ 
(φ0). By construction, φ∗ gives a weakly 

greater payoff to a consumer than φ0. Thus, it is an equilibrium under discriminatory pricing. 

Moreover, at each realized posterior, trade occurs with probability 1. Therefore, φ∗ is a vertically 

effcient equilibrium. 

Given our equilibrium notion, any equilibrium is vertically effcient. Indeed, if the consumer is 

indifferent between φ∗ and φ∗∗, then the seller is strictly better off under φ∗∗. This implies that φ∗ 

30If this does not pin down a posterior uniquely, then I defne Φ so that it frst modifes φ by merging multiple 
beliefs at which the same product is recommended at the same price. 

33 



does not meet our equilibrium notion. 

Next, I show that for a generic prior, any equilibrium is horizontally ineffcient whenever 

p(x0) > v1 := min V . While the consumer has private type u drawn from x0 ×· · ·× x0 ∈ Δ(V K ), 

for the ease of exposition, I interpret the model as having the total mass one of consumers with QK mass k=1 x ∗(uk) having a valuation vector u = (u1, . . . , uK ) ∈ V K . 

Let E ⊂ D denote the set of disclosure rules which lead to an effcient allocation for some 

best response of the seller. Take any disclosure rule φE ∈ E . Under φE , if the seller prefers to 

recommend product k, then k ∈ arg max`∈K u`. Thus, if both φE and φ̂E achieve an effcient 

allocation, they only differ in terms of which product is recommended to consumers who have 

the same valuation for more than one product. I show that without loss of generality, I can focus 

on disclosure rules that recommend each product in arg max uk with equal probability whenever 

| arg max uk| ≥ 2. 

To show this, take any (M, φ) ∈ E . Let P ⊂ KK be the set of the permutations of {1, . . . , K}. 

Defne φE as the following disclosure rule. First, φE publicly draws a permutation τ ∈ P uniformly 

randomly. Second, φE discloses information according to φ(uτ (1), . . . , uτ(K)) ∈ Δ(M) for each 

realization (u1, . . . , uK ). Then, from the ex-ante perspective, the consumer is recommended a 

product k ∈ arg max uj with probability 1 .| arg max uj | 

I further modify φE to obtain φG ∈ E which maximizes the consumer’s payoff among the 

disclosure rules which lead to an effcient allocation. First, φG decomposes the prior x ∗ into K 

segments so that x ∗ = x1 + · · · + xK . (As a disclosure rule, PN 
1 xk ∈ Δ(V K ) is a posterior 

n=1 xk(vn)QK1belief that φG draws) Each xk consists of | arg max uj | · j=1 x ∗(uj )·1{k∈arg max uj } mass of consumers 

with u ∈ V K . Now, I apply the following procedure to each segment xk. Without loss of generality, 

I explain the procedure for x1. I apply the “greedy algorithm” in Bergemann et al. (2015) to x1 with 
S1 SN1respect to the value for product 1 so that I can decompose x1 into x1 = α1x1 + · · · + αN1 x1 . 

Here, S1 = V and Sn+1 ⊃ Sn for n = 1, . . . , N1 − 1. Moreover, the marginal distribution of 

each x1 
Sn with respect to u1 is supported on Sn ⊂ V , and the seller is indifferent between charging 

any price for product 1 inside the set Sn if the value for product 1 is distributed according to x1 
Sn . 

In contrast to Bergemann et al. (2015), the consumer’s type is K-dimensional. Thus, directly 

applying the algorithm does not pin down the valuation distribution for product k 6 1 in each = 
Sn Snsegment x1 . To pin down the distribution of values for product k 6 1 in each x1 , I assume the = 
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following: whenever the algorithm picks consumers from x1 to construct x1 
Sn , it picks consumers 

whose value for product 2 is lower. If this does not uniquely pin down the valuation vector to pick, 

it picks consumers whose value for product 3 is lower, and so on. In this way, the algorithm pins 

down a unique segmentation. 

Consumer surplus under φG is weakly greater than under φE . This is because the segmentation 

created by the greedy algorithm maximizes consumer surplus and that the valuation distribution of 

each recommended product is identical between φE and φG. Also, under φG, the seller is willing to 

recommend product k to consumers in x Sn because x Sn only contains consumers such that uk ≥ u0 k k k 

for any k0 ∈ K. 

