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Abstract. This paper develops a new empirical model of a multistage R&D contest for a procurement

contract and uses it to study the design of the Small Business Innovation Research program in the

Department of Defense. Firms’ incentives to innovate depend on the cost of research, the intensity

of competition, and the rewards from securing the procurement contract. The cost of research,

the distributions of project values and delivery costs, and the fraction of the surplus shared by

the procurer are nonparametrically identified and can be tractably estimated using data on the

procurement contract amount and the firms’ R&D expenditures. Estimates suggest that there is

fairly low variation in the values of projects developed by different firms and that most of the

variation in the procurement contract is attributable to differences in delivery costs, which are drawn

later in the research process. Further, the DOD currently provides high-powered incentives, sharing

approximately three-quarters of the surplus from the innovation with the supplier. Increasing the

number of competitors in later stages of the contest, lowering the share of the surplus firms receive

in procurement, and mandating that firms share intellectual property would all increase total social

surplus. However, because the DOD pays for research expenditures but only partially internalizes

the gains from improved innovations, many socially beneficial design changes would actually reduce

its profits from the contest. Together, these results suggest that at the estimated parameters, the

DOD may have an incentive to skew the design of the contest significantly away from the socially

optimal one.
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1. Introduction

Motivated by settings as diverse as the patent system, grand challenges that offer prizes for particular

breakthroughs, and grants for academic research, economists have long studied mechanisms to

incentivize research and development and procure innovative products and services.1 An especially

large player in the market for both funding R&D and procuring products that require R&D is the

government: of the approximately $450 billion obligated in federal contracts in FY2014, about 10%

was for contracts for R&D, which accounted for about 9% of all R&D expenditures worldwide. The

Department of Defense in particular spent $28 billion on R&D, more than all other government

agencies combined (Schwartz, Ginsberg, and Sargent, 2015). Firms with R&D contracts are often

incentivized through mechanisms that resemble contests: multiple firms conduct research on similar

products, and the procuring agency contracts with one of the firms for delivery or purchases the

rights to use the plans in production. Yet, despite both the sizable body of theoretical work on R&D

contests and their importance in many real-world settings, there has been little empirical analysis to

understand the underlying primitives of these contests. In this paper, I develop a structural model

of R&D contests, provide a methodology for identification and estimation of the model parameters,

and study the effect of both competition and contest design on procurement outcomes in the context

of contests run by the U.S. Department of Defense.

In the design of procurement contests, a central question is the degree of competition to allow.

In a standard procurement setting, adding competition is unambiguously beneficial for social surplus

and the procurer’s profit; Bulow and Klemperer (1996) provides an especially strong result that

adding competitors is even preferable to setting an optimal reserve. In settings with R&D, however,

an additional consideration comes into play. Although introducing an additional competitor does

increase the chance of a successful innovation and can also directly reduce the price the procurer

pays for the innovation, each competitor in the contest may reduce their research effort, anticipating

a lower expected reward. Taylor (1995) considers this tradeoff in a stylized model of contests with a

fixed prize, and Fullerton and McAfee (1999) and Che and Gale (2003) propose related models with

the starker result that restricting the number of competitors to exactly two is optimal. Therefore,

unlike in standard procurement, the impact of competition on outcomes of R&D contests is an

empirical question.

In this paper, I study multistage research contests in which successful research is awarded with

procurement contracts. In an empirical setting, I investigate three main mechanisms to control

competition in these contests. First, I study the “extensive margin” of competition by investigating

the optimal number of early-stage and late-stage competitors that the procurer—in this case, the

DOD—should admit to the contest. In doing so, I decompose the effect of competition into the

direct effect of adding competitors and the indirect incentive effect of allowing these competitors

to change their research effort. I find that the social planner would like to admit a large number

of competitors into both phases of the contest whereas the DOD prefers to restrict competition

severely; the incentive effect is usually beneficial for social surplus and DOD profits, but the DOD

does not capture much of the direct effect of adding late-stage competitors. Second, I consider the

1See Maurer and Scotchmer (2004) and Cabral, Cozzi, Denicoló, Spagnolo, and Zanza (2006) for reviews of the
literature on R&D procurement. Williams (2012) discusses innovation contests in particular.
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“intensive” margin of competition, which is modulated by the portion of the generated surplus the

procurer allows the firms to capture in the final contracting stage. The procurer trades off incentives

for surplus generation with the proportion of the surplus it captures, and it thus faces a natural

“Laffer” curve. I show evidence that the current design is on the efficient side of the Laffer curve.

However, giving the firms slightly less of the surplus can improve social surplus by discouraging

excessive R&D. Finally, I consider changes in the prize structure, first to partially decouple the

early-stage incentives for research from the final procurement contract and then to study the benefits

of sharing intermediate research breakthroughs. Decoupling research and delivery is always socially

beneficial at the estimated parameters but may reduce DOD profits. These counterfactuals suggest

that at the estimated parameters, the social planner and the DOD have starkly conflicting incentives

for optimal design.

I study these design counterfactuals by developing a model of multistage R&D contests that

captures the salient features of my empirical setting: the Small Business Innovation Research (SBIR)

program in the Department of Defense. The DOD spends over $1 billion a year on R&D contracts

through this program and almost $500 million on delivery contracts generated from research funded

by this program. It solicits research on technologies related to all major defense acquisition programs.

While it is thus an important program in its own right, this program also provides a controlled

setting to study multistage R&D contests. In the SBIR program, a set of firms conducts preliminary

work to develop initial plans for a specific product. I model this “research” phase as one in which

firms exert effort to generate a successful innovative idea and learn its value to the DOD. In the

second phase of the SBIR program, the most promising firms then receive contracts to make these

plans commercially viable. I model this phase as a “development” phase in which firms choose how

much effort to exert based on the value of their particular project, and they receive a draw of a

delivery cost from some distribution based on this effort. A firm is successful at developing the

project if the draw of the delivery cost is lower than the value the project provides to the DOD. The

DOD contracts with at most one of these successful firms for delivery. In my model, this contract

amount is set via a natural extension of Nash bargaining. This timeline—a multistage innovation

process followed by commercialization or contracting—is representative of many settings of R&D

procurement.

I then show that the underlying parameters of the model—the distribution of values and costs,

the stochastic map from research effort to the cost draws, and the bargaining parameter—are

identified from data on the amount spent on research as well as the delivery contract amounts. I

provide a constructive identification proof to make the argument transparent, and the key conditions

are relatively weak: because firms with higher-value projects have more of an incentive to exert effort,

and because the DOD would presumably never purchase a project whose delivery cost exceeds its

value, all parameters but the bargaining parameter are nonparametrically identified. The condition

that the research effort is set optimally then identifies the bargaining parameter. This nonparametric

identification is robust, and I show that it can be extended to many generalizations of the model I

consider in this paper.

An added benefit of the constructive identification proof is that it leads to a natural estimation

procedure. I propose a multistep estimator that has two main benefits. The practical benefit is
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that the estimation procedure avoids having to explicitly solve a model of R&D contests for many

different parameter values, which can be computationally burdensome. The conceptual benefit is

that the estimation procedure allows the researcher to be agnostic about the actual process that

determines the effort schedule (i.e., the map from values to research efforts) and thus allows the

procedure to apply to a variety of settings instead of being specific to this model. If the researcher

has external knowledge of parameters of the contracting process—the bargaining parameter, in this

paper—then this first step is sufficient to estimate all the primitives of the process without imposing

any structure on the effort schedule. In later steps of the estimation procedure, I leverage specifics

of this empirical setting—in particular, that the firm chooses the research efforts optimally—to

estimate the bargaining parameter by matching certain moments in the data. Furthermore, the

procedure is designed to control for both observed as well as unobserved heterogeneity that affects

both values and costs, borrowing techniques from the literature on auctions (Li and Vuong, 1998;

Krasnokutskaya, 2011).

Estimates from the model indicate that the DOD values successful projects at an average of

$11–$15 million, and the DOD tends to invite more competitors to contests that it finds more

valuable. The within-contest variation in values is fairly small: a competitor with a project at the

97.5th percentile of the value distribution has a value that is only about 12% larger than the value

at the 2.5th percentile. Most of the final variation in contract amounts comes from variation in

delivery costs drawn in the development phase. Finally, the estimates suggest that firms capture

about three-quarters of the surplus generated by the program. I then discuss and quantify the

inefficiencies inherent in R&D contests. I show that research in the later phase is underprovided due

to a holdup effect. Research in the early stages, however, is overprovided due to a combination of a

business-stealing effect and a reimbursement effect that stems from the DOD’s practice of refunding

later-stage research costs. The identification argument I provide allows me to clearly comment on

the patterns in the data that lead to these estimated parameters.

These estimates also allow me to investigate the nature and magnitude of the inefficiencies in

this contest. I find that effort is underprovided in the second stage of the contest due to the holdup

effect; the cost of this holdup is fairly low, however, and removing it improves social efficiency by

5–10%. Effort is overprovided in the early stage of the contest due to the potential for business

stealing and the reimbursement effect, and social efficiency can be improved by as much as 22%.

These social inefficiencies are informative by themselves, but they also feed into the analysis of the

costs and benefits of alternate contest designs, as discussed above.

1.1. Related Literature

The conceptual framework for this paper is based on the theoretical literature on R&D contests,

which stresses the tension between the direct effect of adding another competitor—both in terms

of the added chance of success as well as the increase in total research costs—with the indirect

incentive effect on the research efforts. The salient conclusion of this literature is the importance of

restricting entry. Taylor (1995) considers both “research” contests (in which the best competitor

at the end of the contest wins a prize) and “innovation” contests (in which the first competitor

to achieve a desired level of innovation wins the prize) and notes that restricting entry in these
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contests to finitely many competitors can be desirable to counteract the incentives to reduce effort.

In a related model, Fullerton and McAfee (1999) extend this insight by considering agents with

heterogeneous research costs and studying a mechanism that auctions entry into tournaments. They

arrive at the strong conclusion that it is always optimal to restrict entry to two competitors. Che

and Gale (2003) focus on the unverifiability of innovation and allow contestants to bid for the

prize before an innovation stage in order to guarantee economic profits to incentivize innovation;

once again, however, they find that it is optimal to restrict entry to just two competitors at the

innovation stage.2

There are a number of differences between my empirical setting and the baseline models of

R&D contests studied by these papers. First, the incentives in my setting come from a procurement

contract instead of a fixed prize. In this sense, Che and Gale (2003) consider the closest incentive

scheme to my setting. More recently, Che, Iossa, and Rey (2016) study optimal design in a much

more related setup in which innovations have heterogeneous values and costs and the mechanism

by which the delivery contract is awarded is chosen to incentivize preliminary research. Second,

my setting is explicitly a multistage process in which breakthroughs (or draws of values and costs)

happen sequentially and a successful innovation requires successes in both stages. In this sense,

progress on values influences the effort exerted on minimizing costs, and the setting is related to the

literature on R&D races.3 Furthermore, a more recent theoretical literature has studied incentives

in settings in which innovations require multiple breakthroughs themselves.4 To my knowledge, this

paper is the first to use the foundations of the literature on R&D contests to build and estimate a

structural model of R&D procurement—a setting with costly effort and multistage progress.

The nontrivial interaction between competition and innovation has been of interest beyond the

setting of R&D contests. Economists since Schumpeter (1939) and Arrow (1962) have discussed

whether firms with large market power also have more incentives to innovate. Not all the effects

highlighted by the seminal papers in this literature as well as by the “quality ladder” models

inspired by it5 are applicable to my setting of R&D procurement.6 Nevertheless, this literature is

relevant to this paper because much of the empirical work on the relation between innovation and

competition involves cross-firm studies inspired by these theoretical models. Blundell, Griffith, and

van Reenen (1999) document a positive relationship between innovation and market share. Aghion,

Bloom, Blundell, Griffith, and Howitt (2005) show evidence of an inverted-U relationship between

citation-weighted patents and the competition a firm faces. Acemoglu and Linn (2004) uncover a

2See also Fullerton, Linster, McKee, and Slate (2002) for further discussion of a setting where contest winners are
rewarded by first-price auctions.

3For instance, “leaders” and “laggards” have differential incentives to conduct research. Papers in this literature
include Harris and Vickers (1987) and Choi (1991).

4Toxvaerd (2006) studies delays in projects where multiple breakthroughs are required. Green and Taylor (2016) study
incentive provision in a principal-agent model where two successes are required and the first success in unobserved.
In somewhat related work, Biais, Mariotti, Rochet, and Villeneuve (2010) look at the “opposite” situation in which
an agent with limited liability exerts effort to avoid large losses (instead of to generate breakthroughs).

5See, for instance, Aghion, Harris, and Vickers (1997), which is the basis for the empirical analysis of Aghion, Bloom,
Blundell, Griffith, and Howitt (2005).

6The “replacement effect” from Arrow (1962) relies on a monopolist being unable to spread the cost of R&D over a
large output. Gilbert and Newbery (1982) suggest an “efficiency effect” that depends on a monopolist being able
to preempt entry by engaging in R&D. More recently, Holmes, Levine, and Schmitz (2012) show that monopolists
innovate less if they must spend time adopting new technologies.
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robust relationship between the market size—a proxy for the incentives to innovation—and R&D

expenditures in the pharmaceutical industry.

A more recent empirical literature studies competition in the relatively new domain of online

“ideation” contests, in particular for computer code and logo design. While this market is much

smaller and does not lead to procurement contracts in the same sense as the DOD SBIR program, it

does provide a controlled setting to study these effects as well as the opportunity for experimentation.

Boudreau, Lacetera, and Lakhani (2011) use quasi-experimental variation in competition to show

that effort reduction is the dominant force in contests with low uncertainty, and Boudreau, Lakhani,

and Menietti (2016) show differential responses to competition by skill level. Gross (2016a) shows

evidence of an inverted-U response of “originality” to competition.7 While my fundamental question

is similar to the ones in these papers, the setting I consider is rather different. First, I focus on

multistage contests. Second, projects in my setting differ on multiple dimensions (values and costs).

Finally, the prize structure is different, as competitors are rewarded based on the surplus they

generate rather than by a fixed prize based on their rank in a tournament.

This paper contributes to a small academic literature on the SBIR program itself. Lerner (2000)

and Howell (2016) document the long-term effects of the SBIR program and show that awardees

have increased growth, higher revenues, and more patents than comparable firms that were not

awarded grants. Lerner (2000) proposes that the differential growth is due to signaling firm quality,

while Howell (2016) suggests it is due to funding early-stage prototyping. Wallsten (2000) uses

data on internal financing to conclude that SBIR funds crowd out private investment in R&D

dollar-for-dollar. Unlike these papers, I study the effects of competition within the SBIR program

itself, and I also focus on an agency that uses this program as part of its procurement process rather

than as a potential substitute for private R&D or venture capital funding.

Finally, I study the SBIR program in the Department of Defense rather than in other settings,

and this paper thus is related—albeit loosely—to the literature on defense procurement. A benefit

of the DOD SBIR program relative to other instances of DOD procurement is that projects are

much smaller in scope and the goals are well-specified, and asymmetric information about values

and costs is arguably much less of an issue than in the procurement of major weapons systems

from prime suppliers. However, the SBIR program retains many of the salient features of defense

procurement as described in Rogerson (1994, 1995) and Lichtenberg (1995). Defense procurement

involves contracting for both R&D and delivery, and the DOD often considers prototypes from

multiple competitors before narrowing the competition for the delivery contract.8 Furthermore,

procurement contracts are structured so that firms earn economic profits, thus providing them

incentives for investment in early stages of the process (Rogerson, 1989). Finally, innovation and

delivery can be decoupled, and the DOD may choose to contract with two separate firms for the two

parts of the process. The counterfactuals I study in this paper speak to all three of these methods

7Other related papers include Gross (2016b), who studies the impact of performance feedback on outcomes in ideaton
contests, and Kireyev (2016), whose focus is more on the prize structure. While these concerns are in principle
applicable to R&D for defense goods and services as well, they are more controlled in the settings of online ideation
contests that these authors study.

8The tradeoff between “early-stage” and “late-stage” competition is related to work on dual sourcing. Anton and
Yao (1989, 1992) study theoretical models of dual sourcing and split award contests, and Lyon (2006) provides some
empirical analysis of whether this can reduce costs.
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for controlling incentives.

2. Empirical Setting and Data

2.1. Overview of the Navy SBIR Program

The Small Business Innovation Research program is a federal program designed to encourage small

businesses to engage in R&D. The ultimate goal of this program is to provide these firms seed

funding to commercialize early-stage research projects—either on the private market or, as will

be primarily the case for this project, to the government. Any federal agency with an extramural

R&D budget of more than $100 million must allocate at least 2.8% of it competitively through

this program to small businesses. This requirement encompasses eleven federal agencies, including

the Department of Defense. I focus on the DOD—and in particular the Navy—because, unlike

other federal agencies, it almost always solicits research on technologies that it wishes to acquire.

Over 80% of the topics solicited by the Navy are developed by Program Execution Offices (PEOs)

to meet specific needs of their acquisition programs.9 Furthermore, the market for technologies

produced through the SBIR program is more limited than with other agencies—essentially to the

DOD itself or to prime contractors through DOD contracts. Finally, the Navy keeps careful track of

implementation and delivery contracts that result directly from R&D funded by SBIR, providing a

way to track a technology from concept to acquisition. Note that while I focus on the Navy in this

paper, many of the institutional details described in this section are applicable to the entire DOD.

The DOD posts solicitations for specific research projects two to three times a year, with

about 800 solicitations per year—between 150–250 each for the three main components of the

DOD (i.e., the Army, the Navy, and the Air Force). These solicitations are publicly available

and include a description of the required technology, often including relatively detailed technical

requirements; goals for Phases I, II, and III; a discussion of possible commercialization potential;

and references to both scientific literature and specific DOD liaisons for more information. The

Navy in particular connects almost all solicitations to not just systems commands (e.g., the Naval

Air Systems Command, or the Space & Naval Warfare Command) but also specific acquisition

programs (e.g., the Joint Strike Fighter Program, or the Virginia Class Submarine Program). The

solicited products are fairly specific to military applications and often are smaller components of

major weapons systems.10

Firms interested in competing for a Phase I contract must submit a 20-page technical proposal

discussing a potential approach to meeting the goals of the solicitation as well as a detailed cost

volume discussing how the firm will use the Phase I funding provided by the DOD. Upon evaluating

these proposals, the DOD awards Phase I contracts to a number of the firms; this number is a

function of the R&D budget of the particular component and command in the DOD letting the

project as well as potentially project-specific characteristics. According to the Navy SBIR Program

9See http://www.navysbir.com/natconf14f/presentations/3-09-Navy-Comm-Williams.pdf.
10Examples of recent solicitations (in 2015) include one for a “Compact Auxiliary Power System for Amphibious

Combat Vehicles” and one for “Navy Air Cushion Vehicles (ACVs) Lift Fan Impeller Optimization.” The former is
let by the Program Manager for Advanced Amphibious Assault and the latter is for the Ship-to-Shore Connector
Acquisition Program.
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Overview, Phase I

is a feasibility study to determine the scientific or technical merit of an idea or technology

that may provide a solution to the Department of the Navy’s need or requirement.11

Phase I often involves preliminary prototyping, benchtop testing, computer simulations, and other

forms of low-cost preliminary research. The specific award amount for Phase I differs slightly across

DOD components, but the Navy currently awards approximately $80,000 for the base contract

along with the potential option of $70,000 (which the firm is usually only allowed to exercise if it is

selected to participate in Phase II). In practice, there is very little variation across competitors and

projects in the Phase I award amount. Approximately six months after the contract is awarded,

the firms submit a Phase I Final Report detailing their findings, a Phase II proposal that includes

plans to implement or manufacture the product designed in Phase I, and a detailed cost proposal

for Phase II research. The DOD evaluates the proposals primarily on technical merit and essentially

excludes any consideration of the proposed cost of Phase II research;12 in the case of the Navy, the

PEO itself is in charge of making Phase I and Phase II selections.13 The targeted number of Phase

II contestants is about 40% of the number of Phase I awards, although the DOD reserves the right

to award Phase II contracts to fewer firms.14 In fact, in 17% of the projects in my dataset, the

DOD chooses not to let the contest continue into Phase II.

To assess the commercial viability of the idea generated in Phase I, Phase II awardees are

awarded larger contracts to conduct more intensive research to build and test prototypes. Typical

contract amounts are on the order of $500,000 to $1.5 million. They vary considerably both across

projects and across competitors within a specific project: the Navy solicitation guidelines note that

Phase II is structured in a way “that allows for increased funding levels based on the project’s

transition potential.” Throughout the phase the firm remains in contact with the DOD and submits

interim progress reports, submitting a final progress at the conclusion of the Phase II contract,

which usually lasts approximately two years.

Unlike many other federal agencies, the DOD SBIR process includes a formal “Phase III,” which

is the final goal of most firms involved in these contests. Phase III is essentially a delivery phase in

which the firm either implements or produces the technology developed in Phases I and II for the

DOD or for prime contractors through a DOD contract. Phase III does not use funds that are set

aside specifically for SBIR but is instead funded by the specific acquisition program in charge of the

contest. Very few contests—just 9% of my dataset–actually result in a Phase III contract. Finally,

while SBIR requirements do not stipulate that only one firm can be awarded a Phase III contract,

this is almost always the case in practice.15 I interpret this as a sign that the technologies developed

11See http://www.navysbir.com/overview.htm.
12Section 8 of the DOD SBIR solicitation guidelines (http://www.acq.osd.mil/osbp/sbir/solicitations/sbir20162/
preface162.pdf) notes that the primary dimension on which proposals are evaluated is “the soundness, technical
merit, and innovation of the proposed approach and its incremental progress toward topic or subtopic solution” and
that this criterion is “significantly more important than cost or price.”

13See http://www.navysbir.com/natconf14f/presentations/3-09-Navy-Comm-Williams.pdf.
14The Phase II desk reference (http://www.acq.osd.mil/osbp/sbir/sb/resources/deskreference/12 phas2.shtml)

includes the following quote: “The DoD Components anticipate that at least 40 percent of its Phase I awards will
result in Phase II projects. This is merely an advisory estimate and the government reserves the right and discretion
not to award to any or to award less than this percentage of Phase II projects.”

15A number of the exceptions in the dataset can be explained by idiosyncratic reasons.
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by multiple Phase II competitors are for the most part sufficiently substitutable that the DOD has

value for at most one: this provides the fundamental source of competition in each contest.

2.2. Data Sources

I first collect information about the set of all SBIR contracts awarded by the Navy from the Navy

SBIR Program Office via www.navysbirsearch.com. This data includes firm information, including

name, location, and firm size at the time of the award; the topic number associated with the contract,

so that each contract can be mapped back to a particular solicitation and contest; the systems

command (“SYSCOM”) of the Navy in charge of the contract; whether the contract is for Phase

I, II, or III; and dates for the contract. It also includes the title of the proposal from the firm,

keywords associated with the proposal, and an approximately 200-word abstract of the project as

well as a two- to three-sentence description of the potential benefit of the project to the Navy.

The data from www.navysbirsearch.com also contains contract numbers for each award. I

use these contract numbers to map the SBIR contracts to the Federal Procurement Data System

(via www.usaspending.gov) and extract information for each contract. In particular, the FPDS

contains information about all options exercised as well as all modifications for each contract, which

allows me to compute the total amount awarded to the firm through the contract.

Finally, I collect the full text of all Navy solicitations (from 2000 onward) from the DOD SBIR

Solicitation Website16 and match them to the contracts acquired from the Navy SBIR Program

Office. Each solicitation is a one- to two-page document containing a title for the solicitation,

broad technology areas associated with the topic, and the acquisition program in charge of the

topic. The solicitation also includes a large amount of free text describing the project, including a

one-paragraph objective, a one-page description of the problem and technical requirements, and

guidelines for the goals for Phases I, II, and III. It also includes keywords and references to academic,

military, and general-audience publications related to the topic.

The free-flowing text from these datasets—abstracts of winning proposals and information from

the solicitation—allows me to construct detailed project-level covariates to control for the topic of

the contest via an unsupervised machine learning algorithm. Extracting information and generating

regressors from unstructured text is a promising frontier in industrial organization that researchers

have only begun to explore, and this program provides a setting that is especially conducive to such

analysis.17 I use a Latent Dirichlet Allocation algorithm for topic modeling implemented in the

software package MALLET by McCallum (2002). This algorithm infers topics in the dataset as

collections of words that appear together frequently and then classifies documents in the dataset as

mixtures of topics.18 Using such a topic generation algorithm allows for finer distinctions between

16See http://www.acq.osd.mil/osbp/sbir/solicitations/index.shtml.
17See Bajari, Nekipelov, Ryan, and Yang (2015a,b) for an application to demand estimation as well as a discussion

of the potential uses of unstructured text analysis in economics. One of the few other papers that makes use of
text analysis is Gentzkow and Shapiro (2010), which categorizes the bias of newspapers by identifying phrases that
are differentially associated with Democrats and Republicans. Hansen, McMahon, and Prat (2014) use an LDA
algorithm, like the one I use in this paper, to estimate the effect of central bank transparency on outcomes.

18Briefly, this algorithm takes as input a set of documents, each of which it treats as a sequence of words, as well as a
fixed number of latent topics. It places Dirichlet priors on the distribution of topics for each document as well as
as on the distribution of words for each topic. The data generating process the model specifies is roughly one in
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Title Keywords

modeling modeling, simulation, analysis, software, prediction
aircraft aircraft, control, unmanned vehicles, flight, operations
data data, network, software, architecture, security
power power, energy, heat, thermal, cooling
acoustics acoustics, sonar, underwater, submarine, anti-submarine warfare
radio radio, communications, rf, signal, interference, frequency
materials composite, corrosion, coating, materials, structures
optics optics, laser, fiber, infrared, wavelength
ballistics armor, gun, shock, fire, blast
engines engine, turbine, aircraft control, engines, propulsion
battery fuel, battery, water, energy storage, cell

Table 1: Representative topics generated by the LDA algorithm in MALLET. MALLET only returns
a representative list of words corresponding to each topic; the topic name is arbitrarily determined
by me for presentation.

projects than simply using the broad categories listed by the Navy, which can often encompass a

rather wide range of projects. For reference, Table 1 lists some representative topics in the dataset

(when generating 20 topics), along with common words associated with each topic. Details regarding

the algorithm used to construct these topics are provided in Appendix F.

