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Abstract

This paper studies the endogenous formation of supply networks in bilateral oligopoly

by analyzing a model of contracting with transfers in which each firm optimizes its

entire set of contracts across multiple bilateral negotiations. Because of downstream

competition, industry profits are not necessarily maximized when all supply links

are active and the supply networks that constitute coalition-proof Nash equilibria of

the contracting game may differ from those that maximize industry profits. I first

demonstrate that, in the absence of public commitment, all marginal input prices in

any self-enforcing supply network are equal to the marginal cost of production. I then

explore how a number of factors – such as supplier and retailer differentiation and the

availability of exclusive contracts – affect the structure of equilibrium supply networks,

profits and welfare. I also explore how the analysis changes if firms cannot use transfers

or long-term contracts at the network-formation stage and must instead engage in

ex-post bilateral bargaining with the associated hold-up problems.
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1 Introduction
In many industries a number of differentiated but competing upstream firms (“suppliers”)

distribute their products through a number of differentiated but competing downstream firms

(“retailers”). In some of these industries most retailers distribute the products of most suppliers,

i.e., most potential supply links are active. In other industries, instead, each retailer distributes

the products of a different supplier and some important potential supply links remain inactive.

Examples of the latter include the exclusive distribution of many sports events and films in the

pay TV industry – see, e.g., OECD (2013) and Weeds (2016) – and, until a few years ago, of the

iPhone and other models of smartphones in the wireless telecommunication industry – see, e.g.,

Sinkinson (2014). Moreover, in some industries the structure of supply networks appears to be

changing over time. For example, the wireless telecommunication industry has recently moved

away from smartphone exclusivity, whereas the healthcare industry appears to be moving in the

opposite direction, with an increasing number of health insurance companies offering networks

that restrict the ability of patients to choose among different healthcare providers (see, e.g., Ho

and Lee, 2017).

This paper presents a model of contracting and competition that can shed some light on the

endogenous emergence of different structures of supply networks in markets like the ones dis-

cussed above. In this model, first all suppliers and retailers simultaneously have an opportunity

to negotiate nonlinear vertical contracts, then all retailers with at least one contract compete in

the downstream market. Importantly, when negotiating its contracts in the first stage, each firm

makes use of all the information at its disposal and optimizes its strategy across multiple bilat-

eral negotiations. The model is used to study the effects of nonexclusive and exclusive contracts

on equilibrium supply networks, profits and welfare in environments with varying degrees of

supplier and retailer differentiation.

Bilateral trade and contracting in settings with multiple firms on both sides of a market have

been studied by at least two streams of literature. A substantial theoretical literature has studied

trade in buyer-seller networks (e.g., Kranton and Minehart, 2001; Ostrovsky, 2008; and Elliott,

2015) and contracting with multiple principals and agents (e.g., Prat and Rustichini, 2003). How-

ever, this literature has focused exclusively on the case in which buyers do not compete in the

downstream market. Downstream competition, and specifically the ability of supply contracts

to affect such competition, plays instead a crucial role in this paper.

A more applied literature has studied the division of surplus between suppliers and retailers

in a number of markets, including the television market (e.g., Crawford and Yurukoglu, 2012)
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and the healthcare market (e.g., Gowrisankaran, Nevo and Town, 2015). This literature relies

on a “Nash-in-Nash” approach, in which each pair of firms engages in Nash bargaining, taking

as given the agreements reached by all other pairs (see Collard-Wexler, Gowrisankaran and Lee

(2017) for a thorough discussion of, and theoretical foundations for, this approach). Although

this approach can accommodate downstream competition, it relies on a number of fairly strong

assumptions about contracting. In particular, it assumes that, when negotiating their contracts,

firms take all other contracts (including other contracts to which they themselves are a party) as

given, thus not making use of all the information at their disposal, and that there are gains from

trade associated with every potential supply link. These assumptions make it possible to derive,

and take to the data, precise and tractable implications regarding the division of surplus over

given supply networks. They are, however, less well-suited to studying how firms may affect

downstream competition by implementing networks in which some supply links may remain

inactive.1 For example, this approach does not account adequately for the fact that a pair of

firms may not find it profitable to rescind a supply link if all other links remain active, but may

find it profitable to do so if other supply links are also rescinded. Another limitation of this

literature is that it typically constrains payments from retailers to suppliers to be either lump-

sum (e.g., Gowrisankaran et al., 2015; Collard-Wexler et al., 2017) or linear without any lump-

sum component (e.g., Horn and Wolinsky, 1988; Crawford and Yurukoglu, 2012).

In this paper I advance this literature by combining insights from the literature on network

formation with transfers (e.g., Bloch and Jackson, 2007; Jackson, 2008; Bloch and Dutta, 2011)

with insights from the literature on vertical contracting with a single supplier (e.g., O’Brien and

Shaffer, 1992; McAfee and Schwartz, 1994; Rey and Vergé, 2004) or a single retailer (e.g., O’Brien

and Shaffer, 1997; Bernheim and Whinston, 1998). Relative to the “Nash-in-Nash” literature dis-

cussed above, this approach provides less precise predictions regarding the division of surplus

between upstream and downstream firms, but can shed some light on other important aspects,

such as the structure of vertical contracts, the importance of multilateral deviations, the endoge-

nous emergence of narrow supply networks, and the effects of the latter on the intensity of down-

stream competition.

Overview – The starting point of the analysis is an exploration of how the structure of sup-

1Liebman (2016) and Ho and Lee (2017) study situations in which health insurance companies commit
ex-ante to exclude one or more health care providers from their networks to increase their bargaining leverage.
However, they either do not allow for downstream competition (Ho and Lee, 2017) or do not clearly discuss
the implications of exclusivity for such competition (Liebman, 2016). Other important differences, discussed
in further detail in Section 6.2, are that my framework allows for both upstream and downstream exclusivity
and does not allow for ex-ante commitment to exclude.
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ply networks affects industry profits.2 Networks in which a relatively large number of potential

distribution channels remain inactive, because some retailers are excluded or because active re-

tailers distribute different products, have two opposite effects on industry profits. On the one

hand, when suppliers and retailers are differentiated, the absence of some product-retailer com-

binations reduces the demand or willingness to pay expressed by some consumers, thus lower-

ing total industry revenues. On the other hand, it softens downstream competition by reducing

the number or increasing the effective differentiation of active retailers. The relative importance

of these two effects determines which type of network maximizes industry profits. For exam-

ple, when retailers are close substitutes, softening downstream competition is more important

than preserving retailers’ variety. As a result, industry profits are maximized by networks with

relatively few retailers or with retailers carrying different products. The opposite is true when

retailers are intrinsically highly differentiated.

Although a number of articles has developed similar insights regarding the effects of differ-

ent supply networks on downstream competition, these articles have either taken such networks

as exogenously given (e.g., O’Brien and Shaffer, 1993; Besanko and Perry, 1994) or analyzed

very stylized contracting games that, effectively, impose exogenous limits on the types of net-

works that can arise (e.g., Dobson and Waterson, 1996; Hermalin and Katz, 2013; Nocke and Rey,

2016).3 I advance this literature by developing and solving a full-fledged contracting model that

does not preclude any contracting channel, and thus does not exogenously rule out any type of

supply network. In particular, I study how externalities arising from upstream and downstream

competition may prevent decentralized, bilateral contracting from yielding equilibrium supply

networks that maximize industry profits, and how firms can use exclusive contracts to address

these externalities, thus affecting equilibrium supply networks, profits and welfare.

The formal model on which I rely is an adaptation of Bloch and Jackson’s (2007) model of

network formation with transfers to a bilateral oligopoly setting with vertical contracting. In this

model, all firms on either side of the market (i.e., all suppliers and all retailers) simultaneously

and secretly submit contract proposals to all firms on the other side of the market. A contract

proposal includes proposals regarding i) the wholesale price at which the retailer will purchase

2Another factor that may affect industry profits, besides the structure of supply networks, is the extent to
which suppliers can soften downstream competition by publicly committing to marginal input prices. As I
discuss further below, in this paper I assume that suppliers do not have any ability to commit publicly to
such prices and thus to affect equilibrium industry profits through this channel.

3Hermalin and Katz (2013) and Nocke and Rey (2016) consider simple contracting games in which each
firm on one side of the market is exogenously matched with one and only one firm on the other side of
the market and, therefore, cannot organize multilateral deviations in which it negotiates with, and possibly
requires exclusivity from, two or more firms at the same time. Analogously, Dobson and Waterson (1996)
assume that each firm is exogenously limited to requiring exclusivity from at most one other firm.
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the product from the supplier, ii) exclusivity clauses (if any), and iii) an upfront transfer to be

paid by one party to the other at the time the contract is signed. A supplier and a retailer enter a

contract only if their proposals regarding all three of these elements are consistent. Once all con-

tracting is concluded, retailers with at least one supply contract compete in prices or quantities

in the downstream market.

There are three main differences between my model and that of Bloch and Jackson (2007).

First, in Bloch and Jackson’s model, and in much of the literature on network formation, the only

relevant choice for a pair of players is whether to form or sever a link. In the vertical contracting

setting of this paper, instead, each supplier-retailer pair must also specify a wholesale price (see

i) above), which affects the price or quantity chosen by the retailer and, through this channel, the

payoffs of the network formation game. I show that, in any equilibrium with secret contracts all

wholesale prices are equal to marginal cost. Second, the application of the model to a bilateral

oligopoly setting implies some inescapable restrictions on payoffs, arising mainly from supplier

and retailer substitutability, that make it impossible to rely on some of the assumptions (e.g.,

nonnegative externalities and link-separability of payoffs) used by Bloch and Jackson to derive

some of their results. Finally, as discussed below, in order to deal with the pervasive horizontal

externalities in my model, I use Bernheim, Peleg and Whinston’s (1987) coalition-proof Nash

equilibrium (CPNE) as a solution concept. CPNE allows for multilateral deviations and is a

stronger equilibrium concept than the pairwise Nash equilibrium used by Bloch and Jackson

(2007), in which firms can only add one new link at a time, or the contract equilibrium proposed

by Crémer and Riordan (1987). I solve the model described above by first deriving some general

results and then applying them to a bilateral duopoly with linear demand. This allows me to

answer the following questions.

First, in an environment without exclusive contracts, can some supply links remain inactive

in equilibrium? And under what conditions do equilibrium supply networks maximize industry

profits? I show that – with the exception of Bertrand competition between closely substitutable

retailers, for which each retailer sells a different product in equilibrium – all potential supply

links are generally active in equilibrium, even when supply networks with fewer links would

maximize industry profits. This is the case because the inability of firms to use exclusive contracts

makes it impossible to prevent certain supplier-retailer pairs from behaving opportunistically

and forming new links at the expense of other supplier-retailer pairs.

Second, how does the availability of exclusive contracts affect equilibrium supply networks,

welfare and profits? By requiring the consent of broader coalitions of firms for deviations that

expand a supply network, exclusive contracts solve the opportunism problem discussed above
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and make it possible to support equilibria with narrow networks when these maximize industry

profits, although pure-strategy equilibria do not always exist. When exclusive contracts affect

the equilibrium structure of supply networks, they always reduce variety and the intensity of

downstream competition, resulting in lower consumer and overall welfare. Moreover, the avail-

ability of exclusive contracts, by affecting the disagreement payoffs of suppliers and retailers

differently, redistributes profits from retailers to suppliers, even when such contracts are not

adopted in equilibrium.

Finally, how do constraints on the firms’ ability to use upfront transfers or long-term contracts

and to create instantaneously new supply links at the network formation stage affect equilibrium

outcomes? In the baseline model discussed above there are no constraints on such ability. As a

result, the division of the profits generated by new supply links takes place at the same time that

the network is formed and is not affected by hold-up problems. Instead, if firms must form a

complete supply network, for example by making specific investments, before starting to negoti-

ate supply contracts and agreeing on any transfers, the division of profits resulting from ex-post

bargaining is affected by hold up, as in Lee and Fong (2013) and Rey and Vergé (2016) (discussed

at the end of this introduction). I show that, relative to an environment with upfront transfers,

ex-post bargaining with hold up makes it easier to support equilibria with inactive supply links

because firms find it more difficult to share the joint profits from deviations that form new sup-

ply links. This has ambiguous effects on industry profits, but unambiguously reduces consumer

and overall welfare.

From a methodological point of view, solving the model of simultaneous contracting with

transfers presented in this paper poses a number of challenges. One such challenge lies in ap-

plying the CPNE solution concept to an environment with transfers. CPNE requires coalitional

deviations to be immune to further deviations by subcoalitions. When firms can use transfers,

this implies that the transfers that support successive deviations are related, and one must keep

track of their relationships. Specifically, the transfers that make a given deviation profitable for

all firms involved in that deviation may depend on the transfers that made the previous devi-

ation in the sequence profitable, and so on, potentially all the way back to the transfers that

support the candidate equilibrium. I tackle this issue by proposing a general algorithm that I

subsequently use to characterize the CPNE of a tractable bilateral duopoly model.

Another challenge is the determination of equilibrium wholesale prices. As is well-known,

in the presence of downstream competition equilibrium wholesale prices depend on the extent

to which a supplier can publicly commit to his offers and, if public commitment is not available,

on the beliefs held by retailers about that supplier’s dealings with rival retailers. In this paper
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I assume that firms cannot publicly commit to their contract proposals and show that all CPNE

wholesale prices are equal to marginal cost. Similar results have already been established by

the existing literature in different settings (e.g., a single supplier or a single retailer) and/or for

different equilibrium concepts (e.g., PBE or contract equilibrium). Here I extend those findings

to the CPNE of a bilateral oligopoly. I also show that, by requiring multilateral deviations to be

self-enforcing, CPNE avoids the issues identified by Rey and Vergé (2004) for the existence of

perfect Bayesian equilibrium wholesale prices with Bertrand downstream competition.

Other related literature – This paper is also related to Rey and Vergé (2016) and Lee and Fong

(2013). As in this paper, Rey and Vergé (2016) allow firms to engage in multiple bilateral contract

negotiations. However, contrary to this paper, they do not allow for the use of transfers or exclu-

sive contracts at the stage in which supply relations are initially formed, limiting their attention

to the case in which the surplus from any relation can only be divided ex-post under conditions

of hold up. Lee and Fong (2013) present a model of dynamic network formation in which, at

any point in time, firms can only bargain over the existing network and, like in Rey and Vergé

(2016), cannot create new supply links. However, they allow firms to create new supply links in

subsequent periods. When the cost from doing so is low and the time between periods is short,

Lee and Fong’s (2013) environment approaches the environment without hold up that I study in

this paper. Notwithstanding this similarity, their model and mine are quite different. Lee and

Fong (2013) emphasize intrinsically dynamic aspects, such as the response of networks to shocks

in the presence of adjustment costs, and simplify other aspects by, e.g., assuming that firms can

only use lump-sum transfers and that exclusive contracts are not available. Instead, I adopt a

static model of simultaneous contracting and emphasize the role played by the structure of verti-

cal contracts and the degree of supplier and retailer differentiation. By relying on coalition-proof

Nash equilibrium, I also propose a more systematic refinement of the set of equilibria than Lee

and Fong (2013). Finally, I provide an in-depth analysis of the role played by exclusive contracts,

which are not addressed in Rey and Vergé (2016) and Lee and Fong (2013), and are more natu-

rally studied in an environment like mine, in which firms can use upfront payments to purchase

exclusivity.

Organization of the paper – Section 2 introduces a formal model with upfront transfers. Section

3 presents the solution method and some general results. Sections 4 through 6 study supply

networks with and without exclusive contracts in a bilateral duopoly model with linear demand.

Section 7 explores the effects of ex-post bargaining and hold up. Section 8 concludes. All proofs

are in Appendix A. Supplemental material is contained in Appendix B (available online).4

4This online appendix will be available shortly at https://sites.google.com/site/paoloramezzana/.
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2 Model and equilibrium concept
This section first introduces a model of contracting and competition in bilateral oligopoly and

then discusses why Bernheim, Peleg and Whinston’s (1987) coalition-proof Nash equilibrium

(CPNE) is an appropriate solution concept for this model.

2.1 Model
There are S ≥ 2 suppliers, each producing a different product at constant marginal cost c.

The products are imperfect substitutes and are distributed to consumers by R ≥ 2 differentiated

and competing retailers at no additional costs besides their payments to suppliers (introduced

further below). With a slight abuse of notation, S and R denote both the number and the set of

suppliers and retailers, respectively. Let qsr denote the quantity and psr the retail price of product

s ∈ S sold by retailer r ∈ R, with q ∈ RS×R and p ∈ RS×R denoting the vectors of all quantities

and prices. The direct demand for product s at retailer r is qsr = Dsr (p), with inverse demand

psr = Psr (q). In Section 4, I will introduce a linear demand system that allows me to parametrize

the degree of supplier and retailer differentiation.

Given this environment, I study a two-stage game, in which first suppliers and retailers nego-

tiate bilateral supply contracts and then retailers compete in the downstream market. Specifically,

in the first stage suppliers and retailers engage in the following simultaneous contracting game

with transfers, which is an adaptation of the game of network formation with transfers intro-

duced by Bloch and Jackson (2007). Denote by K = {S, R} one side of the market (i.e. the set of

suppliers or the set of retailers) and by K′ = {S, R}, K′ 6= K, the other side of the market. Each

firm i ∈ K announces a contract proposal xj
i =

〈
tj
i , wj

i , θ
j
i

〉
for each firm j ∈ K′, where tj

i R 0 and

wj
i ≥ 0 are, respectively, the proposed transfer and wholesale price that the retailer must pay to

the supplier, and θ
j
i the type of exclusive arrangement, if any, that governs the relationship be-

tween i and j. Exclusivity arrangements may involve one-way exclusivity, with which i commits

to be exclusive to j or vice versa, or mutual exclusivity and will be discussed in further detail in

Section 6. I assume that firms cannot publicly commit to their contract proposals. I discuss the

details of this assumption below, after having discussed the equilibrium concept adopted.