Next, I show the following: there exists a set D ⊂ Δ(V ) satisfying the following: D has 

Lebesgue measure zero in RN , and for any prior x0 ∈ Δ(V )\D, all consumers in x 
S

1 
N1 constructed 

by the last step of the algorithm have the same value for product k. The proof of this part consists 

of two steps. 

In the frst step, take any subsets of V as S1 ⊃ S2 ⊃ · · · ⊃ SN1 such that |SN1 | ≥ 2. Then, 

defne ( )
N1X 

Y (S1, . . . , SN1 ) := y ∈ R : y = αnx1 
Sn , ∃(α1, . . . , αN1 ) ∈ ΔN1−1

n=1 

where ΔN1−1 is the (N1 − 1)-dimensional unit simplex. Because |SN1 | ≥ 2, N1 ≤ N − 1. Thus, 

Y (S1, . . . , SN1 ) is a subset of at most N − 1 dimensional subspace, which has Lebesgue measure 

zero in Δ(V ) ⊂ RN . Defne S as 

S = {(S1, . . . , SN1 ) : ∃N1 ∈ N, V ⊃ S1 ⊃ S2 ⊃ · · · ⊃ SN1 , |SN1 | ≥ 2} . 

Let Q be the set of x ∈ Δ(V ) such that consumers in x Sn constructed in the last step of the k 

algorithm have different values for product k. I can write it as Q = ∪(S1,...,SN 0 )∈S Y (S1, . . . , SN 0 ). 

Because |S| < +∞ and each Y (S1, . . . , SN1 ) has measure zero, Q has Lebesgue measure zero as 

well. 

In the second step, to show that there exists D with the desired property, consider a function ϕ 

which maps any prior x ∈ Δ(V ) to the valuation distribution of product k conditional on the event 

product k is recommended under φE . Because the distribution does not depend on k, I consider 
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�
�

k = 1 without loss of generality. ϕ is written as follows. 

⎞⎛ 
1 Kx1K PK−1 

ϕ(x) = K · 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

�
K−1K−1−` ` 1·x2 x x`=0 1 1 `+1 ` �

�

PK−1 K−1` 1(x1 + x2)
K−1−` x3 ·x3 `=0 `+1 ` 

. . . 

PK−1 �
K−1(x1 + · · · + xN−1)

K−1−` xN
` · 1 xN `=0 `+1 ` 

ϕ is infnitely differentiable and its Jacobian matrix Jϕ is a triangular matrix with the diagonal 

elements being positive as long as xn > 0 for each n = 1, . . . , N . Thus, Jϕ(x) has full rank if x is 

not in a measure-zero set 

{(x1, . . . , xN ) ∈ Δ(V ) : ∃n, xn = 0} . (3) 

By Theorem 1 of Ponomarev (1987), ϕ : RN → RN has the “0-property”: the inverse image 

of measure-zero set by ϕ has measure zero. In particular, D := ϕ−1(Q) has measure zero. Thus, 

there exists a measure-zero set D such that for any x ∈ Δ(V )\D, all consumers in x Sk 
n constructed 

in the last step of the algorithm have the same value for product k. 

Consider the algorithm applied to product k. Recall that x Nk 
k is the segment created at the last 

step. As I have shown, generically, all consumers in x Nk 
k have the same value for product k. Let v ∗ 

Nkdenote the value. In equilibrium, consumers in xk obtain a payoff of zero given the frm’s optimal 

price v ∗. Moreover, if the optimal price at the prior is strictly greater than v1 (i.e., p(x0) ≥ v2), then 

v ∗ > v1. Indeed, if v ∗ = v1, then v1 ∈ Sn for n = 1, . . . , N1. This implies that v1 is an optimal 
Sn 

PN1 Snprice for each x and thus for x1 = αnx , which is a contradiction. To sum up, except 1 n=1 1 

for a Lebesgue measure zero set of priors, if the optimal price is strictly greater than v1 under the 

prior, then consumers in x Nk 
k obtain a payoff of zero given the frm’s optimal price strictly above 

v1. 

Now, I modify φG to create a horizontally ineffcient φI that yields consumer surplus strictly 
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greater than φG, which completes the proof. To simplify the exposition, for any S ⊂ K, let 
∗ ∈ V K ∗ vS denote a vector whose coordinate for each k ∈ S is v and other coordinates are v1. 