I restrict the sample to all contests solicited between 2000 and 2012.19 Before 2000, the Navy

was not especially careful about classifying follow-on delivery projects from Phase II contracts as

Phase III. Restricting to projects solicited before 2012 allows for enough time to ensure that I

can identify which contests culminate in Phase III contracts. I discuss further details of the data

cleaning, sample selection, topic generation, and the process of matching the datasets from the three

sources together in Appendix F.

2.3. Descriptive Statistics

In this section, I first provide summary statistics about the dataset. I then report a set of descriptive

correlations between success rates and funding amounts that motivate the structural model that I

develop in Section 3.

Table 2 presents basic summary statistics for the number of competitors, contract amounts,

and contest covariates.20 Most contests do not involve large numbers of competitors: there are

which each document is a mixture of topics and each topic is a mixture of words: a document can be generated by
recursively selecting a topic from this mixture (multinomially) and then selecting a word from this topic (again
multinomially). Since the Dirichlet distribution is the conjugate prior for the multinomial, this model lends itself to
a computationally attractive sampling procedure to generate topics as well as assign documents to mixtures of these
topics. Further details can be found in Blei, Ng, and Jordan (2003).

19I also include Small Business Technology Transfer (STTR) contracts, which are structured in the same way but are
reserved for small businesses that collaborate with a nonprofit research institution.

20Table 2 restricts the sample to all contests let between 2000 and 2012, dropping 17 contests with more than 1
Phase III awardee. In later parts of this section, I further restrict the sample to more closely match the one used in
structural estimation by only considering contests that have no more than 4 Phase I competitors. The numbers in
Table 3 indicate that this further restriction does not drop much of the data at all and the sample used in structural
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N Mean Median SD

Number of Competitors
Phase I 2875 2.51 2 1.09
Phase II 2875 1.09 1 0.74
Phase III 2875 0.087 0 0.283

Contract Amount (Millions)
Phase II 3143 0.803 0.749 0.453
Phase III 252 8.77 2.93 13.23

Fiscal Year ≤ 2006 2875 0.505 1 0.500

Systems Command
NAVAIR 2875 0.327 0 0.469
NAVSEA 2875 0.272 0 0.445

Topics
Information/Data 2875 0.080 0.00150 0.182
Materials/Composites 2875 0.074 0.00015 0.188
Algorithms/Sensing 2875 0.071 0.00045 0.163
Aircraft 2875 0.064 0.00230 0.147
Manufacturing 2875 0.063 0.00017 0.167
Power/Energy 2875 0.061 0.00018 0.162

Table 2: Summary statistics for the dataset of all solicitations posted between 2000 and 2012,
dropping ones in which multiple Phase III contracts were awarded.

on average 2.5 competitors in Phase I of the contest and 1.1 in Phase II (including the contests

with zero Phase II competitors). The average Phase II contract is about $800,000, and the average

Phase III contract is about $8.8 million; these distributions have large standard deviations as well.

The number of contests is relatively balanced throughout the time period: almost exactly 50% of

the contests are let no later than 2006. The Naval Air Systems Command and Naval Sea Systems

Command solicit about three-fifths of the contests. Finally, Table 2 lists the proportions of the six

most common topics (as generated by MALLET). No single topic dominates the contests, as the

means for the topic proportions are not much larger than 1/19 ≈ 0.052, which we would expect if

documents were randomly assigned to topics.21 However, each solicitation is not assigned to a large

number of distinct topics: the median value for each of the topics in the dataset is extremely small,

suggesting that the topic generation algorithm does discriminate between topics.

Table 3 shows the full distribution of the number of competitors in each Phase. About 75% of

the contests in the dataset have 2 or 3 Phase I competitors, and less than 4% have more than 4.

The transition from Phase I to Phase II is usually not the constraining factor in whether the contest

succeeds: over 80% of contests proceed to Phase II, but about 75% of contests that enter Phase II

estimation is representative of the entire population of contests in this time period.
21As described in Appendix F, I generate 20 topics and drop one that I deem to be too generic.
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0 1 2 3 4 ≥ 5

# Phase I Comp − 12.9% 41.8% 32.8% 8.9% 3.6%
# Phase II Comp 16.9% 61.1% 19.0% 2.3% 0.6% 0.2%
# Phase III Comp 91.3% 8.8%

Table 3: Distribution of the number of competitors in each phase. As in Table 2, I restrict to
solicitations posted between 2000 and 2012 and only consider ones in which at most one Phase III
contract was awarded.

have only one competitor.22 However, very few contests—fewer than 9% of the ones in my dataset,

or about 11% of the ones that enter Phase II—lead to a Phase III contract.

Figure 1 shows histograms for Phase II and III contract amounts. Panels (a) and (b) show that

there is a good deal of variation in these contract amounts. While there is a salient peak around

$750,000 for Phase II contracts, the standard amount for Phase II SBIR contracts in other agencies

that is sometimes used as a baseline by the Navy, most contracts are for other amounts. Phase II

contracts can be as small as $200,000 and as large as $2 million. Phase III contract amounts also

have a long right tail and can exceed $25 million. This variation is plausibly due to two sources of

heterogeneity. First, certain projects will plausibly generate more surplus for both the Navy and

the firms involved, and thus these contests likely receive more funding. Second, different firms likely

have ideas that the Navy values differently—even within a contest. Panel (c) restricts the sample

to contests with at least two Phase II competitors and plots a histogram of the percent difference

between the contract amounts for the firms with the largest and smallest contracts. Because this

comparison controls perfectly for contest-level heterogeneity, I will interpret large differences in

contract amounts as suggestive of variation in the value of the projects of each competitor.23 Indeed,

the histogram shows that differences in amounts can be very large: the best-funded competitor

often receives more than 50% more funding than the worst-funded competitor, and the difference is

not unlikely to even exceed 100%.

How does the number of competitors affect the probability that the contest transitions into the

subsequent stage? Adding a competitor increases the number of draws from the pot and, ignoring

any endogenous responses to effort, should increase the probability of at least one competitor

succeeding. However, there may be a nontrivial equilibrium response in competitive effort: firms

may reduce research effort in response to an increase in competition, because they anticipate a

lower probability of capturing the return to effort, or they may increase their effort on the margin

in response to the competitive pressure. The former outcome is more likely in a setting with less

differentiation across firms; the transition from Phase I to Phase II can be approximated by such a

model. The latter outcome can happen if there is some heterogeneity across firms, as may be the

case as firms in Phase II compete to enter Phase III. As such, in both cases, the net effect is in

22Note that this number is a result of both the success rate of individuals in Phase I as well as the constraint on how
many competitors are allowed to enter Phase II.

23This interpretation is consistent with the DOD’s claim that it gives more funding to projects that have increased
transition potential. Furthermore, it is consistent with the evidence I will present that these projects are indeed
more likely to lead to Phase III contracts. On the other hand, an alternate interpretation that attributes this
variation solely to heterogeneity in research cost would not immediately be able to explain this correlation.
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Figure 1: Distribution of (a) Phase II award amounts and (b) Phase III award amounts. The
histogram in (a) includes a datapoint for each contract and can thus include multiple contracts for
a particular contest. Panel (c) shows the percent difference between the highest and lowest Phase II
award amounts within contests, restricting to contests with at least two Phase II competitors.

Contest Success Individual Success Log(Amount)

Phase I Phase II Phase I Phase II Phase II Phase III

(1) (2) (3) (4) (5) (6)

# Phase I Comp 0.066*** -0.018** -0.128*** -0.023*** 0.016 0.234*
(0.009) (0.008) (0.008) (0.008) (0.012) (0.110)

# Phase II Comp 0.076*** 0.028*** -0.002 -0.429**
(0.016) (0.010) (0.016) (0.176)

Log([Avg] Phase II Amt) 0.157*** 0.250*** 0.330**
(0.018) (0.031) (0.195)

Fiscal Year FE X X X X X X
SYSCOM FE X X X X X X
Topics X X X X X X

R2 0.083 0.128 0.133 0.422
N 2773 2292 2773 2292 2292 151

Table 4: Regressions of a dummy of whether the contest enters Phase II (columns (1) and (3)) or
Phase III (columns (2) and (4)) on the number of competitors in Phases I and II, controlling for
year fixed effects, SYSCOM fixed effects, and topic covariates. I restrict the sample to contests
with no more than 4 Phase I competitors. Columns (3) and (4) restrict to the set of contests that
enter Phase II. Columns (5) and (6) regress the log of the contract amount in Phases II and III on
observables, controlling for the same covariates. Note that Log([Avg] Phase II Amt) refers to the
log of the within-contest average of Phase II contract amounts in columns (2) and (6) and the log of
the individual firm’s Phase II amount in column (4).

principle ambiguous.

Table 4 reports OLS regressions of contest-level “success” rates from Phase I to Phase II and

from Phase II to Phase III. I run linear probability models of the contest transitioning to a particular

phase, controlling for contest-level heterogeneity using year fixed effects, SYSCOM fixed effects, and

the topics information generated from the text descriptions via MALLET. For all regressions in

this section, I restrict the sample to contests with no more than 4 competitors in Phase I to have
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a sample that is as close as possible to the one used in the structural estimation in Section 4.3.

Column (1) indicates that increasing the number of competitors in Phase I by 1 is associated with

an average increase in the probability of at least one firm advancing to Phase II by 6.6 percentage

points—compared to a mean of 83%. Column (2) reports similar regressions for the transition

from Phase II to Phase III, controlling for both competition in Phase I and Phase II as well as

average funding per firm in Phase II.24 Adding a Phase II competitor increases the probability of

transitioning to Phase III by 7.6 percentage points, which is an especially large number compared

to the mean success rate of 10.5%. Somewhat counterintuitively, contests with one additional

competitor in Phase I tend to have a lower rate of transitioning from Phase II to Phase III by

1.8 percentage points on average—a number that is small but significant at the 5% level. This

correlation is admittedly at odds with the idea that more Phase I competitors are associated with

stronger competitors entering Phase II, although other results (discussed below) do suggest that this

effect is reasonable. If anything, this correlation suggests that we should be aware of the endogeneity

concern that contests with different numbers of Phase I competitors could be systematically different

from each other.25 I will allow for this possibility when estimating the structural model.

Columns (3) and (4) of Table 4 investigate the probability that an individual competitor

generates successful research. Because individual successes are not observed,26 I use explicit models

of censoring to estimate the probability p(Xij) that a contestant i succeeds in contest j as a function

of contest-level covariates and individual-level funding. For the transition from Phase I to Phase

II, I estimate a censored binomial model in which for each contest j, the unobserved number of

successes NSj is such that NSj ∼ Binomial(N1, p(Xj)), but the observed quantity is

N2j =

NSj if NSj ≤ N̄2j

N̄2j if NSj > N̄2j

.

I estimate this model via MLE, letting p(Xj) be a linear function of N1 (or having fixed effects for

all values of N1) and controlling for the same contest-level covariates, and I report p(·) in columns

(1) and (2). I do not directly observe the limit on Phase II competition in the data, so I leverage

the 40% rule that I also use in Step 5 of the structural estimation. Since the DOD aims to let at

most 40% of the competitors in Phase I into Phase II, I assume that N̄2 = 1 if N1 is 1 or 2, and

N̄2 = 2 if N2 is 3 or 4. If N2 exceeds the candidate value of N̄2, I say that N̄2 = N1. Column (3)

shows that adding one competitor to Phase I is associated with a decrease in the probability of an

individual competitor generating a successful innovation by 12.8 percentage points.

I model the transition from Phase II to Phase III as the following: a contestant i generates

a successful innovation in contest j with probability p(Xj ; tij), where tij is the Phase II research

24I do not control for Phase I funding in any of these regressions because, unlike for Phase II funding, there is almost
no variation in Phase I funding.

25In principle, this correlation could be explained by stronger competition leading to lower incentives to spend money
on research, which in turn leads to a lower success rate. This explanation is, however, at odds with the results in the
final two columns of Table 4, which show that contests with more Phase I competitors have slightly more funding in
Phase II and lead to significantly larger Phase III funding amounts. Appendix B.1 models the dependence on N1

more flexibly, and the source of the negative coefficient on N1 is primarily contests with N1 = 4.
26That is, while I do observe how many firms entered Phase II, it could be that more firms generated innovations that

could have merited Phase II grants.
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funding; if no one succeeds, then the project does not enter Phase III, but if multiple contestants

succeed, one contestant is awarded the Phase III contract uniformly at random.27 Column (4)

indicates that contestants in contests with one additional Phase II competitor have a higher

probability of success, by about 2.8 percentage points. Once again, the individual success rate is

lower for contests with more Phase I competitors; while this may be due to stronger competition

dissuading research effort, it may also be an indication of differences across contests not controlled

by these models.

What affects Phase II contract amounts? Column (5) of Table 4 shows regressions of the

average Phase II funding per firm within-contest on the number of competitors. Contests with one

more Phase I competitor have on average 1.6% more funding, an amount that is both small and

imprecisely estimated. Overall, adding more Phase II competitors has no impact on average funding,

although Appendix B.1 notes a large drop when moving from contests with 3 to contests with 4

Phase II competitors. The institutional details provided in Section 2.1 suggest that firms with more

promising research projects are given more funding. Moreover, increased funding probably directly

leads to a higher rate of success. Accordingly, we would expect that funding correlates positively

with success in Phase III. Indeed, Columns (2) and (4) of Table 4 show that on average, increasing

the average funding by 10% is associated with an increase in the contest-level success rate of 1.6

percentage points, and an increase in the individual-level funding by the same proportion increases

individual success by 2.5 percentage points. Moreover, Appendix B.1 shows evidence that even

within contest, firms with larger Phase II contract amounts are more likely to enter Phase III.

Finally, column (6) of Table 4 regresses the Phase III contract amount against Phase II award

amounts and measures of competition. Because the Phase III contract is for delivery, one would

expect that it increases not only with delivery costs but also with the value the product brings to

the DOD: as long as the firm has some bargaining power in the procurement process, it should

be able to extract some surplus from the DOD. Moreover, we would expect a competitive effect

to lower the Phase III award amount: if there are multiple Phase II competitors, the DOD can

capture a larger portion of the surplus by threatening to go to a second-best competitor who may

have also produced a successful innovation. The predictions related to Phase III contract amounts

are therefore threefold: (1) a larger number of Phase I competitors would possibly indicate that

firms with more valuable projects survive into later rounds and thus would lead to larger Phase

III contracts, (2) having more Phase II competitors would give the DOD more chances for a lower

draw of the cost of delivery—and also more bargaining power by leveraging competition—and

thus lead to lower Phase III contracts, and (3) more Phase II funding is associated with both

higher-value projects and better draws of cost (via more research) and thus lead to lower Phase III

award amounts. The coefficients of OLS regressions agree with these predictions, although having

a small fraction of contests with successful Phase III contracts leads to power issues.28 Adding

one Phase I competitor is associated with an increase in the Phase III contract amount by about

27Once again, a “success” is a project that would be worthy of a Phase III contract; however, at most one firm is
offered a Phase III contract. In Section 3, I will develop an explicit model for how the DOD decides between multiple
“successful” firms, but I use the uniform-at-random assumption for the descriptive analysis.

28Furthermore, I restrict to contests where the Phase III contract amount is at least $1 million to avoid data points
where the Phase III contract is unnaturally small. Results are qualitatively robust to using the entire dataset, as
discussed in Appendix B.1.
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26%, a large and marginally significant amount. Adding a Phase II competitor is associated with

a reduction in the Phase III contract amount by about 35%, which is also large but imprecisely

estimated. Finally, a 10% increase in average Phase II funding is associated with a 3.3% increase in

the Phase III contract amount.

I use these descriptive correlations as motivation for developing and estimating a structural

model with features that are consistent with these correlations. In the model I present in the next

section, firms will learn the values of their projects from the end of Phase I, and the strongest

firms move on to Phase II. Firms with more valuable projects are awarded larger Phase II research

contracts, which makes them more likely to develop technologies with lower delivery costs. Finally,

the DOD engages in a form of Nash bargaining that allows it to leverage competition between the

successful Phase II competitors in the procurement market. Because a drawback of the descriptive

analysis is that it makes it difficult to separately disentangle values and costs, I will leverage the

structural model to back out these parameters from the observables. The structural model will also

give me an explicit way to control for potential differences across contests with different numbers of

Phase I competitors, a concern that became clear through the descriptive analysis.

3. Model

In this section, I present a model of a multistage R&D contest that captures the salient features

of the DOD SBIR program. In Section 3.1, I present the primitives and the timing of the model,

detailing how research efforts translate to values and costs, and how values and costs determine how

the contracts are awarded in the various phases. Section 3.2 then discusses two assumptions for how

research efforts are determined. I present both a weak assumption, which may be widely applicable

to settings beyond the one considered in this paper, and a stronger one that is consistent with

institutional details of the DOD SBIR program. Presenting these two assumptions separately lets

me highlight the identifying power of each of them in Section 4.1 and develop a natural estimation

procedure in Section 4.3. In particular, the weak assumption is sufficient to identify a large subset

of the primitives discussed in Section 3.1.

3.1. Model Timing and Primitives

Each contest in the SBIR program consists of three phases. The primitives of each contest are the

number of contestants in Phase I (N1), the maximum number that will be allowed to enter Phase

II (N̄2), the distributions from which firms draw values (V ), the cost functions (ψ(·) and H(·; ·)),
and the firm’s bargaining parameter in the acquisition phase (η). I discuss each phase—and which

primitives are relevant for it—in sequence.

Phase I. Phase I is a prototyping phase in which firms exert effort to determine both the feasibility

and the potential value of the innovation. Note that while I will refer to this potential value as

a “value” throughout the paper, it is important to conceptualize this quantity as the value to the

DOD. The DOD invites N1 firms to participate in Phase I, and firms are ex-ante identical. If firm i

spends the monetary amount ψ(pi) (with ψ(·) > 0, ψ′(·) > 0, and ψ′′(·) > 0) on its Phase I project,

16



then it generates a successful innovation with probability pi. The events that two different firms

succeed at developing the same innovation are mutually independent.

The NS firms that succeed each independently draw a value vi ∼ V with cdf F . At most N̄2 of

the NS firms that succeed are allowed to proceed to Phase II. That is, if NS ≤ N̄2, then all firms

that succeed enter Phase II. If NS > N̄2, then the N̄2 firms with the highest draws of v are the ones

that proceed to Phase II. Note that a contest can fail in Phase I if none of the participants succeed.

Phase II. The goal of Phase II is to develop a commercially viable production plan; that is, firms

conduct research to reduce the delivery cost (e.g., manufacturing cost for physical products or

implementation cost for software) of their innovation. In Phase II, each firm spends some amount

t, which could depend on all the other parameters of the contest. (I suppress this dependence for

the sake of brevity.) Exerting effort t results in a draw of the delivery cost c from a distribution

C(t) with cdf H(·; t) and density h(·; t). This distribution is first-order stochastically decreasing in

the effort t so that more effort corresponds to drawing lower delivery costs. Note that a project

fails in Phase II if all participants draw costs that exceed their values. How t is determined will be

discussed in Section 3.2.

Phase III. This final phase is a delivery phase, in which the procurer contracts with at most one

of the firms to deliver the product. The procurer sees the realization (vi, ci) for all firms in Phase II

and selects a winner based on the following procedure. The procurer approaches the firm with the

highest surplus (value of v − c), as long as it is positive, and Nash bargains as if its outside option

is to go to the firm with the second-highest surplus and extract all its surplus. Thus, a firm wins if

it has the highest value of v− c. The winner gets a profit of η times the excess surplus he generates,

which amounts to a transfer of c+ η(v − c− s), where s is the second-highest value of v − c (and is

0 if all other competitors have c > v).29

3.2. How Are Research Efforts Determined?

In this section, I present two possible assumptions for how Phase I and Phase II efforts are

determined in a particular empirical setting. The first (Assumption M) is especially general and

simply states that the map from values to Phase II research efforts is monotone (conditional on

the other primitives in the model). The second assumption (Assumption O) is that the firm is the

one choosing the optimal amount of research, in a manner consistent with the model outlined in

Section 3.1. I then show that this second assumption implies the first in many cases and discuss how

this stronger assumption is consistent with the institutions of the SBIR program. By separating

these two assumptions, I can be clear in Section 4.1 about which aspects of the structure imposed

29Note that in this empirical setting, it is overwhelmingly the case that only one competitor in successful in Phase II.
About 75% of contests that enter Phase II have only one firm; even when there is more than one firm entering Phase
II, the low success rate suggests it is highly unlikely that multiple firms develop successful innovations. Thus, the
precise extension of Nash bargaining to multiple parties is not especially relevant empirically. One could consider
alternate models, such as Shaked and Sutton (1984) and Bolton and Whinston (1993), or a bargaining procedure in
which the DOD negotiates with the highest-value party instead of the highest-surplus party first. Many of these
models still respect monotonicity, but they do change incentives in the model described in Section 3.2 (although,
once again, by a small amount in this setting).
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in Assumption O are used to identify which parameters. Furthermore, because Assumption M is

more general, stating it separately can help provide guidance on which other settings—beyond R&D

contests—are appropriate for the methodology developed in this paper.

Throughout I assume that research efforts depend only on one’s own value v and not on opponents’

values, and I thus discuss an effort function t̂(v).30 I begin with the more general assumption.

Assumption M. The research effort t̂(v) is an increasing function of the firm’s value v. This map

may depend on all of the primitives of the contest, as well as on the realization of N2.

First, note that Assumption M(onotonicity) places absolutely no restrictions on how Phase I

efforts p̂ are set. Second, the restriction that is placed on how Phase II efforts are determined is

that higher-value firms exert more effort and that effort only depends on one’s own value. This

assumption is relatively weak and may be broadly applicable outside the specific institutional setting

considered in this paper. For instance, in certain contests, small firms may be given a research

award that is an institutionally specified function of a quality score (the “value”), and they may

exhaust the award on research for the project.31 Outside the specific context of R&D contests, one

could imagine that higher-quality startups, which are capital-constrained, also attract more external

funding and thus spend more money developing their research projects. Finally, Assumption M

may be applicable when the firms themselves choose how much to invest in the R&D project. I

discuss this case further below.

For the rest of this paper, I impose an additional assumption that seems appropriate in the

particular empirical setting of the DOD SBIR program: the contract amounts for Phases I and II

coincide with the research efforts that the firm would choose itself, meaning that the DOD contract

amounts are the firm-optimal ones. Stating the firm’s problem to define these optimal amounts

involves specifying information sets, beliefs, and objectives at each phase.

Phase I. In Phase I, firms are aware of the number of Phase I competitors N1 as well as the limit

N̄2 on the number of Phase II competitors. Firms also know the primitives of the contest, such as

F , η, ψ(·), and H(·; ·). At the time of exerting effort, each firm has no further information.

Phase II. In Phase II, each firm is given a lump sum award by the DOD, denoted tDOD(v).32 It

then decides on effort to reduce its delivery costs. In doing so, it knows its own value vi and is

informed of the number N2 firms that entered Phase II. However, they are informed of neither the

30One institutional justification is that firms know their own values at the start of Phase II but do not know their
opponents’.

31This could be the case when monitoring is especially strong and the monitoring agency can check whether each
dollar is spent on the project itself. Alternatively, one can imagine that this is likely to be the case when firms are
especially small, i.e., smaller than the typical firm that participates in the DOD SBIR program. Such firms may
have no other ongoing R&D projects, and as long as the award cannot literally be pocketed and used as profit, they
would exhaust the award on research.

32This award captures the Phase II contract. Assume that this contract can depend on all primitives of the contest as
well as the realization of N2. Because this contract is purely a function of primitives and value v, and because the
DOD is informed of the firms’ values, this contract is simply a lump-sum transfer and does not affect incentives to
exert research effort at this stage. Note that this transfer does affect research incentives in Phase I. In the empirical
setting, I make the assumption that tDOD(v) = t̂(v) (Assumption O), which corresponds to the assumption that the
DOD fully refunds the firm-optimal level of research costs.
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number of successes NS nor about the values of their opponents’ projects. They form beliefs (with

cdf F (·; vi, N2, p)) of their opponents’ values, where p is their belief of the Phase I effort of each of

their competitors,33 and, based on these beliefs as well as their own values, they exert effort ti to

get the cost draws ci ∼ H(·; ti).
To compute beliefs, note that a firm’s own value can give information about the values of his

opponents only if there is selection in entry into Phase II. That is, if N2 < N̄2 or N2 = N1, then it

is common knowledge that every firm that succeeded was granted entry into Phase II. Thus, all

firms know that the values of their opponents are drawn from V . The case 1 < N2 = N̄2 < N1 is

complicated by the fact that there is both selection into Phase II as well as competition between

firms. Furthermore, beliefs of the values of two different opponents are not independent. If one’s

own value is v, the probability that the other N̄2 − 1 players have values v−i is

fv(v−i; v, N̄2, p) ∝
N1∑

NS=N̄2

{ succeeded, with given values︷ ︸︸ ︷
(NS − 1)!

(NS − N̄2 − 1)!

 ∏
v−i∈v−i

(p · f(v−i))


×
(
N1 − N̄2

NS − N̄2

)
[p · F (min{v−i, v})]NS−N̄2︸ ︷︷ ︸

succeeded but drew lower values

× (1− p)N1−NS︸ ︷︷ ︸
did not succeed

}
. (1)

Phase III. Phase III is mechanical: values and costs are drawn in previous rounds and shared with

the DOD, and the surplus is determined as a mechanical result of the Nash bargaining procedure

described in Section 3.1.

Equilibrium. A type-symmetric equilibrium of this model consists of an effort function t∗N2
(v) for

Phase II competitors (as a function of the realized number N2 of competitors) as well as a Phase I

probability of success p∗.