Denoting by s the supplier and by r the retailer in the pair (i, j), s and r reach an agreement if

wr
s = ws

r, θr
s = θs

r , and ts
r ≥ tr

s, where the latter condition means that the retailer is willing to offer

a transfer ts
r that meets the transfer request tr

s of the supplier. When s and r reach an agreement,

a contract with wsr = wr
s = ws

r, θsr = θr
s = θs

r and tsr = ts
r enters into effect and a supply

link, denoted by `sr = 1, is formed.5 Otherwise no link is formed and `sr = 0. The collection

5Note that in any equilibrium it will always be ts
r = tr

s, otherwise either s or r would have a profitable
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` = 〈`sr〉s∈S,r∈R of all supply links, or lack thereof, gives rise to a supply network g = g (`).

When bilateral contracting is concluded, retailers observe the resulting supply network g,

but not the wholesale prices in the contracts signed by other retailers, and compete in the down-

stream market in stage 2. Since the general principles of the analysis that follows apply equally

well to Cournot or Bertrand downstream competition, I allow for either mode of competition. I

assume that for any supply network g and profile of wholesale prices w ∈ RS×R, downstream

competition results in a unique equilibrium profile of retail prices p (g, w) and quantities q (g, w).

Given a profile of contracts x = 〈t, w, θ〉, and the resulting supply network g, the payoffs of

supplier s and retailer r are therefore, respectively,

πs (g, t, w) = ∑
r∈R

`sr [tsr + (wsr − c) qsr (g, w)] , (1)

πr (g, t, w) = ∑
s∈S

`sr [(psr − wsr) qsr (g, w)− tsr] . (2)

Throughout the paper it will also be helpful to keep track of the total vertical profits (gross of

any payment to suppliers) generated by retailer r, which are given by

Πr (g, w) = ∑
s∈S

`sr (g) [psr (g, w)− c] qsr (g, w) . (3)

For future reference it is important to note that, because of downstream competition, total

industry profits, ∑r∈R Πr (g, w), are not necessarily maximized when all suppliers trade with all

retailers. Networks in which some supply links are not active, such as downstream monopoly or

pairwise exclusivity, sacrifice some variety but reduce the intensity of downstream competition

between retailers and may thus yield higher overall industry profits.

In order to derive some of the results in subsequent sections, it is also helpful to ensure that

secret changes in wsr, i.e., changes in wsr that are observed only by retailer r, cause well-behaved

responses in the derived demand for product s. This is guaranteed by the following assumption.

Assumption 1 (Derived demand) For all g, and all s ∈ S and r ∈ R for which `
g
sr = 1, secret changes

in wsr have the following effects on the derived demand for product s:

dqsr

dwsr
< 0,

dqsj

dwsr
≥ 0 for all j ∈ R with `

g
sj = 1 and j 6= r, and

dqs

dwsr
= ∑

j∈R
`

g
sr

dqsj

dwsr
< 0

A change in wsr that is unobserved by other retailers j 6= r can affect directly only the vector

of quantities qr (when competition is Cournot) or retail prices pr (when competition is Bertrand)

chosen by retailer r for the products that she carries. When competition is Cournot, no other

unilateral deviation. It is, therefore, immaterial whether the transfer paid in equilibrium is that offered by the
retailer (i.e., tsr = ts

r, as assumed here) or that requested by the supplier (i.e., tsr = tr
s).
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changes in quantities occur and thus dqsj/dwsr = 0 for all j 6= r. The only “bite” of Assumption 1

in this case is therefore to ensure that dqsr/dwsr < 0 and thus dqs/dwsr < 0. When competition is

Bertrand, the changes in pr induced by changes in wsr cause instead the quantities sold by other

retailers to change, even if the retail prices charged by those other retailers do not change, so that

dqsj/dwsr > 0 for all j 6= r. In this case Assumption 1 ensures that the direct effect, dqsr/dwsr < 0,

dominates the indirect effects, ∑j 6=r dqsj/dwsr > 0, of a change in wsr on the demand for product s

and thus that the overall market demand for product s is downward sloping in wsr. Assumption

1 holds for the linear demand system that will be introduced in Section 4.

2.2 Equilibrium concept
When suppliers and retailers act unilaterally and cannot coordinate their strategies (i.e., their

contract proposals), the contracting game described above has a large number of Nash equilibria,

many of which are supported by coordination failures. For example, as in all games of network

formation, vertical coordination failures may give rise to Nash equilibria in which a supplier s

and a retailer r do not form a supply link, even though it would be jointly profitable for them

to do so. Moreover, in the simultaneous contracting model studied in this paper, even when

s and r manage to form a link, they may still fail to coordinate on the terms of the contract,

wsr or θsr, that would maximize their joint profits. These vertical coordination failures may be

avoided by adopting “bilateral” solution concepts, such as contract equilibrium (e.g., Crémer

and Riordan, 1987; O’Brien and Shaffer, 1992), in which each sr pair maximizes its joint profits,

given all other contracts (including other contracts to which s and r are a party). Although such

equilibrium concepts are appropriate in some settings, they cannot address two aspects that play

an important role in this paper.

First, contract equilibrium is not sufficient to rule out the horizontal coordination failures that

may arise in a setting with bilateral oligopoly and exclusive contracts. For example, consider

the bilateral duopoly model illustrated in Figure 1, in which solid lines represent active supply

links and dashed lines represent potential supply links that are inactive.6 Focus on a candidate

equilibrium in which S1 and R1 and S2 and R2 adopt mutually exclusive contracts, resulting in

the pairwise exclusive supply network shown in Figure 1(c). Assume that the double common

agency supply network in Figure 1(a) and/or the mixed supply network in Figure 1(b) yield

higher overall industry profits than a pairwise exclusive network. A deviation from pairwise ex-

clusivity to one of these two networks could benefit all firms but cannot be achieved unilaterally

6This bilateral duopoly model will also form the basis for other examples introduced below and for the
analysis of Sections 4 through 7.
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(b) Mixed market structure
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(c) Pairwise exclusivity

S1

R1

S2

R2

(d) Downstream monopoly

S1

R1

S2

R2

(e) Upstream monopoly

S1

R1

S2

R2

(f) Bilateral monopoly

Figure 1: Supply networks in a bilateral duopoly.

or bilaterally, as it requires coordination among all four firms. This is the case because, given the

mutually exclusive contracts that support the candidate pairwise exclusive equilibrium, S2 and

R1 cannot, individually or bilaterally, form a supply link while maintaining their other supply

links. For this to be possible, S1 must forgo the exclusivity he demands of R1, and R2 must

forgo the exclusivity she demands of S2. Moreover, a deviation to double common agency also

requires the pairs S1− R2 and S2− R1 to coordinate the formation of the two new diagonal links.

One can also construct examples, with our without exclusive contracts, where firms may profit

from coordinating deviations in which they rescind more than one existing link at a time, instead

of creating more than one new link at a time.

Second, as already discussed in the introduction, contract equilibrium does not allow for mul-

tilateral deviations in which firms modify more than one contract at a time. This is particularly

problematic in a setting with exclusive contracts as the one of this paper, because it makes sense

for a supplier s and a retailer r to enter a (one-way or two-way) exclusive contract only if at

least one of them can modify (i.e., rescind) its other contracts. Besides this almost mechanical

point, many deviations in which one or more firms attempt to modify a supply network are prof-

itable only if such deviations entail modifying more than one contract at a time. For example,

starting from a candidate equilibrium with double common agency as in Figure 1(a), R1 may
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find it profitable to sign up S1 to exclusivity if he can also sign up S2 to exclusivity, thus imple-

menting a downstream monopoly as in Figure 1(d), but may not find it profitable to do so if he

must continue in its nonexclusive contract with S2 (as mandated by contract equilibrium), thus

implementing a mixed network as in Figure 1(b).

To avoid the issues discussed above, I adopt as a solution concept Bernheim, Peleg and Whin-

ston’s (1987) coalition-proof Nash equilibrium (CPNE), which allows for multilateral deviations

and (nonbinding) coordination. A profile of strategies (i.e., of contract proposals in this paper)

constitutes a CPNE if it is immune to mutually profitable and self-enforcing nonbinding agree-

ments to deviate by any coalition of firms, taking as given the strategies of firms that do not

participate in the coalition. An agreement is self-enforcing if it is itself immune to further self-

enforcing deviations by subcoalitions, where these further deviations are also required to be

self-enforcing, and so on (see Bernheim, Peleg and Whinston (1987) for a formal definition).7

CPNE imposes some degree of consistency on deviations, ruling out deviations that should not

be considered “credible” (i.e., self-enforcing).

Finally, even though firms cannot publicly commit to their contract proposals, I do not need

to specify the beliefs held by firms involved in deviations. This is because in a CPNE of the

game of simultaneous contracting introduced in Section 2.1 no firm participating in a deviation

can unilaterally modify its contracts with firms that do not participate in that deviation. As

discussed further in Section 3.1, this feature of CPNE has implications that are analogous to

those of contract equilibrium for the determination of equilibrium wholesale prices.

3 Some general properties of equilibria
One can characterize the CPNE of this model in two stages, by first characterizing the self-

enforcing profile of wholesale prices w (g) for any network g, and then studying which networks

g can be supported as equilibria.

3.1 Equilibrium wholesale prices
When Assumption 1 on derived demand holds, one can establish the following result, which

takes as given the supply links in a given supply network g and characterizes wholesale prices in

the contracts governing those links. This (intermediate) result is, therefore, obtained not by ask-

ing whether there exist deviations to contracts that would implement different supply networks,

7Although the definition is recursive, it avoids cycles because it limits further deviations (but not the
original deviation from the candidate equilibrium) to subcoalitions and has thus a natural end point. This
aspect will be discussed in further detail in Section 3.2.
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but rather whether there exist deviations to contracts that implement the same supply network

with different wholesale prices.

Proposition 1 (Equilibrium wholesale prices) When firms cannot publicly commit to their contract

proposals, for any supply network g there always exists a unique coalition-proof Nash equilibrium profile

of wholesale prices w (g), with w (g) = c, regardless of the mode of downstream competition.

Proposition 1 extends results obtained in different settings and for different equilibrium con-

cepts by the vertical contracting literature (briefly discussed below) to the CPNE of the bilateral

oligopoly model studied in this paper. Its logic can be understood in two steps. First, since any

jointly profitable bilateral deviation by s and r to a different wsr is self-enforcing, a CPNE must be

immune to any such deviation and is therefore also a contract equilibrium. By extending O’Brien

and Shaffer’s (1992) analysis of contract equilibria with a single supplier to a setting with mul-

tiple suppliers, one can therefore prove that in any CPNE it must be wsr = c for all s and r. If

this were not the case, any supplier-retailer pair for which wsr > c could profitably engage in a

bilateral deviation to wsr = c, which would allow this pair to appropriate some of the retail mar-

gins of other retailers. Second, the above implies that any multilateral deviation that changed

the wholesale prices of two or more retailers away from w = c at the same time would never be

self enforcing, since it would always be blocked by a further self-enforcing bilateral deviation to

marginal cost pricing, regardless of the mode of downstream competition.

This last aspect is what distinguishes Proposition 1 from existing literature, especially for the

case of Bertrand downstream competition. As shown by Rey and Vergé (2004), when retailers

compete à la Bertrand, are sufficiently close substitutes and hold passive beliefs, multilateral

deviations in which suppliers raise the wholesale prices of two or more retailers above marginal

cost at the same time may become profitable. If one adopts an equilibrium concept such as

perfect Bayesian equilibrium, which allows for such multilateral deviations without requiring

them to be self enforcing, this implies that pure-strategy equilibria may fail to exist, because there

exist profitable deviations both when all wholesale prices are equal to marginal cost and when

some of them are not. The vertical contracting literature typically addresses these equilibrium

existence issues by limiting attention to contract equilibrium concepts that allow only for bilateral

deviations (see, e.g., O’Brien and Shaffer (1992) and McAfee and Schwartz (1994) for models

without upstream competition and Rey and Vergé (2016) for a bilateral oligopoly model with

upstream competition) or to Cournot competition (see, e.g., Nocke and Rey (2016) for a bilateral

oligopoly model with upstream competition).8 The CPNE solution concept adopted in this paper

8The existence issue does not arise with Cournot downstream competition because in that case multilateral
deviations do not present any advantage relative to bilateral deviations.
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does not face this stark choice, as it overcomes the existence problems associated with Bertrand

competition while allowing for multilateral deviations.

3.2 Equilibrium supply networks
Having shown that, when firms cannot commit to their wholesale price proposals, equilib-

rium wholesale prices are equal to marginal cost in all possible networks, the next step is to

determine which of these networks can be supported as equilibria by some profile of transfers.

As will become clear below, when a network g can in fact be supported as an equilibrium there

typically exists a (possibly broad) range of transfers tg for which this is the case. The model is,

therefore, better suited to shedding light on what types of supply networks arise as equilibria

under different conditions, rather than to predicting exactly how profits will be split between

firms in those equilibria. As the division of profits resulting from tg is irrelevant for consumer

and overall welfare, because it does not directly affect product or retailer variety or the inten-

sity of downstream competition, I do not view this as a significant shortcoming of the model.9

Moreover, as shown in Section 6.2, certain changes in the environment, such as the availability of

exclusive contracts, cause the range of suppliers or retailers’ equilibrium profits to shift entirely

to the right or the left of their initial range. When this is the case, the approach taken in this

model is sufficient to determine unambiguously the distributional effects of those changes.

In order to predict the exact level of tg one would have to study a different model in which

suppliers and retailers engage in some form of coalitional bargaining at the contracting stage.10

However, most existing models of coalitional bargaining – see, e.g., Shapley (1953) for a coop-

erative model and Chatterjee et al. (1993) for a noncooperative model – assume that the grand

coalition always forms and that there are no externalities between coalitions; or, when they al-

low for externalities between coalitions (e.g., Ray and Vohra, 1999), they rely to a large extent

on symmetry among all players to obtain tractable results.11 These assumptions do not describe

well the environment studied in this paper, in which externalities resulting from downstream

competition and exclusive contracts, as well as asymmetries between suppliers and retailers,

9It should, however, be noted that the division of profits among firms can have welfare effects if it affects
the investment incentives of firms, an aspect that is not modeled in this paper.

10Such a model would be different, and have different implications, from the model studied in Section 7,
in which firms first form a supply network in the absence of upfront transfers and then engage in ex-post
bilateral bargaining over the existing supply network. Whereas hold-up plays no role in the coalitional
bargaining game with upfront transfers described in the text above, it plays a crucial role in the model of
ex-post bilateral bargaining of Section 7.

11For a discussion of these issues see Bloch and Dutta (2011) and Maskin (2003). In particular, Maskin
argues that the assumption that the grand coalition always forms is one of the main shortcomings of
noncooperative game theory.
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play a crucial role. In light of this, developing a full-fledged coalitional bargaining game that is

well-suited to this complex environment, only for the purpose of obtaining precise predictions

regarding transfers, would be well beyond the scope of this paper and is not attempted here.12

Having clarified the scope of the analysis, I can proceed with a characterization of equilibrium

supply networks. I first introduce formal definitions of self-enforcing agreements and of CPNE

supply networks in the specific model with transfers of this paper, and then derive some helpful

results that allow me to make these definitions operational.

Denote by Zg→h the set of all coalitions that, starting from a network g, can implement a

network h 6= g without requiring the consent of firms outside the coalition (i.e., without need-

ing firms outside the coalition to modify their strategies). One can then define a self-enforcing

nonbinding agreement as follows.

Definition 1 (Self-enforcing agreement) A nonbinding agreement among the members of coalition

Z ⊆ S ∪ R to implement a supply network g with transfers tg is self-enforcing if there does not exist

any other self-enforcing agreement among the members of any subcoalition Z′ ⊆ Z, Z′ ∈ Zg→h, that

implements a supply network h 6= g with transfers thsuch that, for all i ∈ Z′,

πi(h, th) > πi (g, tg) (4)

A few aspects of Definition 1 are worth noting. First, the definition is recursive: an agreement

is self-enforcing if and only if it cannot be improved upon by another self-enforcing agreement.

The problem remains, however, well defined because deviations from agreements are restricted

to subcoalitions Z′ of the coalition Z that reaches the original agreement. This limits the number

of successive deviations that one needs to consider and a solution can be reached in a finite

number of steps. In the bilateral duopoly applications discussed in Sections 5 through 7 this

number of steps is generally small and the problem remains tractable.

Second, the ability of firms to implement a new supply network h starting from a supply

network g, and the size and composition of the coalitions that can do so, captured by Zg→h,

depend on a number of factors, such as the extent to which firms are allowed to communicate

with one another and whether exclusive contracts are allowed or not. For example, it is generally

12One can, however, conjecture that an efficient coalitional bargaining game in which coalitions always
reach agreements that are mutually profitable relative to alternative self-enforcing outcomes would yield the
same equilibrium networks as the simultaneous contracting game that I study in this paper. Specifically, this
should be the case for bargaining games in which firms i) can continue to make proposals to each other until
all possibilities have been explored and ii) cannot credibly commit ex-ante to deal with a limited number of
counterparts in order to elicit better offers from those counterparts. If this conjecture is correct, the analysis in
this paper characterizes the bargaining set to which the outcomes of such efficient bargaining games must
belong.
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more difficult for firms to implement a new supply network when nonbinding communication

is partially restricted (e.g., when communication between firms on the same side of the market

is prohibited). As for exclusive contracts, their adoption makes it mode difficult to deviate from

a given network g to broader networks h that add new supply links to g without rescinding

existing links. Such deviations would require consent from broader coalitions than in the absence

of exclusive contracts, because some firms that have exclusive rights in network g must consent

to the expansions of the network from g to h. These aspects will be discussed in further detail in

Sections 5 and 6, where they will play important roles.

