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seems a reasonable way to manage attachments, but this recipe could allow a malicious
attachment to be automatically synced to all of the user’'s connected devices, thus increasing
the likelihood of being infected by malware.

To gain an in-depth understanding of the potential security and privacy risks, we build an
information-flow model to analyze how often IFTTT recipes involve potential secrecy or integrity
violations. This model assigns each trigger or action a secrecy label and an integrity label. The
labels themselves are arranged in a lattice that represents which flows between labels are safe
and which are potentially unsafe. We use this model to identify recipes that potentially leak
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around 50% of the 19,323 unique recipes we examined are potentially unsafe, as they contain a
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voted photo on a photography sub-reddit effectively gives the participants in that sub-reddit
explicit control over the user’s wallpaper. The most common type of secrecy violation allows




private information to be leaked to online services, such as a recipe that uploads all phone
camera photos to Flickr as public photos.

We next categorize the types of harm these potentially unsafe recipes can impose on
users. After manually examining a random selection of potentially unsafe recipes, we find that
recipes can not only lead to harms such as personal embarrassment, but can also be exploited
by an attacker, e.g., to distribute malware or carry out denial-of-service attacks. While it is
possible that users may purposely use some violating recipes -- a recipe that posts Fitbit step
counts to Twitter is perhaps intentionally leaking private information -- it is not clear to what
extent users are aware of or consciously choose to accept the accompanying risks. We plan to
carry out human subjects experiments to study users’ perceptions and understanding of security
and privacy risks as they create and use IFTTT recipes.

To the best of our knowledge, our work is the first to provide an analytical framework to
better reason about the security and privacy risks associated with end-user programming
platforms such as IFTTT. Our framework can help users discover and mitigate threats to which
they could be unwittingly exposing themselves, and can help analysts and policymakers
understand the risks to the population of users using IFTTT and other end-user-programming
services.
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ABSTRACT

The use of end-user programming, such as if-this-then-that (IFTTT),
is becoming increasingly common. Services like IFTTT allow users
to easily create new functionality by connecting arbitrary Internet-
of-Things (IoT) devices and online services using simple if-then
rules, commonly known as recipes. However, such convenience at
times comes at the cost of security and privacy risks for end users.
To gain an in-depth understanding of the potential security and pri-
vacy risks, we build an information-flow model to analyze how of-
ten IFTTT recipes involve potential integrity or secrecy violations.
Our analysis finds that around 50% of the 19,323 unique recipes
we examined are potentially unsafe, as they contain a secrecy vio-
lation, an integrity violation, or both. We next categorize the types
of harm that these potentially unsafe recipes can cause to users.
After manually examining a random selection of potentially unsafe
recipes, we find that recipes can not only lead to harms such as
personal embarrassment but can also be exploited by an attacker,
e.g., to distribute malware or carry out denial-of-service attacks.
The use of IoT devices and services like IFTTT is expected only to
grow in the near future; our analysis suggests users need to be both
informed about and protected from these emerging threats to which
they could be unwittingly exposing themselves.
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1. INTRODUCTION

Use of Internet-of-Things (IoT) devices, especially in the context
of smart homes, is growing rapidly [5]. Nest thermostats allow
users to control the temperature of their home remotely. Philips
Hue lights can be programmed via mobile phones to change the
color of the light to create personalized ambiance. Smart cameras
can detect motion and alert users of break-ins. These are some of
the many examples of IoT devices that are currently being used by
users in their everyday life. Gartner estimates that around 20 billion
IoT devices will be installed by 2020 [3].
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Moreover, services such as IFTTT allow end users to interface
between different channels (comprised of different IoT devices and
online services) [6], thus making it easy for users to connect the
different functionalities of their deployed IoT devices to each other
and to those offered by various online services. With IFTTT, users
can join together any two of its 364 channels using recipes, simple
if-then rules, that connect specific trigger events to desired action
events. An example of an actual recipe is “If my Fitbit logs 10,000
steps, then update my Twitter with a new post.” Without much
technical skill, users can in this way easily customize the behavior
of their devices to better suit their needs.

However, like many emerging technologies, IFTTT recipes can
also create security and privacy risks for their end users. Secu-
rity and privacy risks could arise from recipes that inadvertently
leak private information, recipes that can be triggered from an un-
trusted source but execute a potentially dangerous action, or recipes
that chain together unexpectedly (where the action executed by one
recipe serves as a trigger for another). Next, we show concrete
examples of security and privacy risks.

A user can create a recipe that publishes his daily physical ac-
tivity (such as step count, distance, and calories burned) to Face-
book. Such a recipe explicitly broadens the audience of what was
previously information private to the user, and could inadvertently
cause embarrassment or other harms. Suppose, for example, the
user claims to be unwell or intentionally tries to avoid a social
gathering; if the user is at the same time engaged in physical ac-
tivity that is automatically reflected in a Facebook post, the claims
of illness will be, perhaps embarrassingly, refuted. To give another
example, a user, during a road trip, adds a recipe that uploads any
photo taken by her Android device to her Flickr account to doc-
ument her journey. Unfortunately, the user forgets to remove this
recipe after the trip, and, soon after, photographs that she takes of
her passport are unintentionally made public on Twitter.

Some recipes lead to security risks and potential harm by allow-
ing an attacker to exploit certain trigger channels. For example,
a user could write a recipe to open the window if the temperature
rises above a certain threshold. This recipe enables an attacker who
can affect the temperature of the user’s house to cause the window
to open and hence give him access to the house. The attacker could
affect the temperature of the house in different ways: for example,
if there is an outside fuse box, the attacker could flip the breaker and
turn off the air conditioning; if the air conditioning has an exhaust
to the outside, the attacker could cover it. To give another exam-

"IFTTT in November 2016 introduced applets, an enhanced version of recipes. We
discuss applets in Section 7.3.