Focus on Phase II with N2 entrants. Consider a firm with value v and beliefs with cdf

F (·; v,N2, p
∗) about its opponents’ values; note that these beliefs could depend on both the value of

the competitor as well as the first-stage entry probability, as discussed above. Suppose its opponents

follow an effort function t∗N2
(v). The firm’s optimization problem is then given by

arg max
t

{
η

∫ v

c

∫ v−c
(v − c−max{s, 0}) dG(s; v, t∗N2

(·), p∗) dH(c; t)− t+ tDOD(v)

}
, (2)

where G(s; v, t∗N2
(·), p∗) is the cdf of a type v competitor’s beliefs about the highest surplus of its

competitors. Note that the cdf of the surplus that a type v′ firm generates is given by

S(s; v′, t∗N2
(·)) = 1−H(v′ − s; t∗N2

(v′))) (3)

and the cdf of the maximum surplus of a type-v firm’s opponents can be computed by combining

33In principle, firms could believe that each of their opponents exerted a different amount of effort. However, I will
restrict to (type-)symmetric equilibria, and as such, I will restrict the notation at this point for brevity.
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(3) and (1) as

G(s; v, t∗N2
(·), p∗) ≡

∫∫
v−i

 ∏
v−i∈v−i

S(s; v−i, t
∗
N2

(·))

 fv(v−i) dv−i.

Let π(v,N2, p
∗) denote the maximized value of (2). In Phase I, each firm chooses p to maximize

the expected profits from Phase II, less the cost of Phase I effort. Since the expected profits from

Phase II can be expressed as p times the profits conditional on success, we can write the firm’s

problem in Phase I as

p∗ = arg max
p∈[0,1]

p ·
 N̄2∑
NS=1

(
N1 − 1

NS − 1

)
(p∗)

NS (1− p∗)N1−NS

∫ v̄

0

λ(v,NS , N̄2)π(v,N2, p
∗) dF (v)

− ψ(p)

 ,

(4)

where

λ(v,NS , N̄2) ≡

1 if NS ≤ N̄2 − 1∑N̄2−1
Nb=0

(
NS−1
Nb

)
F (v)Nb(1− F (v))NS−1−Nb otherwise

is the probability that a successful firm with value v is allowed to enter Phase II if NS − 1 other

firms succeed. Collecting the equations in this section, we have that a type-symmetric Bayesian

Nash equilibrium of the R&D contest is a p∗ and a set of effort functions {t∗N2
(·)}N2≤N̄2

that

simultaneously satisfy (2) and (4).

Assumption O. The Phase I effort p̂ and Phase II effort schedule t̂(v) coincide with the type-

symmetric Bayesian Nash equilibrium of the model of R&D contests, given by p∗ and {t∗N2
(·)}N2≤N̄2

,

which satisfy (2) and (4).

Assumption O(ptimality) states that the amounts spent on research—i.e., the amounts that

determine the probability of success in Phase I and the distribution of cost draws in Phase II—are

chosen by the firm. When taking the model to the data under Assumption O, I will assume that the

Phase II research award coincides with this firm-optimal amount as well, so the DOD reimburses

the cost of effort. In the case of Phase II, for instance, this amounts to saying that tDOD(v) = t∗(v).

While there is admittedly a tension in assuming that the DOD transfer is the firm-optimal amount,

this assumption is justifiable in this empirical setting. In practice, the firm submits a detailed

cost proposal to the DOD for Phase II research, and the DOD can approve the funding amount or

propose modifications to this amount.34 Because the DOD has full information about the value

of the particular firm’s project, it can compare this proposed amount to the firm-optimal amount.

First note that the DOD would be hesistant to offer the firm more funding than the optimal amount:

these firms often have multiple ongoing projects and contracts, and given that the DOD can only

imperfectly monitor how the firms spend the money, the firms can redirect some excess resources to

other projects. One can conceptualize this process as the DOD giving an unconditional lump-sum

transfer to the firm via the Phase II research contract and the firm then being able to choose the

optimal amount to spend on research. Secondly, the DOD actively tries to encourage firms to

34Since the DOD SBIR solicitation guidelines explicitly state that requested Phase II funding is not a factor in deciding
which projects get funding, the firms need not be strategic about this amount.
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participate in the defense industrial base through this program, and as such, it would like to limit

ex-post losses. Were the DOD to award less than the firm-optimal amount, the firm would try to

use money from other sources and suffer losses if the project does not enter Phase III. Even in a

setting in which firms may have positive expected profits, Phase III is sufficiently rare that firms

may have to enter many contests before realizing a payoff.35

Finally, I note that Assumption O, in many cases, implies Assumption M. The following

proposition formalizes this idea.

Proposition 1 (Monotonicity of Effort). If each firm’s beliefs about its opponents’ values are

independent of its own value, then t∗N2
(·) is weakly increasing in v, and strictly so if effort is larger

than the minimum possible value of effort.

Proof. I will show that the maximand of (2) is strictly supermodular, and the proof will follow from

a standard monotone comparative statics argument. We can write the first term of the maximand as

η

∫ v

c

[∫ v−c

0
(v − c− s) dG(s) + (v − c)G(0)

]
dH(c; t)

= η

∫ v

c

[
−(v − c)G(0) +

∫ v−c

0
G(s) ds+ (v − c)G(0)

]
dH(c; t)

=

(∫ v−c

0
G(s) ds

)
H(c, t)

∣∣∣∣v
c

+

∫ v

c
G(v − c)H(c, t) dc =

∫ v

c
G(v − c)H(c, t) dc.

The cross partial with respect to v and t is

G(0)
∂H(v, t)

∂t
+

∫ v

c
g(v − c)∂H(c, t)

∂t
dc,

and each term is strictly positive.

The intuition for Proposition 1 is that higher-value firms have both a higher probability of

winning as well as a higher surplus conditional on winning. Moreover, the marginal winner is the

one whose incremental contribution to surplus is exactly zero, and this firm earns zero profits. These

two observations are key for the monotonicity result. However, if we do allow firms’ beliefs about

opponents to vary with values, as in the case with selection, then there is an additional effect that

firms with weaker values tend to believe their opponents are weaker as well. This could encourage

them to exert more effort than firms with higher values, and the proof of Proposition 1 does not

apply.36

35That firms would substitute internal funds for SBIR funding is consistent with the results of Wallsten (2000).
Furthermore, other auxiliary evidence provided in this paper suggests that the DOD is reasonably generous to firms
throughout this process. For instance, the estimated bargaining parameter in Section 5 indicates that firms capture
three-fourths of the surplus.

36I have not been able to find a counterexample where the computed equilibrium is nonmonotone, however, even if
there is selection.
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4. Identification and Estimation

In this section, I discuss identification of the model under Assumptions M and O. I then incorporate

both observed and unobserved heterogeneity into the model from Section 3 and present an estimation

procedure that is based on this identification argument.

4.1. Identification

Suppose that in the model in Section 3, we observe the numbers of players N1 and N̄2 along with

the realized number of Phase II players N2, the Phase I research effort (ψ(p∗)), the distribution

of Phase II research efforts t∗N2
for N2 ≤ N̄2 (as long as p∗ ∈ (0, 1)), and the Phase III contract

amount (if the project enters Phase III).37 The primitives we wish to identify are the cost function

ψ(·), the value distribution V , the cost distribution C(t) as a function of Phase II research efforts,

and the bargaining parameter η. We will identify the Phase II and III primitives (i.e., everything

except ψ) using (i) a selection equation that stipulates implementation in Phase III occurs if and

only if the winner’s value exceeds his cost, (ii) monotonicity of the Phase II effort in the value to

recover values from effort (Assumption M), and (iii) a first-order condition that ensures that Phase

II research effort is set optimally, with knowledge of η (Assumption O). The identification argument

I provide is constructive, and I present it in two parts. The first part rests on the weak assumptions

(i) and (ii) that are likely to have analogues in many different models, and I show that most of the

primitives are identified given these assumptions. The second part applies to the specific model

with Assumption O.

4.1.1. Identification Under Assumption M

Consider the model timing model described in Section 3.1 and suppose that Assumption M is

satisfied. Restrict attention to contests where the realized number of Phase II competitors is

N2 = 1. Such auctions must exist in the data generating process dictated by the model as long as

p̂ ∈ (0, 1) (or N̄2 = 1 if p̂ = 1). Consider the distribution of the Phase III transfers conditional on a

particular value t2 of Phase II research. If Assumption M holds, this amounts to conditioning on

some (yet unknown) value v(t2) = t̂−1(v), given by the inverse of the effort function. The transfer is

ηv(t2) + (1− η)c, where c ∼ C(t2) if c ≤ v(t2) and unobserved otherwise. Thus, the largest observed

value of the Phase III transfer for a particular value of t2 occurs when c = v(t2), and thus the

maximum observed value of the transfer identifies v(t2). Varying t2 identifies the entire function

v(·) and thus the distribution of the values of competitors who enter Phase II nonparametrically. If

there is no selection into Phase II (i.e., if N̄2 > 1 or N1 = 1), then this distribution is simply the

distribution of V . Otherwise, we can simply correct for selection to recover the distribution of V , as

discussed in Appendix E.1.

Now suppose that η is known to the researcher. The next observation is that (part of) the

distribution of costs H(·; t) is identified as a function of this known η. This is a simple function

37Note that research efforts are dollar amounts, measured as the Phase I and II contract amounts. Note as well that I
discuss identification with and without knowledge of ψ(p∗), because this amount is set institutionally and exhibits
little variation, and thus it may be unrepresentative of the true expenditures on research in this empirical setting.
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of the distribution of the Phase III transfer. With knowledge of the value v(t2), we can invert the

observed distribution of ηv + (1 − η)c to determine the cost cdf as a function of η (but only for

c ≤ v(t2)). For brevity, denote this cdf by H(·; t2, η) and its associated pdf by h(·; t2, η) to make

this dependence on η explicit.

Note that the probability p̂ of success in Phase I is observed in the data. Truncation due to N̄2

is not an issue for identification: even when N̄2 = 1, the probability that Phase II does not occur

is (1− p̂)N1 .38 Since the Phase I research effort is also observed, we identify the single point ψ(p̂).

Variation that affects p̂ but not ψ can identify the entire cost function. We will be more explicit

about the source of this variation with an explicit model for research efforts, such as Assumption O;

one may expect that contests that are known to have different value distributions without having

different Phase I cost functions would have different values of p̂ and thus different observed values

of ψ(p̂).

The following proposition summarizes this identification argument.

Proposition 2. Suppose we have data on distributions of Phase III transfers, Phase I and II

research efforts, and the realized number of Phase II competitors for a set of contests with a single

(N1, N̄2). If Assumption M holds and η is known, then

(i) V is nonparametrically identified (and does not depend on η);

(ii) H(c; t) is nonparametrically identified on [0, v(t)];

(iii) and a single point on ψ(·) is identified, and variation in p̂ identifies ψ(·) entirely.

Furthermore, Assumption M gives information about a lower bound on the firm’s bargaining

parameter η from a combination of the failure rate as a function of research effort and the stochastic

dominance condition on the cost distributions as a function of research effort. Since the estimation

procedure in this paper utilizes an optimality condition to recover information about the bargaining

parameter (see Proposition 3, below) instead of exploiting this partial identification argument, I

relegate the discussion of the identification of this lower bound from Assumption M to Appendix C.1.

4.1.2. Identification Under Assumption O

Suppose further that the research efforts are set optimally for the firm, as per Assumption O. Then,

the bargaining parameter is identified as well. To see this, note that we know that the firm sets t2

in response to its first-order condition, so that

η

∫ v(t2)

c
(v(t2)− c)dh

dt
(c; η, t2) dc = 1. (5)

The intuition is that (5) is an equation in a single variable (because h(·; η, t2) is identified, albeit as

a function of η) and thus identifies η. The full argument is slightly more involved and is based on

38Throughout this paper, I maintain the assumption that successes in Phase I are uncorrelated. This assumption is
mainly due to a data restriction, as most contests in the dataset have N̄2 = 1. Note, however, that with enough
data on contests with N̄2 > 1, this assumption is testable: departures from the binomial distribution on N2 will
point towards correlation in successes. In particular, if certain projects are physically infeasible for all firms, we
would expect a larger mass point at N2 = 0 than would be expected from the remainder of the distribution.

23



rearranging (5) in terms of observables and quantities that have already been identified. I relegate

it to Appendix E.1.

Optimality of the first-stage effort also gives us more information about the cost function ψ(·)
than simply under Assumption M. In fact, ψ′(·) can be identified within a single parameter family

of functions without observing Phase I expenditures in the data. From H(·; ·), V , and η, we can

compute π(v,N2, p) for all values v, realizations of N2, and p. These quantities then allow us to

compute the expected profit conditional on success for any p; denote this π(p). Since the distribution

of N2 is a truncated binomial with parameters N1 and success probability p∗ (truncated at N̄2),

p∗ is directly identified from the data. From the firm’s first-order condition associated with (4) in

Phase I, we have that ψ′(p∗) = π(p∗). This equation lets us identify the marginal cost of Phase I

research at one point. Furthermore, ψ(p∗) is the equilibrium expenditure on Phase I research, and

this is seen directly in the data. Thus, ψ(·) can be identified parametrically (within a one-parameter

family of functions for ψ′(·)), or we can exploit variation in p∗ orthogonal to shifts in ψ(·). Note that

without the assumption of optimality (i.e., in the baseline model), we could not recover information

about the marginal cost and would have to rely exclusively on variation in p̂ to recover the cost

function.

The following proposition extends Proposition 2 and summarizes the arguments in this section.

Proposition 3. Suppose we have data on distributions on Phase III transfers, Phase I and II

research efforts, and the realized number of Phase II competitors for a set of contests with a single

(N1, N̄2). If Assumptions M and O hold,

(i) η is identified;

(ii) V is nonparametrically identified;

(iii) H(c; t) is nonparametrically identified on [0, v(t)]; and

(iv) ψ(·) is identified within a single-parameter family of functions for ψ′(·), and variation that

continuously shifts the equilibrium probability of success in Phase I without shifting Phase I

costs can identify ψ(·) nonparametrically.

Note that identification of ψ′(·) within a single-parameter family of functions does not require

data on Phase I research efforts. However, identification of ψ(·) does require either such data or an

assumption akin to ψ(0) = 0. I will leverage such an assumption in the empirical model described

in Section 4.2.

4.1.3. Discussion of the Identification Result

The identification argument for values and costs is at its heart based on a selection rule. This

selection happens on a two-dimensional set of Phase II research efforts and Phase III transfers

instead of being simply based on Phase III transfers, and the point at which selection occurs is

informative of values.

This empirical setting also allows for a novel source of identification for the bargaining parameter

that could be applicable to other settings with R&D. I identify the bargaining parameter off an
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ex-ante investment : the firm sets marginal costs equal to marginal returns, and we have information

about both—modulo the bargaining parameter—from the joint distribution of contract amounts.39

This identification argument is slightly different from ones used in other empirical papers involving

Nash bargaining, and it is worth comparing this argument to those in related papers. Utilizing a

different source of identification in the setting of business-to-business transfers, Grennan (2013)

identifies the bargaining parameter roughly by comparing distributions of transfers that are generated

by different value distributions but similar cost distributions: if the transfer distributions change

dramatically, then the effect of the value on the transfer—governed by η in this model—would be high.

In my setting, there is in principle an analogous source of identification: different realizations of N2

shift the value associated with each Phase II effort amount (by shifting the effort function) without

shifting the cost associated with each effort amount. However, note that such variation is discrete,

and it can be unavailable when N̄2 = 1. Crawford and Yurukoglu (2012) use an identification

argument that is slightly more similar to mine in spirit. They identify bargaining parameters by

matching the model-implied outcomes to estimated outcomes with auxiliary knowledge about one

of the components of the transfer.40 I do not have similar auxiliary knowledge, because delivery

costs are nonzero and unobserved in my setting, but unlike Crawford and Yurukoglu (2012), I can

leverage the optimality of the ex-ante investment that I do see.

Note further that I will use estimates from this model to decompose the effect of increasing N1

and N̄2, and this identification argument lends itself to using information simply within a particular

level of competition. The natural endogeneity concern, discussed in Section 2.3, is that contests

with different numbers of Phase I competitors could be unobservably different from each other.

As such, using cross-N1 restrictions for identification and estimation would be at odds with this

source of endogeneity. The benefit of this identification procedure is that it depends solely on

contests with a particular (N1, N̄2). All parameters could vary flexibly with (N1, N̄2).41 In practice,

I have to constrain costs and the bargaining parameter to be constant across N1, but I let the value

distribution vary flexibly with N1.

While the argument presented in this section is specialized to this model, the identification is

robust in many senses. Appendix C provides a number of extensions of this result. Proposition 3

can be extended almost directly to models with asymmetric firms. It extends to models with certain

forms of unobserved heterogeneity, such as the one considered in the empirical model in Section 4.2,

by utilizing methods of Fourier deconvolutions to extract information from the failure rate as a

function of research effort. Finally, note that because the first-order condition (5) holds at all points

t2, it embeds a number of overidentifying restrictions. Relaxing these restrictions will allow for

identifying models where firms receive benefits from effort not directly tied to the Phase III contract

(e.g., by developing intellectual property).42

39One can think of this identification strategy as leveraging the holdup problem: if the firm is underinvesting by a
large margin, we would expect that it is unable to recover much of the generated surplus.

40In their setting, these “outcomes” correspond to channel input costs, which are negotiated in their setting. The
auxiliary knowledge is that the true marginal cost is zero.

41The exception is the distribution of unobserved heterogeneity, discussed in Section 4.2, which could of course not be
estimated separately when there is a single informative data point in a contest. An example would be when N̄2 = 1.

42I also conjecture that focusing on contests with N2 = 1 is not necessary either, so the argument could apply to
more general models where the outcome N2 = 1 need not have positive probability (e.g., for similar contests that
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4.2. Empirical Model

Before discussing the empirical specification I will use to take the model in Section 3 to the data, I

discuss the map from observables to quantities in the data. For each contest, I observe the realized

number N1 and N2 of contestants in each Phase I and II, along with whether a firm was awarded a

Phase III contract. I infer N̄2 from the 40% rule of thumb provided by the DOD SBIR program

and discussed in Section 2.1.

Note that because all research efforts specified in the model are monetary, the map to the data is

clear. The Phase III contract amount is also observed and maps directly to the bargaining transfer

of v + η(v − c− s) in the model. The Phase I and II contract amounts are mapped to ψ(p∗) and

t∗N2
(v) in the model, respectively, as described in Section 3.2.43

I add two components to the model in Section 3 to take it to the data: (i) observed covariates that

affect values, costs, and the costs of research and (ii) heterogeneity unobserved to the econometrician

that affects all these quantities. In particular, each contest j is characterized by a set of covariates

Xj and an unobserved shifter θj ∼ Θ, where log Θ is normalized to have mean zero. A particular

firm i in a contest j has value vij , cost of Phase I research ψj(p), and delivery cost cij given by

vij ≡ ṽi · θj · exp(Xjβ), where ṽi ∼ Ṽ ;

ψj(p) ≡ θj · exp(Xjβ) · ψ̃(p); and

cij ≡ θj · exp(Xjβ) · c̃i, where c̃i has cdf H̃(·; t/(θj · exp(Xjβ))).

(6)

The primitives to be estimated are then Ṽ , ψ̃(·), the cdf H̃(·; ·), and η. I allow Ṽ to depend on

N1 to control for potential endogeneity in N1: the DOD may choose a larger number of Phase

I competitors for projects that have higher value (or perhaps even more uncertain value). I set

ψ̃′(p) ≡ αp and estimate α. Finally, I restrict η to be constant across contests.44

The empirical specification (6) induces a correlation between values, implementation costs,

and costs of research: certain projects are more valuable to the DOD but are also more costly to

implement and conduct research on. Controlling for (θj , Xj), however, the residual values ṽ are still

mutually independent among successful firms, and the residual costs c̃ are still independent of ṽ

(controlling for the effective expenditure on research t/ exp(θj · Xjβ)). Thus, one interpretation

of the empirical specification is that the “vertical” heterogeneity across projects, which would

intuitively make more valuable projects more expensive as well, is controlled by (θj , Xj). The

residual heterogeneity encapsulated in ṽ comes from heterogeneous match quality with the DOD,

and it is thus orthogonal to the research and implementation costs. Adding unobserved heterogeneity

begin in Phase II but always have at least two competitors). In addition, a combination of the overidentifying
restrictions in (5) and the Fourier deconvolutions used with unobserved heterogeneity can accomodate certain types
of shocks to the value between Phases II and III. Future versions of this paper will provide a more formal treatment
of identification in these settings.

43As noted below, however, I will not directly use the observed values of ψ(p∗) in the estimation procedure, because
they exhibit very little variation.

44In principle, the dependence of these quantities on Xj can be replaced by a general function f(Xj) instead of simply
exp(Xjβ) with no change in the estimation procedure. I keep the linear notation for simplicity. Furthermore, the
other parameters (such as α and η) could depend on quantities like N1 that are coarse once again without affecting
the estimation procedure.
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also “softens” the hard constraint induced by the fact that Phase III does not happen if v ≤ c:

especially large transfers need not signify that values are high; rather, they may signify that the

particular contest in question had an especially large value of θj .

The multiplicative specification in (6) allows me to control for heterogeneity in the estimation

procedure in a structured way, as shown in the subsequent proposition.

Proposition 4 (Scaling). Suppose
(
p∗, {tN∗2 (·)}N2≤N̄2

)
is an equilibrium of the R&D contest with

primitives ψ(·), V , C(t), and η. Consider a scaled model with primitives ψ̃(·) = γ · ψ(·), Ṽ = γ · V ,

C̃(t) = γ · C(t/γ) (i.e., so that H̃(c, t) = H(c/γ, t/γ)), and η̃ = η. Then,
(
p∗, {γ · tN∗2 (·)}N2≤N̄2

)
is

an equilibrium of the scaled contest.

Proof. The result follows from direct substitution into the equilibrium conditions (2) and (4).

Proposition 4 is reminiscent of scaling properties of auction models and allows for a simple

method of controlling for heterogeneity, although unlike in auction settings—in which there is a

single dimension of heterogeneity across competitors—I consider cases where costs and values both

scale.45 By Proposition 4 and the specification in (6), we have that in equilibrium,

t∗N2
(vij ;Xj , θj) = θj · exp(Xjβ) · t̃N2(ṽi) (7)

for some effort function t̃N2(·). As will be discussed in Section 4.3, this specification effectively

allows us to control for heterogeneity by regressing Phase II efforts on covariates.

Distributional Assumptions. While much of the model is nonparametrically identified, I place

parametric restrictions to assist in estimation in finite samples. In particular, I assume that

• V is lognormal with location parameter µN1 and scale parameter σN1 ;46

• H(·; t) is a lognormal with mean parameter µ(t), which is a decreasing function of t (and the

particular parameterization is discussed in detail in Appendix G.1) and scale parameter σC ;

and

• ψ(p) = αp2/2.

I place no parametric restrictions on the distribution of θ.

I make two comments about the choice of the parametrization. First, in this model, Phase II

failure is rationalized by a large draw from the cost distribution, so we would expect to estimate

distributions with long upper tails to rationalize high failure rates.47 Second, note that the

45See Krasnokutskaya (2011) for an example in previous work.
46In the case where N1 = 2 and N̄2 = 1, there is selection into Phase II. I parameterize V as a lognormal in this case

as well, but when I compute the likelihood in Step 3 of the estimation procedure described in Section 4.3 below, I
note that the distribution of values in Phase II is a mixture between V and the maximum of two draws of V . The
mixing probabilities are a function of the probability p∗ of success in Phase I, which I can estimate directly.

47I have experimented with alternate specifications in which the cost distribution is a mixture of a lognormal and a
mass point at ∞, which has probability γ(t). This mass point is to rationalize a failure rate without necessarily
resorting to a large standard deviation of the cost distribution. In practice, these specifications tend to place
somewhat low mass on this “outright” failure rate and not change the estimated cost distribution appreciably.
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identification discussion in Section 4.1 showed that we can identify α from the fact that ψ′(p) = αp

purely from information about the optimality of the Phase I research effort and without any

knowledge of the level of ψ(p). In the empirical section, I choose not to use any information about

the observed Phase I contract amount in the data, instead estimating the first-stage cost function

based on a parametric assumption on ψ′(·) and the assumption that ψ(0) = 0.48 I make this

decision because, unlike the Phase II contract amount, the Phase I contract amount is set essentially

institutionally in the DOD SBIR program and shows very little variation across projects. Thus, the

Phase I contract amount may not be an accurate representation of the amount of Phase I research

the firm conducts.49 I will instead rely on the parametric assumption and compare the implied

research expenditures from the model with the institutionally specified Phase I contract amount of

$80,000.

4.3. Estimation Procedure

One main difficulty with estimation is that the model is computationally intensive to solve, and

a full-solution approach is unwieldy. However, the identification argument given in Section 4.1 is

constructive and lends itself to a transparent estimation procedure: the identification argument

highlights the upper bound of Phase III transfers as a function of Phase II research efforts as an

object that can be directly parameterized. I embed this intuition in an MLE procedure described in

this section.

With the distributional assumptions given in Section 4.2, I can employ a maximum likelihood

approach to estimation. The overview is to (i) estimate the dependence on Xj in a first-stage

regression, (ii) estimate the distribution of Θ nonparametrically using the residual correlation in

Phase II bids within-contest, (iii) estimate the cost and value distribution using MLE by integrating

out the estimated distribution of unobserved heterogeneity, and (iv) choose the bargaining parameter

by minimizing the distance between the effort implied by the estimated parameters and the solution

of the model. I restrict the sample to settings in which there is guaranteed to be no selection (i.e.,

I drop all contests with (N1, N2) = (3, 2) or (N1, N2) = (4, 2)) so that Assumptions M and O are

guaranteed to hold and that searching for a monotone effort function is internally consistent with

the equilibrium model. Below, I spell out the steps in detail.

