Online Privacy and Information Disclosure by Consumers

Shota Ichihashi

Bank of Canada

FTC Microeconomics Conference November 1, 2018

- Model:
 - Consumer discloses information
 - Seller makes a product recommendation

What are the welfare & price implications of consumers' privacy in online marketplaces?

Model:

- Consumer discloses information
- Seller makes a product recommendation
- A key trade-off:

- Model:
 - Consumer discloses information
 - Seller makes a product recommendation
- A key trade-off:
 - Benefit: Recommend/advertise appropriate products

- Model:
 - Consumer discloses information
 - Seller makes a product recommendation
- A key trade-off:
 - Benefit: Recommend/advertise appropriate products
 - Cost: (Potential) price discrimination

Related Literature

Consumers' Personal Data

- Calzorari and Pavan (2006)
- Bergemann and Bonatti (2011, 2015)

Behavioral Price Discrimination

- Villas-Boas (1999, 2004)
- Fudenberg and Tirole (2000)
- Taylor (2004)
- Acquisti and Varian (2005)

Endogenous Privacy Choice

- Conitzer, Taylor, and Wagman (2012)
- Montes, Sand-Zantman, Valletti (2017)
- Braghieri (2017)

Information Design

- Bergemann, Brooks, and Morris (2015)
- Condorelli and Szentes (2017)
- Roesler and Szentes (2017)

- 1. Model
- 2. Results
- 3. Extension

Model: Primitives

Players:

- Seller sells products 1 and 2
- Consumer with unit demand
- (u_1, u_2) : value of each product, IID

Preferences:

- Consumer: value (u_k) price, or zero
- Seller: revenue

Information Disclosure

- ► Before observing (u₁, u₂), Consumer chooses a disclosure level δ ∈ [¹/₂, 1]
- Seller observes δ and a signal realization

Timing of the Game

After Seller updates its belief:

Assumption: Consumer cannot buy non-recommended product

After Seller updates its belief:

- Assumption: Consumer cannot buy non-recommended product
- Limited attention: Consumer fails to consider all available products

(Salant and Rubinstein [2008], Eliaz and Spiegler [2011], etc)

After Seller updates its belief:

- Assumption: Consumer cannot buy non-recommended product
- Limited attention: Consumer fails to consider all available products

(Salant and Rubinstein [2008], Eliaz and Spiegler [2011], etc)

Seller can influence what consumers pay attention to

Timing of Game & Solution Concept

Solution: SPE with Seller and Consumer's tie-breaking

- 1. Model
- 2. Results
- 3. Extension

Equilibrium Recommendation

Equilibrium Recommendation

► More disclosure → better product match

As Consumer increases $\boldsymbol{\delta}$ under discriminatory pricing,

Seller is more likely to recommend the best product $\max(u_1, u_2)$

As Consumer increases δ under discriminatory pricing,

- Seller is more likely to recommend the best product $\max(u_1, u_2)$
- Value distribution for the recommended product

As Consumer increases δ under discriminatory pricing,

- Seller is more likely to recommend the best product $\max(u_1, u_2)$
- Value distribution for the recommended product
 - \rightarrow Lower hazard rate (stronger than FOSD)
 - \rightarrow "less elastic" demand
- Pricing

As Consumer increases δ under discriminatory pricing,

- Seller is more likely to recommend the best product $\max(u_1, u_2)$
- Value distribution for the recommended product
 - \rightarrow Lower hazard rate (stronger than FOSD)
 - \rightarrow "less elastic" demand
- Pricing \rightarrow Monopolist sets a higher price

Main Result

Main Result

Theorem

In the unique equilibrium, Seller is better off and Consumer is worse off under nondiscriminatory pricing.

Nondiscriminatory:

• Highest disclosure level ($\delta = 1$) to get best recomm.

Nondiscriminatory:

- Highest disclosure level ($\delta = 1$) to get best recomm.
- Seller sets a high price (p(1))

Nondiscriminatory:

- Highest disclosure level ($\delta = 1$) to get best recomm.
- Seller sets a high price (p(1))

Nondiscriminatory:

- Highest disclosure level ($\delta = 1$) to get best recomm.
- Seller sets a high price (p(1))

Discriminatory:

Nondiscriminatory:

- Highest disclosure level ($\delta = 1$) to get best recomm.
- Seller sets a high price (p(1))

Discriminatory:

Consumer is the Stackelberg leader

Nondiscriminatory:

- Highest disclosure level ($\delta = 1$) to get best recomm.
- Seller sets a high price (p(1))

Discriminatory:

- Consumer is the Stackelberg leader
- Disclose less info, lower price $(p(\delta^*))$, higher payoff

Alternative interpretation of the model:

- A continuum of consumers
- Seller sets prices after disclosure
 - Discriminatory: Different prices to different consumers
 - Nondiscriminatory: A single price for each product

Alternative interpretation of the model:

- A continuum of consumers
- Seller sets prices after disclosure
 - Discriminatory: Different prices to different consumers
 - Nondiscriminatory: A single price for each product

Equilibrium:

Alternative interpretation of the model:

- A continuum of consumers
- Seller sets prices after disclosure
 - Discriminatory: Different prices to different consumers
 - Nondiscriminatory: A single price for each product

Equilibrium:

Consumers are worse off under NDP

Alternative interpretation of the model:

- A continuum of consumers
- Seller sets prices after disclosure
 - Discriminatory: Different prices to different consumers
 - Nondiscriminatory: A single price for each product

Equilibrium:

- Consumers are worse off under NDP
- Negative externality under NDP: Disclosure hurts other consumers through higher prices

Main Result

Theorem

In the unique equilibrium, Seller is better off and Consumer is worse off under nondiscriminatory pricing.

- Discriminatory pricing
 - \rightarrow less disclosure
 - \rightarrow product mismatch

- Discriminatory pricing
 - \rightarrow less disclosure
 - \rightarrow product mismatch
- Key: multiple products

- Discriminatory pricing
 - \rightarrow less disclosure
 - \rightarrow product mismatch
- Key: multiple products
- 2. Consumers disclose "too much" under NDP
 - Better off by precommitting to withhold information
 - Regulation to limit disclosure?

- 1. Model
- 2. Results
- 3. Extension

Seller sells K products, IID values

Seller sells *K* products, IID values

(Technical assumption: Prior has finite support)

• Consumer can disclose *any* info. about (u_1, \ldots, u_K)

Seller sells *K* products, IID values

- Consumer can disclose *any* info. about (u_1, \ldots, u_K)
 - Robustness of the main finding

Seller sells *K* products, IID values

- Consumer can disclose *any* info. about (u_1, \ldots, u_K)
 - Robustness of the main finding
 - Information design

Seller sells *K* products, IID values

- Consumer can disclose *any* info. about (u_1, \ldots, u_K)
 - Robustness of the main finding
 - Information design
 - If K = 1, Bergemann, Brooks, and Morris (2015)

Result

Unrestricted model with $K \ge 2$

Result

Unrestricted model with $K \ge 2$

Theorem

Seller is better off and Consumer is worse off under NDP.
Result

Unrestricted model with $K \ge 2$

Theorem

Seller is better off and Consumer is worse off under NDP.

- ▶ Benefit of accurate rec. > Loss from no price disc.
- Characterize the efficient disclosure policy
- In contrast to K = 1 (BBM, 2015)

Total Surplus

Does NDP enhance total welfare?

Total Surplus

- Does NDP enhance total welfare?
- In general, depends on parameters
 - NDP \rightarrow accurate recommendation
 - $DP \rightarrow greater probability of trade$

Total Surplus

- Does NDP enhance total welfare?
- In general, depends on parameters
 - NDP \rightarrow accurate recommendation
 - $DP \rightarrow greater probability of trade$

Proposition

For a sufficiently large K, NDP achieves greater total surplus. (Both in the restricted and unrestricted models)

Summary

Welfare & price implications of consumers' privacy?

Model:

- Multi-product Seller
- Consumer with limited attention
- Information affects pricing & recommendation

Results: Committing NOT to price discriminate

- 1. benefits Seller,
- 2. hurts Consumer, and
- 3. may improve total welfare

Extension: Selling data

- Seller can offer financial incentives for collecting info.
 Offer: What Consumer discloses + how much Seller pays
- \blacktriangleright Consumer accepts \rightarrow Seller obtains info and makes payment
- Consumer rejects \rightarrow play the original game
- Again, consider two pricing regimes

How does "market for data" change outcomes?

NDP: No impact

How does "market for data" change outcomes?

- NDP: No impact
- DP Revenue \uparrow & Consumer's payoff \rightarrow
 - Seller buys full info and (typically) pays positive amount

How does "market for data" change outcomes?

- NDP: No impact
- DP Revenue \uparrow & Consumer's payoff \rightarrow
 - Seller buys full info and (typically) pays positive amount
- For some parameters, not only Consumer but Seller prefer discriminatory pricing

Appendix

Concrete example of disclosure level δ

- With probability 0.5, Consumer is of type $k \in \{1, 2\}$
- Type k values product k more, and visits Website k with prob.
 0.6 everyday (non-strategic)
- Seller understands this correlation
- Browsing history $(1221212112\cdots)$
- Consumer decides the length of history to share (1 week? 1 year?) without realizing how his browsing history looks like
- If Seller can access a long history, it can more accurately predict Consumer's type
- Sharing longer history = Greater δ