2Unless explicitly stated otherwise, these and all other examples we use in the paper
are of actual IFTTT recipes, although we only hypothesize about their intended uses.
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ple, to conveniently manage email attachments, a user could write
a recipe that uploads all attachments from newly received emails
to her OneDrive folder. Later, if the user receives an email with a
malicious attachment and uses OneDrive to sync multiple devices,
then the malicious attachment would automatically be copied to
multiple devices, increasing the likelihood that the user will mis-
takenly execute the malicious program.

These examples show that making it possible to almost arbitrar-
ily connect smart devices and online services also introduces many
new opportunities for users to harm themselves, whether through
unintentionally leaking information, undermining their physical se-
curity, or exposing themselves to cyber threats. To investigate the
extent to which users may be creating recipes that expose them to
potential security and privacy risks, we examined a set of 19,323
unique published IFTTT recipes—most recipes are published so
that they can be reused—collected by Ur et al. [31]. Based on our
manual inspection of the recipes, we defined an information-flow
lattice consisting of labels that specify the secrecy and integrity lev-
els of recipe components. We analyzed individual recipes based on
this information-flow model. Concerningly, we found that around
50% of the recipes involve either a secrecy or an integrity violation
(or both). By manually examining a random sample of these vio-
lating recipes, we categorized the potential harms to users into four
broad categories. In doing so we also validated the results of our
information-flow violation analysis: while the recipes that our anal-
ysis flags as violations are sometimes likely consistent with users’
intentions, they in general do have the potential to cause or increase
the risk of harms such as embarrassment, leaking behavioral data,
or even physical harm.

We also observe that recipes can inadvertently be chained to-
gether, with the outcome of one recipe causing another recipe to be
triggered. The existence of such chains does not appear to be part
of the IFTTT programming model, and both the possibility and the
existence of specific chains among a user’s recipes is opaque to the
user. We examined the prevalence of recipe chains in our dataset
and how they affect users’ risk. We found that for users who use
30 recipes—slightly above the norm—on average at least two of
their recipes will form a chain, and more than half of these chains
contain a potentially unsafe recipe.

Our paper makes the following contributions:

e We defined a multi-level information-flow lattice for label-
ing the secrecy and integrity characteristics of IFTTT trig-
gers and actions.

e We apply our model to publicly shared IFTTT recipes: we
decorate recipes with security labels and encode them in Pro-
log for automated analysis.

e We quantitatively analyze the recipes for secrecy and integrity
violations, providing the first insight into the extent to which
published recipes may involve privacy or integrity violations.

e We develop a categorization of potential harms that violating
recipes can inflict by manually inspecting a random selection
of violating recipes.

Roadmap. In Section 2, we provide a brief overview of the IFTTT
framework. Section 3 describes our information-flow model. We
describe the findings of our analysis in Section 4, and the possible
harms that result from violations in Section 5. Section 7 discusses
the implications of our findings and the limitations of our approach.
‘We conclude in Section 8.

2. BACKGROUND ON IFTTT

If-this-then-that (IFTTT) [6] is an end-user programming frame-
work to connect smart devices and online services, based on a

trigger—action paradigm. The connectible devices and services are
known as channels; examples are Twitter, Google Drive, Smart-
Things, and Nest thermostats. Each channel has a specific set of
events that can trigger a recipe, and another set of events that can
form the response to the trigger being executed. For instance, the
triggers in the Nest thermostat channel are setting the thermostat
to Home, Away, or Eco modes, or the temperature falling below or
rising above a threshold. The actions that can be triggered include
setting the thermostat to the different modes or setting the temper-
ature to a specific value. To create a recipe, the user selects the
trigger and action channels and events, and then fills in any neces-
sary parameters, known as ingredients, to fully specity the trigger
and action events. Ingredients can be an email address, a phone
number, a link to Dropbox folder, or a specific value (e.g., to which
to set the temperature). In other words, ingredients are the person-
alized components of a recipe.

IFTTT is constantly adding new channels. In October 2016 there
were 364 channels [8], for which we provide a broad, informal cat-
egorization in Fig. 1. The smart home category includes climate
control, home security, lighting, and other smart appliances. The
personal category covers fitness wearables, smart watches, smart-
phones, and photo apps. Social and online media channels include
social media sites and news networks, while business and commu-
nication tools span workflow trackers, email, finance apps, docu-
ment reviewers, and cloud storage. Many channels deal with cal-
endars, to-do-lists, notifications, and task management; we call this
category task tracking. The smart home category contains by far
the largest number of channels. As we discuss later, however, the
majority of the most popular channels belongs to the social and
online media category (see Section 4.1).
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Figure 1: Breakdown of IFTTT channels into five broad categories.

IFTTT has seen a large increase in its user base in recent years;
in 2015, IFTTT was reported to have more than one million unique
users [4]. With the emergence of the 0T, the use of IFTTT is ex-
pected to continue growing [1].

3. INFORMATION-FLOW MODEL

We next describe the information-flow model we developed to
reason about the security and privacy risks of IFTTT recipes. By
examining a subset of recipes, we develop two sets of information-
flow labels; we arrange them in a secrecty lattice and an integrity
lattice to describe the types of information that flow from trigger
events to action events (Section 3.1). Then, we give examples of
potentially unsafe recipes identified by associating labels to events
(Section 3.2). Finally, we formalize the notion of recipe chains and
describe their contribution to potential security and privacy risks
(Section 3.3). Results of analyzing our dataset of IFTTT recipes
using this information-flow model are presented in Section 4.

3.1 Security Lattices

There are two types of information-flow policy violations: se-
crecy violations and integrity violations. Secrecy violations occur
if information that should only be known only by a specific set of
people becomes available to a larger audience, potentially leaking



private information [28, 20]. Integrity violations occur if infor-
mation from less trusted sources influences information from more
trusted sources, potentially corrupting it [28, 10].

To reason about information-flow properties of IFTTT recipes,
we label each IFTTT trigger and action with one or more secrecy
and integrity labels. In our model, secrecy labels denote who could
know that the event took place or the details of the event, and in-
tegrity labels denote who could cause the event. As is standard,
we define our security lattices based on a partial order, written C
between security lables [33]. It is safe to allow information to flow
from a lower (public or trusted) label to a higher label (private or
untrusted), but not the other way around. If a recipe starts at a pri-
vate source and ends at a public sink or if it starts at a untrusted
source and ends at a trusted sink then it is a violation of secrecy or
integrity policies.