Step 1 (Partialling out Covariates). Taking logs of (7) gives

log t∗N2j
(vij ;Xj , θj) = Xjβ + log θj + log t̃N2j (ṽi).

Thus, a regression of the log of Phase II effort on contest-level covariates returns the “normalized

bids” plus the unobserved heterogeneity

νij ≡ log t̃N2j (ṽi) + log θj ≡ log t̃i + log θj ,

48I could instead use a functional form such as ψ(p) = α0p
2/2 + α1, for instance, if I were interpreting the Phase I

contract amounts in the data as ψ(p). Note that the functional form assumption does not affect the estimates of the
value or delivery cost distributions or the bargaining parameter.

49Since Phase I contract amounts are lower than Phase II amounts, firms may be more able and willing to use internal
funds to finance shortfalls in research.
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along with an estimate β̂ of the impact of the covariates. I then residualize the Phase III transfer

by dividing by exp(Xj β̂).

Step 2 (Estimating Θ). In this step, I use a deconvolution argument standard in the auctions

literature (developed by Li and Vuong (1998) and applied by Krasnokutskaya (2011)) to estimate the

distribution of Θ as well as the distribution of the normalized efforts t̃ for each (N1, N2) combination.

In particular, consider pairs (νi1j , νi2j) from the same contest j. Since νij = t̃i + θj , with t̃i1 , t̃i2 , and

θj all mutually independent and the distribution of θj normalized to mean zero, Kotlarski (1967)

shows that the distributions of θj and t̃i are identified from the joint distribution of (νi1j , νi2j).

I follow Krasnokutskaya (2011) to estimate these distributions, taking into account that the

empirical model in this paper assumes that certain distributions are identical. For each pair (N1, N2)

with N2 ≥ 2, I estimate the joint characteristic function of (νi1j , νi2j), as well as the derivative with

respect to its first argument, as the empirical means

Ψ̂(N1,N2)(t1, t2) =
1

n(N1,N2) ·N2(N2 − 1)

∑
j:(N1j=N1,N2j=N2)

∑
i′ 6=i′′

exp(it1νi′j + it2νi′′j)

Ψ̂′(N1,N2)(t1, t2) =
1

n(N1,N2) ·N2(N2 − 1)

∑
j:(N1j=N1,N2j=N2)

∑
i′ 6=i′′

iνi′j exp(it1νi′j + it2νi′′j),

where n(N1,N2) is the number of contests with a particular value of N1 and N2, and thus n(N1,N2) ·
N2(N2 − 1) is the number of pairs of observed research efforts that correspond to these auctions.

From these estimates, I recover the characteristic functions of Θ, from this subset of the data, as

Φ̂Θ,(N1,N2)(t) = k · exp

(∫ t

0

Ψ̂′(N1,N2)(0, u)

Ψ̂(N1,N2)(0, u)
du

)
, (8)

where k ≡ iΨ̂(0, 0)/Ψ̂′(0, 0) is a factor that ensures that Θ has mean zero. I then average (8) over

all pairs (N1, N2) with N2 ≥ 2 to compute the characteristic function

Φ̂Θ(t) =

∑
(N1,N2):N2≥2 n(N1,N2) ·N2(N2 − 1) · Φ̂Θ,(N1,N2)(t)∑

(N1,N2):N2≥2 n(N1,N2) ·N2(N2 − 1)
. (9)

For each pair (N1, N2), including those with N2 = 1, I also estimate the characteristic function of

νij as

Ψ̂(N1,N2)(t) =
1

n(N1,N2) ·N2

∑
j:(N1j=N1,N2j=N2)

∑
i′

exp(itνi′j).

Then, since νij = θj + t̃i, and the characteristic function of θj is given by (9), I can compute the

characteristic function of t̃i for a particular pair (N1, N2) as the ratio

Φ̂t̃,(N1,N2)(t) =
Ψ̂(N1,N2)(t)

Ψ̂Θ(t)
.
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The densities of Θ and t̃ can be recovered from the Fourier inversion formula

flog Θ(θ) =
1

2π

∫ ∞
−∞

exp(−itθ)Φ̂Θ(t) dt

flog t̃(N1,N2)
(u) =

1

2π

∫ ∞
−∞

exp(−itu)Φ̂t̃,(N1,N2)(t) dt.

(10)

In practice, these integrals are approximated on a compact interval [−T, T ] chosen in a data-driven

fashion. See Appendix G.2 for details. Finally, densities for θ and t̃ (for each (N1, N2)) can be

recovered from transforming the recovered densities for log θ and log t̃.

Step 3 (Maximum Likelihood Estimation of Phase II Parameters). The next step involves maxi-

mizing the likelihood of observing the Phase II and III data, integrating out over the distribution of

unobserved heterogeneity estimated in Step 2. In particular, I maximize over the distributions of Ṽ

and the cost distribution H̃(·; ·), fixing the bargaining parameter η.

For each candidate value of these parameters, I first approximate an implied effort function

by appealing to Proposition 1: because efforts are one-to-one with values, fixing (N1, N2), a firm

with a value in the qth quantile of the distribution of ṼN1 will exert effort in the qth quantile of

the distribution of t̃(N1,N2), which was estimated in Step 2. Thus, for a candidate value of the

distribution of values Ṽ , I can approximate the inverse effort function ṽ(·) without solving the model

directly, for θj = 1.

Fix a particular contest j and guess a θj . The map ṽ allows one to compute ṽij(θj) as ṽ (νij/θj)

for all firms i. The likelihood of drawing these values is

Lvalues,j(θj) =
∏
i

fṽ(ṽij(θj)) ·
ṽ′ij(θj)

θj
,

where the second term takes into account the Jacobian of the transformation. If the contest does

not enter Phase III, then it must be that all firms drew costs larger than their values. Thus, the

likelihood of observing this outcome is

LPhase III,j(θj) =
∏
i

[1−H(ṽij(θj); νij/θj)] .

If instead we do observe a Phase III transfer for firm i∗, then we can compute the likelihood of

observing this transfer as

LPhase III,j(θj) =

∫ ṽi∗j(θj)−t3j/θj

s

1

θj · (1− η)
h

(
t3j/θj − ηṽi∗j(θj) + ηmax{s, 0}

1− η
; νi∗j/θj

)
fS̄,j(s) ds dc,

where fS̄,j(s) is the pdf of the maximum value of the surplus for all firms other than i∗, which is

computed based on the observed values of νij and the posited candidate H̃(·; ·). Note that if for

the posited θj , the value of the Phase III transfer exceeds the implied ṽij(θj), then the likelihood

is zero. Finally, if a Phase III transfer is observed that is implausibly low (less than $1 million in

this specification), I assume that the project succeeded but that the actual value of the Phase III
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transfer is unobserved. In this case, if i∗ is awarded the contract, then it must be that i∗ drew a

cost less than its value and that the surplus generated by all other competitors is less; the likelihood

LPhase III,j(θj) can be computed accordingly.

We can then compute the log likelihood over observing this outcome as

log

∫
Lvalues,j(θ) · LPhase III,j(θ) · fθ(θ) dθ,

integrating out against the distribution of unobserved heterogeneity. We maximize the sum of this

log likelihood across all contests that enter Phase II. Computational details are given in Appendix G.

Step 4 (Estimation of the Bargaining Parameter). So far, estimation has only relied on Assump-

tion M and Proposition 4. The identification argument, however, noted that information on the

bargaining parameter comes from the firm’s first order condition. In this step, I impose the firm’s

first order condition by solving the model explicitly. I do so at each value of η on a fine grid, at

the estimated parameters from Step 3.50 I then use a simulated method-of-moments procedure to

match properties of the observed data with simulated values from each of the solved models for the

various values of η.

In particular, for each contest j, let f̂j be an indicator for whether the contest failed before

entering Phase III. Let t̂3j be the observed Phase III transfer. Since this quantity is undefined for

contests that do not enter Phase III, I instead define the moment t̂′j to be 0 if the contest fails and

t̂3j if it does not. I match these to the empirical counterparts, which are the simulated probability

of failure P̃r(failure; η, θ∗(η)), where θ∗(η) are the MLE estimates conditional on η from Step 3, and

the (partial) expectation of the observed transfer,
(

1− P̃r(failure; η, θ∗(η))
)
· Ẽ[t3; η, θ∗(η)]. I match

these moments conditional on (N1, N2). Thus, for a contest j, the relevant set of moments is

gj(η) =

(
f̂j − P̃r(failure; η, θ∗(η))

t̂′j −
(

1− P̃r(failure; η, θ∗(η))
)
· Ẽ[t3; η, θ∗(η)]

)
⊗ 1(N1j ,N2j) ≡ ĝj − g̃j(η),

where 1(N1,N2) is a vector that contains a 1 in the element corresponding to (N1, N2) and zeros

elsewhere.

For brevity, replace ĝj by the Kronecker product of ĝj and the dummy vector 1(N1,N2). Then,

the optimal method-of-moments procedure to estimate η corresponds to

η∗ = arg min
η

∑
j

gj(η)

′ · Ω̂−1 ·

∑
j

gj(η)

 , (11)

50While it is infeasible to use a full solution approach during the MLE procedure—and while it imposes more structure
than would be necessary for estimation of the baseline model—solving the model is possible on a fine grid of η once
the MLE estimates have been computed for each of those values of η. The estimation as well as the model solution
can be parallelized conditional on η, whereas a full solution approach as part of an optimization procedure that
involves η might have to be run in sequence.
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where

Ω̂ =
∑
j

(ĝj − ḡ)(ĝj − ḡ)′

and ḡ is the empirical mean of ĝj . In practice, I evaluate η on the fine grid and pick the minimum

value of the objective in (11).51

Step 5 (Estimation of the Phase I Parameter). For each value of (N1, N̄2), I use maximum

likelihood to estimate the probability p̂(N1,N̄2) of a particular contestant succeeding when there

are N1 contestants in Phase I and a limit of N̄2 on Phase II. In particular, I estimate a censored

binomial model in which for each contest j, the unobserved number of successes NSj is such that

NSj ∼ Binomial(N1, p̂(N1,N̄2)), but the observed quantity is

N2j =

NSj if NSj ≤ N̄2j

N̄2j if NSj > N̄2j

.

Upon estimating p̂(N1,N̄2), I compute the profits from Phase II by solving the model using the

estimated parameters from Step 4 for all values of N1 at the estimated p∗
(N1,N̄2)

. I then use the FOC

associated with (4) as the estimating equation for α. In particular, I set

α∗ = arg min
α

∑
(N1,N̄2)

w(N1,N̄2)

[
ψ′
(
p̂(N1,N̄2);α

)
− π̂

(
N1, N̄2; η∗, θ(η∗)

)]2
,

where π̂(N1, N̄2; η∗, θ(η∗)) is the expected profit conditional on success and w(N1,N̄2) is a weighting

function. I set the weight equal to the number of contests with (N1, N̄2).

5. Structural Estimates

In this section, I discuss the structural estimates of the value and cost variation, the research

production functions, and the bargaining parameter in the model. These estimates together will

allow me to summarize the type of heterogeneity that governs the outcome of these contests. I will

then briefly present some information about the fit of the model to the data. Table 5 reports the

parameter estimates for the equilibrium model of the R&D contests, following Steps 1–5 of the

procedure outlined above.52 Appendix B.2 provides estimates of the Phase II parameters conditional

on particular values of η, using only Assumption M and an analogue of the scaling property of

Proposition 4, for comparison.

51As noted in Step 3, there are a set of contests that I treat as a success with the Phase III amount unobserved. When
constructing moments, I account for these contests when computing failure rates, but I ignore them when computing
the means of the transfer distribution.

52I construct standard errors by a nonparametric bootstrap. I sample with replacement from the dataset, making sure
that the distribution of contests with a particular (N1, N̄2) remains fixed across bootstrap samples. I then repeat
Steps 1–3, conditional on the value of η∗ picked in Step 4. In future work, I will compute a standard error on η∗ as
well, but the analogous bootstrap procedure would require me to estimate the model on a fine grid of η for each
bootstrap sample, which is especially time consuming.
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Percentile 2.5% 10% 25% 50% 75% 90% 97.5%

θ 0.387 0.728 0.876 1.012 1.165 1.346 1.938
(0.090) (0.060) (0.039) (0.018) (0.039) (0.103) (0.321)

(a) Quantiles of the distribution of unobserved heterogeneity Θ.

Values ($M) N1 = 1 N1 = 2 N1 = 3 N1 = 4

Mean 10.98 11.96 13.20 14.94
(4.09) (2.76) (2.88) (2.90)

Standard Deviation 0.34 0.36 0.40 0.46
(0.13) (0.09) (0.09) (0.09)

95% Range 1.32 1.41 1.55 1.79
(0.51) (0.34) (0.37) (0.36)

(b) Moments of the value distribution, in millions of dollars

Pr(c < v) E[c|c < v] ($M) Quantiles ($M)

Value Semi-Elasticity Value Elasticity 1% 5% 10% Elasticity

0.071 0.012 6.85 -0.016 2.85 9.27 17.39 -0.161
(0.010) (0.004) (0.91) (0.005) (0.40) (1.30) (2.43) (0.046)

(c) Moments of the cost distributions, averaged over both the observed distribution of
N1 and efforts as well as the estimated distribution of unobserved heterogeneity.

Firm Bargaining Parameter (η) 0.73
Phase I Marginal Cost (α) 0.208 $M
Average Phase I Cost 0.027 $M

(d) Phase I and bargaining parameters

Table 5: Structural estimates

Panel (a) of Table 5 shows quantiles of the distribution of unobserved heterogeneity θ. The

distribution is fairly concentrated around 1, suggesting that unobserved heterogeneity does not play

an especially large role in the data. A contest in the 10th percentile of the data has values and costs

that are about 70% of the median contest, and a contest in the 90th percentile has values that are

about 35% larger than median. There is a somewhat large range, however: moving from the 2.5th

percentile to the 97.5th percentile increases values and costs by a factor of 5.

Panel (b) of Table 5 shows the mean as well as measures of the variance in the value distributions

as a function of N1. While the structural estimation procedure estimates the distribution of ṽ, I

scale these estimates by the mean value of the estimates of exp(Xjβ) from Step 1 as well as the

estimated mean for the distribution of θ from Step 2 to express these numbers in millions of dollars.
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The first observation is that average projects have mean values of around $11.0–$15.0 million dollars.

Projects in which the DOD selects a larger number of Phase I competitors tend to have larger

values, although the difference in the values is somewhat imprecisely estimated. Note that these

values are for all projects, so the ones that do result in Phase III contracts will be selected from the

upper tail of this distribution. The second observation is that these value distributions are fairly

narrow. One measure of this variation is the standard deviation, which is estimated to be about

$350,000–$450,000. Given the lognormal distribution, these estimates correspond to a “95% range,”

i.e., the difference between the 97.5th percentile and the 2.5th percentile, or about $1–$2 million.

Thus, the extent of the variation in values is approximately 12% of the mean.

The identification argument in Section 4.1 can shed some light on the moments in the data that

influence these estimates. Most of the observed Phase III transfers lie below the 95th percentile of the

estimated values (as seen in Figure 1(b), for instance), and in this sense, the Phase III values serve as

an upper bound for the transfer distribution: points beyond this upper bound are explained by the

heterogeneity encapsulated by X and θ. The slope of this “soft” upper bound provides information

about the variance in the value distribution: the fact that even projects with low levels of Phase II

funding tend to occassionally have reasonably high Phase III contract amounts suggests that these

projects have reasonably high values as well. Of course, due to the parametric assumptions and the

introduction of heterogeneity, the estimates of values are influenced by matching the failure rate as

well, which depends on the cost estimates I discuss in the next part of this section.

Panel (c) of Table 5 shows the estimates related to the delivery cost distributions. Since the

delivery cost depends on research effort, which varies across the sample, I aggregate across all data

points to report these numbers.53 In particular, I fix a value of unobserved heterogeneity θ and

compute moments of the cost distribution at the implied value of t̃2ij = t2ij/θ for each contestant i

in each contest j. I compute the moments of interest for all these data points; I then average across

all these data points and integrate out over θ. I scale the estimates to bring the appropriate ones

into units of millions of dollars.

Just as values are positively selected, the cost draws are negatively selected, conditional on

success; because so few contests succeed in Phase II, the mean cost draw is irrelevant for observables.

I instead report (i) the probability that the cost draw is less than an independent value draw (for

the associated value of N1), (ii) the conditional expectation of cost draws that are less than value

draws, and (iii) some relevant quantiles of the cost distribution. The probability that costs are less

than values is about 0.07, which is slightly lower than the observed success rate. The mean of these

cost draws is about $6.9 million. The 1st percentile of the unconditional cost distribution is about

$2.9 million, the 5th percentile about $9.3 million, and the 10th percentile about $17.4 million. I also

report elasticities of these quantities, which are estimated to be rather low. The elasticity of the

quantiles with respect to research effort is about 0.2: if research efforts increase by 1%, the quantiles

of the delivery cost distribution decrease by 0.2%.54 This value translates to an elasticity of about

0.016 for the conditional expectation of costs and a semi-elasticity of 0.012 for the probability that

53Standard errors do not account for this variation across the sample.
54It is a property of the lognormal, together with the fact that the research effort only parameterizes the mean, that

this elasticity is uniform across quantiles.
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the cost draw is less than the value draw.55

Conditional on the bargaining parameter, the cost distributions are estimated from two main

patterns in the data. First, the failure rate decreases with research effort, and the rate of this

decrease—after accounting for the increase in the value estimated above—as well as the failure rate

itself, affect the distribution and the elasticity. At the same time, the observed transfers do increase

with the Phase II amount, which must be due to the increase in the values; because a decrease in

the cost would counteract this effect, the estimated elasticity cannot be so high as to cause the

observed transfers to drop.

Finally, Panel (d) of Table 5 provides a few remaining statistics related to the model. First, the

firms’ bargaining parameter is estimated to be 0.73, meaning the DOD gives the winning firm about

three-fourths of the (incremental) surplus generated from the project. This estimate directly uses

information about the firm choosing research efforts optimally.56 It is determined by fitting the

equilibrium transfers and failure rates. Roughly, a larger value of η would overpredict the transfers

(by bringing them closer to the value of the project) and reduce the failure rate by increasing

the incentives to conduct research. Panel (d) also reports the estimate of α (in dollars per unit

probability), averaged across values of N1. A one percentage-point increase in the probability of

success costs roughly $2,000, an estimate that is obtained directly from equating the marginal cost of

research to the expected profits at the observed success rates. Using the additional functional form

assumption that ψ(p) = αp2/2, the Phase I expenditure amounts to approximately $27,000; the

estimate is slightly higher when restricting to contest with N1 = 1 (about $43,000) or N1 = 4 (about

$66,000). While these values are slightly lower than the DOD-specified amount of $80,000, they are

nevertheless in the right ballpark. This agreement provides suggestive evidence in favor of the model,

especially given that the estimation uses absolutely no information about the Phase I contract

amount. The lower model-implied estimates may be due to misspecification of the functional form,

or perhaps a fixed cost of research should be included in this function; alternatively, the SBIR

program may simply wish to set an institutional amount that is guaranteed to cover costs for a

wide range of projects. Throughout the rest of the paper, I will maintain this functional form, with

the caveat that I may be underestimating the cost of Phase I research slightly.

Figure 2 plots two further measures of model fit. Panel (a) plots the observed failure rate (from

Phase II to Phase III) for bins of (N1, N2) against the model-implied failure rate. The observed

and implied failure rates are close to each other, although the model does have a tendency of

overpredicting failure. Panel (b) plots the observed contract amounts against the model-implied

values; this fit is especially close, and the model predictions are within one standard error of the

data in almost all the bins.

The parameter estimates in this section paint a picture of these contests as ones with moderate

value (about $11–$15 million) but without especially large variation across competitors within

55Note that Pr(c < v) is not exactly a failure rate, since I compare the cost draw to a generic draw from the value
distribution. Similarly, the elasticities are lower in magnitude than the rate of change of the failure rate (conditional
expectation of costs) with respect to the research efforts, since v would increase as well. Rather, these moments are
descriptive features of the cost distributions themselves, and I relegate quantities such as actual failure rates to the
discussion of model fit.

56Of course, this bargaining parameter does feed into the value and cost estimates, but not the unobserved heterogeneity
distributions, from above.
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Figure 2: Observed and model-implied (a) failure rates and (b) Phase III contract amounts. The
error bars indicate one standard error; the point in (b) without standard error bars corresponds to
a bin with just one data point.

contests. This result is consistent with the notion that these projects are well-specified ex-ante,

and, while there is heterogeneity across contestants, there is not much room for innovation on

the dimension of project quality. Delivery costs, however, are substantively different across firms,

although the map from research effort to the realization of the cost is estimated to be rather flat.

Finally, the DOD does allow the firms to capture a fairly large portion of the surplus they generate,

giving them the incentives to conduct research throughout the contest.

6. Social Inefficiency in R&D Contests

In this section, I use the estimated values from Section 5 and ask whether the equilibrium of the

R&D contests features underprovision or overprovision of R&D from a social standpoint. In doing

so, I will discuss the potential sources of inefficiency, and this discussion will help interpret the

design counterfactuals studied in Sections 7 through 9. I also provide a measure of the optimal

social surplus to quantify the surplus left on the table due to the current design of the contest,

and the optimum provides a benchmark to which we can compare the surplus generated in these

alternate designs. Note that social surplus is defined to be the maximum value of (v− c)+ generated

by the contestants in Phase II, less total research costs in Phases I and II. This section as well as

Sections 7 through 9 focus on social surplus as the outcome of interest; Section 10 considers the

profits of the DOD as well, and Appendix A goes into more details about DOD profits.

To assess the social efficiency of research efforts in this contest, I conduct the following experiment.

First, I compute the equilibrium of the R&D contest; denote the first-stage effort by p∗ and the

second-stage effort by t∗N2
(·). I then compute the optimal second-stage effort function t̂N2(·) of the

form γ · t∗N2
(·); I vary γ and keep p∗ fixed. An optimal value of γ > 1 would suggest that research is

underprovided in the equilibrium of the R&D contest while a value of γ < 1 would suggest that

there is excessive research (holding first-stage behavior fixed). In the next experiment, I compute
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Baseline Phase I Phase II Optimum

N1 N̄2 p∗ SS p̂ SS % γ SS % SS %

1 1 0.40 0.012 0.35 0.013 4.2% 1.50 0.013 8.1% 0.014 11.7%
2 1 0.42 0.028 0.31 0.031 10.2% 1.47 0.031 9.5% 0.033 18.1%
3 2 0.63 0.111 0.51 0.119 6.9% 1.44 0.119 7.2% 0.125 13.0%
4 2 0.77 0.246 0.54 0.299 21.5% 1.40 0.258 5.0% 0.310 25.9%

Table 6: Baseline social surplus (SS) and first-stage effort p∗, along with socially optimal levels
of first stage effort p̂ and scaling factor γ for second-stage effort for various values of (N1, N̄2).
Values of p̂ < p∗ imply that Phase I research is socially excessive in the R&D contest, and values
of γ > 1 suggest that Phase II research is underprovided in equilibrium. The final columns report
the optimum surplus, in which η = 1 and p is chosen to maximize surplus subject to η = 1. I also
report percent improvements in surplus relative to the baseline design of the contest.

the optimal first-stage entry probability p̂, keeping the second-stage effort function fixed at the

equilibrium level. I compare this value to p∗. Table 6 shows the social surplus in the equilibrium of

the R&D contest, together with the optimal values of γ and p̂ and the social surplus at these values,

for various values of (N1, N̄2).57

What are the sources of inefficiency in Phase II? If N2 = 1, we can note that the firm’s problem

and the social planner’s problem coincide when η = 1. Setting η = 1 makes the firm the sole claimant

to the generated surplus and effectively amounts to selling the project to the firm, maximizing social

surplus.58 Indeed, the only source of inefficiency in Phase II with N2 = 1 is the holdup problem,

because the party that invests in research only receives part of the surplus. Thus, we would expect

Phase II research efforts to be underprovided in the R&D contest when N2 = 1. Accordingly,

Table 6 notes that in the cases where N̄2 = 1 (so that N2 must equal 1 when Phase II occurs), the

socially efficient level of R&D is about 47–50% larger than the equilibrium level of R&D. Across

contests with different (N1, N̄2), this amounts to a gain in social surplus of around 5–10% relative

to the R&D contest, which can be interpreted as a ballpark estimate of the “cost of holdup” in this

setting.59

A less obvious implication of the model is that a similar conclusion holds for N2 > 1 as well: the

social planner’s optimum is supportable by the firms in equilibrium if η = 1. The key observation

driving this result is that in Phase II, the winning firms’ profit (ignoring research costs) is η times

the difference between the surplus from his project and the surplus from the next-best project.

When η = 1, this difference is exactly the winner’s marginal contribution to the social surplus,

meaning the firm is rewarded in a manner that coincides with the social planner’s objective function.

Thus, for Phase II, the social planner would always prefer to set η = 1.60 I codify this argument in

57I use the parameters for the associated value of N1.
58It is in fact possible to show that social surplus is monotonically increasing in η in this case as well.
59As a point of comparison, we could consider an alternate experiment where we subsidize Phase II research by τ so

that when the firm invests t in R&D, it gets an additional τt. The firm internalizes this subsidy when making R&D
decisions. Then, if 1 + τ = 1/η, we would have the efficient level of investment. At the estimated value of η = 0.73,
this corresponds to a 37% subsidy.

60That the social surplus is maximized at η = 1 with N2 > 1 does of course depend on the adopted bargaining
procedure for Phase II. In an alternate bargaining procedure in which the firm with the highest v is approached and
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the following proposition, whose proof is in Appendix E.2.61

Proposition 5. Consider a contest that begins in Phase II. The social planner’s solution (when the

social planner is constrained to choose effort schedules that depend only on an individual competitor’s

value) can be supported by a competitive equilibrium when η = 1. Moreover, if there is exactly one

competitor, the social surplus is monotonically increasing in η.