Building on Definition 1, one can define a CPNE supply network as follows.

Definition 2 (CPNE with transfers) A supply network g∗ with transfers tg∗constitutes a CPNE if and

only if there does not exist any self-enforcing nonbinding agreement among the members of any coali-

tion Z ∈ Zg∗→g that implements a supply network g 6= g∗ with transfers tg such that πi (g, tg) >

πi

(
g∗, tg∗

)
for all i ∈ Z.

To avoid confusion, note that the initial deviations from a candidate equilibrium supply net-

work g∗ to a different network g in Definition 2 can be carried out by any coalition Z ∈ Zg∗→g,

whereas successive deviations from g can only be carried out by subcoalitions Z′ ⊆ Z (see Defi-

nition 1).

Definitions 1 and 2 can be made operational for use in the applications presented in Sections

5 through 7 as follows. Since, by Proposition 1, w (g) = c for all networks g, (1) and (2) take the

following simple forms.

πs (g, tg) = ∑
r∈R

`
g
srtg

sr (5)

and

πr (g, tg) = Πg
r −∑

s∈S
`

g
srtg

sr, (6)

where Πg
r ≡ Πr (g, c) is given by (3) and denotes the gross vertical profits generated by retailer

r in supply network g when all wholesale prices are equal to marginal cost. Using these ex-

pressions, one can establish the following result regarding the mutual profitability of coalitional

deviations from any network g to any network h.

Lemma 1 Given a network g with transfers tg, there exists a network h 6= g and profile of transfers th

such that πi

(
h, th

)
> πi (g, tg) for all i ∈ Z if and only if

∑
r∈Z

[
Πh

r −Πg
r

]
> ∑

s∈Z
∑
r/∈Z

(
`

g
sr − `h

sr

)
tg
sr − ∑

r∈Z
∑
s/∈Z

(
`

g
sr − `h

sr

)
tg
sr (7)
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Lemma 1 is used below to construct an algorithm to solve for the CPNE of the model. Before

doing so, however, it may be helpful to discuss a few intuitive aspects that play a role in that so-

lution. The left-hand side of (7) represents the incremental gross vertical profits generated by the

retailers that participate in a deviation from network g to network h. These incremental profits

can be positive or negative. The right-hand side represents, instead, the net loss of transfers from

firms with which the deviating coalition rescinds existing links or forms new links. For example,

with reference to Figure 1, if S1 and R1 form a coalition and deviate from Figure 1(a) to Figure

1(c) by rescinding their links with R2 and S2, respectively, the right-hand side of (7) corresponds

to the difference between the transfer that S1 receives from R2 in Figure 1(a) and the transfer that

R1 pays to S2 in Figure 1(a).13 In general, this net loss can also be positive or negative. Lemma

1 states that there exists a mutually profitable deviation from a network g with transfers tg to a

different network h if and only if the incremental vertical profits exceed the net loss in transfers.

Of particular interest is the question of whether a coalition Z can engage in mutually prof-

itable deviations from a network g that maximizes industry profits. In this respect, two types of

deviations play an important role in the applications that follow. In the first type of deviations

the members of the deviating coalition Z do not modify their links (if any) with firms outside

Z, i.e., `g
sr = `h

sr if s /∈ Z or r /∈ Z and the right-hand side of (7) is thus equal to zero for any

tg. If the number of retailers involved in the deviation is strictly less than the total number of

retailers R and ∑r∈Z Πh
r > ∑r∈Z Πg

r this deviation is mutually profitable for the members of Z,

even though ∑r∈R Πh
r < ∑r∈R Πg

r , because of the negative externalities imposed on the firms that

do not participate in the deviation. As an example, which foreshadows the analysis in Section

5, refer to the pairwise exclusive network in Figure 1(c) and assume that exclusive contracts are

not allowed. Consider a deviation in which the two firms in coalition Z = {R1, S2} form a link

with each other while preserving their existing links with other firms, thus causing the market

to move to the mixed network in Figure 1(b). This deviation does not alter any links with firms

outside coalition Z and, by condition (7), is profitable if and only if it increases the vertical profits

generated by the only retailer in the coalition, R1, even if total industry profits, i.e., the sum of

the vertical profits generated by R1 and R2, are lower in Figure 1(b) than in Figure 1(c). As will

be discussed in Section 6, exclusive contracts can render such a deviation mutually unprofitable,

by making the consent of all four firms necessary (i.e., by restricting the set Zg→h of coalitions

13In this context a coalition is simply a set of firms discussing whether and how to coordinate their
strategies (i.e., their transfer and exclusivity proposals t and θ) to achieve a certain outcome, taking as given
the strategies of firms outside the set. Firms that belong to a coalition can also continue, stop, or start dealing
with firms outside the coalition by deciding to agree or not to the given transfer and exclusivity proposals of
those firms. In other words, a coalition formed for the purpose of coordinating the strategies of its members
does not necessarily coincide with the set of firms with which its members have a supply link.
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that can implement this deviation).

The second type of deviations of interest is one in which the members of Z rescind their

links with some firms that do not participate in the deviation, i.e., in which `
g
sr = 1 and `h

sr = 0

for some s ∈ Z and r /∈ Z or some s /∈ Z and r ∈ Z. This type of deviations is mutually

profitable for the members of Z if, given an initial profile of transfers tg, the firms dropped from

network g appropriate more than their contribution to g relative to some other network h that

can be implemented without their participation. Importantly, the profile of transfers tg may not

provide enough degrees of freedom to ensure that all firms extract less than their contribution

to a given network g relative to every alternative network, and thus g may always be vulnerable

to at least one mutually profitable (though not necessarily self-enforcing) deviation.14 This is,

for example, the case for some parameter values in the bilateral duopoly model with exclusive

contracts studied in Section 6, for which pure-strategy equilibria may fail to exist.

As already mentioned above, Lemma 1 can be used to construct the following algorithm to

solve for the CPNE of the contracting model with transfers introduced in Section 2. For any

possible candidate equilibrium supply network g:

Step 1 – Determine the set of all alternative networks h that can be implemented by any coalition

Z ∈ Zg→h. If there exists a profile of transfers tg such that (7) fails for all h and Z ∈ Zg→h

(i.e., such that no deviation is mutually profitable), one can stop and conclude that g con-

stitutes a CPNE (and, in fact, a strong equilibrium). If instead no such tg exists, for each

tg and each mutually profitable deviation by any coalition Z ∈ Zg→h implementing a net-

work h 6= g, determine the range of transfers Ih (tg) =
{

th : πi

(
h, th

)
> πi (g, tg) , ∀i ∈ Z

}
that can make each member of the deviating coalition better off and move to Step 2.

Step 2 – For each network h identified above, determine all the alternative networks k that can

be implemented by any subcoalition Z′ of Z and verify whether, for each tg, there exists any

t̃h ∈ Ih (tg) such that (7) fails for all k and Z′ ∈ Zh→k, Z′ ⊆ Z, when one substitutes Z′ for

Z, h for g, k for h, and t̃h for tg (i.e., such that there exists no mutually profitable deviation

from h to k). If there exists such a t̃h one can stop here and conclude that the original

deviation to h is self-enforcing for each tg and thus that g is not a CPNE. If instead there

does not exist such a t̃h for at least some tg, then some deviations from h to k are mutually

profitable and one should apply Step 2 to k to determine whether any of these deviations

are self-enforcing. If the answer is yes, the original deviation to h is not self-enforcing and

14See also Bloch and Jackson (2007) for a discussion of this issue.
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g is a CPNE. If the answer is no, the original deviation to h is self-enforcing and g is not a

CPNE.

The solution algorithm introduced above is well defined for any arbitrary numbers of sup-

pliers, S, and retailers, R. In particular, since successive deviations are limited to subcoalitions,

it always converges to an end point. However, using it to solve a model with more than a few

firms on each side of the market would be unwieldy because the numbers of possible supply net-

works and coalitions grow exponentially with S and R. Related to this, large values of S and R

would also give rise to an unmanageably large number of deviations from deviations that would

need to be checked, i.e. of iterations of Step 2 above. For this reason, in the rest or the paper I

restrict attention to a more tractable bilateral duopoly model with two symmetrically differenti-

ated suppliers and two symmetrically differentiated retailers that satisfies the assumptions laid

out in Section 2.

4 A bilateral duopoly model
The possible types of supply networks that can arise in bilateral duopoly are listed below, to-

gether with the maximum vertical profits Πg
r that each retailer r can generate in supply network g

when all retailers obtain products at wholesale prices w (g) = c and compete in the downstream

market.

• Double common agency (denoted by g = dca and illustrated in Figure 1(a)). Both retailers

deal with both suppliers. Given the symmetry of the model, each retailer generates the

same vertical profits Πdca
r = Πdca.

• Mixed network (g = mix, Figure 1(b)). One of the retailers deals with both suppliers, while

the other retailer only deals with one supplier. The vertical profits generated by the retailer

that deals with both suppliers are Πmix2, whereas those of the retailer that only deals with

one supplier are Πmix1.

• Pairwise exclusivity (g = pe, Figure 1(c)). Each retailer deals with a different supplier and

generates the same vertical profits Πpe
r = Πpe.

• Downstream monopoly (g = dm, Figure 1(d)). Both suppliers only deal with the same retailer,

thus excluding the other retailer. The active retailer generates vertical profits Πdm, whereas

the excluded retailer generates zero vertical profits.
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• Upstream monopoly (g = um, Figure 1(e)). Both retailers only deal with the same supplier,

excluding the other supplier. Each retailer generates the same vertical profits Πum
r = Πum.

• Bilateral monopoly (g = bm, Figure 1(f)): A retailer and a supplier only deal with each other,

while the other retailer and supplier are excluded. The active retailer generates vertical

profits Πbm, whereas the excluded retailer generates zero vertical profits.

Although one could in principle use a fairly general demand system to rank unambiguously

the vertical profits generated by retailers under some of the supply networks listed above, this is

not the case for all of these networks.15 Moreover, even if one could obtain an ordinal ranking

of vertical profits for all supply networks, this would be insufficient because the analysis in sub-

sequent sections involves linear functions of these vertical profits and requires these profits to

be cardinally comparable. In the interest of concreteness, therefore, I use the following (inverse)

linear demand system, which allows me to parametrize the degrees of supplier and retailer dif-

ferentiation

psr = v− (qsr + aqs′r)− b (qsr′ + aqs′r′) , (8)

where v > c and a, b ∈ [0, 1].16 Lower values of a and b indicate, respectively, higher supplier

and retailer differentiation, with a = 0 and b = 0 corresponding to the extreme case in which,

respectively, suppliers or retailers are completely independent in demand and a = 1 and b = 1

to the extreme case in which they are perfect substitutes. Note that supplier differentiation and

retailer differentiation are “cumulative”, in that the coefficient ab on qs′r′ in (8) is smaller than the

coefficients a and b on qs′r and qsr′ , respectively. A complete solution of the downstream market

game played by retailers in stage 3 with this demand system and w (g) = c under both Cournot

and Bertrand competition is presented in an online appendix (enclosed with this submission). In

the body of the paper I will rely directly on the values of the vertical profits Πg resulting from

that solution.
15For example, under mild assumptions on demand, one can generally conclude that the profits generated

by a retailer are decreasing in the number of products carried by the other retailer, which implies, e.g.,
Πmix2 ≥ Πdca and Πdm ≥ Πg for all g 6= dm; or that, given the number of products carried by the two
retailers, profits are higher when the retailers carry different products, which implies Πpe ≥ Πum. However,
other comparisons are more ambiguous. For example, one cannot necessarily conclude that the equilibrium
vertical profits generated by a retailer increase in the number of products carried by that retailer, because the
equilibrium prices charged by the other retailer are likely to fall, or the quantities likely to increase, when the
first retailer introduces new products. This implies that, in general, there is no unambiguous comparison
between, e.g., Πmix2 and Πpe or Πdca and Πmix1.

16See the online appendix for a derivation of this demand system from underlying consumer preferences
and for a verification that it satisfies Assumption 1.
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This framework is used in Figure 2 to characterize the supply networks that maximize total

industry profits, conditional on retailers competing in the downstream market. Comparisons be-

tween these networks and the networks that arise in equilibrium will prove particularly helpful

in the sections that follow, as they will provide insights into the nature and magnitude of the ex-

ternalities that prevent equilibrium networks from maximizing industry profits. Figure 2 divides
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Figure 2: Supply networks that maximize industry profits.

the unit square representing all possible combinations of supplier substitutability, a, and retailer

substitutability, b, into three regions and shows that industry profits are maximized by a differ-

ent supply network in each of these regions. Specifically, denoting with bm (a) the value of b for

which 2Πpe = 2Πdca (i.e., for which industry profits are the same under pairwise exclusivity and

double common agency) and with bm (a) the value of b for which Πdm = 2Πpe (i.e., for which

industry profits are the same under downstream monopoly and pairwise exclusivity), the figure

shows that industry profits are maximized by double common agency for b ≤ bm (a), pairwise

exclusivity for bm (a) ≤ b ≤ bm (a), and downstream monopoly for b ≥ bm (a). Industry prof-

its under other supply networks, such as a mixed network or upstream monopoly, are always

dominated by industry profits under one or more of the three networks shown in the figure.

The intuition for Figure 2 can be explained by noting that the elimination of supply links has

two opposite effects on industry profits. On the one hand, it reduces the intensity of downstream

competition. Specifically, a move from double common agency to pairwise exclusivity increases

the degree of effective retailer differentiation, since the two retailers go from both carrying the
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same products to each carrying a different product, whereas a move from pairwise exclusivity

to downstream monopoly completely eliminates any residual downstream competition. On the

other hand, when both suppliers and retailers are differentiated, eliminating supply links causes

loss of variety. As b increases, more intense downstream competition causes greater dissipation

of industry profits and thus the former effect (softening of downstream competition) becomes

progressively more important than the latter effect (loss of variety). Therefore, as b increases,

industry profits are maximized by networks with less downstream competition and less variety.

5 Equilibria without exclusive contracts
Having characterized the supply networks that maximize industry profits, one can study

the extent to which bilateral contracting between suppliers and retailers can implement these

networks under different assumptions about upfront transfers and exclusive contracts. In this

section, I start by considering the case in which firms can use upfront transfers but exclusive

contracts are banned or not enforceable.

Proposition 2 (No exclusive contracts) Consider a bilateral duopoly model where firms cannot pub-

licly commit to contract proposals and face the symmetric linear demand system in (8). When firms can

use transfers but not exclusive contracts there exists a unique coalition-proof Nash equilibrium supply

network g∗t,ne with

1. g∗t,ne = pe and transfers tpe
ne ∈ (0, Πpe −Πum) if and only if

Πpe ≥ Πmix2. (9)

2. g∗t,ne = dca and tdca
ne ∈

(
0, Πdca −Πmix1

)
otherwise.

With differentiated Bertrand competition (9) holds if and only if b ≥ bt,ne (a) (see shaded area in Figure

3(a) below). With differentiated Cournot competition (9) never holds.

Although the formal proof of Proposition 2 is quite involved, the intuition for the result is

fairly straightforward. Without exclusive contracts, it is difficult (though not impossible) for sup-

ply networks with some inactive links to be self enforcing, even when these networks maximize

industry profits. This is because, starting from a candidate equilibrium network with inactive

links (e.g., g = dm or g = pe), under most configurations of parameters at least one supplier-

retailer pair has bilateral incentives to deviate by activating one of the inactive links and, in the

absence of exclusive contracts, can do so without the consent of other trading partners. As a
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Figure 3: Equilibria with transfers and no exclusive contracts.

result, in equilibrium firms tend to form “too many” supply links from the point of view of

industry profit maximization.

Specifically, as illustrated in Figure 3, downstream monopoly can never be supported as an

equilibrium, even though it maximizes industry profits for b > bm (a), because, without ex-

clusive contracts, a supplier can accept an offer from the excluded retailer, r′, without having

to forego the profits he earns from the other retailer, r, and can thus always be induced to

do so by r′. Analogously, pairwise exclusivity cannot be supported as an equilibrium in large

parts (with Bertrand competition) or the totality (with Cournot competition) of the region with

b ∈
[
bm (a) , bm (a)

]
in which it maximizes industry profits. The relevant deviation from a can-

didate equilibrium with pairwise exclusivity is one in which a supplier, say s, opens a new link

with a second retailer, say r′, thus giving rise to a mixed network in which r′, who now carries

two products, generates vertical profits Πmix2. This deviations is mutually profitable and self

enforcing whenever Πmix2 > Πpe, which is the case for b < bt,ne (a) with Bertrand competition

and always the case with Cournot competition. The difference between Bertrand and Cournot

competition is explained by the fact that, for any given degree of intrinsic retailer substitutability

b, the former is generally more competitive than the latter. The softening of downstream com-

petition caused by pairwise exclusivity has, therefore, a greater positive effect on profits in the

former than in the latter.
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The results in Proposition 2 have been obtained under the assumption that firms can engage

in any type of nonbinding pre-play communication, including nonbinding (but possibly self en-

forcing) reciprocal agreements between firms on the same side of the market not to deal with

their competitor’s suppliers or retailers. Since these agreements effectively amount to market

allocation agreements, which are illegal in most jurisdictions even when nonbinding, one may

wonder how the results would change if one prohibited deviations relying on such agreements.