To determine which security labels would be effective at describ-
ing the secrecy and integrity characteristics of IFTTT trigger and
action events, we examined recipes to develop candidate labels,
and then iteratively refined the candidate labels through applying
them to additional recipes. This process culminated in the con-
struction of two lattices, shown in Fig. 2 and 3. The secrecy lattice
has three levels. At the top there is the private label, denoting infor-
mation that only the user of a recipe knows, such as Fitbit activity,
or received texts and emails; the middle level is composed of two
somewhat privileged groups (discussed next); and the lowest level
is public, describing information with unrestricted access (e.g., that
has been publicly shared). In the middle level, restricted physi-
cal describes events that take place in partially privileged spaces,
such as a home or office. Anyone in close proximity is privy to
such events and could potentially observe them; but these events
are invisible to users not in proximity. For instance, an event in this
category could involve a phone ringing, lights blinking, or a ther-
mostat being adjusted. Similarly, restricted online describes events
that take place online with a restricted audience, primarily through
social media. Events in this category could be Facebook or Twitter
posts, updates on a work management app, or Spotify activity.

More )
restrictions Private

Restricted Restricted
Physical Online

Fewer .
restrictions

Figure 2: Secrecy lattice. A violation occurs when the corresponding labels
of a trigger—action pair go from more restricted to less restricted or if they
go between the middle groups.

The integrity lattice has a similar structure to the secrecy lat-
tice. The most restricted label is now trusted, referring to events
that only the user should be able to cause (i.e., trigger), and the
least secure label is untrusted, used for events that could poten-
tially be caused by anyone. There is a slightly less trusted variant
of the trusted group, trusted other, which describes sources that the
user does not control but would be extremely hard to manipulate
by others, such as natural phenomena (e.g., weather or time of day,
as reported by an authoritative source) or a reputable website that
is unlikely to be easily manipulated (e.g., The New York Times).
Similarly, there is a slightly more trusted variant of untrusted called
untrusted group, which describes events that can be manipulated by
unknown groups of people (e.g., the event that captures that a new
post has become the most popular post on a subreddit can be trig-
gered by an arbitrary collection of people who collude to upvote

that post). Restricted online and restricted physical refer to similar
events as in the security lattice.

More Untrusted
restrictions
Untrusted
Group
Restricted Restricted
Physical Online
Other

Figure 3: Integrity lattice. It has a similar structure as the secrecy lattice
with additional variants of trusted and untrusted sources.

Fewer
restrictions

We allow an event to have more than one label to account for
different contextual situations, such as a motion sensor that could
be indoors (restricted_physical integrity) or outdoors (untrusted in-
tegrity). We chose these labels for our lattice because they repre-
sent realistic groupings of the behaviors of devices and services
according to their intended use, while still being general enough
to perform user-independent analysis. Because these groupings are
broad, our estimate of risk is conservative; some violations we re-
port would disappear with more accurate knowledge of a user’s
environment. For instance, a cloud storage folder could either be
private or shared to a group; for our analysis, we assume the latter,
even though it leads to reporting secrecy leaks that do not exist if
the user specified a private folder. Making the labels more precise
(e.g., by instantiating them with ingredients, as described in Sec-
tion 2) would require us to know exactly where individuals have
installed their devices, what privacy settings they have on their so-
cial media accounts, etc. Such fine-grained labeling would allow a
more accurate analysis of risks, but is not compatible with a large-
scale analysis, which is our focus.

3.2 Examples of Unsafe Recipes

A recipe has a security violation if a more restricted trigger is
linked to a less restricted action [33] or if the labels of the recipe’s
trigger and action aren’t comparable (i.e., the middle-level labels
restricted physical and restricted online). Since each trigger and
action can potentially have a set of labels, a recipe can be catego-
rized into one of three groups: definite violation (all combinations
of labels violate information-flow constraints, as described by the
secrecy and integrity lattices), maybe violation (some combinations
of labels violates information-flow constraints), or safe (no combi-
nations of labels violates information-flow constraints).

Following are examples of four violating recipes in the context
of our information-flow model.

Definite secrecy violation: private — public. If I take a new photo
with the front camera of my phone, add it to Flickr as a public
photo. Photos taken with a phone camera are by default only seen
by the user, so the trigger label is private. Anyone browsing Flickr
can see a public photo, so the action label is public. This recipe
could be harmful if it causes a user to unintentionally upload pic-
tures of private documents.

Maybe secrecy violation: restricted_physical — (private, restrict-
ed_online). If | enter a specific area, upload a file to Google Drive.
Nearby people can see you enter the area, so the trigger is restric-
ted_ physical. The label of the action depends on the setting of the
Google Drive folder. If it is shared with a group (e.g., housemates



or family), the user’s location becomes visible to an online group;
if it is private, there is no violation.

Definite integrity violation: untrusted — restricted_physical. If
there is a new Instagram photo by anyone in the area, turn my smart
switch on, then off. If the area specified is open to the public, any-
one with an Instagram account could take the photo, so the trigger
label is untrusted. Only people in my house should be able to tog-
gle my smart switch, so the action label is restricted_physical. This
recipe could be harmful if someone takes many photos in short suc-
cession, as it could cause a light connected to the switch to blink
rapidly, harming the switch and disturbing people in the house.

Definite integrity violation: restricted_online — trusted. If I am
tagged in a photo, create a new Facebook status. Any of a user’s
friends can tag her in a photo, so the trigger is restricted_online, but
only the user can update her status, so the action label is trusted.
This recipe could have undesired effects if a friend uploads a large
album and tags a user in many of the photos, causing her account
to spam others with status updates.