Table 6 also shows that values of γ for cases where N̄2 = 2. In these situations, we would have

instances where N2 = 1 or N2 = 2. Since in both cases we expect underinvestment, it is expected

that γ > 1 here as well. I find magnitudes similar to the instances when N̄2 = 1: socially efficient

research efforts would be about 40–45% larger than the ones in the R&D contest, and the social

surplus would increase by about 5–7.5% off the baseline in the R&D contest.

A different story emerges when considering the full contest, starting at Phase I. First, when

exerting effort in Phase I, the firm internalizes the fact that its Phase II research efforts will be

refunded by the DOD contract. As such, even at η = 1 for N1 = 1, the social planner’s problem does

not coincide with the firm’s. The reimbursement effect, in which later-stage research expenditures

are not internalized when early-stage expenditures are decided, would lead to overprovision of Phase

I research efforts. The second effect—which is arguably more robust and present in general models

of R&D—is analogous to a business-stealing effect from Mankiw and Whinston (1986): when setting

research efforts, a firm does not internalize the loss to its rival when it displaces it from entering

into Phase II. Of course, this business-stealing effect only exists for N̄2 < N1. This effect would

also lead to overprovision of R&D. Finally, we have the holdup effect that also exists in Phase II;

this would point towards underprovision of R&D in Phase I. The net effect thus depends on the

cumulative magnitude of these three effects and is in principle ambiguous.

Comparing the equilibrium p∗ in the R&D contest to the socially optimal p̂ in Table 6 suggests

that there is overprovision of R&D in equilibrium. The sum of the reimbursement effect and the

business-stealing effect (or just the reimbursement effect when N1 = 1) outweighs the holdup effect.

In all cases, p̂ < p∗, and the social surplus given p̂ is between 4% (for N1 = 1) and 22% (for N1 = 4)

larger than under the equilibrium. The final two columns of Table 6 show the optimal social surplus,

subject to the information constraints that the agents face. In particular, I set η = 1, so that

social surplus is maximized in Phase II, and then simultaneously choose the effort p in Phase II

to maximize the total surplus generated in the entire contest.62 These columns provide a measure

of the surplus left on the table due to the current design of the contest and provide a benchmark

against which the design counterfactuals discussed in the subsequent sections can be compared.

Social efficiency can be improved by between 11% and 26% by setting this optimal design.

given the transfer c+ η(v − c) regardless of the outcomes of other firms, there would be a business-stealing effect.
61See Hatfield, Kojima, and Kominers (2016) for a discussion of this issue in general models. Note further that not all

equilibria of the contest at η = 1 need to coincide with the social planner’s problem. However, I have no numerical
evidence of multiple equilibria.

62This corresponds to a situation where the social planner chooses effort as a function of value and has beliefs about
other agents’ values that conincide with those of the agents. One could also compute a “first best,” in which the
planner can condition research efforts on the vector of realizations of values. The first best does not increase the
surplus appreciably for these parameters, and I focus on the “second best” shown in Table 6 throughout the paper
because it is more closely related to the current design of the contest.
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N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 -0.024 0.129
N1 = 3 -0.022 0.099 0.247
N1 = 4 -0.019 0.102 0.218 0.354

(a) Change in social surplus (Baseline is 0.144 $M)

N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 0.022 0.188
N1 = 3 0.025 0.232 0.369
N1 = 4 0.029 0.235 0.418 0.545

(b) Change in total research costs (Baseline is 0.195
$M)

Table 7: Total effects of moving from a baseline of N1 = N̄2 = 1 to various values of (N1, N̄2) on (a)
social surplus and (b) total research costs. Each entry in the table lists the change from the baseline
value, and the baseline values are listed in the respective captions. All values are in millions of
dollars.

7. The Effect of Early- and Late-Stage Competition

The addition of a competitor to an R&D contest has two effects. First, there is a direct effect of

getting another draw from the pot, albeit at some additional cost of research. Second, there is an

indirect incentive effect in that the equilibrium effort exerted by the firms changes. Due to both the

cost of research and to this incentive effect, it may be optimal to limit entry into R&D contests,

and stylized theoretical models sometimes show that it even can be optimal to restrict competition

to two competitors. In this section, I quantify the effect on social surplus of adding competitors in

both the early (Phase I) and late (Phase II) stages of the program. I then decompose this effect

into direct and incentive effects to quantify the contribution of the equilibrium change in incentives

to social surplus.

7.1. Changing N1 and N̄2

I first compute the total effect of changing the number of competitors in the contest, using

N1 = N̄2 = 1 as a baseline. Table 8 presents the results.63 At these parameters, the expected social

surplus generated per contest is $144,000. About $200,000 of this is due to R&D cost reimbursements,

so each contest generates about $340,000 of surplus when ignoring research costs.

Table 7(a) shows the total effect on social surplus of going from a contest with N1 = N̄2 = 1

to different values of N1 and N̄2. Social surplus drops by approximately $24,000 when keeping

N̄2 = 1 but increasing N1 to 2, and by slightly less if instead increasing it to 3 or 4.64 While I will

discuss these numbers in more detail in Section 7.2, some rough intuition is as follows: increasing

N1 without increasing N̄2 reduces each individual competitor’s incentive to exert Phase I effort

(which is socially beneficial, as Section 6 shows that there is overprovision of R&D in Phase I) but

does lead to larger total Phase I effort expenditures.65 However, much of the failure rate is due

to failure in Phase II, and limiting entry to exactly one competitor in Phase II only leverages the

63I use the parameter estimates with N1 = 4 in this section.
64Fixing N̄2, social surplus need not be monotone in N1, as seen from this example. Fixing N1, social surplus also

need not be monotone in N̄2, although that is not clear in these numerical examples.
65Moving from N1 = 1 to N1 > 1 does introduce a business-stealing effect in Phase I as well, which leads to further

overprovision of Phase I R&D.
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benefit of having a larger value draw. This benefit, especially given the fairly narrow estimated

value distributions, is not large enough to counteract the additional cost of Phase I research.

Increasing the limit N̄2 on Phase II competition improves the chances of success in Phase II,

albeit at the cost of more research. Whether this increase is socially beneficial depends on the

extent to which two competitors in Phase II are “ex-ante” substitutes. Since Phase II failure

rates are so high in this setting, firms are effectively not substitutes; the two firms would only be

substitutable in the event that they both succeed, which is very unlikely. Thus, we would expect

that if inviting one firm to Phase II is socially beneficial (as it is because the social surplus is positive

when N1 = N̄2 = 1), inviting more firms would be socially beneficial as well. Accordingly, we see

that social surplus increases (almost) linearly when we increase both N1 and N̄2 by 1, starting from

N1 = N̄2 = 1: moving from N1 = N̄2 = 1 to N1 = N̄2 = 2 increases social surplus by $130,000

(slightly less than the base of $144,000). Adding one more competitor to each stage increases it by

the slightly lower value of $118,000. This slight decrease is due to the fact that the firms become

slightly more substitutable as competition increases.66 In addition, there are effects on equilibrium

incentives that I will discuss in Section 7.2, but the fact that research efforts increase almost linearly

(see Table 7(b)) suggest that they are quite small.

I only show the total effect for relatively small contests, but a takeaway message from this

counterfactual is that the social planner would want to invite more firms to enter both phases of the

competition. Indeed, the optimal numbers of Phase I and Phase II contestants at these estimated

parameters are both larger than 4.67

7.2. Decomposing the Effect of Competition

I now decompose the total effects presented in the previous subsection into the direct effect of

adding competitors and the indirect effect that competitors can change their equilibrium effort.

Note that in a multistage contest like the one considered in this paper, the design variables are the

number N1 of competitors in the first stage and the limit N̄2 on the competitors in the second stage.

For concreteness, I will define direct and incentive effects relative to N1 = 1 and N̄2 = 1 to make

the decomposition comparable to the computations in the previous subsection.

Consider a contest characterized by an arbitrary (N1, N̄2) and consider any outcome denoted

S(N1, N̄2, p, {tN2(·)}N2≤N̄2
), defined as a function of the number N1 of Phase I participants, the

limit N̄2 of Phase II participants, effort p in Phase I, and the effort function tN2(·) for all possible

realizations of N2. In equilibrium, the firms would exert the effort level p∗
(N1,N̄2)

and the effort

functions t∗N2
(·; p∗

(N1,N̄2)
). The decomposition I conduct in this section of the total effect of moving

from a contest with just one contestant to one with N1 Phase I contestants and N̄2 Phase II

66Note for reference that the case N1 = N̄2 does not feature a business-stealing effect in the first stage, so there is one
less force towards R&D being excessive in Phase I.

67Computing the equilibrium for N̄2 ≥ 3 and N̄2 < N1 is increasingly cumbersome because beliefs require integrating
over dimension a joint density of dimension N̄2 − 1. Furthermore, the exact optimal number would be influenced by
whether or not ψ(·) has a fixed cost, for instance. I thus do not search for the optimal (N1, N̄2) and instead note
that the robust conclusion is that the social planner prefers to increase competition.
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N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 -0.083 -0.083
N1 = 3 -0.175 -0.175 -0.175
N1 = 4 -0.270 -0.270 -0.270 -0.270

(a) Direct (Phase I)

N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 − 0.215
N1 = 3 − 0.232 0.429
N1 = 4 − 0.239 0.453 0.636

(b) Direct (Phase II)

N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 0.059 0.000
N1 = 3 0.153 0.045 0.000
N1 = 4 0.250 0.135 0.042 0.000

(c) Incentive (Phase I)

N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 0.000 -0.002
N1 = 3 0.000 -0.002 -0.007
N1 = 4 0.000 -0.002 -0.007 -0.012

(d) Incentive (Phase II)

Table 8: Decomposition of the total change in social surplus from changing the number of competitors
in Phase I (N1) and the limit on the number of competitors allowed to enter Phase II (N̄2), following
(12). All values are in millions of dollars, and the baseline value of social surplus (at N1 = N̄2 = 1)
is $144,000.

contestants is

S
(
N1, N̄2, p

∗
(N1,N̄2), {t

∗
N2

(·; p∗(N1,N̄2))}N2≤N̄2

)
− S

(
1, 1, p∗(1,1), {t

∗
1(·)}

)
︸ ︷︷ ︸

total effect

= S
(
N1, 1, p

∗
(1,1), {t

∗
1(·)}

)
− S

(
1, 1, p∗(1,1), {t

∗
1(·)}

)
︸ ︷︷ ︸

direct effect of Phase I competition

+ S
(
N1, N̄2, p

∗
(1,1), {t

∗
1(·)}

)
− S

(
N1, 1, p

∗
(1,1), {t

∗
1(·)}

)
︸ ︷︷ ︸

direct effect of Phase II competition

+ S
(
N1, N̄2, p

∗
(N1,N̄2), {t

∗
1(·)}

)
− S

(
N1, N̄2, p

∗
(1,1), {t

∗
1(·)}

)
︸ ︷︷ ︸

incentive effect from Phase I competition

+ S
(
N1, N̄2, p

∗
(N1,N̄2), {t

∗
N2

(·; p∗(N1,N̄2))}N2≤N̄2

)
− S

(
N1, N̄2, p

∗
(N1,N̄2), {t

∗
1(·)}

)
︸ ︷︷ ︸

incentive effect from Phase II competition

. (12)

In words, the direct effect of Phase I competition simply considers the effect of adding Phase I

competitors without changing any equilibrium efforts. The direct effect of Phase II competition

subsequently increases the maximum allowed Phase II competition, again without any change in

equilibrium efforts. In the cases in which multiple competitors enter Phase II, I assume they all

exert effort following the schedule t∗1(·); in this way, I separate the impact of competition on Phase

II outcomes. The incentive effect from Phase I competition then allows for firms to readjust their

research efforts in Phase I to the final equilibrium effort given by the new competitive structure.

Finally, the incentive effect from Phase II competition allows firms to readjust their Phase II efforts

and finally arrives at the new equilibrium.
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Table 8 quantifies these four effects. Panel (a) shows the direct effect of adding Phase I

competitors; note that this quantity is definitionally independent of N̄2. As discussed above,

increasing N1 without increasing N̄2 simply increases total Phase I expenditures and increases the

value of the Phase II competitor slightly, but it does not improve the probability of success in Phase

II appreciably. Thus, the direct effect of adding a Phase I competitor is negative, and it scales

(almost) linearly with N1, at approximately $83,000 for social surplus. Panel (b) shows the direct

effect of increasing entry into Phase II. This effect is large and positive for social surplus, except

for when N̄2 = 1, when it is definitionally zero. Once again, the low chance of Phase II success

means that firms are not close substitutes in Phase II; thus, the benefit of an additional draw is not

dampened by substitutability, and each additional draw outweighs the cost (even ignoring all effects

on effort). The net direct effect is thus often positive for social surplus.

Panel (c) of Table 8 shows the incentive effect for Phase I. Phase I effort decreases with N1 and

increases with N̄2.68 Note that Phase I effort is socially excessive for these parameters, so decreases

in this effort from more intense competition will tend to improve social surplus. Thus, the Phase

I incentive effect on social surplus, which is large and positive, is increasing as N1 increases but

decreasing as N̄2 increases. Finally, the incentive effect for Phase II trades off savings in the cost of

effort with higher cost draws. This effect is, unsurprisingly, estimated to be rather small. A firm

factors in competition when determining its research effort only to the extent that it expects to

influence its marginal surplus; because the probability that one’s opponent succeeds is so low, this

event does not influence incentives much.

8. The Effect of the Bargaining Parameter

What proportion η of the surplus should the firms receive? The bargaining parameter provides a

second way to control the level of competition within a contest without resorting to finding more

competitors—which may be impossible if the set of firms capable of conducting specialized research

is small, or costly for unmodeled reasons. In this section, I take the parameter estimates from

Section 5 as fixed and compute social surplus as a function of η and identify to what extent we can

rectify the social inefficiency purely by changing the rewards the firms earn from the procurement

phase.

Is it possible for the social planner to face a nonmonotonicity in η? This question is related

to the discussion of social inefficiencies provided in Section 6, along with the tradeoff between the

holdup problem and the business-stealing and reimbursement effects. Increasing η ameliorates the

holdup problem by giving the firm a greater claim to the surplus generated. Proposition 5 notes

that increasing η is unambiguously beneficial for social surplus in Phase II, because there is no

business-stealing in Phase II. However, larger values of η increase both the business-stealing and

reimbursement effects in Phase I. Research is already overprovided in Phase I, and the cost of

holdup in Phase II is not especially large for many parameters. Thus, increasing η could exacerbate

the business-stealing and reimbursement effects to the point where they overshadow the gain from

addressing the holdup problem.

68For these parameters, the Phase I effort for N1 = N̄2 is at a corner solution, which I set to be 0.99, and the Phase I
incentive effect is thus zero for these parameters since Phase I effort does not adjust due to the boundary condition.
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(b) N1 = 4, N̄2 = 2

Figure 3: Social surplus as a function of η for two different levels of competition.

Social Surplus

N1 N̄2 η∗ Baseline η∗ % Increase to η∗ % Increase to Opt

1 1 0.56 0.012 0.013 8.3% 11.7%
2 1 0.50 0.028 0.029 3.5% 18.1%
3 2 0.57 0.111 0.122 10.3% 13.0%
4 2 0.59 0.246 0.271 10.0% 25.9%

Table 9: Optimal values of η from the perspective of social surplus. This table also reports social
surplus (in millions of dollars) at the baseline value of η = 0.73 as well as at η = η∗. The second-to-
last column reports the percent increase in social surplus from changing η to its optimal value. The
final column repeats Table 6 and reports the percent increase in social surplus from changing to the
optimum.

Figure 3 shows social surplus as a function of η for two levels of competition, and Table 9

provides summary statistics for all four values of N1. First note that at the estimated value of

η = 0.73, a marginal increase in η reduces social surplus: increasing η increases Phase II research

(which is socially beneficial, as discussed in Section 6) but also Phase I research efforts (which is

socially harmful). The latter cost is larger at the estimated value of the bargaining parameter.

Social surplus is maximized at bargaining parameters between 0.5 and 0.6.

Table 9 suggests that social surplus would increase by 4–11% if the DOD switches to the socially

optimal value of η. In addition, this change would of course reduce firm profits.69 To put this gain

into perspective, we can compare the social surplus from optimizing η in Table 9 with the optimal

values in Table 6. We see that the planner can achieve a surplus relatively close to the optimum

when (N1, N̄2) = (1, 1) or (N1, N̄2) = (3, 2). When the business-stealing effect is stronger—i.e., when

69While it is possible to invoke the language of direct and incentive effects to discuss Figure 3, doing so is trivial in
this setting. The direct effect of changing η on social surplus is identically zero, as it corresponds simply to changing
the transfer between the DOD and the firms. The entire effect on social surplus comes through the incentive effect,
so the derivative of the social surplus function with respect to η is the incentive effect.
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(N1, N̄2) = (2, 1) or (N1, N̄2) = (4, 2)—there are significant gains from being able to adjust Phase I

effort separately without exacerbating the holdup effect by lowering η. Accordingly, adjusting η still

keeps surplus relatively far from the frontier.

I briefly make one point related to procurement outcomes I have not discussed yet—in particular,

profits. This section, like the other sections on design counterfactuals, has focused on total social

surplus and social efficiency. However, in R&D procurement contests, there is a natural question

of whether rewards are Pareto efficient from the perspective of the procurer and the firms. If the

firm is not promised any part of the surplus (i.e., if η = 0), then the firm has no incentives to exert

effort, and there will be very little surplus generated in the R&D contest.70 On the other hand,

if the firm is promised the entire surplus (i.e., if η = 1), then even though there may be a large

amount of social surplus generated, the DOD will capture very little of it; indeed, the DOD will

likely run a negative profit in this setting if it accounts for refunding the firms’ research efforts out

of pocket as well.71 We can thus expect an inverted-U curve in the space of η on the horizontal axis

and DOD profits on the vertical.72 Bargaining powers on the right side of this curve guarantee the

procurer the same surplus while giving the firm a larger share of the social surplus, and they thus

Pareto-dominate bargaining powers on the left side of the curve. The shape of this “Laffer” curve

and where we stand on it is an empirical question studied in Appendix A. The conclusion is that

the estimated value of η = 0.73 is on the Pareto-efficient side of this Laffer curve. Thus, while the

value of η may be inefficient from the standpoint of total social surplus, there are no changes that

are Pareto-improving for the DOD and the firms.

9. Decoupling Research from Delivery: Prizes and IP Sharing

In the current setup of the SBIR program, the incentives to conduct research come entirely from

the possibility of a Phase III contract. In this sense, research and delivery are bundled. The DOD

provides neither separate incentives for Phase I research nor the opportunity for firms in Phase II

to develop research ideas generated by other Phase I competitors. In this section, I address the

empirical relevance of these issues by running two related counterfactuals. First, I allow the DOD to

modulate competition in Phase I separately from incentives in Phase II by giving a prize in Phase I

for a successful innovation. Second, I consider the setting of full unbundling of tasks, in which this

prize is to compensate the firm for the DOD buying the research plans developed in Phase I and

sharing this intellectual property with other competitors.

The effect of a Phase I prize is clear: it has no direct effect on social surplus but can stimulate

research in the first stage at some cost to the DOD (and some extra social cost of R&D, through

these stronger incentives). In this sense, prizes can counteract the holdup effect, albeit only in

Phase I, whereas increasing η can remedy the holdup effect in both phases. The effect of IP sharing

is somewhat more complicated. In the current setup of the contest, it happens that certain firms

work during Phase II to develop ideas that have strictly worse value than their opponents. There

70As long as exerting no effort corresponds to failure with probability 1, there will indeed be zero surplus generated
through the R&D contest.

71In cases where N2 = 1, the DOD will earn identically zero from the procurement phase. When N2 > 1, the DOD
could still capture some of the surplus due to the competition embedded in the bargaining procedure.

72In principle, there could be other nonmonotonicities in the intermediate region.
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is a direct social benefit for firms with higher draws of v to share these plans with competitors.73

However, there are countervailing incentive effects again: while an otherwise weaker firm given

access to a higher-quality idea may have more of an incentive to exert effort, the firm with the

high-quality idea would shade its effort below its level in the equilibrium without information sharing.

Furthermore, firms in Phase II naturally face more competition, as the DOD could share successful

plans even with firms that are not successful in Phase I on their own. The net effect on social

surplus is ambiguous. Moreover, the net effect on firms’ profits in Phase II is also ambiguous, and

this in turn affects Phase I research efforts; the incentives to generate ideas in Phase I are of course

influenced by the fact that these ideas will be shared with competitors.74

I omit the details for the model with only Phase I prizes: each firm is awarded K by the DOD for

a success in Phase I, and the equations in Section 3.2 can be modified immediately. In Section 9.1, I

present a model of IP sharing. I comment briefly on the issue of mandatory vs. optional IP sharing

as well. Section 9.2 presents the value of IP sharing in the empirical setting of the DOD SBIR

program.

9.1. A Model of IP Sharing

To develop a model of IP sharing, I consider the same timeline as in Section 3.2. To it, I add a prize

at the end of Phase I that firms can (or, in the baseline case, must) accept in return for making

the plans of their project public. In Phase I, each of N1 firms exerts effort pi at cost ψ(pi) to

generate an idea of value vi with probability pi, with vi ∼ F independently across i. All successful

firms are given a prize K by the DOD and must make their plans public. (I eventually relax this

assumption of mandatory IP sharing.) If no one generates a successful project, then the contest fails.

Otherwise, the DOD shares the highest-v plan with N̄2 firms. For concreteness, and to maximize

the incentives to exert effort in Phase I, I take the stance that the DOD shares the plans with

successful firms first, and then the unsuccessful firms, breaking ties arbitrarily.75 Thus, if the contest

enters Phase II, exactly N̄2 firms enter and they have identical values v. As before, they each draw

costs ci ∼ H(·; ti). In Phase II, the DOD chooses the firm with the lowest cost draw (as long as it is

larger than v) surplus and pays it an amount equal to its implementation cost ci plus a fraction η of

the incremental surplus it generates above the next-best firm.

73Throughout this section, I will maintain the assumption that two firms working on the same idea generated in Phase
I still get independent draws of delivery cost in Phase II. I comment on this assumption briefly at the end of this
section.

74Note that IP sharing corresponds to sharing intermediate breakthroughs that may make competitors stronger in
future stages of the competition. Such “interim information sharing” has been considered in a number of stylized
models, such as Bhattacharya, Glazer, and Sappington (1990), d’Aspremont, Bhattacharya, and Gérard-Varet
(1998), and d’Aspremont, Bhattacharya, and Gérard-Varet (2000). In these models, firms each have a Poisson rate
of developing a successful innovation, and information sharing is modeled as the firm with the higher rate increasing
its competitor’s rate while (potentially) reducing its own rate. To incentivize this IP sharing, firms are compensated
by shares of the final surplus generated.

75For instance, the DOD could invite the N̄2 firms that received the highest draws of v. If fewer than N̄2 firms
were successful, it could pick the ones that are successful and then randomly choose among the firms that are not
successful. Since Phase I effort is decoupled from the realization of the value, and all successful contestants are
awarded the Phase I prize, the actual tie-breaking rule is irrelevant.
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Equilibrium. As before, I search for a symmetric equilibrium. In Phase II, firms choose efforts to

solve the problem

t∗(v) = arg max
t

{
η

∫ v

c

∫ c

c
(c′ − c) dHN̄2−1:N̄2−1(c′; t∗(v)) dH(c; t)− t

}
, (13)

where HN̄2−1:N̄2−1(·; t) is the minimum of N̄2−1 draws from H(·; t). Let πs(v) denote the maximized

value of this problem. In Phase I, firms compute the profit conditional on success, from both the

Phase I prize and the potential for profits from Phase II, as E [πsuccess(v; p∗,K], where

πsuccess(v; p∗,K) ≡
Phase I prize︷︸︸︷

K +

Phase II profit if sole success︷ ︸︸ ︷
(1− p∗)N1−1πs(v; N̄2) +

N1∑
NS=2

probability of NS successes︷ ︸︸ ︷(
N1 − 1

NS − 1

)
(p∗)NS−1(1− p∗)N1−NS

× Pr(selected to Phase II if value is v) ·
∫
v′
πs(max{v, v′}; N̄2) dFNS−1:NS−1(v′)︸ ︷︷ ︸

Phase II profit

,

and where FNS−1:NS−1(·) is the distribution of the highest of NS − 1 draws from F . Note that in

this model with IP sharing, firms also have the potential of earning profits even when they do not

generate a successful innovation, if they are selected to enter Phase II and use plans generated by a

different firm. In this case, the firm expects to earn

πfailure(p
∗) ≡

N̄2−1∑
NS=2

(
N1 − 1

NS − 1

)
(p∗)NS−1(1− p∗)N1−NS︸ ︷︷ ︸

probability of NS successes

· N̄2 −NS

N1 −NS︸ ︷︷ ︸
probability of selection

·
∫
v′
πs(v

′; N̄2) dFNS :NS
(v′)︸ ︷︷ ︸

Phase II profit

.

Then, in equilibrium, p∗ satisfies

p∗ = arg max
p

{p · E [πsuccess(v; p∗,K)] + (1− p) · πfailure(p
∗)− ψ(p)} . (14)

An equilibrium of the R&D contest with IP sharing is a pair (p∗, t∗(·)) such that t∗(·) satisfies

(13) and p∗ satisfies (14).

The setup assumes that firms are forced to share research breakthroughs at the end of Phase

I, perhaps because the DOD can commit to not allow successful firms to enter Phase II if they

choose not to share IP. This requirement may be difficult to enforce, and it may have long-term

repercussions by reducing the number of firms interested in participating in the SBIR program in

the first place. Another option, therefore, is to make the prize K(v) depend on v and contingent on

sharing IP: all successful firms can still enter Phase II, subject to the limit N̄2, but they forgo the

payment K(v) if they keep their breakthroughs private. I compute the incentive-compatible prize

schedule K(v) for comparison as well; details are in Appendix D.
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9.2. The Costs of Prizes and IP Sharing

The total effect of prizes and IP sharing on outcomes of interest is an empirical quantity. In this

section, I take the estimated parameters and compute the social surplus from the contest with

Phase I prizes and with IP sharing described in Section 9.1. I focus on cases with N̄2 > 1 (because

otherwise IP sharing is irrelevant), using parameter estimates corresponding to the associated value

of N1.