The following remark, which maintains the same assumptions as Proposition 2 except for the

types of nonbinding agreements that are allowed, addresses this question.

Remark 1 (No exclusive contracts, no market allocation agreements) When firms cannot discuss

(nonbinding) market allocation agreements, in addition to the equilibria in Proposition 2 there also exist

equilibria with g∗t,ne = dca when condition (9) holds. This gives rise to multiple equilibria for Bertrand

competition and b ≥ bt,ne (a) in the shaded area in Figure 3(a).

As one would expect, limiting the type of nonbinding communication that can take place

expands the set of equilibria by reducing the ability of firms to coordinate deviations. In the

specific case of the bilateral duopoly model of this section, when firms can engage in any type of

communication, as was the case in Proposition 2, and condition (9) holds, the two retailers can

reach a mutually profitable and self-enforcing nonbinding agreement to deviate from a candidate

equilibrium with g = dca to a network g = pe in which they allocate the market by each refusing

to sell a different product. This is, however, no longer possible under the restriction in Remark 1.

6 Equilibria with exclusive contracts
In this section I study the implications of allowing firms to use exclusive contracts. In prin-

ciple one could adopt a general framework in which a contract between firm i and firm j can

be made contingent on all other supply links in the market, i.e., on all the links that firm i has

with other firms h 6= j, all the links that firm j has with other firms k 6= i, and all the links that

other firms h, k 6= i, j have with one another. Such contracts are, however, rarely enforceable

for practical and legal reasons. Therefore, I focus on the case in which the only contingencies

allowed in a contract between i and j are those requiring i and/or j to be exclusive to the other.17

17I also assume that the tariff in a nonexclusive contract between a firm i and a firm j cannot be made
contingent on the volume traded by either firm with third parties k 6= i, j, as would instead be the case with
market-share discounts or retail price parity agreements. These restraints would not make a difference in
the environment with secret contracting studied in this paper (see Rey and Vergé (2016), because the fact
that upstream margins are equal to zero (i.e., w = c) rules out any competition for marginal sales between
suppliers. They would, however, have competitive effects in environments in which firms can publicly
commit to contracts, as in such environments equilibrium upstream margins are generically different from
zero (see Ramezzana, 2016).
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Specifically, I assume that a contract between i and j can either require no exclusivity at all, or i

to be exclusive to j, or j to be exclusive to i, or mutual exclusivity between i and j.

Moreover, to prevent firms from making mutually inconsistent exclusive offers, I assume that

a firm i that offers an exclusive contract to a firm j is not allowed to offer contracts to other firms

k 6= j. However, if i has promised exclusivity to j, and j engages in a further deviation in which

it rejects i’s proposal, i is again free to submit proposals to other firms k 6= j that do not belong

to the deviating coalition that includes j.18 This last assumption, which I call the “no stranding”

assumption, rules out the possibility that j can eliminate i from the market by first convincing i

not to discuss a contract with any other firm k 6= j and subsequently leaving i stranded without

a partner (i.e., by essentially playing a “bait-and-switch” strategy).

Such bait-and-switch strategies would allow j to implement in a roundabout way supply net-

works that it could not implement directly and that are unrealistic in the unfettered contracting

environment of this paper. To see this, consider the following example based on Figure 1. As-

sume that, starting from an equilibrium with g = dca, as in panel 1(a), a coalition {S1, S2, R1}
reaches a nonbinding agreement to deviate to g = dm, with both suppliers agreeing to submit

exclusive contract offers to R1, and consequently no contract offers to R2, as in panel 1(d). Once

this nonbinding agreement has been reached, S1 and R1 may deviate further by committing to

mutual exclusivity, thus excluding S2, as in panel 1(f). Absent the “no stranding” assumption

introduced above, S2 would remain without a trading partner, as would R2, who was excluded

in the initial deviation to g = dm. As a result, S1 and R1 would be able to implement a bilateral

monopoly, an outcome they could not have achieved by deviating to mutual exclusivity directly

from the candidate equilibrium with g = dca. This is an unrealistic outcome, as it is difficult to

see how S1 and R1 could expect the two stranded firms, S2 and R2, not to find a way to reach

an agreement to form a supply link. The “no stranding” assumption allows S2 and R2 to form

such a link and, therefore, implies that a deviation to mutual exclusivity by S1 and R1 results in a

pairwise exclusive supply network, as in panel 1(c), instead of resulting in a bilateral monopoly

network.19

Another issue that one needs to address is the extent to which a given supply network can

18Alternatively, one can assume that when i promises exclusivity to j it can also simultaneously submit
to other firms k 6= j contract proposals that become valid only if j rejects i’s initial exclusive offer. This
alternative assumption would yield the same results.

19The issue of how players that are excluded from a coalitional deviation will react to such a deviation has
received considerable attention in the literature on coalitional equilibria and coalition formation, where it is
known as the “prediction problem” (see, e.g., Bloch and Dutta (2011) for a discussion). The “no stranding”
assumption adopted in the specific context of this section is reminiscent of the solution to this problem
proposed by Ray and Vohra (1997), who allow players that are excluded from a deviating coalition to
reorganize their strategies optimally (i.e., to play a best response).
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be supported by different combinations of exclusive clauses (including, possibly, no exclusive

clauses at all). Since a link between two firms can remain inactive also in the absence of con-

tractual exclusive clauses, provided that at least one of the two firms refuses to trade with the

other, exclusive clauses are not necessary to obtain any give supply network g. For example, the

supply network with pairwise exclusivity shown in Figure 1(c) can be implemented through any

type of one-way or mutual exclusive clauses between S1 and R1 and between S1 and R2 or by all

firms refusing to engage in “cross trade,” without any contractual exclusive clauses. As a result,

the set of possible supply networks in a bilateral duopoly remains the same as in the absence

of exclusive contracts (see Figure 1 and Section 4). This does not, however, mean that the adop-

tion of exclusive clauses is irrelevant for the equilibria of the model. On the contrary, different

combinations of exclusive clauses have different implications for the feasibility or profitability of

deviations from a given network, and can therefore support different networks as equilibria.

In particular, networks that are implemented with a more extensive use of exclusive clauses

are generally less vulnerable to deviations in which firms attempt to expand the network by

adding new supply links, because such deviations require the consent of a broader set of firms.

For example, consider the supply network with pairwise exclusivity shown in Figure 1(c). If

this network is supported only by a refusal by all firms to “cross trade”, without any contractual

exclusive clauses, a deviation that adds a link between S2 and R1 (thus implementing the mixed

network in Figure 1(b)) only requires the consent of S2 and R1. If instead the same network is

supported by one-way contractual exclusivity (e.g., S1 and S2 committing to be exclusive to R1

and R2, respectively, but not the other way around) the same deviation requires the consent of

the coalition {S2, R1, R2}, since R2 must now consent to S2 dealing also with R1. Finally, if the

same network is supported by mutual contractual exclusivity between S1 and R1 and between

S1 and R2, the deviation requires the consent of the grand coalition {S1, S2, R1, R2}, since every

firm must consent to its trading partner in the candidate equilibrium starting to deal with a new

firm.

In order to study the full effects that firms can achieve by resorting to contractual exclusive

clauses, I resolve the ambiguity discussed above by assuming that whenever firms i and j do not

trade with each other in a candidate equilibrium network g, they are prevented from doing so

by the most extensive combination of exclusive clauses consistent with network g. For example,

I assume that a candidate equilibrium with the pairwise exclusive supply network in Figure 1(c)

is supported by mutual exclusivity between S1 and R1 and between S1 and R2.20

20It is important to note that this assumption applies only to candidate equilibrium networks, not to the
networks that result from deviations. Deviations are not restricted in any way and can rely on any possible
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6.1 Effects of exclusive contracts on equilibrium supply networks
Under the assumptions introduced above one can establish the following result.

Proposition 3 (Exclusive contracts) In a bilateral duopoly model with the same assumptions as in

Proposition 2, but in which firms can use exclusive contracts, there exist pure-strategy coalition-proof

Nash equilibria with the following supply networks and transfers:

1. g∗t,e = dm and tdm
e = Πdm/2 if and only if

Πdm ≥ 2Πpe, (10)

which is the case if and only if b ≥ bm (a) (see Figure 4).

2. g∗t,e = pe and tpe
e ∈

[
Πdm −Πpe, min {2 (Πpe −Πum) , Πpe}

]
if and only if (10) fails and

2 (Πpe −Πum) ≥ Πdm −Πpe, (11)

which is the case if and only if bt,e (a) ≤ b < bm (a) (see Figure 4).

3. g∗t,e = dca and tdca
e ∈

[(
Πdm −Πdca

)
/2, Πdca −Πmix1

]
if and only if

2
(

Πdca −Πmix1
)
≥ Πdm −Πdca, (12)

which is the case if and only if b ≤ bt,e (a) (see Figure 4).

There exist no other pure-strategy equilibria.

For those combinations of the supplier and retailer substitutability parameters, a and b, for

which a pure-strategy equilibrium supply network exists, such a network is unique and max-

imizes industry profits.21 The latter can be seen by noting that the lines bm (a) and bm (a) in

Figure 4 are the same as those used in Figure 2 to illustrate the supply networks that maximize

industry profits for different values of a and b. The intuition for this result is as follows.

Starting from a candidate equilibrium with some inactive supply links (e.g., g∗t,e = pe), con-

sider a deviation in which two firms i and j want to form a new link. In the absence of exclusive

contracts, they can do so without having to ask for permission from, or forego their relationship

combination of exclusive clauses. However, deviations that use the most restrictive combination of exclusive
clauses are the most likely to be self enforcing, and therefore play a prominent role in the proofs of the results
that follow.

21Indeed, as can be seen from the proof of Proposition 3, the CPNE of the model with exclusive contracts
correspond to its strong equilibria. In a model with transferable utility like the present one, when strong
equilibria exist, they must always maximize the sum of the players’ payoffs (i.e., of the firms’ profits).
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Figure 4: Equilibria with exclusive contracts and upfront transfers.

with, any other firm k 6= i, j. This is indeed the reason that, as shown in Section 5, equilibria

with downstream monopoly or pairwise exclusivity might not be supportable without exclusive

contracts even when they maximize industry profits. Things are, however, quite different if in

the candidate equilibrium one or both of i and j have committed to be exclusive to other firms.

For example, assume that firm i is part of the candidate equilibrium network and has committed

to be exclusive to firm k 6= j. If i wishes to deviate by forming a supply link with j it must now

either i) obtain consent from k, possibly in exchange for compensation, or ii) forego its relation-

ship with k, effectively swapping j for k. Starting from equilibria with g = dm and g = pe, i)

and ii) make forming a link with j unprofitable for i whenever it is unprofitable for the supply

network as a whole. Specifically, starting from g = dm a supplier may wish to form a link with

the excluded retailer, and starting from g = pe any supplier or retailer may wish to form a second

supply link. However, exclusive contracts, through the effects in i) and ii) discussed above, make

this unprofitable when g = dm and g = pe maximize industry profits.

Besides supporting equilibria with some sort of exclusivity when these maximize industry

profits, exclusive contracts also eliminate (pure-strategy) equilibria with nonexclusive networks,

such as g = dca, when these networks do not maximize industry profits, as is the case for

bm (a) ≤ b < bt,ne (a) in Figure 3, where exclusive contracts were not available. The reason

for this is that exclusive contracts tend to make deviations that rescind some links, such as devi-

ations to g = dm or to g = pe, self-enforcing.
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The latter is also the reason that pure-strategy equilibria may fail to exist for high values of a

and intermediate values of b.22 For these parameter values, the availability of exclusive contracts

makes both deviations in which firms exclude one of the retailers (such as a deviation to g = dm)

and deviations in which they exclude one of the suppliers (such as a deviation to g = mix)

become self enforcing. As preventing the first type of deviation requires large transfers tg from

retailers to suppliers (to ensure that retailers do not extract to much), whereas preventing the

second type of deviations requires small transfers tg (to ensure that suppliers do not extract too

much), there may exist no tg that can prevent all deviations.

This is, instead, not a problem for low values of a or extreme (low or high) values of b.

For example, when a is low (i.e., suppliers are highly differentiated), a supply network with

g = pe allows retailers to inherit the high degree of supplier differentiation, thus softening down-

stream competition without sacrificing much variety. Starting from such a network, deviations

to g = dm or g = mix would not be profitable, as they would only provide a modest reduction

in downstream competition and would entail a significant sacrifice in variety. Analogously, de-

viations from g = dca to g = dm would be very costly for low values of b, and deviations from

g = dm to g = pe would be very costly for high values of b especially when a is also high.

As shown in the online appendix, the nonexistence of pure-strategy equilibria would not

constitute a problem if one dropped the “no stranding” assumption. Specifically, dropping this

assumption would make deviations from g = dca or g = pe to g = dm less likely to be self-

enforcing, and would thus result in a weaker equilibrium concept, with pure-strategy equilibria

existing for a broader range of parameters. This is because, absent the “no stranding” assump-

tion, a further deviation from g = dm to mutual exclusivity by a supplier and a retailer would

implement a bilateral monopoly, g = bm, which is more profitable than the pairwise exclusive

network, g = pe, that the same deviation would instead implement with the “no stranding” as-

sumption. As shown in the online appendix, without the “no stranding” assumption the model

would have multiple pure-strategy equilibria for high values of a and intermediate values of b,

instead of having no pure-strategy equilibria. Regardless of its consequences for the existence

and uniqueness of equilibria, as explained above, I believe that the “no stranding” assumption

22As noted by Bernheim, Peleg and Whinston (1987), the existence coalition-proof Nash equilibria, even in
mixed strategies, cannot be guaranteed for general classes of games. Specifically, finding sufficient conditions
for the existence of such equilibria is far from obvious, unless the game played by any subset of players,
given any set of actions of the remaining players, has a unique Nash equilibrium. Since this uniqueness
condition does not necessarily apply to the bilateral oligopoly game presented here, one cannot assert with
certainty that there exist mixed-strategy equilibria in the parameter region where pure-strategy equilibria
do not exist, although this may be the case. Given the complexity of the analysis, I have not attempted a
characterization of mixed-strategy equilibria.
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(or some other assumption with a similar function) is necessary for a realistic analysis of the

long-term structure of supply networks.

6.2 Effects of exclusive contracts on welfare and firms’ profits
The results obtained above have the following welfare implications.

Proposition 4 (Welfare) Whenever exclusive contracts are adopted and affect the equilibrium structure

of supply networks they reduce consumer and overall welfare.

The result in Proposition 4 is straightforward (a proof relying on the utility function under-

lying the inverse linear demand in (8) is provided in the online appendix enclosed with this

submission). Specifically, with Bertrand downstream competition, exclusive contracts cause

the equilibrium network to switch from double common agency to pairwise exclusivity for

bt,e (a) ≤ b < bt,ne (a) and from pairwise exclusivity to downstream monopoly for b ≥ bm (a).

With Cournot downstream competition, instead, they cause the equilibrium network to switch

from double common agency to pairwise exclusivity for bm (a) ≤ b < bm (a) and from double

common agency to downstream monopoly for b ≥ bm (a). In all these cases they soften down-

stream competition, thus leading to higher prices, and reduce the variety of supplier retailer

combinations available in the market. Both effects unambiguously reduce consumer and overall

welfare.23

Less straightforward are, instead, the effects of the availability of exclusive contracts on the

equilibrium profits earned by individual suppliers and individual retailers. Although, as ex-

plained in Section 3.2, the simultaneous contracting model used in this paper does not yield exact

predictions regarding the equilibrium level of transfers, it nevertheless provides ranges within

which such transfers, and thus the equilibrium profits of individual suppliers and retailers, must

lie. If a change in the environment, such as the availability of exclusive contracts, causes these

ranges to shift entirely to the right or the left of their initial position, the model adopted in this

paper is sufficient to determine the distributional effects of that change. This is the approach

used in deriving the following result.

Proposition 5 (Distribution of profits) When exclusive contracts become available and are adopted in

equilibrium, so that the resulting equilibrium supply network is g∗t,e = pe or g∗t,e = dm, they make

23As is well known, under certain conditions (e.g. when the seller and/or the buyer can make relationship-
specific investments) exclusive contracts can enhance welfare by aligning investment incentives. In order to
focus on the competitive effects of exclusive contracts, these potential efficiencies are not addressed in this
paper.

29



suppliers strictly better off and retailers strictly worse off. When exclusive contracts become available but

are not adopted in equilibrium, so that the equilibrium supply network remains g∗t,e = dca, they make

suppliers no worse off (and possibly strictly better off) and retailers no better off (and possibly strictly

worse off).

The intuition for this results can be understood by noting that, besides possibly affecting the

level of equilibrium industry profits, the availability of exclusive contracts may also affect the

shares of any given amount of profits that suppliers and retailers are able to extract. Specifically,

the upper bound on the profits that the firms on one side of the market can extract in a given

equilibrium are determined by the extent to which the firms on the opposite side of the mar-

ket can profitably drop them from their supply network in deviations that are self enforcing. In

other words, the profits of the firms on one side of the market are determined by the credible

disagreement payoffs available to the firms on the opposite side of the market. The availability

of exclusive contracts makes a broader range of deviations self enforcing relative to an environ-

ment without exclusive contracts. For example, deviations to g = um, in which a supplier is

excluded, or to g = dm, in which a retailer is excluded, can be self enforcing only if exclusive

contracts are available. As shown in the proof of Proposition 3, whereas deviations to g = um,

which limit the bargaining power of suppliers, are not sufficiently profitable to be self-enforcing

(i.e., credible), deviations to g = dm, which limit the bargaining power of retailers, are generally

sufficiently profitable to be self enforcing. Loosely speaking, this is the case because deviations

to g = um sacrifice product variety without softening downstream competition, whereas de-

viations to g = dm, though also costly in terms of variety, can increase profits by eliminating

downstream competition. As a result, by making deviations to g = dm self enforcing, the avail-

ability of exclusive contracts improves the credible disagreement payoffs of suppliers and shifts

the balance of power in their favor.