3.3 Chaining Recipes

To fully understand the ways in which recipes may cause secu-
rity and privacy risks, it is important also consider recipe chains.
There are two ways recipes can be linked to form chains; we call
them direct linking and physical connections. Recipes A and B
are directly linked if A’s action channel and B’s trigger channel are
the same and A’s action fires B’s trigger. E.g., the action “Send an
email to my email account” will directly fire the trigger “New email
received” if both are from the user’s Gmail channel. Two recipes
can be physically linked if the action of the first recipe affects a
physical medium or channel such as temperature, sound, or light,
and the trigger of the second recipe is fired by changes to the same
medium or channel.

Defining chains To define chains we first start by defining paths.
A path of length N, where N is a integer and N > 2, is a
sequence of recipes Ri,..., Rn such that each adjacent pair of
recipes are linked, ie., V1 < ¢ < N : linked(Ri, Rit1),
and no two recipes are the same. As discussed above two recipes
are linked either directly or if there is a physical connection be-
tween them, i.e., formally 1inked(R;, Ri+1) if action(R;) =
trigger(Ri+1) or 3m € M : changes(action(R;),m) A
monitors(trigger(Rit1), m) where M refers to all possible
physical media.

A max-chain of length N is a path of length N that cannot be
extended by prefixing or suffixing it by any other recipes in the
recipe set that is not already in the path. For convenience, in this
document we will refer to max chains as just chains.

4. ANALYZING IFTTT RECIPES

Using our information-flow model, we can answer interesting
questions about the IFTTT framework. We first describe our dataset
of publicly available IFTTT recipes (Section 4.1) and our analysis
methodology (Section 4.2). Then, we report the results of ana-
lyzing the dataset as a whole for information-flow violations (Sec-
tion 4.3). Finally, we report on a similar analysis that focuses on
subsets of recipes that may be adopted by individual users (Sec-
tion 4.4).

4.1 Dataset

Our dataset consists of all publicly shared IFTTT recipes as of
May 2016 (an updated collection from Ur et al. [31]). In this sec-
tion we present key characteristics of the all the unique recipes and
channels in our dataset.

Number of trigger channels 251
Number of trigger events 876
Number of action channels 218
Number of action events 470

Number of unique recipes 19,323

Table 1: Number of trigger and action channels/events in our dataset.

Recipes: Each recipe in our dataset contains the user name of the
author, the number of times the recipe has been adopted, and a
natural language description of the recipe. It also includes the trig-
ger channel, the specific trigger, an auto-generated description of
what the trigger does, and the same information for the action. For
our analysis, we only need to consider the trigger channel, trig-
ger event, the action channel, and the action event. For exam-
ple, for the recipe “if it gets too hot, then open the window,” we
extracted the trigger channel as nest_thermostat, trigger event
as temperature_rises_above, action channel as smartthings,
and action event as unlock. From the original dataset we extract
all the unique recipes, trigger channel and event pairs, and action
channel and event pairs. Table 1 summarizes the number of chan-
nels and events available in our dataset.

As recipes can be made public by their authors for others to use,
we wanted to see how often recipes were adopted by other IFTTT
users. To analyze this we first aggregate the adoption numbers for
equivalent recipes (i.e., recipes with the same channel and event
pair for both action and trigger); our analysis examines only unique
recipes. Fig. 4 shows the distribution of recipes by adoption num-
ber. Recipes differ sharply in the number of times other users adopt
them. Very few recipes were adopted more than 100,000 times,
with the majority adopted between 1 and 100 times.

Channels: We identify the most popular channels for which users
were writing recipes. Fig. 5 shows the top eight trigger channels
used in recipes from our dataset. Users predominantly write recipes
for social media and online services with Weather being the most
popular trigger channel. The most popular action channels are sim-
ilarly biased towards online services and social media (Fig. 6), with
Google Drive being the channel for most actions.

4.2 Methodology

We encoded both our analytical model and the dataset in Pro-
log [9]. We chose Prolog because recipes resemble Prolog clauses
and the way recipes are triggered resembles proof search in Prolog.
Our Prolog encoding is an executable model for the recipes and our
analysis is written as Prolog queries. Given our model, we ana-
lyzed the risks posed by individual recipes as well as recipe chains.
In the remainder of this subsection, we describe how we assigned
labels to the actions and triggers and how we actually linked recipes
together to identify chains.
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Figure 6: Top eight action channels used by users in our dataset.

4.2.1 Assigning labels to triggers and actions

After devising a preliminary set of labels, we assigned one or
more labels to each trigger and action based on the recipe descrip-
tion and what we know about the particular channels. After run-
ning initial analyses, and after revising the labels, we revisited and
adjusted the assignments. As a final confirmation that the label
assignments were reasonable, two of the authors took a random
sample of 100 recipes and relabeled them. They used the first 20
recipes as a training exercise, discussing the labeling together, and
then labeled the remaining 80 recipes independently. The coders
used a scoring system that awarded one point for full agreement,
0.5 points for partial agreement (in the case of multiple labels), and
zero points for full disagreement. 78% of the time coders agreed
on both labels (or label sets); the remaining 22% of the time one
coder’s labels were a superset of those applied by the other coder
(there was no instances of full disagreement among the coders).

4.2.2 Identifying linked recipes

Although recipe chains are simple to define in the abstract, iden-
tifying chains among our actual recipes is less straighforward.

Direct linking: Determining whether two recipes are directly
linked requires us to match the text description of an action to that
of a trigger. For example, in the chain formed by forwarding one’s
Twitter post to Facebook and then from Facebook to LinkedIn, the
action of posting to Facebook and the trigger of posting to Face-
book are “Create a link post” and “New link post by you”, re-
spectively. While the link between these two descriptions can be
discovered easily by manual inspection, identifying such links au-
tomatically is challenging. Our approach was to manually rewrite
some of the actions to match their corresponding triggers. For ex-
ample, if an action is “turn switch on” and a matching trigger is
“switch turned on”, we would rewrite the action as “switch turned
on”. This is feasible because the match can only happen for actions
and triggers in the same channel and the number of channels in the
dataset is limited.