Figure 4 shows social surplus as a function of the prize, in the cases without IP sharing and with

mandatory IP sharing. The plot illustrates the case with N1 = 2 and N̄2 = 2, using the estimates

for N1 = 2. Focusing on the setting without IP sharing, we see that offering a small prize (of about

$26,000 for a success) can increase social surplus, but it does so only by a modest 4%. This small

prize increases the probability that an individual firm succeeds in Phase I by about 10 percentage

points, and the added benefit from this cancels out the additional induced cost of effort. Note that

in this case, we do not have a business-stealing effect in the first stage, so the equilibrium R&D

effort in Phase I is an outcome of the countervailing reimbursement and holdup effects; without

the business-stealing effect, the holdup effect dominates and makes the equilibrium R&D effort less

than optimal (slightly). A small prize can remedy this situation and improve social surplus.

Consider next the plot of social surplus in the case of IP sharing. The first observation is that

IP sharing by itself is not beneficial; in fact, it drops social surplus to essentially zero. This can

be traced back to a severe drop in the probability of success in the first stage. First, firms are

guaranteed to face a competitor in Phase II, which dissuades them from exerting effort in Phase

I; however, because the probability that one’s opponent is successful is small in Phase II, this is

likely a small effect. Second, there is a free-riding effect with IP sharing in this mechanism: firms

have a chance to enter Phase II if the DOD shares a successful rival’s breakthrough. Thus, the

return to effort is lower in Phase I. It is unsurprising, therefore, that research is underprovided in

Phase I, and adding prizes can improve outcomes. Indeed, when coupled with Phase I prizes, IP

sharing can be considerably more beneficial to social surplus than simply adding prizes. A prize of

approximately $62,000 increases social surplus to about $93,000 from a base of $54,000 with no

prizes and no IP sharing. The benefit comes from added effort in the first stage together with an

additional draw of an equally strong project in the second stage.

Table 10 reports summary statistics of this analysis for other values of N1 and N̄2.76 The first

few columns assume no IP sharing and list outcomes for no prizes (corresponding to the baseline

contests studied through the rest of the paper) as well as the socially optimal value of K(·). The

takeaway from these columns is that the social planner usually gets no benefit from introducing

prizes in this setting: research is already overprovided in the R&D contest (see the discussion in

Section 6) for most of these parameters. Subsidizing Phase I research further is suboptimal.

The remainder of the table assumes IP sharing is mandatory, as in the model in Section 9.1.

Note that prizes are beneficial in this setting (i) to ensure that there is at least one success (because

as long as one person succeeds, entry into Phase II is fixed at N̄2) and (ii) to improve the quality of

the best Phase II competitor. For these parameters, the social planner mostly prefers to not have

a prize (or set a small one, as is the case with N1 = N̄2 = 4); the exceptions are when p∗ drops

76For each configuration of competition, I use the values estimated for the associated value of N1.
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Figure 4: Social surplus as a function of the Phase I prize, without IP sharing and with mandatory
IP sharing. I use the estimated parameters for N1 = 2 and use N1 = N̄2 = 2.

No IP Sharing Mandatory IP Sharing

K = 0 K∗SS K = 0 K∗SS KIC

N1 N̄2 SS K SS SS K SS E[K(·)] SS

2 2 0.054 0.026 0.055 0.004 0.062 0.093 0.131 -0.001
3 2 0.111 0.000 0.111 0.162 0.000 0.162 0.099 0.047
3 3 0.139 0.000 0.139 0.013 0.073 0.264 0.083 0.185
4 2 0.246 0.000 0.246 0.268 0.000 0.268 0.041 0.212
4 3 0.362 0.000 0.362 0.400 0.000 0.400 0.002 0.396
4 4 0.498 0.000 0.498 0.647 0.001 0.650 0.001 0.602

Table 10: Prizes K (and expected prizes E[K(·)] in the case of the incentive-compatible schedule)
and social surplus for various levels of prizes both without and with IP sharing. I report outcomes
for (i) no prizes, (ii) the socially optimal prize, and, in the case of IP sharing, (iii) the minimum
prize to make IP sharing incentive-compatible. All values are in millions of dollars.

especially sharply without a prize, as in N1 = N̄2 = 2 or 3. The next-to-last column also reports the

expectation of the minimum prize schedule needed to make IP sharing incentive-compatible. This

prize is always larger than the socially optimal prize. It decreases with both N1 and N̄2: accepting

the best draw from the opponents is more beneficial when there are more draws (N1 is larger), and

the expected benefit of holding out decreases when there is more competition (N̄2 is larger). Note

that while the social planner would prefer to set a lower prize, the incentive-compatible prizes still

do increase social surplus relative to the case of no prizes (which results in the benchmark with no

IP sharing) for certain parameter values.

Finally, comparing the two parts of the table shows that introducing mandatory IP sharing

without a prize need not be beneficial to social surplus, although it is for many of the parameters

considered. For all parameters, IP sharing with a prize improves social surplus relative to the current

design of the contest;77 in some cases, this prize can be made incentive-compatible as well.

77Note that this is not a forgone conclusion. It is possible in this model for IP sharing to be socially suboptimal
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As a note, the computations in this counterfactual assumed that two firms working on the same

project in Phase II (after IP is shared in Phase I) still receive independent cost draws. While such

an assumption is justifiable in the baseline model in which firms independently generated their

ideas, we may expect cost draws in a model with IP sharing to be correlated. Such correlation

would obviously reduce the benefit of another draw. However, depending on the details of the

correlation structure, it could intensify competition by introducing a setting like a “Bertrand trap,”

in which the marginal benefit of exerting effort beyond the competitor’s level becomes especially

large because it guarantees a lower cost draw. I leave a more detailed analysis of correlated cost

structures to future work.

10. DOD Profits Under Alternate Contest Designs

How does the DOD evaluate the alternate contest designs proposed in Sections 7 through 9? In

this section, I supplement the analysis from these previous sections by considering two potential

objective functions for the DOD. The first one is a natural measure of DOD profits: this measure is

the value of the project the DOD acquires in Phase III, less the delivery cost, less total research

costs in Phases I and II. In settings where the DOD pays out prizes, these prizes are subtracted

from the profits as well. To fix ideas, note that if N̄2 = 1, then this measure is (1 − η) · (v − c)+

less total research costs. Furthermore, DOD profits in this way are defined so that these profits

plus firm profits equals social surplus. This measure is my preferred measure of profits. I include a

second measure of profits that I call “Phase III DOD Profits.” This measure is simply the value of

the product less delivery cost, and it ignores research costs and prizes. It provides an interesting

point of comparison for institutional reasons: the DOD is institutionally constrained to spend

approximately a fixed proportion of its R&D budget on Phase I and Phase II research, and thus the

surplus generated in delivery (Phase III) may be independently of interest.78

Table 11 lists outcomes—social surplus, DOD profits, and the Phase III DOD profits—for various

contest designs, using parameters for N1 = 4. In this table, I fix N1 and consider η, N̄2, and whether

there are prizes and IP sharing to be design choices. I report outcomes for the baseline design, in

which N̄2 = 2 and η = 0.73, as well as the socially optimum design, in which N̄2 = 4, η = 1, and fees

are imposed by the DOD on Phase II competitors to induce the socially optimal effort in Phase I. I

also separately consider the three design counterfactuals studied in Sections 7 through 9: changing

N̄2, changing η, and allowing for prizes while mandating IP sharing.

The first column summarizes the results regarding social surplus of the previous sections:

information sharing and choosing the optimal η increases social surplus slightly, but the largest

gains are from allowing more Phase II competitors. Increasing the cap N̄2 increases surplus by

102%, compared to the socially optimal increase of 112%.

The second column shows the effect of these design changes on DOD profits. Note that in the

baseline case, the DOD runs a loss of approximately $238,000 per contest. About $430,000 of this is

relative to the current design of the contest—for any level of the prize—purely because it induces adverse incentive
effects in Phase II.

78One could in principle consider other measures, such as a weighted average of DOD profits and firm profits, or the
return on Phase I and Phase II investment.
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Design Social Surplus ($M) DOD Profits ($M) Phase III DOD Profits ($M)

Baseline 0.246 -0.238 0.191
IP Sharing 0.268 -0.245 0.203
η = η∗ 0.271 -0.064 0.241
N2 = N̄∗2 0.498 -0.361 0.378
Social Optimum 0.521 -0.797 0.077

Table 11: Social surplus, DOD profits, and DOD profits in Phase III (i.e., ignoring research and
prizes) for various contest designs. These numbers are computed for parameters with N1 = 4 with
(N1, N̄2) = (4, 2). “IP Sharing” refers to mandatory IP sharing with socially optimal prizes. “η = η∗”
refers to the socially optimal value of η with (N1, N̄2) = (4, 2). “N2 = N̄∗2 ” refers to (N1, N̄2) = (4, 4)
and η at the estimated value. The social optimum is implemented by setting η = 1, setting N̄2 = 4,
and imposing fees for entry into Phase II to set the equilibrium Phase I effort to the social optimum.

due to reimbursement of research expenditures, so the Phase III profit is about $191,000 per contest.

Note that the DOD runs losses in the program because, like the social planner, it internalizes the

full costs of research. However, unlike the social planner, it only internalizes (about) one-quarter of

the surplus generated in the delivery phase.

At the social optimum, firms have a larger incentive to exert effort in Phase II because η = 1, so

the DOD pays a larger amount to reimburse these research efforts. More importantly, it does not

recover much of the surplus generated in Phase III. If only one firm succeeds in Phase III, the DOD

earns nothing from the delivery process because it pays the firm its value. In the considerably less

likely scenario that multiple firms succeed, the DOD recovers the inframarginal surplus generated

by the firms, but the winning firm captures the entire incremental surplus it generates. Accordingly,

a DOD that only cares about Phase III profits would not want to move from the baseline design to

the socially optimal design, as these profits decrease by about 60%. If the DOD fully internalizes the

costs of research in its objective, the result is even more stark: losses increase more than three-fold,

so the DOD would not have an incentive to move to this implementation of the socially optimal

design.

In general, socially beneficial design changes need not be beneficial to the DOD. Changing

N̄2 = 2 to the socially optimal value of N̄2 = 4 increases the DOD’s losses by about 40% when

accounting for research expenditures. IP sharing reduces DOD profits by a small amount: the

improvement in values when entering Phase II is already low due to the low variance of the value

distribution. Moreover, the DOD only captures a small fraction of the improvement, and it is

insufficient to counteract the increase in research costs.79 The Phase III profits of the DOD, however,

are often aligned with the social planner’s objective. Increase N̄2 almost doubles the DOD’s profits

from Phase III, due to a combination of a significantly larger probability that someone succeeds in

Phase II and (less importantly) to competition between multiple firms that succeed. IP sharing

increases Phase III profits slightly as well: N̄2 firms enter Phase III in more instances (i.e., as long

79As shown in Appendix A.3, there are some combinations of N1 and N̄2 where it is possible to improve both social
surplus and DOD profits by a combination of IP sharing and prizes. In particular, this is true with N1 and N̄2 are
both 3 or both 4. However, these correspond to “nonstandard” parameters that do not obey the 40% rule of the
DOD.

50



as at least one firm succeeds in Phase I), the competitors have slightly higher values, and the DOD

has a slightly larger effective bargaining parameter due to multiple competitors.

The one design change that is beneficial to the DOD under either objective is reducing η to

the socially optimal one: this cuts the DOD’s losses by about 75%. Recall that the social benefit

of reducing η comes from reducing business-stealing and the reimbursement effect, at the cost

of exacerbating the holdup problem. The DOD benefits from reducing business-stealing and the

reimbursement effect more than the social planner does because its objective places more weight

(relatively) on saving effort costs. Moreover, reducing η has a direct benefit of allowing the DOD

to capture a larger portion of the surplus. In fact, the Phase III profits of the DOD increase by

about 20%: even though less surplus is generated in Phase III, the fact that the DOD captures a

larger portion of it increases its Phase III profits. However, while reducing η is beneficial to both

the social planner and the DOD, it does reduce the firms’ profits.

The results of this section can be summarized by noting that simple design changes that are

beneficial from the perspective of social surplus are almost always harmful from the perspective of

the DOD, because the DOD refunds research costs while only capturing a somewhat small portion

of the generated surplus. Of course, this is not to say that the baseline design of the contest is close

to optimal for the DOD. If given the option of choosing the parameters within each class of design

changes, the DOD would select starkly different ones. In particular, it would set N̄2 = 1, choose a

much lower level of η, and sometimes choose not to mandate IP sharing. Details are provided in

Appendix A.

11. Conclusion

In this paper, I proposed a model of R&D contests that are incentivized by procurement contracts.

I showed how to identify the distribution of values of the projects to the DOD, the delivery costs to

the firms, and the costs of research from data on research efforts and the final delivery contract.

Identification rests on two fairly weak assumptions: that firms that are working on higher-value

projects also spend more on R&D, and that the DOD does not procure projects whose delivery

costs exceed value. Adding information about the optimality of research efforts allows me to identify

the bargaining parameter in the final delivery process as well.

By applying this methodology to the case of the DOD SBIR program, I quantified the relative

contribution of value and cost variation to the final outcomes. The SBIR program focuses on

projects that are moderately valuable to the DOD, amounting to about $11-$15 million for an

average project. Within a contest, there is a rather small amount of variation across contestants in

the value of the projects that they bring to the table. Much of the variation in outcomes is instead

attributed to variation in delivery costs, which are determined later in the R&D process. Moreover,

I provided evidence that firms are able to capture a large portion of the surplus generated through

this program.

These estimates allowed me to quantify the social inefficiency in the R&D contest. I show that,

due to the holdup effect, late-stage research is underprovided in the R&D contests; however, because

the firms still earn a reasonably large portion of the surplus, social surplus can only be improved by

5–10% by changing late-stage research efforts, which provides an estimate of the cost of holdup. In
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the early stage of the contest, there is also a business-stealing effect and a reimbursement effect

that firms do not internalize future R&D efforts, and the net impact is that R&D is overprovided in

equilibrium. Social surplus can improved by over 20% by modulating this effort.

I then analyzed three design counterfactuals to modulate competition and effort. First, I studied

the effect of adding competitors. I found that the social planner prefers to encourage a large

amount of entry into the contests, while the DOD—which captures a somewhat small part of the

surplus—prefers to restrict entry. The direct benefit of having another draw in Phase II—the phase

in which most of the failure occurs—is especially large for the social planner, and it comes at a

somewhat small cost. The indirect incentive effects, which arise from the equilibrium readjustment

of effort, are large and beneficial (due to savings in research costs) for early-stage competition

but moderately small for late-stage competition. Second, I considered the impact of changing the

surplus given to the firms. While it is not possible to improve both the firms’ profits and the DOD’s

profits, reducing the bargaining power of the firms can increase overall social surplus by a small

amount. Finally, I considered the impact of decoupling research and development by incentivizing

firms to share interim research breakthroughs with each other, and I showed that this mechanism

can improve social surplus but is not guaranteed to improve DOD profits. These results suggest that

the DOD and the social planner would prefer significantly different design changes to the contest.

Considering both the theoretical interest in them as well as their empirical relevance, contests

have been understudied in the structural literature. Indeed, many settings—including ones that are

not explicitly structured as contests—lend themselves to be conceptualized as such. For instance, the

auctions with entry literature has studied the impact of value discovery and bid preparation costs on

auction participation, but it does so almost exclusively in a setting where these entry costs do not

directly impact values and costs. One may naturally wonder whether in large construction projects,

for instance, there is a direct relationship between constructing a more careful plan and drawing

a lower cost draw; firms that are ex-ante better candidates to complete the project may have an

incentive to develop better plans. A very different example involves FDA trials for pharmaceuticals,

which have a multistage structure as well. The size and scope of later phases of a trial can depend

on how promising a drug seems in earlier phases, and the decision to take the drug to the market

occurs only if the expected benefit exceeds any cost of commercialization. One main advantage of

the methodology developed in this paper is that it is likely flexible enough to be adapted to these

diverse situations—and doing so is an especially promising avenue for the future.
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A. Further Details on DOD Profits Under Changes to the Contest Design

In this Appendix, I repeat the exercises of Sections 7 through 9 but report the effects on DOD

profits (as well as Phase III DOD profits, as defined in Section 10). I discuss how these design

counterfactuals affect DOD profits differently from social surplus. I also quantify the “Laffer” curve

for R&D efforts in Appendix A.2.

A.1. Changing the Number of Competitors

I first repeat the analysis in Section 7 by computing the total effect of changing N1 and N̄2 on DOD

profits and Phase III DOD profits, which ignore research costs. Table 12 supplements Table 7 by

focusing on these measures of DOD profits. At the baseline contest, the DOD run an expected loss

of about $100,000 per contest.80 About $200,000 of this is due to R&D cost reimbursements (see

Table 7), so the DOD eanrs about $90,000 per contest in expected profits when ignoring research

costs.

Panel (a) reports the effect of changing competition on DOD profits. The key difference between

the DOD profits and social surplus is that the DOD only captures a relatively small portion of the

surplus, and it thus places much more weight on saving on research efforts. For these parameters,

therefore, increasing either measure of competition reduces the DOD’s profits, as unlike the social

planner, the DOD is unable to recover the cost of research from the larger generated surplus. The

patterns are analogous to the ones with social surplus: for instance, due to the low substitutability

between contestants, increasing both N1 and N̄2 decreases DOD surplus almost linearly. Panel (b)

shows the effects on profits, ignoring research costs. Adding more competitors to Phase I only has a

negligible effect, because the benefit of an additional draw is small and the reduction in research

effort can be harmful for the chances of entering Phase II. Increasing both N1 and N̄2 improves

outcomes; each additional competitor adds about $90,000 in expected surplus.

Table 13 decomposes the total effect on DOD profits into direct and incentive effects; for

comparison, it includes direct and incentive effects on social surplus, given in Table 8. Fixing N̄2 = 1,

the direct effect in Phase I of increasing N1 is negative and approximately $100,000 per Phase I

competitor. This number is slightly larger than the $83,000 for social surplus. The direct effect of

Phase II (shown in the second panel) is basically zero for DOD profits, compared to a large and

positive number for social surplus. The net direct effect is negative for the DOD whereas it is (often)

positive for the social planner. These differences can be traced back to the DOD capturing a small

fraction of the benefit from more draws, both in Phase I (higher values of v throughout the contest)

and in Phase II (a larger chance that someone succeeds and that max(vi − ci) > 0). The incentive

effects (third and fourth panels) are comparable between the DOD and the social planner; they

are slightly larger for the DOD once again because it places more of a premium on the benefit of

reducing research costs, which is part of what the incentive effects cover.

80For these parameters, the expected value of a successful acquisition is about $15 million, and the expected cost
is about $8.5 million. Thus, the surplus to the DOD for a successful acquisition is about $1.75 million, ignoring
research expenditures. Only about 5.2% of contests result in a successful acquisition, so we can reinterpret this
number as saying that the DOD spends a total of about $2 million per successful acquisition but only recovers $1.75
million in the delivery process.
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N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 -0.023 -0.094
N1 = 3 -0.024 -0.134 -0.180
N1 = 4 -0.026 -0.135 -0.222 -0.258

(a) DOD profits (Baseline is -0.103 $M)

N̄2 = 1 N̄2 = 2 N̄2 = 3 N̄2 = 4

N1 = 2 -0.001 0.094
N1 = 3 0.001 0.098 0.189
N1 = 4 0.003 0.100 0.195 0.287

(b) Phase III DOD profits (Baseline is 0.091 $M)

Table 12: Total effects of moving from a baseline of N1 = N̄2 = 1 to various values of (N1, N̄2) on
(a) DOD profits and (b) Phase III DOD profits (i.e., ignoring research costs). Each entry in the
table lists the change from the baseline value, and the baseline values are listed in the respective
captions. All values are in millions of dollars.

Social Surplus DOD Profits

Baseline (N1 = 1 = N̄2 = 1) 0.144 -0.103

N̄2

Direct (Phase I) 1 2 3 4 1 2 3 4

N1 = 2 -0.083 -0.083 -0.099 -0.099
N1 = 3 -0.175 -0.175 -0.175 -0.198 -0.198 -0.198
N1 = 4 -0.270 -0.270 -0.270 -0.270 -0.297 -0.297 -0.297 -0.297

Direct (Phase II) 1 2 3 4 1 2 3 4

N1 = 2 − 0.215 − 0.001
N1 = 3 − 0.232 0.429 − 0.002 0.006
N1 = 4 − 0.239 0.453 0.636 − 0.003 0.009 0.018

Incentive (Phase I) 1 2 3 4 1 2 3 4

N1 = 2 0.059 0.000 0.076 0.000
N1 = 3 0.153 0.045 0.000 0.174 0.058 0.000
N1 = 4 0.250 0.135 0.042 0.000 0.271 0.155 0.054 0.000

Incentive (Phase II) 1 2 3 4 1 2 3 4

N1 = 2 0.000 -0.002 0.000 0.004
N1 = 3 0.000 -0.002 -0.007 0.000 0.004 0.012
N1 = 4 0.000 -0.002 -0.007 -0.012 0.000 0.004 0.012 0.022

Table 13: Decomposition of the total effect of changing the number of competitors in Phase I (N1)
and the limit on the number of competitors allowed to enter Phase II (N̄2), following (12).
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This decomposition suggests that the difference between the DOD-optimal level of competition

and the socially optimal level of competition can be traced back primarily to differences in the

direct effect of Phase II. Increasing entry into late stage competition has a strong effect on the final

failure rate and thus a large effect on surplus, but it also comes at a large cost. The incentive effect

in Phase II does little to mitigate this cost because the firms do not change their Phase II effort

appreciably in response to (the effectively low level of) competition.

A.2. Changing η: The Procurer’s Laffer Curve

As discussed at the end of Section 8, there is a natural Laffer curve associated with R&D outcomes

from the perspective of the procurer. Low values of η yield low profits for the DOD because firms

have little incentive to exert effort. High values of η also yield low profits for the DOD because the

DOD is unable to capture much of the surplus from delivery but still refunds costs.

If the firm is not promised any part of the surplus (i.e., if η = 0), then the firm has no incentives

to exert effort, and there will be very little surplus generated in the R&D contest.81 On the other

hand, if the firm is promised the entire surplus (i.e., if η = 1), then even though there may be a

large amount of social surplus generated, the DOD will capture none of it; indeed, the DOD will

run a negative profit in this setting if it accounts for refunding the firms’ research efforts out of

pocket as well. For intermediate values of η, we would expect an inverted-U curve.82 Bargaining

powers on the right side of this curve guarantee the procurer the same surplus while giving the firm

a larger share of the social surplus, and they thus Pareto-dominate bargaining powers on the left

side of the curve.

Figure 5 plots these Laffer curves for (N1, N̄2) = (1, 1) and (4, 2), at the parameters estimated

for the respective values of N1. The figures for other levels of competition are qualitatively similar,

and Table 14 shows summary statistics for all four values of N1. At the estimated parameters,

the DOD runs a small loss when taking into account research efforts. However, we do see the

characteristic Laffer curve, and the DOD can increase profits by about $26,000 in the case of N1 = 1

and about $350,000 per contest in the case of N1 = 4 by giving the firms about a third of the

surplus rather than three-fourths of it. Most of this savings comes from savings in research costs,

however. If the DOD’s objective does not penalize research costs, the DOD would still prefer to

reduce the bargaining parameter, but it would only do so to to about two-thirds for N1 ≤ 3 and

about one-half for N1 = 4. The gains in this objective are considerably more modest as well. Note,

however, that none of these changes would be Pareto improvements, as it would cost the firm surplus

(but could in principle increase aggregate social surplus). Note further that the socially optimal

level of η (discussed in Section 8 and included in Table 14 for convenience) are larger than the

DOD-optimal levels; this is expected, since the socially optimal point corresponds to a particular

point on the frontier that weights DOD profits and firm profits equally. The conclusion from this

section, therefore, is that I do not find evidence of a clear Pareto inefficiency in this setting: the

estimated bargaining parameter suggests that the program lies on the Pareto frontier between the

81As long as exerting no effort corresponds to failure with probability 1, there will indeed be zero surplus generated
through the R&D contest.

82In principle, there could be other nonmonotonicities in the intermediate region.
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Figure 5: Profit of the DOD (both ignoring and incorporating reimbursing the cost of effort) as a
function of η for two different levels of competition.

η∗ SS DOD DOD (NR)

N1 N̄2 SS DOD DOD (NR) Base Opt Base Opt Base Opt

1 1 0.56 0.38 0.67 0.012 0.013 -0.021 0.005 0.012 0.012
2 1 0.50 0.32 0.63 0.028 0.029 -0.044 0.013 0.027 0.029
3 2 0.57 0.33 0.65 0.111 0.122 -0.139 0.045 0.096 0.102
4 2 0.59 0.29 0.52 0.246 0.271 -0.238 0.125 0.191 0.248

Table 14: Optimal values of η from the perspective of social surplus (SS), DOD profits (DOD), and
Phase III DOD profits ignoring the reimbursements for research costs (DOD (NR)). The values of
these outcomes, in millions of dollars, are given in the columns marked “Opt.” The columns marked
“Base” are the ones at the estimated value of η = 0.73.

firms and the DOD.

Following Section 7.2, one could in principle define direct and incentive effects on the DOD

surplus from an increase in η. The direct effect is unambiguously negative, as it simply reduces the

surplus that the DOD captures. When firms readjust their research efforts from an increase in η,

the DOD pays a cost for increased research but also enjoys a larger generated surplus. When η is

high enough for the contest to lie on the Pareto frontier between firms and the DOD, the net effect

is negative: the DOD loses a constant proportion of a larger expected surplus.83

83To fix ideas, we can write the surplus when N1 = 1 as (1 − η)s(η) − t(η), where s(η) is the equilibrium value of
E[(v − c)+] and t(η) denotes expected research costs. The total effect is the derivative −s(η) + s′(η)(1− η)− t′(η),
and the first term is the direct effect. This direct effect is clearly negative and increasing in magnitude with η. The
first term of the incentive effect decreases to 0 for large enough η, and the exact values of slopes of s(·) and t(·)
depend on the difference between values and costs as well as the estimated elasticity of costs. The incentive effect
can also become negative for large η.
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Figure 6: DOD profits as a function of the Phase I prize, with and without mandatory information
sharing. I use the estimated parameters for N1 = 2 and use N1 = N̄2 = 2.