Note that, when exclusive contracts are allowed, retailers have no way of preventing this

outcome. Each individual retailer would have incentives to accept contracts that made her a

downstream monopolist if she were offered such contracts, and (at least in this model) retailers

cannot credibly commit not to accept such contracts. One would, however, expect that if retailers

were given a say in public policy towards exclusive contracts before the contracting game is

played, they would generally oppose the availability of such contracts.

The mechanism by which the availability of exclusive contracts can affect the distribution of

profits in the present model is different from the mechanism discussed in O’Brien and Shaffer

(1997) and at work in Liebman (2016) and Ho and Lee (2017). In those papers, the firms on one
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side of the market (typically downstream firms) can extract higher profits by (credibly) commit-

ting ex-ante to accept only a limited number of offers and honoring that commitment by actually

excluding some firms in equilibrium. The mechanism in this paper does not rely on ex-ante com-

mitment to exclude some firms in equilibrium, but rather on the effects of exclusive contracts on

out-of-equilibrium alternatives. It is, therefore, closer in spirit to that studied by Bernheim and

Whinston (1998) in a different setting with entry deterrence and without downstream competi-

tion.

7 Ex-post bargaining and hold up
To understand better the role that upfront transfers play in shaping supply networks, it is

helpful to compare the equilibria characterized in Sections 5 and 6 with those of a modified

game in which firms cannot use transfers at the network formation stage and must instead bar-

gain bilaterally under some degree of hold-up only after a supply network has been formed.24

This modified game develops in three stages. In stage 1, firms form supply links by playing

Myerson’s (1991) network formation game. Specifically, all firms simultaneously announce a list

of firms on the other side of the market with which they are willing to deal, and a supply link

between two firms is formed if and only if each firm has indicated the other as a partner. In

Subsection 7.1 I assume that firms cannot commit to exclusivity as part of their announcements,

whereas in Subsection 7.2 I allow for such commitment. No transfers are possible at this stage.

In stage 2, all pairs of firms with a supply link bargain bilaterally, simultaneously and secretly

over nonlinear supply contracts with fixed fee Fsr and wholesale price wsr, splitting the surplus

according to the generalized Nash bargaining solution, with a share β going to the supplier and

a share (1− β) to the retailer. Importantly, bilateral bargaining can take place only between firms

with an existing link and no new links can be formed at this stage, which exposes firms to hold-

up in negotiations. Finally, in stage 3, after having observed which supply links resulted from

stage 1 (i.e., the prevailing supply network) but not the specific terms (e.g., the wholesale prices)

that resulted from contracting in stage 2, retailers compete in the downstream market.

This game is similar to that studied by Rey and Vergé (2016) and is analyzed here mostly to

provide context for the results obtained in previous sections, rather than as an original contribu-

tion in itself. This notwithstanding, the version of the model presented in this section features

24As already discussed, complete long-term contracts would play a role similar to upfront transfers,
because they would allow firms to commit to leave a certain level of profits to their future trading partners at
the moment in which supply networks are formed. The analysis of contracting under hold-up presented in
this section should therefore be interpreted as referring to environments in which both transfers and complete
long-term contracts are unavailable or severely limited.
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some differences and additional contributions relative to Rey and Vergé (2016). Specifically, I as-

sume that retailers observe the full set of active supply links (i.e., the prevailing supply network)

before competing in the downstream market,25 and also study the cases, not covered by Rey and

Vergé, in which firms can adopt exclusive contracts and in which downstream competition is

Cournot.

Given the gross vertical profits generated by downstream competition in stage 3, which re-

main the same as in Sections 4 through 6 (and are derived in the online appendix for the case

of linear demand), one can solve for the contracts that result from bilateral negotiation in stage

2. As in previous sections, all wholesale prices are equal to marginal cost. The profits earned

by a supplier s in supply network g correspond, therefore, to the sum of fixed fees, ∑r∈R `srFg
sr

charged by s in that network. For each network g in which `sr = 1 the fixed fee Fg
sr is determined

according to the generalized Nash bargaining solution by solving the following equation for Fg
sr,

with g\sr denoting the supply network obtained from g when s and r do not form a supply link,

Fg
sr + ∑

j 6=r
`sjF

g
sj = ∑

j 6=r
`sjF

g
sj + β

[(
∑
j 6=r

`sjF
g
sj + Πg

r −∑
i 6=s

`irFg
ir

)
−
(

∑
j 6=r

`sjF
g
sj + Πg\sr

r −∑
i 6=s

`irFg
ir

)]
,

which reduces to

Fg
sr = β

(
Πg

r −Πg\sr
r

)
. (13)

Using (13) one can calculate the following supplier (left column) and retailer (right column) prof-

its for each possible supply network in the bilateral duopoly model introduced in Section 4.

πdca
s = 2β

(
Πdca −Πmix1

)
, πdca

r = Πdca − 2β
(

Πdca −Πmix1
)

,

π
pe
s = βΠpe, π

pe
r = (1− β)Πpe,

πdm
s = β

(
Πdm −Πbm

)
, πdm

r = Πdm − 2β
(

Πdm −Πbm
)

,

πum
s = βΠum, πum

r = (1− β)Πum,

πbm
s = βΠbm, πbm

r = (1− β)Πbm,

πmix1
s = β

(
Πmix2 −Πum) , πmix1

r = (1− β)Πmix1,

πmix2
s = β

(
Πmix1 + Πmix2 −Πpe) , πmix2

r = Πmix2 − β
(
2Πmix2 −Πpe −Πum) .

(14)

25Rey and Vergé (2016) assume that retailers do not observe the prevailing downstream market structure
before setting retail prices and, following an unobserved deviation involving one of their rivals, behave as if
the market structure was the one prescribed by the candidate equilibrium of the supply network formation
game.
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The profits in (14) constitute the payoffs of the link formation game played by firms in stage

1, which I turn to study next, first for the case in which commitment to exclusivity at the network

formation stage is not possible and then the case in which it is.26

7.1 No ex-ante commitment to exclusivity
The main difference between the contracting game with upfront transfers studied in Section

5 and the game with ex-post bargaining studied in this subsection lies in the ability of firms to

induce other firms to participate in deviations in which new supply links are formed. Specifically,

when firms can use upfront transfers as in Section 5 and a coalition of firms would find it jointly

profitable to enter into new supply contracts, there always exists a profile of upfront transfers

that makes it individually profitable for each firm in the coalition to enter into those contracts. In

the game with ex-post bargaining studied in this section, instead, the division of the joint profits

resulting from the formation of a new supply link is determined by the firms’ relative ex-post

bargaining power and may not make each firm better off even if forming the new link is jointly

profitable.

In the absence of exclusive contracts, upfront transfers do not play any role in facilitating

deviations in which firms rescind one or more supply links. Without exclusive contracts, any agree-

ment between a supplier s and a retailer r that, say, supplier s will not trade with another retailer

r′ 6= r is nonbinding and must therefore be self enforcing. This implies that any transfer from

r to s in exchange for a nonbinding promise by s to be exclusive with r is either unnecessary

(when the promise is self-enforcing and thus s would have complied even without the transfer)

or ineffective (when the promise is not-self enforcing).

The fact that upfront transfers facilitate agreements to create new links and, in the absence

of exclusive contracts, do not have any effect on agreements to rescind existing links suggests

that, at least for some parameter regions, equilibria with upfront transfers should tend to have

more supply links than equilibria without upfront transfers. This intuition is confirmed by the

following result.

Proposition 6 (No upfront transfers, no commitment to exclusivity) Consider the same bilateral

duopoly model as in Proposition 2 but assume that firms cannot use upfront transfers at the network

26In this game, firms may have incentives to commit to exclusivity at the time of forming the supply
network in stage 1, not at the time of engaging in ex-post bilateral bargaining over supply contracts in stage
2. Once firms reach stage 2, commitment to exclusivity is of no value because, by assumption, firms would
not be able to form new links anyhow, and no firm would find it profitable to reduce its outside options by
contractually renouncing some of the links that it has already formed. Therefore, the exclusivity studied in
this subsection is better thought of as being achieved through some sort of ex-ante technological commitment
in stage 1, rather than through contractual clauses in stage 2.
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formation stage. There always exists a unique coalition-proof Nash equilibrium supply network g∗nt,ne

with

1. g∗t,ne = pe if and only if

2Πpe ≥ Πmix1 + Πmix2. (15)

2. g∗nt,ne = dca otherwise.

Condition (15) holds for b ≥ bnt,ne (a), where bnt,ne (a) < bt,ne (a) is shown in Figure 5.
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Figure 5: Equilibria without transfers (no exclusive contracts).

Figure 5 compares the equilibrium supply networks in the game with ex-post bargaining

studied in this section to the equilibrium supply networks in the game with upfront transfers

characterized in Section 5 and to the supply networks that maximize industry profits character-

ized in Section 4. As in a model with upfront transfers, in the absence of exclusive contracts

downstream monopoly is not an equilibrium in a model with ex-post bargaining either, even

though it maximizes industry profits for b ≥ bm (a).27 In particular, although the absence of

upfront transfers hinders to some extent a deviation from downstream monopoly in which the

excluded retailer forms a new link with one (or more) of the suppliers for the reasons discussed

above, such deviation continues to be mutually profitable also with ex-post bargaining.

27To minimize clutter, I did not include the region in which downstream monopoly maximizes industry
profits in Figure 5.
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Ex-post bargaining does, instead, make a difference for the regions in which pairwise exclu-

sivity and double common agency can be supported as equilibria. Specifically, with ex-post

bargaining the region of parameters for which pairwise exclusivity arises in equilibrium ex-

pands, with the lower bound on b in Figure 5 shifting downward from bt,ne (a) to bnt,ne (a) (where

bt,ne (a) = 1 for Cournot competition) and pairwise exclusivity replacing double common agency

as the unique equilibrium outcome in the shaded regions.

The intuition for this is closely related to the discussion that precedes Proposition 6. Specifi-

cally, just as in the case with upfront transfers, the relevant self-enforcing deviation from a candi-

date equilibrium with pairwise exclusivity involves a supplier s starting to trade with a second

retailer r′ (or vice versa), thus implementing a mixed network. Such a deviation yields incre-

mental joint profits of
(
Πmix2 −Πpe) for s and r′. With upfront transfers, s and r′ can find a

way to profit individually from this deviation provided that Πmix2 > Πpe (see Proposition 2).

With ex-post bargaining, instead, the formation of the new link between s and r′ also affects the

bargaining power of these two firms in their negotiations over other links and thus the (infra-

marginal) profits that they can extract from those other links. The result is that both parties profit

from a deviation from pairwise exclusivity to a mixed network only if Πmix1 + Πmix2 > 2Πpe,

which is more stringent than Πmix2 > Πpe. The region of parameters where pairwise exclusivity

is an equilibrium is therefore larger relative to that for a model with upfront transfers. This is

accompanied by a corresponding reduction of the region where double common agency is an

equilibrium, due mainly to that fact that deviations that move the market away from double

common agency by rescinding links are more self-enforcing, though not necessarily more jointly

profitable, when upfront transfers are not available.

Finally, ex-post bargaining affects overall industry profits differently in different parameter

regions. As discussed above, ex-post bargaining shifts the equilibrium from double common

agency to pairwise exclusivity in the entire shaded region in Figure 5, i.e., for b ∈
[
bnt,ne (a) ,

bt,ne (a)
]
. This shift increases total industry profits in the region without hashing in which

b ∈
[
bm (a) , bt,ne (a)

]
and reduces them in the hashed region in which b ∈

[
bnt,ne (a) , bm (a)

]
.

Intuitively, the fact that ex-post bargaining makes it harder to form new links has two opposite

effects on overall industry profits. On the one hand, it makes it harder for supplier-retailer pairs

to impose negative externalities on other firms by forming new links that reduce the profits of

those firms (this positive effect dominates in the shaded region without hashing). On the other

hand, it also makes it harder for firms to realize gains from trade when these exist (this negative

effect dominates in the hashed region). The fact that upfront transfers that cannot be made con-

tingent on exclusivity do not necessarily lead to the maximization of total payoffs in games of
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network formation with externalities has also been stressed in a different context by Bloch and

Jackson (2007).28

7.2 Ex-ante commitment to exclusivity
Assume now that, when firms announce which other firms they are willing to form a link

with at the network formation stage, they can make that announcement contingent on the differ-

ent type of exclusivity studied in Section 6. For example, a supplier s can announce that he is

willing to form a link with a retailer r only if he obtains exclusivity from r or, alternatively, that

he is willing to offer exclusivity to r. As above, once the supply network has been formed, firms

that are connected by a supply link proceed to bargain bilaterally under some degree of hold-up.

The following proposition characterizes the equilibria that arise in this environment.

Proposition 7 (No upfront transfers, with commitment to exclusivity) In a bilateral duopoly model

where firms can commit to exclusivity but not upfront transfers at the network formation stage, there exist

coalition-proof Nash equilibria with

1. g∗nt,e = pe if and only if

Πpe ≥ 2
(

Πdca −Πmix1
)

. (16)

which is the case if and only if b > bnt,e (a) in Figure 6 below.

2. g∗nt,e = dca and g∗nt,e = mix if and only if

Πmix1 + Πmix2 ≥ 2Πpe, (17)

which is the case if and only if b ≤ bnt,e (a) = bnt,ne (a) in Figure 6 below, with bnt,e (a) > bnt,e (a).

The availability of exclusive contracts and the absence of upfront transfers make it more

difficult for firms to deviate profitably by forming new supply links. Exclusive contracts tend,

therefore, to expand the region of parameters where networks with some type of exclusivity,

such as a mixed network or pairwise exclusivity, can be supported as equilibria. Specifically,

in addition to the equilibrium with double common agency that exists also in the absence of

28Elliott (2015) also explores the effects of upfront transfers (relative to ex-post bargaining under hold
up) on the efficiency of networks. The environment and issues that he studies are, however, quite different
from those in this paper. Specifically, he considers markets without externalities (i.e., in which downstream
firms do not compete with one another) and focuses on the firms’ incentives to undertake relation-specific
investments. In such an environment transfers also have two opposite effects on overall profits: they alleviate
underinvestment by solving the hold-up problem but can encourage firms to overinvest in new links in order
to boost their outside options.
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Figure 6: Equilibria with exclusive contracts and no transfers.

exclusive contracts for b < bnt,e (a), exclusive contracts support an equilibrium with a mixed

network for b < bnt,e (a) and equilibria with a mixed network and pairwise exclusivity for b ∈[
bnt,e (a) , bnt,e (a)

]
in Figure 6.

One may wonder why there exist equilibria with exclusivity even when b = 0 in Figure 6, i.e.,

even when there is no downstream competition between retailers and thus exclusivity always

reduces industry profits by reducing variety. The reason for this is that some firms have more

ex-post bargaining power under certain supply networks with exclusivity than under alternative

networks without exclusivity. For example, suppliers have more ex-post bargaining power under

pairwise exclusivity, in which retailers have no ex-post alternative to their only supplier, than

under double common agency, in which retailers can shift ex-post some of their business to the

other supplier in case of disagreement during bilateral bargaining. In the absence of upfront

transfers, the firms that would see their bargaining power fall as a consequence of deviations to

networks with less exclusivity cannot be compensated for their loss and would thus block such

deviations.

8 Conclusion
This paper has studied the formation of supply networks in environments with upstream

and downstream competition in which firms can use upfront transfers and exclusive contracts. I
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have shown that, when contracts are secret, all (coalition-proof) equilibria are characterized by

marginal input prices equal to marginal cost. Moreover, when exclusive contracts are not avail-

able and retailers are sufficiently close substitutes, equilibrium supply networks tend to have

more supply links and more intense downstream competition than the networks that maximize

industry profits. Exclusive contracts make it easier to support equilibrium networks with fewer

supply links, thus eliminating the divergence between equilibrium and industry-profit maxi-

mizing networks and harming welfare through lower variety and higher prices. Finally, if the

division of profits must take place through ex-post bargaining, for example because firms must

make specific investments before starting to negotiate, it is more difficult for firms to organize

mutually profitable deviations to broader networks and is thus easier to support equilibria with

fewer supply links relative to an environment with upfront transfers or long-term contracts.

The model presented in this paper has been developed for the main purpose of studying

the determinants and welfare effects of different supply networks, not of precisely predicting the

division of profits between suppliers and retailers. As a result, it only characterizes lower and up-

per bounds on the transfers that support different equilibrium supply networks. This approach

is sufficient to determine unambiguously the qualitative effects of certain changes in the envi-

ronment on the distribution of profits. For example, it predicts that the availability of exclusive

contracts unambiguously favors suppliers over retailers, by allowing the former to threaten cred-

ibly to exclude the latter. To obtain more precise predictions on the exact division of profits one

would, however, need to adopt a specific coalitional bargaining game at the network-formation

stage. Such an extension would add further complexity to an already complex environment and

would be unlikely to affect the equilibrium structure of networks, unless the specific coalitional

bargaining protocol adopted i) limits the firms’ ability to continue making one another propos-

als until all possibilities have been explored, or ii) allows firms to credibly commit ex-ante (i.e.,

before starting negotiations) to restrict the number of counterparts with which they are willing

to contract in order to elicit better offers from the other side of the market as in, e.g., Liebman

(2016). Further work on this aspect may, however, prove useful.