Physical connections: Connections between recipes through the
physical medium are often subtle. For example, turning off a fan
via a smart plug will cause the temperature in a room to rise, which
may trigger a recipe whose trigger is the temperature rising above a

threshold. However, the smart plug and the thermostat are different
IFTTT channels, and the action and trigger have seemingly unre-
lated descriptions, making it difficult to automatically recognize
such connections. Nevertheless, physical connections are likely
and interesting events within a smart home.

To track physical connections, we labeled relevant triggers and
actions with a physical channel (e.g., temperature, sound, or light)
and a physical event (e.g., level_change_up, turn_on). Physi-
cal events fall roughly into two categories: those that change the
level of a physical medium and those that check for a change in
level, e.g., turning on a heater, and a Nest thermostat checking if
the temperature is above a threshold. Some triggers depend on the
external state of a device, such as an alarm system. If an alarm
system is armed, and something happens to trigger motion, it could
also cause a recipe that responds to the alarm system being trig-
gered to fire; but if the alarm is not armed nothing would happen.
Tracking situations like these required that we explicitly model the
state related to some of the triggers and actions. For our dataset,
alarm is the only trigger we found whose state influences linking
between recipes.

One particular issue we faced was the possible relationship be-
tween power and temperature events. Based on our observa-
tion of recipe descriptions, the devices being controlled by power
switches, such as heaters and fans, often affect temperature. There-
fore, in our model we associate actions that turn power switches on
or off with triggers that fire on temperature changes. This assump-
tion leads to false positives in our analysis, since a precise analysis
depends on what device the power switch controls.

Another issue with physical connections is that connections of-
ten depend on the location of the devices themselves. If there is
motion in the backyard, but the user has a motion sensor in the front
yard, nothing will be triggered. Further, many connections depend
on the values that users specify for their recipes. For example, a
user can have a recipe with an action that sets his thermostat to a
specific temperature chosen by the user when the recipe is created.
The same user has another recipe that triggers when the tempera-
ture inside his home is above a certain threshold. These two recipes
will connect only if the temperature he selected for the first recipe is
above that threshold used in the second recipe. Without knowledge
of specific values of the ingredients, we can only model potential
connections, not necessarily actual ones.

4.3 Recipe-level Violations

Out of the 19,323 unique recipes, we found that 9,637 recipes
(49.9%) were unsafe, as they involved either a secrecy or an in-
tegrity violation. 4,432 recipes (22.9%) contained only integrity vi-
olations, 3,220 recipes (16.7%) only secrecy violations, and 1,985
recipes (10.3%) both secrecy and integrity violations. These num-
bers include the recipes with both definite and maybe violations
(defined in Section 3.2). If we consider only definitely violating
recipes, there are 7,150 (37.0%) unsafe recipes: 3,605 (18.7%)
with only integrity violations, 1,927 (10.0%) with only secrecy,
and 1,618 (8.4%) with both. Fig. 7 illustrates these results. There
is no correlation between the the number of times a recipe is shared
and the probability that it is unsafe.’

We next investigate the number of violations that occur between
specific pairs of labels. For this, we focus on total violations,
i.e., including maybes; results based on only definite violations
are roughly similar. When counting violations for a recipe with
multiple combinations of trigger and action labels, we count each
violating combination as one whole maybe violation for that partic-
ular pair of trigger and action labels. For instance, if the trigger’s

3Nagelkerke’s pseudo R2%0



Figure 7: Distribution of safe and unsafe recipes (in %).

secrecy label can be either private or restricted-online, and the ac-
tion’s is public, then we will count this as two maybe violations,
one for the flow from private to public and one for the flow from
restricted-online to public. This does mean that the number of vio-
lations will be larger than number of violating recipes.

The majority (around 66%) of the 5,685 secrecy violations are
leaks from triggers labeled private to actions labeled restricted-
online or restricted-physical, as shown in Fig. 8. An example of
such violation is the recipe which changes a user’s Facebook sta-
tus based on word search in her Google calender, potentially leak-
ing (by accident) private information about her appointments to the
public or to her Facebook friends, depending on the privacy set-
tings used for the post. In addition, 18% of the secrecy violations
are leaks between triggers and actions in the restricted circles. In
sum, 84% of secrecy violations involve recipes that have their ac-
tion labeled as sharing information with a restricted group, which
suggests that IFTTT users do not care about or do not notice when
their private information could be observed by restricted circles.
On the other hand, only 16% of the secrecy violations have des-
tinations with the public label, which might suggest that IFTTT
users are usually hesitant to share their private or somewhat private
information on public channels.
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Figure 8: Secrecy violations by trigger and action label.

Most of the 7,782 integrity violations (83%) are to actions that
are labeled trusted, with half (50% in total) originating from the
trusted other or untrusted sources, as shown in Fig. 9. This fact
along with the fact that integrity violations are more frequent than
secrecy violations, could indicate that IFTTT users either are not
aware of integrity violation risks or are not concerned about them.

Consistently with this, the most frequent violation, from trusted-
other to trusted is usually benign. In most cases, it involves a recipe
that is triggered by an action on a well known website, such as the
New York Times or ESPN websites. Although relatively benign,
such recipes are nevertheless technically unsafe, since each effec-
tively gives a somewhat trusted source access to possibly sensitive
resources, such as a user’s indoor lighting or her phone’s wallpaper.

More concerning is the second largest category of integrity vi-
olations, from untrusted to trusted. This kind of violation is more
serious because the recipe can be triggered by a larger set of people,
usually with relative ease. For example, the recipe that updates a
user’s smartphone wallpaper whenever an image is posted in a sub-
reddit enables anyone with a Reddit account to change the user’s
device wallpaper to an embarrassing photo.
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Figure 9: Integrity violations by trigger and action label.