A.3. Mandating IP Sharing

Finally, I study whether the DOD would benefit from mandating IP sharing. Figure 6 shows a

similar plot to Figure 4 for DOD profits, taking into account that the DOD pays both research

costs and the Phase I prizes. Here, adding prizes without IP sharing only decreases profits: effort is

slightly low relative to the social optimum but high relative to the DOD’s ideal level. Introducing IP

sharing (without prizes) cuts efforts drastically, but it does increase the DOD profits to around zero.

Adding prizes in addition drops DOD profits further since it only increases Phase I efforts further.

Thus, for these parameters, there is an inherent tension between the DOD and the social planner:

the social planner would want to introduce IP sharing along with a nontrivial prize, whereas the

DOD—which internalizes a larger share of research costs (relative to surplus) and the entire share

of the prizes—prefers information sharing with no prize.

Table 15, like Table 10, conducts the analysis for other values of N1 and N̄2, reporting outcomes

for DOD profits as well as social surplus for comparison. Panel (a) studies prizes without IP sharing.

The DOD-optimal prize is always zero, as we would expect given the results on the socially optimal

prize: the DOD-optimal level of Phase I research is lower than the socially optimal one, and research

is already overprovided in Phase I (see the discussion in Section 6). Note also that in the one

situation where the socially optimal prize is positive (N1 = N̄2 = 2), DOD profits decrease when

the socially optimal prize is set. This result mirrors the one in Section 10.

Panel (b) considers mandatory IP sharing. IP sharing by itself (K = 0) can sometimes reduce

losses for the DOD, usually by discouraging Phase I effort. Note that DOD-optimal level of the

prize is always zero as well for these parameters. The socially optimal level of prize is often zero as

well, and there are a few cases when social surplus can be improved and DOD losses reduced by a

combination of IP sharing and prizes. In all but the case of N1 = N̄2 = 4, the incentive-compatible

prize reduces DOD profits—often by a large margin. These incentive-compatible prizes are often

large, and the DOD has to pay them out of pocket.
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K = 0 K∗SS

N1 N2 SS DOD E[K(·)] SS DOD

2 2 0.054 -0.046 0.026 0.055 -0.083
3 2 0.111 -0.135 0.000 0.111 -0.135
3 3 0.139 -0.160 0.000 0.139 -0.160
4 2 0.246 -0.238 0.000 0.246 -0.238
4 3 0.362 -0.325 0.000 0.362 -0.325
4 4 0.498 -0.361 0.000 0.498 -0.361

(a) Phase I prizes with no IP sharing

K = 0 K∗SS KIC

N1 N2 SS DOD E[K(·)] SS DOD E[K(·)] SS DOD

2 2 0.004 -0.000 0.062 0.093 -0.103 0.131 -0.001 -0.410
3 2 0.162 -0.130 0.000 0.162 -0.130 0.099 0.047 -0.469
3 3 0.013 -0.000 0.073 0.264 -0.103 0.083 0.185 -0.445
4 2 0.268 -0.245 0.000 0.268 -0.245 0.041 0.212 -0.407
4 3 0.400 -0.342 0.000 0.400 -0.342 0.002 0.396 -0.353
4 4 0.647 -0.294 0.001 0.650 -0.296 0.001 0.602 -0.345

(b) Phase I prizes with mandatory IP sharing

Table 15: Expected prizes (E[K(·)]), social surplus, and DOD surplus for various levels of prizes both
(a) without and (b) with IP sharing. I report outcomes for (i) no prizes, (ii) the socially optimal
prize, and, in the case of IP sharing, (iii) the minimum prize to make IP sharing incentive-compatible.
The DOD-optimal level of the prize is always 0. All values are in millions of dollars.

B. Additional Empirical Results

In this Appendix, I provide further details about the desciptive statistics presented in Section 2.3. I

also present and discuss structural estimates conditional on fixed values of η, to apply the baseline

model to this setting.

B.1. Details on the Descriptive Statistics

Table 16 reports OLS regressions of contest-level “success” rates, from Phase I to Phase II and from

Phase II to Phase III, and columns (1) and (3) corresponds to the first two columns of Table 4.

Columns (2) and (4) replace N1 and N2 by dummy variables, with N1 = 1 and N2 = 1 being the

omitted categories. Column (2) shows that of the increase in Phase I success of 6.6 percentage

points per Phase I competitor, the jump is especially prominent when moving from a single Phase

I competitor to two Phase I competitors (about 12.7 percentage points), and then the marginal

effect of adding competitors tapers off slightly. Column (4) shows that much of the increase in

contest-level success in Phase II comes from moving from 2 competitors to 3 competitors in Phase

II.

Table 17 investigates the probability that an individual competitor generates successful research,
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Pr(Contest Enters Phase II) Pr(Contest Enters Phase III)

(1) (2) (3) (4)

# Phase I Comp 0.066*** -0.018**
(0.009) (0.008)

N1 = 2 0.127*** -0.034
(0.027) (0.023)

N1 = 3 0.187*** -0.039
(0.028) (0.025)

N1 = 4 0.200*** -0.073**
(0.032) (0.029)

# Phase II Comp 0.076***
(0.016)

N2 = 2 0.066***
(0.017)

N2 = 3 0.188***
(0.063)

N2 = 4 0.301
(0.226)

Log(Avg Phase II Amt) 0.157*** 0.157***
(0.018) (0.018)

R2 0.083 0.842 0.128 0.218
N 2773 2773 2292 2292

Table 16: Regressions of a dummy of whether the contest enters Phase II (columns (1) and (2)) or
Phase III (columns (3) and (4)) on the number of competitors in Phases I and II, controlling for
year fixed effects, SYSCOM fixed effects, and topic covariates. I restrict the sample to contests with
no more than 4 Phase I competitors. Columns (3) and (4) restrict to the set of contests that enter
Phase II.

and it extends columns (3) and (4) of Table 4. Note that individual-level success is unobserved,

so I first provide details of the models estimated in this table. Column (2) suggests that the

decrease in the probability of individual success (shown in column (1)) is especially prominent when

moving from 2 to 3 Phase I competitors. Column (3) indicates that contestants in contests with one

additional Phase II competitor have a higher probability of success, by about 2.8 percentage points,

but column (4) qualifies this result by noting that the success rate drops when going from 3 to 4

competitors in Phase II.

Column (2) of Table 18 extends the results shown in column (5) of Table 4 on funding amounts.

Recall that contests with one more Phase I competitor have on average 1.6% more funding, and

that more Phase II competitors has no impact on average funding. However, column (2) qualifies

this result and indicates that there is a noticeable negative effect for contests with larger numbers

of Phase II competitors: contests with four Phase II competitors have more than 20% less funding

than contests with just one Phase II competitor.

Figure 7 illustrates that projects with larger Phase II contracts tend to be more likely to succeed

and enter Phase III. Panel (a) plots a local linear regression of contest-level success rate on average
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Phase I Phase II

(1) (2) (3) (4)

# Phase I Comp -0.128*** -0.023***
(0.008) (0.008)

N1 = 2 -0.027 -0.036
(0.028) (0.029)

N1 = 3 -0.264*** -0.043
(0.028) (0.033)

N1 = 4 -0.291*** -0.098**
(0.030) (0.037)

# Phase II Comp 0.028***
(0.010)

N2 = 2 0.010
(0.018)

N2 = 3 0.097***
(0.039)

N2 = 4 0.062
(0.370)

Log(Phase II Amount) 0.250*** 0.271***
(0.031) (0.058)

N 2773 2773 2292 2292

Table 17: MLE estimates of the probability that an individual firm generates a successful innovation
in Phase I (columns (1) and (2)) or Phase II (columns (3) and (4)), correcting for unobserved
successes in a model-based manner, as described in the text. Regressions control for year fixed
effects, SYSCOM fixed effects, and topic covariates. I restrict the sample to contests with no more
than 4 Phase I competitors. Columns (3) and (4) restrict to the set of contests that enter Phase II.

Phase II funding, and the estimated function is monotonically increasing both when uncontrolled

and when controlling for covariates in a partially linear model.84 Panel (b) shows that this pattern

holds within contest as well: I regress an indicator for winning a Phase III contract on (the log of)

the ratio of the individual competitor’s funding and the lowest funding awarded to a firm in Phase

II of the same contest. Once again, better-funded projects have a higher probability of transitioning

to Phase III even within contest.

Finally, column (6) of Table 18 extends the results of column (6) of Table 4 by adding dummies

for the number of competitors, and the results are not substantively different. Columns (3) and

(4) of Table 18 run the same regressions but include Phase III contracts with values less than $1

million.85 The qualitative results do not change, and the quantitative results are similar for Phase I

84The regression that does not control for covariates simply runs a kernel regression of a dummy for success (either
whether the contest succeeded, as in (a), or whether the individual firm was awarded a Phase III contract, as
in (b)) on the log of the Phase II award amount, using the asymptotically optimal bandwidth. The regression
that controls for covariates uses the semiparametric estimator proposed in Robinson (1988) to estimate the model
y = g(t) +Xβ + ε, where g(·) is nonparametric, and X is a vector of year fixed effects, SYSCOM fixed effects, and
topic information.

85Some of these contracts are actually unreasonably small and sometimes amount to $50,000.
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Figure 7: (a) Local linear regression of contest-level success from Phase II to Phase III on the log
of average Phase II funding, both controlling and not controlling for covariates. (b) Local linear
regression of individual success on the ratio between the particular individual’s Phase II funding
amount and the lowest funding amount within that contest.

competition. However, the effect of Phase II competition is reduced by about 33% (see column (3)),

and the dummies for N2 = 2 and N2 = 3 are smaller as well. Much of the effect comes from the

large effect of N2 = 4 on Phase III amount. Moreover, the correlation between Phase II amount

and Phase III amount is larger. While it is reassuring that the qualitative results do not depend

on arbitrary sample selections, I choose to drop especially low Phase III amounts throughout the

analysis in the paper. They are overwhelmingly near the beginning of my sample, when the Phase

III contract in the data did not always correspond to delivery. They are sometimes placeholder

contracts as well, to give the firm some interim funding for “transitioning” the product further into

something the Navy plans to use, and I am unable to identify the actual delivery contract in the

FPDS. I thus treat these low values as data that is missing at random.

B.2. Structural Estimates without Assumption O

In this section, I provide estimates using Assumption M and an analogue of the scaling property

of Proposition 4. In particular, I make the following assumption, which amounts to assuming the

result of Proposition 4 without imposing Assumption O. The following assumption is also natural

and, like Proposition 4, can be thought of as simply a change of units.

Assumption S. Fix N1 and N̄2. Suppose that p̂ and t̂N2(v) are the effort rules in Phases I and II

(if N2 firms enter Phase II) for a contest with primitives ψ(·), V , C(t), and η. Consider a “scaled”

contest with primitive ψ̃(·) = θ ·ψ(·), Ṽ = θ ·V , C̃(t) = θ ·C(t/θ) (i.e., so that H̃(c, t) = H(c/θ, t/θ)),

and η̃ = η. Then, p̂ and θ · t̂N2(v) are the effort rules in the scaled contest.

Under Assumptions M and S(caling), Steps 1–3 of the estimation procedure outlined in Section 4.3

are still valid. I run these steps, fixing three different values of η. Doing so will help give a sense of

how η affects the estimates and how alternate assumptions about the bargaining procedure would

affect the results. Table 19 presents these new structural results for the value and delivery cost
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Log(Avg Phase II Amt) Log(Phase III Amt)

(1) (2) (3) (4) (5) (6)

# Phase I Comp 0.016 0.283* 0.234**
(0.012) (0.154) (0.110)

N1 = 2 -0.003 0.063 0.141
(0.038) (0.372) (0.310)

N1 = 3 0.017 0.602 0.502
(0.039) (0.418) (0.322)

N1 = 4 0.041 0.541 0.572
(0.045) (0.465) (0.381)

# Phase II Comp -0.002 -0.289 -0.429**
(0.016) (0.217) (0.176)

N2 = 2 -0.000 -0.221 -0.391*
(0.020) (0.296) (0.205)

N2 = 3 0.030 -0.280 -0.946*
(0.052) (0.498) (0.488)

N2 = 4 -0.254* -1.908** -1.044
(0.133) (0.872) (0.634)

Log(Avg Phase II Amt) 0.665** 0.668** 0.330* 0.361*
(0.272) (0.276) (0.195) (0.204)

Min Phase III Amt None None $1 Million $1 Million
Adj R2 0.133 0.448 0.326 0.465 0.422 0.881
N 2292 2292 233 233 151 151

Table 18: Regressions of Phase II and Phase III award amounts on the number of competitors in
other phases, controlling for year fixed effects, SYSCOM fixed effects, and topic covariates. Columns
(3) and (4) restrict to the set of contests with a Phase III contract, and columns (5) and (6) restrict
to contests with Phase III contracts of at least $1 million. All columns restrict to contests with no
more than 4 Phase I competitors.

distribution. Since the distribution of unobserved heterogeneity is independent of η, I do not report

those results again and instead refer to Table 5. Furthermore, I do not estimate the Phase I cost

function, because doing so requires me to either make assumptions about the optimality of Phase I

research effort or use the observed values for Phase I contracts as informative of ψ(p∗).

Table 19(a) reports moments value distributions for three different values of η. For the low

(η = 0.20) and medium (η = 0.50) values of the bargaining parameters, competitions with a larger

number of Phase I competitors are not necessarily associated with more valuable projects; the

means of the value distributions are relatively similar across different values of N1. Indeed, the

value estimates for these two values of η are similar to each other as well. The DOD values projects

at around $23–$28 million, and the 95% range within a contest is about 12–13% of the mean. The

noticeable difference happens when η increases to 0.80. Here, the mean values are between $6–$17

million, and values do seem to increase with N1. The variation in value is similar to the other

estimates, however. Note that the estimates with η = 0.73 presented in Table 5 roughly lie between

the estimates for η = 0.50 and η = 0.80.
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η Values ($M) N1 = 1 N1 = 2 N1 = 3 N1 = 4

0.20

Mean 28.14 27.24 26.37 23.25
(3.67) (3.25) (3.50) (4.96)

Standard Deviation 0.90 0.86 0.83 0.74
(0.12) (0.14) (0.12) (0.16)

95% Range 3.51 3.38 3.26 2.91
(0.46) (0.55) (0.46) (0.61)

0.50

Mean 26.91 22.93 24.50 25.97
(5.74) (4.42) (4.24) (5.23)

Standard Deviation 0.85 0.72 0.77 0.83
(0.19) (0.13) (0.14) (0.17)

95% Range 3.34 2.82 3.02 3.25
(0.73) (0.52) (0.54) (0.65)

0.80

Mean 6.06 8.35 6.70 17.76
(1.36) (1.65) (1.55) (3.06)

Standard Deviation 0.20 0.25 0.19 0.53
(0.05) (0.05) (0.05) (0.10)

95% Range 0.77 0.97 0.76 2.09
(0.21) (0.21) (0.18) (0.39)

(a) Value distributions

Pr(c < v) E[c|c < v] Quantiles ($M)

η Value Semi-Elasticity Value Elasticity 1% 5% 10% Elasticity

0.20
0.068 0.013 14.83 -0.017 6.42 20.90 39.21 -0.172

(0.010) (0.005) (1.19) (0.005) (0.77) (2.53) (4.76) (0.047)

0.50
0.062 0.012 13.45 -0.017 6.26 20.37 38.22 -0.182

(0.011) (0.005) (1.52) (0.005) (0.83) (2.75) (5.20) (0.041)

0.80
0.064 0.012 4.57 -0.017 2.08 6.78 12.72 -0.176

(0.010) (0.002) (0.51) (0.002) (0.29) (0.95) (1.79) (0.024)

(b) Delivery cost distributions

Table 19: Structural estimates for the baseline model, for three different values of η. The parameters
presented are the same ones as in Table 5.

The identification argument presented in Section 4.1 would seem to suggest that the estimate of

the value distribution should be independent of η. The dependence on η comes from two sources.

First, identification in the model with unobserved heterogeneity does not rely on a clean upper

bound, and the value estimates could interact with η. Second, parametric restrictions come into play.

The most important such effect is that since the lower bound on costs is zero, the lowest possible

value of a transfer for a particular value v is ηv. Thus, when η is low, low Phase III contracts can

be explained by just a combination of values and costs even when values are estimated to be high;

for higher values of η, low Phase III contracts must be explained by unobserved heterogeneity as

well—or by low values. Thus, for a fixed data generating process, the observed values are depressed
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when η is higher.

Table 19(b) shows the moments of the cost distribution. The main observation is that the cost

distributions are decreasing with η (both the mean and all quantiles). This dependence is the

outcome of two main forces. First, the failure rate depends primarily on the difference between

values and costs, and fitting the failure rate well when values decrease (due to higher η) requires

costs to decrease as well. Indeed, the proxy for failure (the probability that the cost draw is larger

than the mean value) is relatively fixed across η. A second, counteracting force is that the Phase III

contract amount is roughly ηv + (1 − η)c. Thus, to match the same transfer distribution with a

higher η, the costs must be slightly larger, ignoring any change in v. The MLE procedure balances

these two effects. Finally, note that the elasticity is roughly independent of η; this elasticity is

mainly a function of the dependence of the failure rate and transfer distribution on Phase II research,

and we would thus not expect it to vary with η other than for reasons due to heterogeneity or

parametric assumptions.

C. Extensions to the Identification Result

In this Appendix, I discuss a number of extensions to the identification results in Section 4.1. The

first result shows that Assumption M by itself provides some information about η. The other results

consider generalizations of the model with Assumptions M and O and study identification of these

more general models. First, I briefly note that the baseline argument can be applied to firms with

asymmetric cost functions with almost no modifications. I then show a more involved argument

that all primitives can be identified in the model with multiplicative unobserved heterogeneity, as

in the empirical model in Section 4.2. Finally, I consider models in which there is an unobserved

benefit to Phase II research not captured by the Phase III contract.

I also wish to briefly note that I conjecture that the primitives of the model are still identified

when we only observe data in Phase II with multiple firms. While such a setting is irrelevant in

the context of the model presented in this paper, as pure randomness will ensure that there are

at least some contests with one only competitor in Phase II, it could be relevant in a related but

different model—such as one that begins in Phase II. Furthermore, I conjecture that the primitives

are identified in certain generalizations of the model in which Phase II research efforts are based on

the expected value of the project to the DOD but the actual value is realized only after Phase II

research is completed. Future versions of this appendix will contain the technical conditions that

yield identification in these settings.

C.1. Bounding η Using Assumption M

In this section, I show that while we cannot identify the bargaining parameter η exactly purely from

Assumption M, we can identify a lower bound on this parameter. Fix values t′ and t′′ > t′ for the

Phase II research effort, and suppose these research efforts correspond to v(t′) and v(t′′), respectively.

Let the success rate at a research effort of t be denoted g(t). Consider the g(t′)th quantile of
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the distribution of Phase III research efforts conditional on t′′, denoted T3(g(t′), t′′).86 Note that

T3(g(t′), t′′) = ηv(t′′) + (1− η)C(g(t′), t′′), where C(q, t′′) is the qth quantile of the distribution of

costs when research efforts are t′′. By stochastic dominance, C(g(t′), t′′) ≤ C(g(t′), t′) = v(t′). Then,

T3(g(t′), t′′) = ηv(t′′) + (1− η)C(g(t′), t′′) ≤ ηv(t′′) + (1− η)v(t′).

Rearranging, we have

η ≥ T3(g(t′), t′′)− v(t′)

v(t′′)− v(t′)
. (15)

Since (15) has to apply for all t′ and t′′, we have the lower bound

η ≥ max
t′,t′′>t′

T3(g(t′), t′′)− v(t′)

v(t′′)− v(t′)
. (16)

Thus, we have the following proposition.

Proposition 6. Suppose we have data on the distributions of Phase III transfers and Phase II

research efforts. If Assumption M holds, then a lower bound on η is identified from (16).

C.2. Asymmetric Firms

Suppose that there are multiple types of firms, indexed by k, whose types are known by the researcher

ex-ante. They differ in their cost distributions as well as the distributions from which their values are

drawn. That is, a type k firms draws a value v ∼ Vk upon entering Phase II and a cost c ∼ Hk(·; t)
if spends t on Phase II research effort. The Phase III allocation rule is the same as in Section 3.

Entry into Phase II is determined so that in equilibrium the number of Phase II competitors of

type k is drawn from N1k Phase I competitors, each of whom succeed in Phase I with probability

pk. As long as pk ∈ (0, 1), there is a positive probability that the only entrant into Phase II is an

entrant of type k. We can then focus only on these contests and apply the argument in Section 4.1

directly to identify η, Vk, and Hk(·; ·);

C.3. Unobserved Heterogeneity

Suppose that, as in the empirical specification in Section 4.2, each contest is associated with a

multiplicative error term θj so that for contests with multiple Phase II competitors, we observe θj t̃i

for each firm i and a Phase III transfer θjT , if there is a winner. Suppose further that the distribution

of θj common across all contests. I will show that this distribution is identified using data from

contests with N2 ≥ 2. The value distribution Ṽ is identified as well, and the cost distribution H̃(·; t̃)
is identified as a function of η from contests with N2 = 1. The identification results also require

some technical conditions on the (endogenous) failure rate and unobserved heterogeneity.87

86Do not normalize the distribution of T3 by the failure rate; this quantile would correspond to the [g(t′)/g(t′′)]th

quantile of the distribution of Phase III transfers conditional on success.
87While I have not shown that these technical conditions are necessary, they are needed for the proof I provide.
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Identification of Θ. Consider two firms with Phase II efforts θj t̃1 and θj t̃2. From the joint

distribution of the logs of these efforts, we can recover the distribution of θj , and its associated

density fΘ(·), as well as that of t̃ via appealing to Kotlarski (1967), as long as these distributions

have nonvanishing characteristic functions.88 Assume the distribution of unobserved heterogeneity

does not have especially large mass around 0, so that 1/θ has a mean.

Identification of the Failure Rate. For the remainder of the argument, focus on contests with

N2 = 1. Define the failure rate conditional on θ = 1 as g(t̃) ≡ 1− H̃(ṽ(t); t̃) (and zero if t̃ is outside

the support of its distribution). In the data, note that we observe the failure rate conditional on a

particular value of t (rather than a value of t̃); that is, we observe

k(t) ≡
∫ ∞

0
fΘ(θ) · g

(
t

θ

)
dθ, (17)

for each t that can be expressed as some θt̃, where θ and t̃ are both in the supports of the distributions

of unobserved heterogeneity and efforts. The basic idea is that since we know k(t) and fΘ(θ), we

can apply a deconvolution argument to find g(·). For convenience, we consider Fourier transforms

with respect to the group G ≡ (R+, ·) and the associated Haar measure dθ/θ.89

Suppose that g(·) is such that
∫∞

0 g(θ) dθ <∞.90 Then, θ 7→ θg(θ) is in L1(G). Furthermore,

fΘ ∈ L1(G) as well since 1/θ is assumed to have a finite mean. Express (17), after regrouping terms

and reparameterizing, as

k(t) ≡
∫ ∞

0

[
fΘ

(
t

u

)]
· [u · g (u)]

du

u
.

Both terms in brackets are L1 and thus so is k by H’́older’s inequality. Thus, taking the Fourier

transform, we have that k̂(s) = f̂Θ(s) · ̂[θg(θ)](s) As long as the transform of fΘ is nonvanishing, we

can recover the transform of θ · g(θ) and thus the failure rate g(·) itself.

Identification of the Cost Distribution. Consider the conditional distribution `(T |t) of Phase III

transfers conditional on a particular value of the Phase 2 transfer t, normalized so that
∫
`(T |t) =

88Evdokimov and White (2012) provide alternate conditions under which this identification result remains true.
89Fourier transforms are defined for L1 functions for any locally compact commutative group, including the group of

positive numbers endowed with multiplication as long as the measure with respect to which we are integrating is
translation-invariant (i.e., is the Haar measure). In this case, f ∈ L1 if

∫∞
0
f(θ)/θ dθ <∞. Convolution is defined

as (f ∗ g)(s) ≡
∫∞
0
f(θ)g(s/θ)/θ dθ, and Fourier transforms are such that (̂f ∗ g)(s) = f̂(s) · ĝ(s). See Theorems

1.2.4(b) and 1.1.6(e) in Rudin (1962) for the result that multiplication is the dual of convolution and H’́older’s
inequality, respectively, in this setting. For the purposes of this proof, it would suffice to reparameterize functions
and the transform, but doing so at each step would be unnecessarily cumbersome.

90Since g(·) is endogenous, this may not be a natural condition. But, note that g(t) = 1 − H(v(t); t), and v(t) is
increasing in t but 1−H(v; t) is decreasing in t. Thus, g(t) = 1−H(v(t); t) is integrable in the standard sense if
H(·; t) is integrable in the standard sense for all v. That is, if the cost distribution decays quickly enough, then we
can guarantee that the failure rate satisfies the technical condition.
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1− k(t). This quantity is observed in the data, and we can express it as

`(T |t) =

∫ ∞
0

fΘ(θ) · Pr

(
ηṽ

(
t

θ

)
+ (1− η)c = T ;

t

θ

)
dθ

=

∫ ∞
0

fΘ(θ) · 1

1− η
h̃

(
T/θ − ηṽ(t/θ)

1− η
;
t

θ

)
dθ

θ

≡
∫ ∞

0
fΘ(θ) · q

(
T

θ
;
t

θ

)
dθ

θ
,

where the final line defines q(T ; t). But, note that we can redefine `(T |t) as `∗(T/t; t) and q(T ; t)

as q∗(T/t; t). Thus, fixing a t, we can use the Fourier transform to recover q∗(·; t) for all t.91 This

in turn recovers q(T ; t) = h̃(T/(1− η)− ηṽ(t)/(1− η); t) · (1/(1− η)), which means that the cost

distribution is recovered as a function of η and ṽ(t).