Finally, this paper has focused on the case in which suppliers cannot publicly commit to

marginal input prices. However, in some industries suppliers can attain some form of public

commitment through various means.29 This commitment can affect the structure of equilibrium

29Examples of regulatory obligations include the healthcare industry, in which some U.S. states (e.g. New
Hampshire) have recently started to collect and publish the bilateral reimbursement rates agreed for every
procedure by healthcare providers and insurers; the alcohol distribution industry, in which some U.S. license
states require wholesalers to post and commit to wholesale prices for 30 days; and the automobile industry,
in which the franchise laws of many states require manufacturers to offer the same price to all dealers and
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supply networks because its potential to soften downstream competition and increase industry

profits is greater in certain networks than in others. Moreover, since it typically yields wholesale

prices that are different from the marginal cost of production, it introduces externalities between

suppliers, in addition to the externalities between retailers that are also present in the environ-

ment without public commitment of this paper. I am studying these and other implications of

public commitment in ongoing work.
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APPENDIX A

Proofs of Lemmas and Propositions

Proof of Proposition 1 – I first show that, for any network g, any profile of self-enforcing whole-

sale prices must be equal to marginal cost, i.e., w (g) = c. I then argue that this implies that there

does not exist any self-enforcing (bilateral or multilateral) deviation from w (g) = c and therefore

that there always exist a unique CPNE profile of wholesale prices with w (g) = c.

A CPNE profile of wholesale prices must be immune to jointly profitable bilateral deviations

by any supplier-retailer pair sr. Such bilateral deviations are always self-enforcing when jointly

profitable because, in a CPNE, further deviations can only be undertaken by s alone or r alone

and cannot modify the wholesale prices in the contracts with other firms. Therefore, if in their

initial bilateral deviation s and r agreed on a contract 〈tsr, wsr〉 that left both of them better off

given the strategies of all other players, neither s nor r can improve on that contract by deviating

unilaterally.

The above implies that a CPNE profile of wholesale prices is always a contract equilibrium

(see O’Brien and Shaffer, 1992), i.e., it maximizes the joint profits of each supplier-retailer pair,

taking as given the contracts entered into by other pairs. In any contract equilibrium, and thus in

any CPNE, it must be wsr (g) = c for all s ∈ S and r ∈ R with `sr = 1. This can be demonstrated

as follows. Consider a deviation by a coalition that involves only s and r. Given the assumptions

of the model and the equilibrium concept adopted, the only wholesale price that can be changed

by this bilateral deviation is wsr. This is the case because, given the wholesale price proposals

ws
r′ by any other retailer r′ 6= r, s cannot unilaterally change the wholesale price wsr′ in his

contract with r′. Moreover, since r′ is not part of the original deviating coalition {s, r}, and CPNE

restricts further deviations to subcoalitions, s cannot orchestrate further deviations to persuade

r′ to change her proposal ws
r′ . The fact that in this deviation s cannot change wholesale prices

other than wsr, and the fact that this is common knowledge, makes it unnecessary to specify

beliefs for r in this deviation. Finally, since the change in wsr is unobserved to other retailers, it

does not affect the quantities (with Cournot competition) or prices (with Bertrand competition)

chosen by those retailers. A small change in wsr has, therefore, the following effect on the joint

profits πsr = πs + πr of s and r,

dπsr

dwsr
= ∑

i∈Sr

∂πr

∂xir

dxir
dwsr

+��qsr + ∑
j∈Rs

(
wsj − c

) dqjr

dwsr
−��qsr , (A-1)

where xir represents the choice variable of retailer r and is equal to qir for Cournot competition

and pir for Bertrand competition, and Sr is the set of suppliers with which retailer r has a link
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(i.e., s ∈ Sr if `sr = 1) and Rs is the set of retailers with which supplier s has a link (i.e., r ∈ Rs if

`sr = 1). In a contract equilibrium, and thus in a CPNE, the wholesale price wsr must maximize

the joint profits of any sr pair with `sr = 1, otherwise there would exist a profitable and self-

enforcing bilateral deviation for at least one of these pairs. It must therefore be dπsr/dwsr = 0

for all s and r. Moreover, profit maximization by retailer r implies that ∂πr/∂xir = 0 for all i ∈ Sr,

therefore the first term in (A-1) is always equal to zero by the envelope theorem. This implies

that the following Rs × Rs system of equations must hold in a CPNE for all s ∈ Sr

dπsr

dwsr
= ∑

j∈Rs

(
wsj − c

) dqsj

dwsr
= 0, for all r ∈ Rs. (A-2)

If downstream competition is Cournot, dqsj/dwsr = 0 for all j 6= r and, for all s ∈ Sr, (A-2)

reduces to

(wsr − c)
dqsr

dwsr
= 0, for all r ∈ Rs. (A-3)

Since dqsr/dwsr < 0 this implies wsr = c for all s ∈ Sr and r ∈ Rs.

If downstream competition is instead Bertrand, dqsj/dwsr ≥ 0 for j 6= r. In particular, al-

though dpij/dwsr = 0 for j 6= r, one still has dpir/dwsr 6= 0 for all i ∈ Sr, and changes in the

prices pir affect all quantities, including qsj for j 6= r. The relevant conditions remain therefore

those given in (A-2). These conditions can be written in matrix form as (ws − c)M = 0, where

ws is a 1× Rs vector, and M is an Rs × Rs matrix with the expression in (A-2) constituting the

typical element for column j and row r. Given Assumption 1, M has a dominant diagonal, i.e.,

|dqsr/dwsr| > ∑j 6=r
∣∣dqsj/dwsr

∣∣ for all r ∈ Rs. By the Levy-Desplaques theorem M is therefore

invertible and the unique solution to (A-2) is wsr = c for all r ∈ Rs.

The results above can be used to establish that w (g) = c is not only a necessary, but also a suf-

ficient, condition for w (g) to constitute a CPNE profile of wholesale prices in a network g. Even

if there existed a mutually profitable multilateral deviation that set the wholesale prices of two

or more retailers at a level different from marginal cost (as might, for example, be profitable in

the case of Bertrand competition and highly substitutable retailers), such a deviation would not

be self-enforcing, because there would always exist further profitable and self-enforcing bilateral

deviations to marginal cost pricing for at least one supplier-retailer pair. �

Proof of Lemma 1 – I first prove necessity and then sufficiency. Consider a network g and a

mutually profitable deviation by a coalition Z ⊆ N that implements a network h 6= g. Using

the expressions for the profits of suppliers and retailers provided in (5) and (6), the fact that the
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deviation is mutually profitable implies that, for all s ∈ Z,

∑
r∈R

`h
srth

sr > ∑
r∈R

`
g
srtg

sr, (A-4)

and, for all r ∈ Z,

Πh
r −∑

s∈S
`h

srth
sr > Πg

r −∑
s∈S

`
g
srtg

sr. (A-5)

Note that, for k ∈ {h, g}, one can write ∑r∈R `k
srtk

sr = ∑r∈Z `k
srtk

sr + ∑r/∈Z `k
srtk

sr and ∑s∈S `
k
srtk

sr =

∑s∈Z `k
srtk

sr +∑s/∈Z `k
srtk

sr. Using these identities and adding (A-4) over s ∈ Z and (A-5) over r ∈ Z,

one obtains

∑
s∈Z

[
∑
r∈Z

`h
srth

sr + ∑
r/∈Z

`h
srth

sr

]
> ∑

s∈Z

[
∑
r∈Z

`
g
srtg

sr + ∑
r/∈Z

`
g
srtg

sr

]
, (A-6)

∑
r∈Z

Πh
r − ∑

r∈Z

[
∑
s∈Z

`h
srth

sr + ∑
s/∈Z

`h
srth

sr

]
> ∑

r∈Z
Πg

r − ∑
r∈Z

[
∑
s∈Z

`
g
srtg

sr + ∑
s/∈Z

`
g
srtg

sr

]
. (A-7)

Adding up (A-6) and (A-7) and rearranging terms, one obtains

∑
r∈Z

[
Πh

r −Πg
r

]
> ∑

s∈Z
∑
r/∈Z

(
`

g
srtg

sr − `h
srth

sr

)
− ∑

r∈Z
∑
s/∈Z

(
`

g
srtg

sr − `h
srth

sr

)
(A-8)

For all links sr in which one of the firms belongs to Z and the other does not, as is always the

case in the right-hand side of (A-8), one has `h
srth

sr = `h
srtg

sr. This is trivially true for `h
sr = 0. For

`h
sr = 1, instead, the deviating firm must meet the transfer proposal tg

sr of the firm that does not

participate in the deviation, since the latter is not given a chance to modify such proposal and

if that proposal were not met one would have `h
sr = 0. This implies that `h

sr = 1 if and only if

th
sr = tg

sr. The fact that `h
srth

sr = `h
srtg

sr in the right-hand side of (A-8) yields the result in (7).

Next, I show that (7) is a sufficient condition for there to exist a mutually profitable deviation

by a coalition Z ∈ Zg→h to a network h with transfers th. For each r ∈ Z, choose a profile of links

`h
sr and transfers th

sr with s /∈ Z such that (A-5) just holds, so that all retailers in the deviating

coalition are just better off in network h than in network g. That is, for each r ∈ Z, choose

∑s/∈Z `h
srth

sr and an arbitrarily small εr > 0 such that

∑
s/∈Z

(
`

g
srtg

sr − `h
srth

sr

)
=
(

Πg
r −Πh

r

)
− ∑

s∈Z

(
`

g
srtg

sr − `h
srth

sr

)
− εr. (A-9)

If (7) holds then, for the reasoning above, so does (A-8). Substituting (A-9) into (A-8) and

simplifying one obtains

∑
s∈Z

[
∑
r∈R

(
`h

srth
sr − `

g
srtg

sr

)]
> ∑

r∈Z
εr. (A-10)
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The terms in square brackets in the left-hand side of (A-10) are independent from one another,

since each refers to a different supplier s ∈ Z, and can be chosen freely, since the restrictions

imposed by (A-9) constrain `h
sr and th

sr for s /∈ Z but not for s ∈ Z. Therefore, for ∑r∈Z εr → 0+,

(A-10) implies that one can always find `h
sr and th

sr for each s ∈ Z such that (A-4) holds for all

s ∈ Z. This proves that, if (7) holds, one can always find a network h with profile of transfers th

such that all suppliers and retailers in some coalition Z ∈ Zg→h are better off. �

Proof of Proposition 2 (No exclusive contracts, with transfers) – The proof proceeds by first

characterizing the conditions under which there exist coalition-proof Nash equilibria (“equilib-

ria”, for short) with g∗t,ne = pe and g∗t,ne = dca, and then proving that there never exist equilibria

with g∗t,ne ∈ {bm, dm, um, mix}.

Existence of equilibria with g∗t,ne = pe

Consider a candidate equilibrium with g = pe (see Figure 1(c)), in which no firm is willing

to engage in “cross trade,” i.e., in which s and r′ refuse to trade with each other and the same

applies to s′ and r. Equilibria with g = pe can also be supported by having only one of s and r′

(or one of s′ and r) refuse to trade with the other. However, such candidate equilibria would be

easier to break than candidate equilibria supported by strategies in which both firms refuse to

trade with the other. The restriction to the latter is, therefore, without loss of generality. Consider

a symmetric profile of transfers tsr = ts′r′ = tpe for the pairs of firms that agree to trade. This

restriction is also without loss of generality because candidate equilibria with asymmetric trans-

fers are easier to break than candidate equilibria with symmetric transfers, since, when transfers

are asymmetric, the supplier and/or retailer with the lowest payoff would be more amenable to

a deviation.

For there to be no profitable unilateral deviations in which a supplier or a retailer rescinds his

or her link it must be

0 ≤ tpe ≤ Πpe. (A-11)

No firm can unilaterally create a new link, since this requires consent from a supplier-retailer

pair. Consider then joint deviations by supplier s and retailer r′. This pair can implement the

following deviations:

A deviation to g = dm, with s agreeing to trade with r′ and stop trading with r, while r′

continues to trade with s′. For tpe > 0, this deviation is not self-enforcing in the absence of

exclusive contracts, since s would always have an incentive to re-form his link with r. For tpe = 0,

this deviation is instead self enforcing, since s would have no incentive to reform his link with
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r, and mutually profitable, since Πdm ≥ Πpe. For an equilibrium with g = pe to exist it must

therefore be tpe > 0.

A deviation to g = mix, with r′ agreeing to trade with both s and s′, while s continues to trade

with r. This deviation is self-enforcing (i.e., supportable as a Nash equilibrium of the two-player

game between s and r′) if and only if tpe ≤ Πmix2 −Πum and strictly Pareto dominates g = pe if

and only if Πmix2 > Πpe. Therefore, there does not exist a mutually profitable and self-enforcing

deviation to g = mix if and only if at least one of the following holds

Πpe ≥ Πmix2 (A-12)

tpe > Πmix2 −Πum (A-13)

A deviation to g = um, with r′ agreeing to start trading with s and stop trading with s′, while

s continues to trade with r. This deviation is self-enforcing if and only if tpe ≥ Πmix2 − Πum

and Pareto dominates g = pe if and only if tpe > Πpe −Πum. This implies that there exists no

mutually profitable and self-enforcing deviation to g = um if and only if

tpe ≤ max
{

Πmix2, Πpe
}
−Πum, (A-14)

with strict inequality if Πmix2 > Πpe.

One can summarize the analysis above as follows. If (A-12) does not hold, there never exists

an equilibrium with g = pe, since both (A-13) and (A-14) would need to hold, and there does

not exist any tpe for which this can be the case. If instead (A-12) holds, the only other condition

required for there to exist no self-enforcing deviation by {s, r′} or {s′, r} is that (A-14) be satisfied

by some tpe > 0, which is always the case since Πpe > Πum. Therefore, for Πpe ≥ Πmix2, there

always exist profiles of transfers tpe ∈ (0, Πpe −Πum] that make g = pe immune to deviations by

{s, r′} or {s′, r}.
Given that, in the candidate equilibrium, s and r′, as well as s′ and r, refuse to trade with each

other, coalitions of three firms can do no better than {s, r′} or {s′, r}. The only coalition that can

achieve deviations not available to {s, r′} or {s′, r} is the grand coalition {s, s′, r, r′}, which can

implement g = dca. Such a deviation is, however, never profitable for all firms in {s, s′, r, r′}
when Πpe ≥ Πmix2, since, with linear demand, this condition implies Πpe > Πdca.

Taken together, all of the above implies that there exist equilibria with g = pe and tpe ∈
(0, Πpe −Πum] if and only if Πpe ≥ Πmix2.

Existence of equilibria with g∗t,ne = dca

Consider a candidate equilibrium with g = dca as in Figure 1(a) and tdca
sr = tdca for all s and
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r. As explained above, the restriction to symmetric transfers is without loss of generality. For a

supplier or retailer to have no incentives to rescind unilaterally one of their supply links, thus

implementing a market structure with g = mix as in Figure 1(b), it must be

0 ≤ tdca ≤ Πdca −Πmix1. (A-15)

Moreover, when (A-15) holds, in the candidate equilibrium a retailer earns Πdca − 2tdca ≥
2Πmix1 −Πdca > 0 (where the last inequality follows from the products being substitutes) and

has thus no incentive to withdraw from the market completely by rescinding both of its links (a

supplier has obviously no incentives to do so for tdca ≥ 0.)

Consider a deviation to g = pe by the grand coalition {s, s′, r, r′} in which all firms refuse

to engage in cross trade (e.g., s and r′ refuse to deal with each other and s′ and r refuse to deal

with each other). Two aspects of this deviation are worth mentioning. First, as discussed in

relation to Remark 1 in the main text, this deviation could be viewed as a (nonbinding) market

allocation agreement. The consequences of prohibiting such agreements (and thus the deviation

considered here) are discussed in Remark 1, which is proved further below in this appendix. For

the time being, however, I allow for this type of nonbinding agreements. Second, a deviation to

g = pe can also be implemented by smaller coalitions (e.g., {r, r′} agreeing not to “cross trade”

with suppliers) but such deviations would be less likely to be self enforcing than a deviation

by {s, s′, r, r′}, as in such deviations not all firms would withdraw their cross offers (e.g., in a

deviation by {r, r′} only the retailers would withdraw their cross offers, whereas the suppliers

would continue to offer contracts to all retailers). Such deviations by smaller coalitions would

thus not add anything to the analysis presented here. Having clarified these aspects, denote by

t̃pe the transfers in this deviation. The deviation can be mutually profitable if there exists a t̃pe

such that

2tdca < t̃pe < Πpe −Πdca + 2tdca (A-16)

The deviation is never self enforcing for Πmix2 > Πpe because, as shown above, when this

condition holds a network with g = pe is never self-enforcing even with unrestricted transfers

tpe. Therefore, it is a fortiori never self-enforcing with transfers t̃pe that are restricted as in (A-

16). The deviation is, instead, always self enforcing for Πpe ≥ Πmix2, as there always exists a

t̃pe > 0 that satisfies both (A-14) and (A-16). The latter requires Πpe > Πdca (which is always the

case when Πpe ≥ Πmix2, as Πmix2 > Πdca) and 2tdca < Πpe −Πum. For there to be no t̃pe > 0

that satisfies (A-14) and (A-16) one would therefore need 2tdca ≥ Πpe − Πum. However, with

linear demand and when Πpe ≥ Πmix2, there never exists a tdca satisfying both this condition

and condition (A-15) for no unilateral deviations.
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Consider next a deviation to g = dm by a coalition {s, s′, r}. For tdca > 0, this deviation

is not self-enforcing in the absence of exclusive contracts, since either supplier would always

have incentives to re-form his link with r′. For tdca = 0, this deviation is instead self enforcing,

since no supplier would have incentives to reform his link with r′, and mutually profitable, since

Πdm ≥ Πdca. For an equilibrium with g = dca to exist it must therefore be tdca > 0.