4.4 User-level Recipe Violations

An average IFTTT user will have a small set of recipes active
in his or her account. Unfortunately, aside from recipe adoption
statistics, we do not have any data on what sets of recipes individ-
ual users actually use in their account. Therefore, to understand
the risks for a single IFTTT user we first need to identify small
sets of recipes that resemble the recipe sets of individual users.
Another motivation to analyze small sets of recipes is examining
recipe chains. Studying recipe chaining in the whole dataset is
uninsightful, since in practice chaining can take place only among
the recipes adopted by an individual user.

To construct recipe sets we need to answer the following ques-
tions: (1) What is the average number of recipes an individual user
uses? (2) How do we choose the recipes themselves?

To answer the first question we investigate articles reporting av-
erage number of unique users using IFTTT recipes and average
number of recipes run by IFTTT on a daily basis. In early 2015,
several articles reported that IFTTT had around 20 million recipes
executed daily and approximately 600 million each month [7, 2].
In the same time frame, IFTTT was reported to have more than
one million unique active users who run recipes daily [4]. Given
this, we assume that in early 2015, each user would, on average,
run about 20 recipes every day. The actual number would vary
by user, and may have increased since the time these numbers were
reported; however, for our purposes we consider this rough approx-
imation sufficient, and analyze recipes in sets of 20, 30, and 40.

To answer the second question we used two strategies to sam-
ple recipes from our dataset. In the first strategy we selected a set
of n 4+ m recipes, including the n most-frequently adopted recipes
and m recipes selected uniformly at random from the remaining
recipes. The reasoning behind this strategy is that a user is likely
to select some of her recipes from the most used recipes, but will
also select, or create, the remaining recipes based on her unique
needs. Our second strategy was to select all the recipes randomly
but weighted by the frequency of adoption of each recipe. We re-
port on the results of analyzing recipes selected through each of



Recipe Sampling Weighted 30 Top10+Rand10 Top20+Rand10 Top30+Rand10
mean med stddev mean med stddev mean med stddev mean med stddev
Unsafe Recipes 8.4 8 2.4 6.6 7 1.5 10.6 11 1.6 14.5 14 1.5
. inc. maybes 13.2 13 2.5 12.0 2 1.6 19.0 19 1.6 26.0 26 1.6

(]

% Sec. Viol. 2.2 2 1.4 2.5 2 1.1 2.5 2 1.2 3.5 3 1.1
~ inc. maybes 6.8 7 2.2 6.6 7 14 7.7 8 14 12.7 13 14
Int. Viol. 7.2 7 2.3 4.5 4 1.4 8.5 8 1.4 11.5 11 1.4
inc. maybes 9.3 9 2.4 7.3 7 1.5 13.3 13 1.5 16.2 16 1.5
" Number 1.2 1 1.4 0.3 0 0.6 1.7 1 1.0 2.0 2 1.1
.g Avg. Length 2.0 2 0.2 2.0 2 0.0 2.0 2 0.2 2.0 2 0.2
6 Unsafe 0.6 0 0.9 0.2 0 04 1.5 1 0.8 1.7 1 0.9
inc. maybes 1.0 1 1.2 0.3 0 0.5 1.6 1 0.9 1.8 2 1.0

Table 2: Simulating user-level violations for different size of recipe sets. Considered different sampling techniques for selecting the recipes.

these strategies. We found that the choice of strategy does not make
a significant difference to the results of our analysis.

For each sampling strategy, the experiment was repeated 500
times. We summarize our results in Table 2. The average num-
ber of unsafe recipes was above 28% (44% including maybes) for
all strategies. This tells us that an average IFTTT user will have a
significant number of recipes that potentially impose security and
privacy risks. Another interesting finding is that the average user
who has at least 30 recipes will have at least one recipe chain. The
average length of recipe chains is two regardless of how we select
the set of recipes to analyze. This means that the likelihood of more
than two recipes chaining together is low, unless a user intention-
ally adopts recipes that chain. In fact, among the top 50 recipes
there are no unsafe chains. Finally, more than half of the chains in-
clude unsafe recipes. If an unsafe recipe is a part of a chain then its
consequences could be exacerbated, especially if the other recipe
is also unsafe. An example of recipes chaining, and potentially ex-
acerbating risk through doing so, is as follows: One recipe allows
any Facebook user who can tag the victim in a picture to cause that
picture to be added to the victim’s iOS album; another posts any
new photo in the iOS album publicly to the victim’s Flickr account.

S. IMPLICATIONS OF VIOLATIONS

Once we generated the list of recipes that involved information-
flow violations, we wanted (1) to confirm through manual exami-
nation that such recipes could often cause users harm; and (2) to
categorize the types of harm that could be inflicted.

To do this, we started by examining some recipes manually, and
we found that we can categorize the potential harms (risks) into
four broad groups as described below—

Personal: Cause embarrassment or leak behavioral data
Physical: Damage physical health or property or goods
Cyber Security: Disrupt online service or distribute malware
e Innocuous: Seemingly harmless

The most noticeable harm was of personal nature, like causing
personal embarrassment by leaking sensitive pictures or current lo-
cation. We also found recipes that can cause—or increase the risk
of—physical harm such as making break-ins easy, damaging the
physical hardware of 10T devices, or triggering migraines or other
health conditions. Other recipes could be exploited by a malicious
attacker to distribute malware through emails or even enable him
to carry out denial-of-service like attacks to disrupt online services.
For some recipes we could not envision a realistic harm (i.e., any

possible harm simply seemed too far fetched) even though the as-
signed labels seemed logically correct. There is no way to get rid
of these violations without having contextual information about the
user’s exact situation, so we categorize them as false positives and
call them innocuous.

Another interesting aspect of the threat model is that not all vi-
olating recipes need an explicit attacker to have an adverse conse-
quence to the user. A recipe that uploads daily fitbit statistics to
twitter has the potential to embarrass the user without any interfer-
ence from a third party, whereas the recipe that uploads all email
attachments to OneDrive will only be harmful if someone is spam-
ming or sending malicious attachments. To capture this distinction,
we give each harmful recipe an additional label of self or external.

For illustration, we provide one example recipe for each category
of potential harm.