First, I replace ε mass of v ∗ in the segment x S1 for product 2 created by the frst step of the {2} 2 

∗ SN2algorithm (applied for product 2) by the same probability mass of vK in the segment x2 . Now, 

this does not affect consumer surplus generated from product 2. However, I now have ε mass of 

v ∗ remaining. I pool this ε mass of v ∗(2) with segment x S1 . Let x̂1 denote the segment created in {2} 1 1 

this way. First, under x̂1
1, price v1 is uniquely optimal because I add a positive mass of consumers 

having value v1 to x1
1, and price v1 is optimal for x1

1. Second, the seller is willing to recommend 

product 1 for x̂1
1, as long as ε is small. This follows from the fact that the seller strictly prefers to set 

price v1 if the seller recommended product k 6 1
1. Indeed, at x S1 

1= 1 for x , the frm’s optimal price is 

v1 no matter which product it recommends. While the seller is indifferent between recommending 

any prices of product 1, consumers who have value v1 for all products but product 1 reject any 

price strictly greater than v1. (Note that such consumers must be in the segment in x1 
S1 .) Thus, for 

product 2, price v1 is uniquely optimal at x1. 

Because the seller strictly prefers to recommend product 1 at price v1 compared to any other 
∗ SN1choices, for some δ > 0, I can bring mass δ of vK from x1 who originally receives zero pay-

off. Let x̃1
1 denote the segment created in this way. As long as δ is small, at x̃1

1, the seller still 

recommends product 1 at price v1. This strictly increases consumer surplus because consumers 

who obtain zero payoff at segment x1
1 now obtain a positive payoff at x̃1

1 without changing surplus 

accruing to other consumers. However, the resulting allocation is ineffcient. 

Therefore, for any disclosure rule which leads to an effcient allocation, there exists a horizon-

tally ineffcient disclosure rule which gives a strictly greater consumer surplus. This completes the 

proof. 

D Proof of Lemma 4 and Proposition 3 

Proof of Lemma 4. For each K, the consumer chooses δ = 1 in the unique symmetric equilibrium 

under nondiscriminatory pricing because disclosure does not affect prices and increases his payoff 

through a better recommendation. Let F denote the CDF of the value for each product. Take any 

ε > 0. Suppose that the seller sets a nondiscriminatory price of b − ε/2 for each product. For a 

37 



suffciently large K, the probability 1 − F (p)K that the consumer buys the recommended product 

goes to 1. Thus, there is K such that the seller’s revenue is at least b − ε if K ≥ K. This implies 

that the consumer’s payoff is at most ε for any such K. This completes the proof of the frst part. 

To see that the consumer can always guarantee some positive payoff u under discriminatory 

pricing with Assumption 2, observe that the consumer can choose to disclose no information and R max Vobtain a payoff of 
p0 

v − p0dF (v) where p0 < max V is the optimal price given no disclosure, 

which is independent of K. � 

Proof of Proposition 3. First, the result under nondiscriminatory pricing follows from the previous 

result, as total surplus is greater than the frm’s revenue. 

Second, I show that total surplus under discriminatory pricing is uniformly bounded away 

from b. Suppose to the contrary that for any n ∈ N, there exists Kn such that when the seller 

sells Kn products, some equilibrium under discriminatory pricing achieves total surplus of at least 

max V − 
n 
1 . Then, I can take a subsequence (Kn` )` such that Kn` < Kn`+1 for any ` ∈ N. Next, I 

show that for any p < max V and ε < 1, there exists `∗ ∈ N such that for any ` ≥ `∗ , 

P`(the consumer’s value for the recommended product ≥ p) ≥ ε. (4) 

where P`(·) is the probability measure on the consumer’s value for the recommended product in 

equilibrium of Kn` -product model. To show inequality 4, suppose to the contrary that there is some 

(p, ε) and a subsequence (K 0 )m of (Kn` )` such that the inequality is violated. Then, given any m

K 0 
m in this subsequence, the total surplus is at most pε + max V (1 − ε) < max V . This contradicts 

that the equilibrium total surplus converges to max V as K 0 → +∞.m 

Now, I use inequality 4 to show that the frm’s equilibrium revenue converges to max V along 

(Kn` )`. Take any r < max V . If the seller sets price r+max V , then for a suffciently large `, the 
2 

consumer accepts the price with probability greater than 2r < 1. That is, for a large `, the 
r+max V 

seller’s expected revenue exceeds r. Since this holds for any r < max V , the seller’s revenue 

converges to max V as ` → +∞. This contradicts that the consumer’s payoff is bounded from 

below by a positive number independent of K, which is shown in Lemma 4. � 
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