Finally, consider a deviation to g = um by a coalition {s, r, r′}. This deviation is self enforcing

if and only if tdca > Πmix2−Πum and always mutually profitable whenever it is self enforcing. A

necessary condition for there to exist an equilibrium with g = dca is therefore tdca ≤ Πmix2−Πum.

Since with linear demand Πmix2 ≥ Πdca and Πum = Πmix1, this condition is never binding when

(A-15) holds.

Taken together, all of the above implies that there exist equilibria with g = dca and tdca ∈(
0, Πdca −Πmix1

]
if and only if Πmix2 > Πpe.

There do not exist equilibria with g∗t,ne ∈ {bm, dm, um, mix}
There cannot exist an equilibrium with g = bm because the excluded supplier and retailer

would always have self-enforcing incentives to form a link and earn positive profits.

There cannot exist an equilibrium with g = dm because the excluded retailer, r′, can always

profitably deviate by entering into a contract with at least one supplier. Without exclusive con-

tracts, that supplier would be able to keep his contract with the other retailer, r, and would thus

be willing to accept any additional positive transfer from r′. Analogously, there cannot exist an

equilibrium with g = um either. The excluded supplier, s′, can always profitably deviate by offer-

ing a contract with a positive and arbitrarily small transfer request to at least one of the retailers.

Since that retailer can keep his link with s and since Πmix2 > Πum, he accepts the proposal by s′.

Finally, consider a candidate mixed equilibrium with g = mix where all links are active ex-

cept the link between s′ and r′. There always exists a self-enforcing deviation in which s′ and

r′ form that link. If in the candidate equilibrium tmix
sr′ ≤ Πdca − Πmix1, the self-enforcing de-

viation involves r′ maintaining her link with s and implementing g = dca (this deviation is

jointly profitable for s′ and r′ since Πdca > Πmix1). If instead in the candidate equilibrium

tmix
sr′ > Πdca−Πmix1, the self-enforcing deviation involves r′ rescinding her link with s and imple-

menting g = mix (this deviation, which effectively involves switching s′ for s, is jointly profitable

for s′ and r′ since tmix
sr′ > Πdca −Πmix1 > 0). As a result, there never exists an equilibrium with a

mixed network. �

Proof of Remark 1 (No exclusive contracts, no market allocation agreements) – Regarding the

existence of equilibria with g = pe, as the conditions obtained in the proof of Proposition 2 do
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not rely on market allocation agreements, prohibiting such agreements has no effects.

Regarding the existence of equilibria with g = dca, prohibiting market allocation agreements

rules out the deviation to g = pe by the grand coalition in the proof of Proposition 2. The only

feasible deviation to g = pe remains one by a supplier s and a retailer r, but such a deviation is

not self enforcing as, without exclusive contracts, the supplier has always incentives to reform

his link with the other retailer, r′. Since, as established in the proof of Proposition 2, there always

exists a tdca that prevents self-enforcing deviations to networks other than g = pe, there always

exist equilibria with g = dca. �

Proof of Proposition 3 (Exclusive contracts and transfers) – The proof proceeds by first char-

acterizing the conditions under which there exist equilibria with g∗t,e ∈ {dca, pe, dm} and then

proving that there never exist equilibria with g∗t,e ∈ {bm, um, mix}.

Existence of equilibria with g∗t,e = dca

As in the proof of Proposition 2, one can focus without loss of generality on symmetric equi-

libria with tdca
sr = tdca for all s and r. Suppliers and retailers do not find it profitable to rescind

unilaterally one of their links, thus implementing g = mix, if and only if (A-15) holds. Deviations

to g = mix can be also carried out by coalitions including more than one firm, but such devia-

tions would be less likely to be jointly profitable or self-enforcing than a unilateral deviation and

thus do not play any role when (A-15) holds.

Consider a deviation by a coalition {s, r} in which these two firms commit to mutual exclusiv-

ity, thus implementing g = pe. This deviation is mutually profitable if and only if there exists a

t̃pe such that

2tdca < t̃pe < Πpe −Πdca + 2tdca (A-17)

When mutually profitable, this deviation is always self-enforcing. To see why, note that the

adoption of mutual exclusivity by {s, r} implies that if either s or r deviates further it must stop

trading with the other. The only possible further deviations from g = pe are, therefore, s trading

only with r′ (thus implementing g = dm, since s′ continues to trade with r′) or r trading only

with s′ (thus implementing g = um, since r′ continues to trade with s′.) These deviations are not

mutually profitable, and thus the original deviation is self-enforcing, if and only if

tdca ≤ t̃pe ≤ Πpe −Πum + tdca (A-18)

Since in any equilibrium with g = dca condition (A-15) must hold and since with linear de-

mand Πum = Πmix1, it is straightforward to verify that (A-18) always holds when (A-17) holds,

and thus the original deviation to g = pe is always self-enforcing when mutually profitable. Us-
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ing (A-17), this implies that there does not exist a self-enforcing deviation to g = pe by {s, r} if

and only if

Πdca ≥ Πpe (A-19)

Deviations to g = pe can also be implemented by broader coalitions, such as the grand coali-

tion {s, s′, r, r′} in the proof of Proposition 2, but these deviations do not add anything to the

conditions derived from the deviation by {s, r} studied above.

Consider now a deviation to g = um in which r and r′ commit to be exclusive to s. This

deviation is mutually profitable if and only if the joint profits that {s, r, r′} can earn in the de-

viation, 2Πum, are greater than the joint profits that {s, r, r′} earns in the candidate equilibrium,

2Πdca − 2tdca, which is the case if and only if tdca > Πdca −Πum. This condition never holds, and

thus a deviation to g = um is never profitable, when condition (A-15) for no unilateral deviations

holds, since, with linear demand, Πum = Πmix1.

Finally, consider a deviation to g = dm in which s and s′ commit to be exclusive to r. This

deviation is mutually profitable if and only if there exists a t̃dm such that

4tdca < 2t̃dm < Πdm −Πdca + 2tdca. (A-20)

Moreover, the deviation is self enforcing if and only if none of the following subsequent de-

viations is profitable and self enforcing: i) one of the suppliers rejects r’s proposal and accepts

the candidate equilibrium proposal tdca of r′, which implements g = pe; ii) a coalition of one

supplier and one retailer, say {s, r}, agrees to mutual exclusivity, with r rejecting the deviation

proposal of s′, which, after s′ enters a new contract with r′, implements g = pe; iii) a coalition of

one supplier and one retailer, say {s, r}, agrees that r rejects the deviation proposal of s′, while s

accepts the candidate equilibrium proposal tdca of r′, which, after s′ enters a new contract with

r′ as a consequence of the “no stranding” assumption, implements g = mix; iv) a coalition of

one supplier and one retailer, say {s, r}, agrees that r accepts the deviation proposal of s′, while

s accepts the candidate equilibrium proposal tdca of r′, which implements g = mix. Subsequent

deviations i) and ii) are not profitable, and thus the original deviation to g = dm is self enforcing,

if and only if 2tdca < 2t̃dm < 2
(

Πdm −Πpe
)

. In the relevant case where tdca ≥ 0 (see condition

(A-15) above) and Πdca ≥ Πpe (see condition (A-19) above) this is always true when t̃dm satisfies

(A-20), i.e., when the initial deviation to g = dm is mutually profitable. Deviations iii) and iv)

are instead never mutually profitable and self enforcing when the original deviation to g = dm

is mutually profitable and condition (A-15) for the existence of an equilibrium with g∗t,e = dca

holds. These deviations do not, therefore, add anything to the analysis. The detailed proof of

this fact is tedious and is contained in the online appendix. All of this implies that, for there to
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exist no mutually profitable and self-enforcing deviation to g = dm, (A-20) must fail for any t̃dm,

which is the case if and only if

2tdca ≥ Πdm −Πdca (A-21)

The analysis above implies that there exist equilibria with g = dca if and only if (A-19) holds

and there exists a tdca such that (A-15) and (A-21) also hold. The latter is the case if and only if

2
(

Πdca −Πmix1
)
≥ Πdm −Πdca. (A-22)

Intuitively, for there to exist an equilibrium with g = dca there must exist intermediate trans-

fers tdca that ensure that i) either supplier does not extract too much, otherwise one or both

retailers would drop him and ii) either retailer does not extract too much, otherwise the other

retailer could convince both suppliers to drop her. As can be seen in Figure 4, this is possible

only if suppliers and retailers are sufficiently differentiated.

Existence of equilibria with g∗t,e = pe

Consider an equilibrium with g = pe supported by mutual exclusivity between s and r and

between s′ and r′. Although equilibria with g = pe can also be supported by one-way commit-

ments to exclusivity, equilibria supported by mutual exclusivity are more difficult to break and

thus more likely to exist. As in the proof of Proposition 2, focus without loss of generality on

symmetric transfers tsr = ts′r′ = tpe for the pairs of firms that agree to trade. Suppliers and

retailers do not have incentives to deviate unilaterally by becoming inactive if and only if (A-11)

holds.

Consider first a deviation to g = um in which r and r′ commit to be exclusive to s. This

deviation is mutually profitable if and only if there exists a t̃um such that tpe < 2t̃um <

2 (Πum −Πpe + tpe) and is (trivially) self enforcing whenever it is profitable (in the candidate

equilibrium, supplier s′ does not have a proposal out to retailer r and cannot be involved in fur-

ther negotiations because it does not belong to the original deviating coalition that includes r).

Therefore, for there to exist no mutually profitable and self-enforcing deviation to g = um it must

be

tpe ≤ 2 (Πpe −Πum) (A-23)

Consider next a deviation to g = dm in which s and s′ commit to be exclusive to r and r pays a

transfer t̃dm to each supplier. This deviation is mutually profitable if and only if there exists a t̃dm

such that 2tpe < 2t̃dm < Πdm −Πpe + tpe and, as above, is (trivially) self enforcing whenever it is

profitable (in the candidate equilibrium, retailer r′ does not have a proposal out to supplier s and
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cannot be involved in further negotiations because it does not belong to the original deviating

coalition that includes s). Therefore, for there to exist no mutually profitable and self-enforcing

deviation to g = dm it must be

tpe ≥ Πdm −Πpe. (A-24)

Finally, consider deviations to g = mix or g = dca. Since the candidate equilibrium with

g = pe is supported by mutual exclusivity, these deviations can only be implemented by the

grand coalition {s, s′, r, r′}, because all the contract proposals in the candidate equilibrium would

need to be modified. This deviation can therefore be mutually profitable only if, respectively,

Πmix1 + Πmix2 > 2Πpe and 2Πdca > 2Πpe. With linear demand, this is never the case in the

region of parameters where (A-23) and (A-24) hold.

In conclusion, there exists an equilibrium with g = pe if and only if there exists a tpe such that

(A-11), (A-24) and (A-23) hold, which is the case if and only if

2Πpe ≥ Πdm, (A-25)

2 (Πpe −Πum) ≥ Πdm −Πpe. (A-26)

Condition (A-25) follows from the need for tpe to satisfy (A-11) and (A-24), which can be

the case only if pairwise exclusivity yields higher profits than downstream monopoly, whereas

condition (A-26) follows from the need for tpe to satisfy (A-23) and (A-24) (the requirement that

tpe ≥ 0 is satisfied when (A-24) holds because Πdm −Πpe > 0).

Existence of equilibria with g∗t,e = dm

Consider a candidate equilibrium with g = dm in which s and s′ commit to be exclusive to

r and assume, without loss of generality, symmetric transfers tdm
sr = tdm

s′r = tdm. For there to

be no jointly profitable and self-enforcing deviation in which the excluded retailer, r′, and one

of the suppliers enter a mutually exclusive contract that implements g = pe it must be tdm ≥
Πpe. Moreover, for there to be no jointly profitable and self-enforcing deviation in which the

monopolistic retailer, r, and one of the two suppliers, say s, enter a mutually exclusive contract

it must be tdm ≤ Πdm −Πpe (note that, by the “no stranding” assumption, the rejection of s′’s

exclusive proposal by r would allow s′ to enter a new contract with r′ and the market structure

resulting from this deviation would thus be g = pe). There exists a tdm that satisfies these two

conditions if and only if (A-25) fails (or holds with equality).

In this equilibrium both retailers must earn zero profits, which implies that the active retailer

must pay transfers tdm = Πdm/2. If tdm < Πdm/2, there would exist a profitable deviation
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in which the excluded retailer, r′, steals the entire business of the active retailer, r, by offering

both suppliers transfers t̃dm ∈
(

tdm, Πdm/2
]

in exchange for exclusivity and earns profits Πdm −
2t̃dm > 0. Such a deviation would be self enforcing because the only feasible further deviation,

i.e., r′ and one of the two suppliers, say s′, committing to mutual exclusivity, is not profitable.

This is the case because, by the “no stranding” assumption, such a deviation would cause the

two excluded firms, s and r, to enter a contract and would thus implement g = pe, and Πpe ≤
Πdm − t̃dm for t̃dm ≤ Πdm/2 when Πdm ≥ 2Πpe.

Finally, when (A-25) fails (or holds with equality), one also has that Πdm > 2Πdca and Πdm >

Πmix1 + Πmix2 so that deviations in which the grand coalition deviates to g = dca or a coalition

of {s′, r, r′} deviates to g = mix (with r′ carrying product s′ and s carrying both products) are not

mutually profitable.

There do not exist equilibria with g∗t,e ∈ {bm, um, mix}
There cannot exist an equilibrium with g = bm because the excluded supplier and retailer

would always have self-enforcing incentives to form a link and earn positive profits.

Consider a candidate equilibrium with g = um in which r and r′ commit to be exclusive to

s and assume, without loss of generality, symmetric transfers tum
sr = tum

sr′ = tum. Unless tum ≤
Πum −Πpe there always exists a self-enforcing deviation in which the excluded supplier, s′, and

one of the retailers, say r, enter a mutually exclusive contract that implements g = pe. Since

Πum −Πpe < 0 and suppliers have incentives to rescind their candidate equilibrium supply link

if tum < 0, there does not exist any equilibrium with g = um.

Finally, consider a candidate equilibrium with g = mix in which all links are active except

the link between s′ and r′. Specifically, s′ commits to exclusivity with r, r′ commits to exclusivity

with s, and s and r trade with each other on a nonexclusive basis. In such a candidate equilibrium

it must be

tmix
sr′ = 0. (A-27)

To prove this, assume by contradiction that in equilibrium tmix
sr′ > 0. A coalition {s′, r, r′} can

then engage in a mutually profitable deviation to a different mixed network with s′ switched for

s and transfers t̃mix
sr = tmix

sr , t̃mix
s′r = tmix

s′r and t̃mix
s′r′ = tmix

sr′ − ε, ε > 0. Given symmetry of demand,

the network resulting from this deviation yields the same structure of payoffs (with s′ switched

for s) as the equilibrium network, up to an arbitrarily small difference ε. Since the equilibrium

network is self-enforcing by definition, this deviation is also self-enforcing, which contradicts the

assumption that tmix
sr′ > 0 constitutes an equilibrium . It must therefore be tmix

sr′ ≤ 0. Moreover,

for supplier s not to rescind his link with r′ unilaterally it must be tmix
sr′ ≥ 0. This establishes
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(A-27). Intuitively, as the suppliers are symmetric, either supplier can provide the same profits

by supplying his product to the retailer that carries only one product, and no supplier can thus

extract any profits by doing so.

Consider now a deviation by a coalition {s, r} in which s commits to be exclusive to r, thus

implementing g = dm. This deviation is jointly profitable if and only if there exists a t̃dm
sr such

that

tmix
sr′ + tmix

sr < t̃dm
sr < Πdm −Πmix2 + tmix

sr , (A-28)

and self-enforcing if and only if neither s nor r find it profitable to deviate further by stopping

dealing with the other, which is the case if and only if

tmix
sr′ ≤ t̃dm

sr ≤ Πdm −Πpe. (A-29)

Since in any candidate equilibrium with g = mix it must be tmix
sr ≥ 0, (A-28) and (A-29) can

be consolidated into the following condition for the existence of a profitable and self-enforcing

deviation to g = dm

tmix
sr′ + tmix

sr < min
{

Πdm −Πmix2 + tmix
sr , Πdm −Πpe

}
, (A-30)

If tmix
sr is such that the right-hand side of (A-30) is Πdm − Πmix2 + tmix

sr , for there to exist no

profitable and self-enforcing deviation to g = dm it must be tmix
sr′ ≥ Πdm − Πmix2, which can

never be the case, since Πdm − Πmix2 > 0 and (A-27) must hold. If instead tmix
sr is such that

the right-hand side of (A-30) is Πdm − Πpe, for there to exist no profitable and self-enforcing

deviation to g = dm it must be tmix
sr′ ≥ Πdm −Πpe − tmix

sr . Since in any equilibrium with g = mix

it must be tmix
sr ≤ Πmix2 −Πpe (otherwise r would drop s), the previous condition implies, again,

tmix
sr′ ≥ Πdm −Πmix2, which, as above, can never be the case. Therefore, when (A-27) holds there

always exist profitable and self-enforcing deviations to g = dm by {s, r}. Intuitively, since s is not

compensated for providing his product to the single-product retailer, r′, he can be easily induced

to help the two-product retailer, r, monopolize the downstream market by not selling to r′. �

Proof of Proposition 5 (Distribution of profits) – It is straightforward to see that the availability

of exclusive contracts can never make suppliers unambiguously worse off, as the lower bound

on suppliers’ profits without exclusive contracts is always zero (see Proposition 2) and suppliers

cannot be forced to earn negative profits. The fact that the availability of exclusive contracts

can (and, for b sufficiently high, does) make suppliers unambiguously better off and retailers

unambiguously worse off is, however, less immediate.