Personal: If I take a new photo, then upload on Flickr as public
photo. This recipe could leak sensitive or embarrassing information
if one took a picture of a check to send to landlord, or a picture of
one’s romantic partner. This harm is labeled as self-inflicting as any
harm is the result of the user’s own behavior.

Physical: If the last family member leaves home, then turn off
lights. This recipe, by turning off the lights in a predictable fashion,
signals that your home is empty, making it easier for a burglar to
plan the opportune time to rob the place. This harm is labeled as
external as a third-party can potentially inflict the harm.

Cyber Security: If there is a new email in your inbox with an
attachment, then add that file to OneDrive. This recipe could be
used to spread malware to all devices synched with a OneDrive
account. If a malicious attachment gets propagated to all synched
devices, it increases the probability that the file will be opened by
the user, especially since it is removed from the suspicious context
(i.e., the email). This harm is labeled as external as a third-party
can potentially inflict the harm.

Innocuous: If a smart switch turns off, then append to a text file in
Dropbox. Technically, there is an integrity violation here because
anyone who can access the switch can fill your Dropbox space,
however, this recipe cannot be spammed as a single misuse would
only generate a few bytes of data (assuming the attacker does not
control your smart switch, in which case the attacker can inflict
greater harm anyway).

After determining the potential categories of harm, we next try to
quantitatively measure how many of the violating recipes fall into
each these categories. To do this, we manually examined randomly



selected 200 recipes from all the violating recipes in our dataset.
The first 20 recipes were used for training; two coders together as-
signed one or more harm labels to each recipe and discussed the
rationale for their decision. For the remaining 180 recipes, the
two coders independently categorized each recipe’s harm(s) and
came together to compare results. If the labels matched exactly,
we awarded one point of agreement, for partial match (in the case
of multi-labels) we awarded 0.5 points of agreement, and if the
coders decided one of them had fully mislabeled the harm category
for a recipe, we awarded zero points. Initially the coders agreed
on 87% of the categorization and were able to fully agree after dis-
cussing the remaining conflicts. There were no disagreements over
whether a recipe needed a third party to be harmful (i.e., in the task
of assigning self or external labels).

innocuous+ - |

Personal

Cyber

Physical Subcategory
Self

. External
I . External and self

Cyber, Personal

Personal, Physical

Category of harm

Cyber, Physical

0% 10%  20%  30%  40%
Percentage of violations

Figure 10: Categorical analysis of the implications of information-flow
violations. External and self denotes that the cyber harm is external and
the personal harm is self-inflicted.

Fig. 10, highlights our findings after performing inter-coder
agreement. As seen in Fig. 10, a little more than a third of the
recipes were innocuous, or not likely to cause harm. Most of the
harmful recipes had personal consequences, leaking unintended in-
formation or causing embarrassment or agitation. The next largest
category is cyber security harms, dealing with damage to digital
devices and cloud services, at around 13%. Recipes that may in-
crease the risk of physical damage are less common, accounting
for around 10% of the violating recipes, and there are a handful of
recipe that have multiple types of harm.

It is worth noting that there can be overlaps between categories
and side effects that we could not determine just from the recipes.
For example, damage to a device will probably cost some money to
fix or replace, and embarrassments that significantly effects one’s
public image can have far-reaching repercussions, including finan-
cial ones. If a recipe leads a user to accidentally post a politically
controversial tweet, this could cost her friendships and other po-
tential opportunities. It is also interesting that most violations have
outcomes that involve data being saved or published online, primar-
ily through social media or cloud services, and therefore can have
diverse indirect consequences. For example, many recipes involve
posting private information to online services where this informa-
tion may further be used in different ways; if the original posting
of private information was unintended, the consequences of that
accident may be far-reaching and hard to quantify.

6. RELATED WORK

With the widespread use of various online services and IoT de-
vices, end-user programming has received much research attention
in the last decade as it allows users to easily interface different
devices with other devices or online services. Researchers have
looked at how an average user can customize their smart home
using trigger-action programming [30, 13, 32], while others have
also extended such automation techniques to commercial build-

ings [26]. Researchers have also studied the usability of existing
trigger-action programming frameworks and have propose guide-
lines for developing more user-friendly interfaces [13, 21, 11, 29,
15]. Recently, there have been efforts to built semantic parsers that
automatically map IFTTT style recipes described in natural lan-
guage to actual executable codes [27, 12].

While end-user programming makes it easy for users to write au-
tomation rules, it does complicate things when multiple users share
the same environment and try to enforce their own set of rules. In
such scenarios not only conflicts among individual rules arise, but
also unforeseen chaining of rules start to emerge. Researchers have
studied such conflicts and have proposed ways to resolve such con-
flicts for home and office environments [24, 26, 22]. A similar kind
of conflict resolution study has also been done in the context of
designing a smart city [23].

Information flow based security analysis has long been an active
field of research. Information flow controls enable us to track the
propagation of information in and across systems, and thus help
us prevent sensitive information from being released. Dorothy E.
Denning’s work on using a lattice model to guarantee secure infor-
mation flow in a computer system [14] was seminal in this field.
Later on, Sabelfeld et al. provide a comprehensive survey of the
past three decades of research on information-flow security [28].
Myers et al. show how to incorporate language-based information
flow controls into simple imperative programming languages [25].
In the era of smartphones, information-flow based analytic frame-
works such as TaintDroid [17] and PiOS [16] enabled users to
track how their private data is being used by third-party applica-
tions. With the fast adoption of IoT devices in the recent years,
researchers are now focusing on analyzing the security and privacy
risks of IoT devices. But like any emergent technology, [oT too is
rife with potential security risks [18]. Moreover, current IoT pro-
gramming frameworks only support permission-based access con-
trol on sensitive data and are ineffective in controlling how sensitive
data is used once access is gained. FlowFense [19] framework pro-
vides such control by imposing developers to declare the intended
data flow patterns for sensitive data. Our work looks at analyzing
the security and privacy risks of end-user programming frameworks
like IFTTT without requiring fine-grained user settings.

7. DISCUSSION AND LIMITATIONS

We next discuss some implications of our results, the limitations
of our approach, and how applets, the new form of recipes, impact
our overall analysis.

7.1 Levels of Concern and Intended Leaks

Our breakdown of violating recipes based on the labels of trig-
gers and actions reveals some interesting insights. One insight is
that violating recipes vary significantly in the amount of risk to
which they expose users. For example, an information flow from
private to public is more concerning than from private to one of the
restricted groups. Sharing one’s health related information (e.g., a
report generated by a Fitbit device) with one’s Facebook friends
might be indiscreet, but it is probably less risky than sharing it on
a public web forum. Likewise, an integrity violation caused by an
untrusted trigger is more concerning than one caused by a restric-
ted trigger. A family member or a friend figuring out he can open
a window by increasing the temperature inside your home may not
use this knowledge maliciously, whereas a stranger might.

As we discuss in Section 4.3, for most pairs of labels that are
indicative of a secrecy violation, there is a significant number of
recipes that use them as trigger and action labels. The largest such
sets are recipes that pass information from private to restricted on-



line and from private to restricted physical. Users are leaking pri-
vate information, but mostly to specific groups of people rather than
the public at large. The types of integrity violations are less varied:
there are few recipes that connect restricted groups, with the vast
majority of violating recipes going from trusted_other to trusted
and from untrusted to trusted.

In retrospect, these are the types of violations to be expected.
Two major uses of IFTTT recipes are controlling smart home de-
vices and pushing information to social media. It is easy for the
latter to result in leaking private information. In the former case,
many IFTTT actions are configured so that the action appears to
come from the user, or at least an account controlled by the user.
Indeed, this seems inherent in the idea of automation for conve-
nience: a user gives up direct control of something he would do
manually and is instead allowing a program to automate it, some-
times based on untrusted input.

Although many violating recipes are likely consistent with what
users intended, their behavior is not necessarily innocuous. Harm-
ful side effects are probably not at the forefront of the user’s mind,
especially since much of the conversation surrounding the ability to
arbitrarily link devices and services focuses on the convenience and
novelty of it. Since the concept is innovative, loT-specific security
principles and behaviors are not yet in the public awareness. For ex-
ample, people generally do not have to worry about any new emerg-
ing threats for an old, non-smart home. While insecurities exist for
conventional homes, attack vectors and their respective defenses
are generally well known. Connecting one’s home with recipes
can introduce new methods of attack of which the user might not
be cognizant, and, thus, for which good safeguards might not be
in place. As shown in our harm analysis, even recipes seemingly
working as intended can have harmful consequences that the user
might not have considered when adopting the recipe. This sug-
gests that it is important to educate users about the potential risks
inherent in many of their recipes, so that they can make rational
decisions about whether the harms outweigh the benefits or at least
be aware that new safety measures may be necessary.

7.2 Limitations

Some major limitations of our work follow from its abstract na-
ture. We made design choices that resulted in loss of some detail in
order to keep the model general enough to be useful without user-
specific parameters (which we do not have). We used fairly broad
security labels, labeled device APIs as opposed to data, and chained
together recipes that might not actually interact, all of which leads
to overapproximating the number of violating recipes. We also
lacked concrete data about which specific sets of recipes individ-
ual users adopted and so had to approximate such sets.

Based on these limitations, we see a few directions for future
work. We would like to make these analyses more applicable to an
individual user, perhaps by creating a web interface that would in-
form users of security and privacy risks as they write their recipes.
Making such a tool would remove some of the weaknesses of our
current approach, as users’ specific instantiations of recipes could
be used to perform the analyses more precisely. In this interface, we
could also create explicit declassification and endorsement func-
tions that users would utilize to indicate when they are knowingly
creating or adopting recipes that contain information-flow viola-
tions. In addition to developing such a tool or interface, it would
be helpful to conduct user studies to collect data on the number and
types of recipes that specific users adopt, as well as to elicit infor-
mation about their awareness and perception of violations among
their recipes, and of IoT security concerns in general.

7.3 Applets: Enhanced Recipes

In November 2016 IFTTT introduced enhanced recipes called
applets and converted existing recipes to applets. Applets add three
major capabilities, which we discuss below, along with their impli-
cations for our analysis. Only registered IFTTT partners can create
applets with these new features; regular users can only adopt exist-
ing applets or create new ones that are equivalent to recipes.

Multiple actions: While recipes were limited to only one action
per recipe, applets can have multiple actions. This does not impact
our analysis, as an applet with n actions can be replaced with n
recipes with the same trigger.

Queries: Previously, an action would only contain information
from the trigger channel. Applets can execute gueries to acquire
additional information about the state of guery channels. For exam-
ple, an applet that sends a daily email about the user’s energy con-
sumption could query the user’s Harmony remote, a query channel,
to check if the TV is on or off. We may need to augment our model
to include new secrecy and integrity labels for query channels and
assign each query channel appropriate labels.

Conditions: With applets one can include code to conditionally
execute the actions. For example, a recipe that sends you an SMS
whenever it is raining can be made to not execute during the night.
We need to augment our model and analysis to consider flow of
information from conditions to actions. In particular, if the results
from queries can be used in conditions, then we need to make sure
that the query channel labels are also considered to identify infor-
mation leakage from query channels to the action.

8. CONCLUSION

Recipes with potential insecurities are endemic on IFTTT. Many
recipes are seemingly benign, but can cause personal, digital, or
even physical harm. While many of these risks exist in some
form without using recipes, such as oversharing to social media
or smart devices taking away control, the fact that they are hap-
pening through channels that the user might not have considered
harmful is of significant importance. If users do not realize that
there is a danger, they will do nothing to guard against it, rendering
them more susceptible to attacks. The prevalence of potential risks
among the recipes we examined strongly suggests that users need
to be informed about the security and integrity violations that their
recipes can potentially create, and of the potential consequences of
such violations, so that they can make well-informed decisions. In
this context, our work provides a foundation for tools and practices
to better inform and help users manage the risks they face.
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