Consider first the case in which exclusive contracts result in an equilibrium supply network
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with g∗t,e = pe. There are two cases: i) the equilibrium supply network is g∗t,e = g∗t,ne = pe

regardless of whether exclusive contracts are available or not, which is the case for bt,ne (a) ≤
b ≤ bm (a) (note that this case makes sense only with Bertrand downstream competition, as with

Cournot downstream competition there is no b for which g∗t,ne = pe is an equilibrium without

exclusive contracts); ii) exclusive contracts cause the equilibrium supply network to switch from

g∗t,ne = dca to g∗t,e = pe, which is the case for bt,e (a) ≤ b < bt,ne (a).

Case i): As total industry profits remain the same, an unambiguous increase in suppliers’

profits implies an unambiguous decrease in retailers’ profits (and vice versa). It is therefore

sufficient to analyze the profits of only one type of firm. In the absence of exclusive contracts,

suppliers’ profits have an upper bound π
pe
s,ne = Πpe −Πum, whereas when exclusive contracts

are available they have a lower bound π
pe
s,e = Πdm −Πpe. With linear demand π

pe
s,e > π

pe
s,ne, and

suppliers are therefore unambiguously better off (with retailers being unambiguously worse off)

when exclusive contracts are available.

Case ii): As the equilibrium changes, so do total industry profits. One needs therefore to

carry out separate profit comparisons for suppliers and retailers. Suppliers’ profits have an

upper bound πdca
s,ne = 2

(
Πdca −Πmix1

)
without exclusive contracts and a lower bound π

pe
s,e =

Πdm −Πpe with exclusive contracts. Retailers’ profits have a lower bound πdca
r,ne = 2Πmix1−Πdca

without exclusive contracts and an upper bound π
pe
r,e = 2Πpe − Πdm with exclusive contracts.

With linear demand, π
pe
s,e > πdca

s,ne in the region of parameters where g∗t,e = pe (see point 2 in

Proposition 3) and π
pe
r,e < πdca

r,ne for all parameter values, which implies that the availability of ex-

clusive contracts makes suppliers unambiguously better off and retailers unambiguously worse

off.

Consider next the case in which exclusive contracts cause the equilibrium supply network to

switch to g∗t,e = dm, which is the case for b ≥ bm (a). The analysis differs between i) Bertrand

competition, for which the equilibrium network switches from g∗t,ne = pe to g∗t,e = dm; ii) Cournot

competition, for which the equilibrium network switches from g∗t,ne = dca to g∗t,e = dm.

Case i) (Bertrand competition): Suppliers’ profits have an upper bound π
pe
s,ne = Πpe −Πum

without exclusive contracts and a lower bound πdm
s,e = Πdm/2 with exclusive contracts. In the

region where g∗t,e = dm can be supported as an equilibrium, Πdm ≥ 2Πpe and thus πdm
s,e >

π
pe
s,ne, which implies that exclusive contracts make suppliers unambiguously better off. Retailers’

profits have a lower bound π
pe
r,ne = Πum without exclusive contracts and are always equal to zero

in an equilibrium with exclusive contracts and g∗t,e = dm, which implies that exclusive contracts

make retailers unambiguously worse off.

Case ii) (Cournot competition): Suppliers’ profits have an upper bound πdca
s,ne =
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2
(

Πdca −Πmix1
)

without exclusive contracts and a lower bound πdm
s,e = Πdm/2 with exclusive

contracts. With linear demand, in the region where g∗t,e = dm can be supported as an equilib-

rium, πdm
s,e > πdca

s,ne, which implies that exclusive contracts make suppliers unambiguously better

off. Retailers’ profits have a lower bound πdca
r,ne = 2Πmix1 −Πdca > 0 without exclusive contracts

and are always equal to zero in an equilibrium with exclusive contracts and g∗t,e = dm, which

implies that exclusive contracts make retailers unambiguously worse off.

Finally, consider the case in which the equilibrium supply network is g∗t,e = g∗t,ne = dca re-

gardless of whether exclusive contracts are available or not, which is the case for b < bt,e (a).

This is the case when condition (12) in Proposition 3 holds. The lower bound on the suppli-

ers’ profits is strictly greater when exclusive contracts are available than when they are not, i.e.,

πdca
s,e = Πdm −Πdca > 0 = πdca

s,ne, whereas the upper bound is the same regardless of whether

exclusive contracts are available or not, i.e., πdca
s,ne = πdca

s,e = 2
(

Πdca −Πmix1
)

. Therefore, when

the equilibrium remains g∗t,e = g∗t,ne = dca, the availability of exclusive contracts never makes

suppliers worse off and can make them strictly better off. As industry profits are unaffected by

the availability of exclusive contracts, the opposite conclusion applies to retailers’ profits, which

are no higher, and possibly strictly lower, when exclusive contracts are available. �

Proof of Proposition 6 (No exclusive contracts, no transfers) – The proof proceeds by first char-

acterizing the conditions under which there exist equilibria with g∗nt,ne = dca and g∗nt,ne = pe; and

then proving that there never exist equilibria with g∗nt,ne ∈ {bm, dm, um, mix}. The expressions

for the supplier and retailer profits in network g, π
g
s and π

g
r , are given by (14) in the main text.

Existence of equilibria with g∗nt,ne = dca

Since in the candidate equilibrium all firms are willing to trade with all other firms, all de-

viations involve rescinding links and can be implemented unilaterally by a single supplier or

retailer, or by coalitions of two firms, namely {s, s′}, {r, r′} or {s, r}.
Unilateral deviations are not profitable if and only if πdca

r > πmix1
r and πdca

s > πmix1
s . The first

condition corresponds to (
2− 1

β

)(
Πdca −Πmix1

)
< Πmix1 (A-31)

and always holds for all β ∈ [0, 1], since Πmix1 − Πdca > Πmix1 > 0. The second condition

corresponds to 2
(

Πdca −Πmix1
)
> Πmix2 −Πum and, since with linear demand Πmix1 = Πum,

can be written as

2Πdca > Πmix1 + Πmix2. (A-32)
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Consider then a deviation by the coalition {s, s′}. This coalition can carry out deviations that

implement g = dm, g = mix or g = pe. A deviation that implements g = dm is never self enforc-

ing, since π
pe
s > πdm

s and thus, when supplier s′ trades only with r, supplier s prefers trading only

with r′ to also trading only with r. A deviation that implements g = mix is equivalent to a unilat-

eral deviation in which one of the suppliers rescinds one of his links and is thus not self enforcing

when (A-32) holds. A deviation that implements g = pe is self enforcing if it is a best response

for s to deal only with r when s′ deals only with r′, i.e., if π
pe
s > max

{
πmix2

s , πdm
s

}
. When (A-32)

holds, πmix2
s > πdm

s and this is therefore the case if and only if 2Πpe > Πmix1 + Πmix2. When this

deviation is self-enforcing it is also mutually profitable for {s, s′}, since Πpe > 2
(

Πdca −Πmix1
)

.

Therefore, there exists no mutually profitable and self-enforcing deviation by {s, s′} if and only

if

Πmix1 + Πmix2 ≥ 2Πpe. (A-33)

In what follows I restrict attention to the region of parameters where (A-33) holds and show

that, in this region, there exist no self-enforcing deviations by the coalitions {r, r′} and {s, r}.
The coalition {r, r′} can carry out deviations that implement g = um, g = mix and g = pe. A

deviation that implements g = um is never self-enforcing because Πpe > Πum implies π
pe
r > πum

r ;

and a deviation to g = mix is never self-enforcing when unilateral deviations are not profitable,

i.e. when (A-32) holds. A deviation that implements g = pe is never self-enforcing when (A-33)

holds, since (A-33) implies πmix2
s > π

pe
s .

A coalition {s, r} can carry out a deviation that implements g = pe. As above, such a deviation

is never self-enforcing when (A-33) holds, since (A-33) implies πmix2
s > π

pe
s . The same coalition

can also carry out deviations that implement g = mix but, as argued above, these deviations are

never self enforcing when unilateral deviations are unprofitable.

In summary, since (A-32) is not binding when (A-33) holds, (A-33) is the only necessary and

sufficient condition for the existence of an equilibrium with g∗nt,ne = dca.

Existence of equilibria with g∗nt,ne = pe

Consider a candidate equilibrium with g = pe in which s is willing to trade only with r (and

vice versa) and s′ is willing to trade only with r′ (and vice versa). As in the proof of Proposition

2, the only relevant deviation is one by the two-firm coalition formed by s and r′ (or s′ and r).

This coalition can implement deviations to g = dm, g = um and g = mix. A deviation to g = dm

in which r′ is the only active retailer is not self-enforcing because, when r′ is willing to deal

with both suppliers, s prefers exclusivity with r to exclusivity with r′, since Πpe > Πdm −Πbm

implies π
pe
s > πdm

s . A deviation to g = um in which s is the only active supplier is not self-
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enforcing because, when s is willing to deal with both suppliers, r′ prefers exclusivity with s′ to

exclusivity with s, since Πpe > Πum implies π
pe
r′ > πum

r′ . Finally, a deviation to g = mix is self

enforcing if and only if r′ responds to the willingness of s to deal with both retailers by being

willing to deal with both suppliers, and vice versa, i.e., if and only if πmix2
s ≥ max

{
π

pe
s , πdm

s

}
and πmix2

r′ ≥ max
{

π
pe
r′ , πum

r′

}
. The first conditions corresponds to πmix2

s ≥ π
pe
s , since π

pe
s ≥ πdm

s ,

and is satisfied if and only if (A-33) holds. The second condition corresponds to πmix2
r′ ≥ π

pe
r′ ,

since π
pe
r′ ≥ πum

r′ , and, rearranging terms, yields(
2− 1

β

)(
Πmix2 −Πpe

)
≤ Πum (A-34)

Condition (A-34) always holds when (A-33) does. To see this note that, when (A-33) holds,

Πmix2 −Πpe > 0, given that Πmix1 < Πpe. Since (2− 1/β) is increasing in β, this implies that

(A-34) always holds if it holds for β = 1. The claim then follows from the fact that with linear

demand
(
Πmix2 −Πpe) ≤ Πum with both Bertrand and Cournot competition. Condition (A-33)

is, therefore, the only relevant necessary and sufficient condition for there to exist a self-enforcing

deviation to g = mix by the coalition {s, r′}. Since this deviation is mutually profitable when self-

enforcing, there exists an equilibrium with g∗nt,ne = pe if and only if (A-33) fails.

There do not exist equilibria with g∗nt,ne ∈ {bm, dm, um, mix}
There cannot exist an equilibrium with g = bm because the excluded supplier and retailer

would always have self-enforcing incentives to form a link and earn positive profits. There

cannot exist an equilibrium with g = dm in which, say, r is the only active retailer because

min
{

π
pe
s , πmix2

s

}
> πdm

s and thus one of the suppliers can profit by opening a link with r′, who

would also profit from the deviation. There cannot exist an equilibrium with g = um in which,

say, s is the only active supplier because min
{

π
pe
r , πmix2

r

}
> πum

r and thus one of the retailers

can profit by opening a link with s′, who would also profit from the deviation.

Finally, consider a candidate equilibrium with g = mix in which the link between, say, s and

r is inactive. If (A-32) holds there exists a mutually profitable and self-enforcing deviation in

which s and r form a link with each other, thus implementing g = dca. If (A-33) holds there

exists a mutually profitable and self-enforcing deviation in which s′ and r′ rescind their link,

thus implementing g = pe. Since one of (A-32) and (A-33) always holds, there does not exist any

equilibrium with g = mix. �

Proof of Proposition 7 (Exclusive contracts, no transfers) – The proof proceeds by first character-

izing the conditions under which there exist equilibria with g∗nt,e = dca, g∗nt,e = pe and g∗nt,e = mix;

and then proving that there never exist equilibria with g∗nt,e ∈ {bm, dm, um}.
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Existence of equilibria with g∗nt,e = dca

First, note that all the deviations that were profitable and self-enforcing without exclusive

contracts remain so with exclusive contracts. Therefore, in light of Proposition 6, an equilibrium

with g = dca can exist only for b ≤ bnt,ne (a). Exclusive contracts may also render additional

deviations self-enforcing.

A deviation by a coalition {s, r} in which these two firms commit to mutual exclusivity, thus

implementing g = pe, is profitable for s if and only if

Πpe > 2
(

Πdca −Πmix1
)

(A-35)

and for r if and only if

(1− β)Πpe > Πdca − 2β
(

Πdca −Πmix1
)

(A-36)

This deviation is never profitable when b ≤ bnt,ne (a). To see this, rewrite (A-36) as

(1− β)
[
Πpe − 2

(
Πdca −Πmix1

)]
> Πdca − 2

(
Πdca −Πmix1

)
(A-37)

When (A-35) holds the term in square brackets in the left-hand side of (A-37) is positive. The

condition is therefore most likely to hold for β = 0, where it becomes Πpe > Πdca, which is

therefore a necessary condition for the deviation to be profitable for r. Since Πpe > Πdca never

holds for b ≤ bnt,ne (a), this deviation to mutual exclusivity by {s, r} does not further restrict the

region of parameters for the existence of an equilibrium with g = dca relative to the case without

exclusive contracts.

Finally, deviations to g = dm and g = um are not self enforcing since, as will be proven

below, there always exist profitable and self-enforcing deviations from these networks also with

exclusive contracts.

Existence of equilibria with g∗nt,e = pe

As in Proposition 3, consider an equilibrium with g = pe supported by mutual exclusivity

between s and r and between s′ and r′. Consider first a deviation to g = dca by the grand

coalition. This deviation is profitable for suppliers and retailers if and only if, respectively, (A-35)

and (A-36) fail (or, more precisely, if the sign in those conditions is changed from > to <). With a

reasoning analogous to that conducted above in relation to (A-37) one can demonstrate that the

deviation is always profitable for retailers when it is profitable for suppliers, which implies that

there exists a jointly profitable deviation to g = dca if and only if (A-35) fails, which is the case

if and only if b ≤ bnt,e (a). Since bnt,e (a) < bnt,e (a), the deviation to g = dca is self-enforcing

whenever it is profitable. Therefore, the existence of an equilibrium with g = pe requires (A-35)
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to hold, i.e., b > bnt,e (a).

Consider next a deviation to g = mix by the grand coalition. This deviation is never profitable

for the supplier that would be left dealing with only one retailer, since it can be verified that with

linear demand β
(
Πmix2 −Πum) > βΠpe. Moreover, it can be verified that a deviation to g = dm

is never profitable for suppliers, because Πdm −Πbm ≤ Πpe, and a deviation to g = um is never

profitable for retailers, because Πum ≤ Πpe. Intuitively, although a deviation to g = dm may

increase total industry profits when Πdm > 2Πpe, it reduces the bargaining power of suppliers,

who, after committing to a single retailer, do not have an outside option when bargaining in

stage 2. A deviation to g = um always reduces industry profits (as well as the bargaining power

of retailers) and is thus never profitable.

Existence of equilibria with g∗nt,e = mix

As in Proposition 3, consider a candidate equilibrium with g = mix in which s′ commits to

exclusivity with r, r′ commits to exclusivity with s, and s and r trade with each other on a nonex-

clusive basis. A deviation to g = dca requires consent by all firms and can never be profitable for

both suppliers. Specifically, the deviation is profitable for s (i.e., the supplier dealing with two

retailers in the candidate equilibrium) if and only if 2
(

Πdca −Πmix1
)
> Πmix1 +Πmix2−Πpeand

for s′ (i.e., the supplier dealing with only one retailer in the candidate equilibrium) if and only

if 2
(

Πdca −Πmix1
)
> Πmix2 −Πum. It can be verified that with linear demand these two condi-

tions cannot hold in the same parameter region.

Consider now a deviation by a coalition {s, r} in which r commits to exclusivity with s, thus

implementing g = um and excluding s′ is never profitable for r. To see this note that such a

deviation is profitable for r if and only if (1− β)Πum > Πmix2− β
(
2Πmix2 −Πpe −Πum), which

can be re-written as (2− 1/β)
(
Πmix2 −Πum) > Πpe.Since the left-hand side is increasing in β,

this condition is most likely to hold when β = 1. When this is the case, the condition becomes

Πmix2 > Πpe +Πum, which is never the case with linear demand. This implies that this condition

never holds and thus that there never exists a mutually profitable deviation to g = um.

Consider next a deviation by a coalition {s, r} in which s commits to exclusivity with r, thus

implementing g = dm and excluding r′. This deviation is profitable for s if and only if Πdm −
Πbm > Πmix1 + Πmix2 −Πpe, which is never the case when (A-33) holds.

Finally, consider deviations in which s unilaterally rescinds his link with r or vice versa. Both

deviations implement g = pe. The unilateral deviation by s is not profitable if and only if (A-33)

holds and the unilateral deviation by r is not profitable if and only if (A-34) holds. As demon-

strated above, (A-34) holds for all β ∈ [0, 1] when (A-33) holds. Therefore there exist no profitable

unilateral deviations to g = pe if and only if (A-33) holds.
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The analysis above implies that there exists an equilibrium with g = mix if and only if (A-33)

holds.

There do not exist equilibria with g∗nt,e ∈ {bm, dm, um}
This part of the proof is analogous to that of the proof of Proposition 6. Specifically, there

does not exist equilibria with g = dm because π
pe
s > πdm

s and equilibria with g = um because

π
pe
r > πum

r . �
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