Identification of V . To identify ṽ(t), note that∫ ṽ(t̃)

−∞
h̃(c; t̃) dc = g(t̃).

Substituting c = T/(1− η)− ηṽ(t̃)/(1− η), we have∫ ṽ(t̃)

−∞
q(T ; t̃) dT = g(t̃).

Since q(T ; t̃) ≥ 0, this equation has a solution, and ṽ(t̃) is identified from matching the failure rate.

Transforming the distribution of t̃ by ṽ(·) recovers the distribution of Ṽ .

Identification of η. Since we have recovered ṽ(·) and H̃(·; ·) as a function of η, we can apply the

same argument as in Section 4.1 to recover η, if we make the assumption that the transfer is the

firm-optimal one.

I summarize the results of this section in the following proposition.

Proposition 7. Consider the equilibrium model with multiplicative unobserved heterogeneity. Sup-

pose that the distribution of unobserved heterogeneity is such that its inverse has a mean and that

the distribution of costs is such that
∫∞

0 [1−H(c; t)] dt <∞ for all c. Then, as long as we observe

contests in which at least two competitors enter Phase II, the distribution of Θ is nonparametrically

identified, as are V , H(·; t), and η.

I briefly comment on the strategy of using different sets of contests to identify these distributions,

as a concern may be that the distribution of unobserved heterogeneity may itself differ across

these contests. However, note that a natural reason for this distribution to differ is that the DOD

may choose a different number of Phase I competitors for contests with different distributions of

competitors; however, once this choice is made, the remainder of the contest follows in a somewhat

91It can be checked that 1/θ have a mean is sufficient for this transform to apply. Note that q∗(·; t) is a density and is
thus integrable in the standard sense.
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mechanical manner. In particular, we can let Θ depend on N1, but as long as N1 > 1 (and N̄2 ≥ 2),

there will be contests that enter Phase II with N2 ≥ 2 and N2 = 1 due to pure randomness. Of

course, the arguments in this section would not apply if there were a special set of auctions where

only one competitor were allowed to enter into Phase II (i.e., if N1 = 1 or N̄2 = 1). There is

not much we can do in this situation, as unobserved heterogeneity can only be identified from

information on correlation between actions of the firms within a particular contest.

C.4. External Benefits of Research

In the model presented in Section 3.2, the only benefit of conducting research comes from the

possibility of winning a Phase III contract. Since the firms involved in an SBIR contest retain

intellectual property rights over their innovations, one may speculate that there could be an

additional benefit of doing research. Extend the model in Section 3.2 to one in which a firm that

exerts effort t also gets a benefit b(t) in addition to the benefit from the Phase III contract, with

b′(·) ≥ 0 and b′′(·) < 0. It is easy to check from a monotone comparative statics argument that

firms with higher values of v will still exert more effort. Furthermore, in the case of N2 = 1, the

observed Phase III contract amounts will still be ηv+ (1− η)c, so Proposition 2 applies immediately

to this model.

However, the first order condition of the firm changes from (5) to

b′(t2) + η

∫ v(t2)

c
(v(t2)− c)dh

dt
(c; η, t2) dc = 1, (18)

so applying Proposition 3 requires more conditions. Suppose that b′(t2) is known for some value

t2 = t∗2. Then, for t∗2, we can apply the argument in Proposition 3 to identify η. Then, for all other

t2, (18) identifies b′(t2). We codify this in the following proposition.

Proposition 8. Consider the model in Section 3.2 but suppose firms get a benefit b(t) from exerting

effort t. Suppose that the value of b′(·) is known at some point and that the value of b(·) is also

known at some (possibly different) point. Then, b(·) is identified as well over the range over which

firms exert effort.

The summary of this extension is that the overidentifying restrictions embedded in the fact

that the firms’ first-order condition must hold at all points can be used to identify any external

marginal benefit of research. The two caveats are that we need some external information about

both this marginal benefit as well as some information about the level of the benefit itself. Without

an external information about the marginal benefit, we cannot disentangle it from the impact of η.

Without some information about the benefit itself, we have no hope of identifying it, since the data

contain absolutely no information about the level of this benefit. However, natural conditions exist

for both the benefit and the marginal benefit. We may expect b′(t) = 0 for a sufficiently large value

of t, as the marginal benefit may decrease; we may also expect b(0) = 0.
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D. Incentive Compatibility in the Model of IP Sharing

In this Appendix, I discuss the issue of incentivizing firms to share their Phase I breakthroughs with

its competitors. To do so, I explicitly model the subgame following a deviation in which a firm with

value v chooses not to share its IP. This allows for the computation of the value of deviating, and I

can then compute the minimum prize schedule necessary to preclude this deviation. Note that I do

not ask whether this is the optimal schedule for the DOD in the setting in which IP sharing is not

mandatory; the DOD may well choose a prize schedule that induces sufficiently high-value firms to

keep their IP private. Rather, this incentive-compatible schedule simply serves as a benchmark for

comparison.

To compute this incentive-compatible prize schedule K(v), I first need to compute the profits

under a “deviation” in which a firm with value v refuses to share information. I consider the following

setting: at the end of Phase I, the DOD offers the prize K(v) to all firms with successful innovations.

However, unlike before, the DOD allows any firm to forego the prize K(v) in exchange for keeping

the invention secret; the firm is still allowed to enter Phase II if its draw of v is high enough to merit

entry into Phase II. The DOD does not reveal whether firms shared their information or not, and it

still shares the plans of the highest-value project from the other firms with the holdout. Moreover,

it does not reveal whether or not each firm accepted the prize.92

The deviation I consider, therefore, consists of the following steps.

(i) A firm with value v gives up the prize K(v) but enters Phase II if its draw of v is in the top

N̄2 of the draws. It must decide whether to accept the Phase I prize before learning how many

other firms succeeded.

(ii) In Phase II, it gets access to the highest draw v′ of all other firms and chooses which project it

wishes to develop. If no other firm succeeded in Phase I, the deviator is the only firm in Phase

II and exerts effort according to the equilibrium of the model in Section 3.2, with N2 = 1.

(iii) Beliefs of all other firms are passive, so all other firms in Phase II (if any) exert the equilibrium

effort t∗(v′) on the project v′.

These criteria together let us derive the equilibrium effort exerted by a firm with value v that deviates,

if all other firms are using the technology with value v′. Denote this profit by π̂success(v, v
′; p∗,K(·)).

The incentive compatibility condition is that K(v) ≥ E[π̂success(v, v
′; p∗,K(·))]− πsuccess(v; p∗,K(·)),

where the first expectation is taken over the realization of successes as well as the best value of the

opponents. Note that if this IC constraint holds with equality, K(·) must be increasing, as a firm

with a higher-value project will pay a large cost in terms of expected forgone profits if it shares its

breakthrough with its competitors.

92Specifying this deviation involves a number of assumptions on the details of the information sharing mechanism.
One could imagine other mechanisms that differ in some respects; for instance, the DOD could refuse to share other
firms’ plans with a firm that does not accept the prize K(v). One justification for the willingness to share plans is
from social surplus reasons: while the DOD could in principle improve its profits by committing to not share plans
(and reduce the prize it has to pay), the social planner would always want a firm to have access to a project that
could be potentially better. The DOD can also choose to announce which firms were willing to share their plans.
However, I avoid this possibility out of convenience: if deviations were public, I would have to be explicit about
off-path beliefs, which in turn would affect the incentives to deviate.
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E. Omitted Proofs

I collect the proofs of Propositions 2, 3, and 5 in this appendix.

E.1. Proof of Propositions 2 and 3

The one remaining step to prove Proposition 2 is to consider the case in which there is selection into

Phase II (i.e., when N̄2 = 1 and N1 > 1). In this case, the argument in Section 4.1 shows that the

selected distribution is identified; denote this VS . However, note that this selected distribution is a

known mixture of order statistics of the unselected distribution V . In particular, VS is the maximum

of NS draws from V if NS firms succeed in Phase I. Since the probability p∗ of any individual firm

succeeding in Phase I is identified directly from the data, we can express the cdf FVS (·) of the VS in

terms of the cdf FV (·) of V as

FVS (v) =
1

(1− p∗)N1

N1∑
NS=1

(
N1

NS

)
(p∗)NS (1− p∗)N1−NS FV (v)NS . (19)

The right-hand side of (19) is a convex combination of increasing functions of FV (v). Since FVS (v)

is identified, we can invert (19) to identify the cdf of V .

The missing step in Proposition 3 is to show that (5) has a unique solution for η. Recall that

the firm sets its research effort in response to the first-order condition in Section 4.1, given by

η

∫ v(t2)

c
(v(t2)− c)dh

dt
(c; η, t2) dc = 1 (5)

Integrating (5) by parts, we have

η

∫ v(t2)

c

dH

dt
(c; η, t2) dc = 1. (20)

However note that

H(c, t2; η) = Pr(C(t2) ≤ c|t2, η) = Pr (ηv(t2) + (1− η)C(t2) ≤ ηv(t2) + (1− η)c)

≡ F̂ (ηv(t2) + (1− η)c; t2),

which is the cdf of the transfer evaluated at ηv(t2) + (1− η)c, an observed quantity (as a function

of η). Substituting into (20), we have

η

∫ v(t2)

c

(
dF̂

dt
(ηv(t2) + (1− η)c; t2) + ηv′(t2)f̂(ηv(t2) + (1− η)c; t2)

)
dc = 1.

Setting u = ηv(t2) + (1− η)c, we have

η

1− η

∫ v(t2)

T

dF̂

dt
(u; t2) du+

η2

1− η

∫ v(t2)

T
v′(t2) · f̂(u; t2) du = 1, (21)
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where T is the minimum transfer observed. Given that v(·) and thus v′(t2) are both identified

already from the support of the transfer distribution, the integrals are identified directly from the

data. Thus (21) can be rearranged to a quadratic in η and has at most two solutions, only one of

which corresponds to the actual optimum (as the other violates the second order condition). Thus,

η is identified, which in turn identifies the cdf H(c; t2) of C(t2) nonparameterically for all c ≤ v(t2).

E.2. Proof of Proposition 5

Suppose the social planner can pick a schedule ti(v) of effort for each firm i as a function of the

firm’s realized value v. This choice induces a random variable Si(v, ti(v)) of the surplus each firm i.

Fix a distinguished firm i. Then, the social planner’s problem can be written as

max
ti,t−i

{
E
[
max{Si(vi, ti(vi)),max

−i
S−i(v−i, t−i(v−i))}+

]
− E [ti(vi)]−

∑
−i

E [t−i(v−i)]

}
,

where the expectations are taken over realization of v. If we denote the social planner’s optimum as

t∗−i(·), to determine t∗i (v), the planner will be optimizing

max
t

{
E
[
max{Si(v, t),max

−i
S−i(v−i, t

∗
−i(v−i))}+

]
− t
}

= max
t

{
E
[
{Si(v, t)−max

−i
S−i(v−i, t

∗
−i(v−i))

+}+ + max
−i

S−i(v−i, t
∗
−i(v−i))

+

]
− t
}

= max
t

{
E
[
{Si(v, t)−max

−i
S−i(v−i, t

∗
−i(v−i))

+}+
]
− t
}
, (22)

where from the second to the third line, I drop max−i S−i(v−i, t−i(v−i))
+ since it is independent

of t. (Note that expectations are taken only over realization of v−i in this sequence.) But, (22) is

identically the expression for firm i’s problem when η = 1. Thus, the social planner’s optimum

corresponds to a Nash equilibrium of the game.

To show that the social surplus is monotone in η, we consider a different problem for notational

convenience. Consider the problem maxt[ηf(t; v)− t] where f is increasing in t. Denote the solution

to this problem as t∗(η; v) and note that this solution is increasing in η due to the fact that the

maximand has increasing differences in η and t. Consider the function g(v; η) ≡ f(t∗(η; v); v)−t∗(η; v).

The derivative with respect to η is

dt∗(η; v)

dη

[
f ′(t∗(η; v); v)− 1

]
.

But, dt∗(η; v)/dη ≥ 0. Moreover, we know that ηf ′(t∗(η; v); v) = 1 at an interior solution, so

f ′(t∗(η; v); v) ≥ 1. Thus, g(v; η) is increasing in η for all v. Since the social surplus is simply

E[g(v; η)], where the expectation is taken over η, we have that the social surplus is increasing in η.
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F. Data Appendix

In this appendix, I provide further details about the data collection and cleaning procedure, as well

as how datasets from different sources are cross-checked and merged together.

F.1. SBIR Data from the Office of Naval Research

The website www.navysbirsearch.com has information about all SBIR contracts let by the Navy.

Each entry contains the SBIR topic number, company information (name, address, DUNS number,

and information about the PI in charge of the project), the SBIR Phase the contract is associated

with, the federal contract number associated with the award, the SYSCOM in charge of letting the

project, an award amount (which I clean later using the Federal Procurement Data System), and

the start and end dates of the contract. It also includes the title of the proposal along with the full

text of the abstract. I first scraped the data from the website and corrected obvious mistakes in

the dataset, including fixing invalid contract numbers (where the correct numbers are clear) and

dropping duplicate observations. I define a contest to consist of all Phase I, II, and III awards given

under a particular topic number, and I can track a firm through the three phases using its unique

DUNS number.

There are two minor considerations at this step. First, in a small number of cases, two different

Phase III SBIR awards (given to two different companies) were listed with the same contract number

but belonging to two separate contests. I treat these joint awards simply as separate awards for each

contest. Second, there are a small number of contests in which the number of Phase II competitors

is larger than the number of Phase I competitors. Since the Navy does not award direct-to-Phase II

awards (i.e., every firm that wishes to compete in Phase II must also have competed in Phase I), I

assume that these are data errors and that the competitor who appears first in Phase II actually was

awarded a Phase I contract as well that was not in my dataset; however, I do not see the abstract

and title for this project, and I assume that the Phase I contract amount (which I do not use in the

analysis) is the standard amount without an option.

F.2. Federal Procurement Data System

From the Federal Procurement Data System (FPDS) via www.usaspending.gov, I downloaded

contract data for all contracts from the Department of Defense from 2000 onwards. I use this

dataset as the source for contract values: data from the ONR sometimes simply lists a standard

SYSCOM-specific award amount. From this dataset, I extract all contracts where the contract id

number matches one from the ONR dataset. I then check that the DUNS number and the firm

name match for the merged contracts. For cases that are not exact matches, I verify through online

searches that the difference can be attributed to a name change or an acquisition. I am unable to

verify whether the datasets are merged properly for a small handful of contracts.

For each contract number, the FPDS contains an entry for the base contract, which contains

information for the total contract value and the total value of all options to the contract. The FPDS

also contains an entry for each contract modification (e.g., remitting payment, change of scope, or

exercising an option) which lists the changes to the total contract value. From this data, I can
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compute the total funding provided though the contract by summing across the dollars obligated

in the base contract as well as all contract modifications, and for the majority of contracts, I use

this measure as the contract value. For the vast majority of contracts, this amount agrees with the

ONR data to within $1, and the amounts differ by less than 5% for the majority of the remainder.

Many of the remaining discrepancies can be explained by a single contract modification (exercise of

an option, change of scope, or dollars de-obligated) recorded in the FPDS data that is not reflected

in the ONR dataset. I use the data from the ONR as the measure of contract values if (i) I am

unable to verify whether the merge is correct, (ii) the FPDS yields a contract amount that is less

than 25% of the ONR data, or (iii) the base contract is missing in the FPDS.

F.3. SBIR Solicitations

I copied the full text of the Navy SBIR solicitations from the DOD archive of solicitations, from 1999

onward. For each topic number, I created a document containing all abstracts from all winning firms

and all phases related to the topic as well as the full solicitation. This set of documents comprises

the “corpus” that I fed into MALLET (McCallum, 2002) to generate the technology topics.

I train topics using the entire set of contests available to me, including those that I exclude

from the final sample. When using MALLET, I treat each document as a sequence of word features

(rather than merely a vector), remove stopwords such as “the” or “and”, and keep punctuation as

part of the words. I also allow for hyperparameter optimization every 20 iterations so that MALLET

optimizes over the distribution of topics and allows some topics to be more prominent than others.

I let the sampling run for 5000 iterations; note that there is no upper limit on this, and I have

noticed that running it for much fewer iterations would yield essentially indistinguishable results.

I set the number of topics to 20, but I have done robustness checks on the descriptive regressions

using between 10 and 100 topics. MALLET outputs a set of topics, each of which is described by a

list of words that categorize these topics. Of the 20 topics, 19 of them correspond to technology areas;

the most popular one, however, consists of generic terms such as “system”, “phase”, “technology”,

“design”, and “navy”. I drop this topic from the list and use the remaining 19 topics. MALLET also

assigns each document d a weight pdt for each topic t such that
∑

t pdt = 1 for all d. I renormalize

these proportions after eliminating the generic topic and am left with a set of 19 “fixed effects” for

each contest.93 When grouping words into more topics, a larger number of the generated topics

correspond to generic words instead of technology areas. For instance, when generating 100 topics,

I categorize 5 of them as generic and ignore them when computing the proportions for each contest.

93Note that these variables are not fixed effects because they are proportions rather than binary variables. However,
they do still sum to 1.
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G. Computational Methods

G.1. Computing and Optimizing the Likelihood Function

G.1.1. Computing the Likelihood Function

I make three comments about computing the likelihood function. First, I parameterize µ(t) to be

a decreasing quadratic in log t on the interval −2.0 ≤ log t ≤ 2.5, which encompasses almost all

the data. (Note that t is measured in terms of multiples of the mean Phase II amount, so this

range is rather large.) I then parameterize this function by three values: (1) µ(t) at log t = −2.0,

(2) µ′(t) and log t = −2.0, and (3) µ′(t) at log t = 2.5. I constrain the parameters in (2) and (3)

to be negative. To avoid numerical issues related to the quadratic function becoming increasing

outside this range (which may be encountered for especially small or large values of θ), I let µ(t) be

linear in log t for values of t outside this range, and I ensure that µ(t) is differentiable everywhere

by setting the semi-elasticity of µ(t) (i.e., dµ(t)/d log t) outside this range equal to the value at the

closest endpoint. Extending the range over which µ(t) is quadratic does not seem to change the

results appreciably.

Second, I evaluate all integrals numerically on a fixed set of grid points (although the method

and number of grid points varies by the particular integral). The likelihood seems to be robust to

the number of grid points I use.

Finally, for certain parameters, specific observations are computed to have a likelihood of zero.

Instead of letting the log likelihood function be −∞ at these parameters, I replace the zeros with

a penalty term πpenalty. One can imagine this procedure as an ad-hoc analogue of the “robust

likelihood” for discrete distributions, suggested by Owen (2001). For the results in this paper, I

use log πpenalty = −100. None of the data points in the main estimates of the paper are affected by

this penalty term, and at most three of the data points in each of the estimates reported in this

paper have a likelihood given by this penalty term. Indeed, estimates do not change for penalties in

an neighborhood of this value, but if it the penalty is taken to be too low, then a large portion of

points are simply rationalized by this penalty.

G.1.2. Optimizing the Likelihood Function

The likelihood may have multiple local optima, and the discrete penalties to deal with data points

that have zero probability (see below) for certain candidate parameter values introduce discrete

jumps. Thus, I use a derivative-free global optimizer first, to narrow my search to a region of the

parameter space where most of the data is rationalized well by the model. I then use a derivative-free

local optimizer to polish the solution within this parameter region. Both algorithms I am using are

implemented in the software package NLopt by Johnson (2010).

I use the DIRECT-L (locally-biased dividing rectangles) algorithm of Gablonsky and Kelley

(2001) to perform the global optimization. This algorithm employs a branch-and-bound method that

progressively subdivides the parameter space into regions in which it suspects the optimum lies based

on computations of the function at various points within each rectangle. It retains information about

multiple subdivided rectangles throughout the computational process and does not immediately
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discard rectangles that seem suboptimal early in the algorithm—a process that can guard against

settling into a local optimum. While there is no guarantee that this algorithm will return the global

optimum for arbitrary functions (as is the case with all global optimizers), I have found it to work

efficiently and return results comparable to those given by much more computationally intensive

genetic algorithm. I terminate this global optimizer after 2,500 function evaluations: I have found

this number of evaluations to be sufficient to tune the parameters to a region that does not leave

most of the data unrationalized, and a local optimizer can move more efficiently to the optimum.

Indeed, Johnson (2010) recommends that the termination condition for a global optimizer should

be either a limit on runtime or on the number of function evaluations, and using more functional

evaluations does not change the output of the final local optimizer appreciably (and indeed often

does not change the output of the global optimizer to more than 10−6 either).

I then use a local optimizer to polish this solution. I start with the BOBYQA (bound optimization

by quadratic approximation) algorithm by Powell (2009) as a derivative-free local optimizer, starting

at the optimum found by DIRECT-L. This algorithm utilizes a trust-region method that constructs

a quadratic approximation of the objective at each iteration and updates the candidate optimum

using this approximation.

G.2. Inverting the Characteristic Function

In practice, computing (10) is numerically challenging, and I follow suggestions outlined by Kras-

nokutskaya (2011). Applying (10) directly leads to densities that oscillate at the tail, so in practice

(i) the integrals are evaluated on a compact interval [−T, T ] and (ii) I multiply the integrand by

a damping function d(t) = 1− exp (|t|/T ). I choose T in a data-driven fashion that is somewhat

similar to the method that Krasnokutskaya (2011) proposes, which involves matching moments of

the recovered density function with moments computed from the data.

1. I estimate the mean and the standard deviation of the distributions of log Θ and t̃ from the

data. The mean of log Θ is 0, so the mean of the t̃ for a particular (N1, N2) is simply the

mean of the residuals νij for that parameter space. The standard deviation of log Θ can be

estimated as the standard deviation of the difference νi1j − νi2j , divided by
√

2. The standard

deviation of t̃ can then be estimated from this estimate together with an estimate for the

standard deviation of νij .

2. I compute the density for a particular value of T , replace negative values by zeros, and then

renormalize the density.

3. I compute the mean and standard deviation of the generated distribution via numerical

integration and choose T to minimize the squared deviations from the estimated mean and

standard deviations.94

94I have noticed through visual inspection that this procedure sometimes still leads to distributions that oscillate
wildly near the tails, an issue that may be especially relevant using bootstraps. I thus reduce the T estimated for Θ
by 10% and the T estimated for t̃ by 50% for some additional smoothing.
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G.3. Solving for the Equilibrium Effort Function

When solving the equilibrium model in Section 3.2 numerically, I utilize a three-step procedure,

fixing a set of parameters for the value and cost distributions as well as the bargaining parameter

and the cost of research effort.

1. I solve for the equilibrium effort function in Phase II when N2 = 1 on a fine grid of values.

For most instances, I use a grid ranging between 1/3 of the 0.1th percentile of the value

distribution to the 3 times the 99.9th percentile of the distribution. I usually use an equally

spaced grid with 1000 grid points. For each value v on the grid, I compute the optimal effort

using a single-variable optimization routine, such as fminbnd in Matlab.

2. For each 1 < N2 < N̄2 (unless N̄2 = N1, in which case this step applies to N2 = N̄2 as well), I

use an iterated best response procedure to compute the equilibrium Phase II effort function

t∗N2
. I do so by iterating on (2), with t∗N2

(·) in (2) replaced by the candidate effort function

from the previous iteration of the algorithm. Note that for these values of N2, there is no

selection, so the choice of p∗ is irrelevant, and all types v have the same beliefs over their

opponents’ surplus. On each step of the iteration, I solve a one-dimensional optimization

problem at each grid point using fminbnd. I iterate until the maximum change in the effort

function is less than 10−6.95

3. When N2 = N̄2 and N̄2 > 1 and N̄2 < N1, the solution method has to account for selection.

For a fixed probability p of success in Phase I, I can compute beliefs for all types v from (1). I

then use the same best response iteration to compute the equilibrium. I do this computation

for p on a grid from 0.01 to 0.99.96

4. In the final step, I compute p∗ from the first-order condition associated with (4), using a

one-dimensional solver such as fzero in Matlab. I compute the profits from p not in the grid

used in Step 3 by linearly interpolating the computed effort functions.

95I have noticed that for some parameters, this algorithm tends to fluctuate between two functions instead of converging
to one. However, these two functions are always within 10−5 of each other, so I simply truncate the algorithm after
30 iterations if it still has not converged. I have found that if instead of updating the effort function to the solution
of (2) I update it to a convex combination of the solution and the previous iteration, the algorithm is more likely to
converge.

96In practice, I have found it is sufficient to compute the equilibria for p = {0.01, 0.1, 0.2, . . . , 0.9, 0.99}.

80


	Introduction
	Related Literature

	Empirical Setting and Data
	Overview of the Navy SBIR Program
	Data Sources
	Descriptive Statistics

	Model
	Model Timing and Primitives
	How Are Research Efforts Determined?

	Identification and Estimation
	Identification
	Identification Under Assumption M
	Identification Under Assumption O
	Discussion of the Identification Result

	Empirical Model
	Estimation Procedure

	Structural Estimates
	Social Inefficiency in R&D Contests
	The Effect of Early- and Late-Stage Competition
	Changing N1 and 2
	Decomposing the Effect of Competition

	The Effect of the Bargaining Parameter
	Decoupling Research from Delivery: Prizes and IP Sharing
	A Model of IP Sharing
	The Costs of Prizes and IP Sharing

	DOD Profits Under Alternate Contest Designs
	Conclusion
	Further Details on DOD Profits Under Changes to the Contest Design
	Changing the Number of Competitors
	Changing : The Procurer's Laffer Curve
	Mandating IP Sharing

	Additional Empirical Results
	Details on the Descriptive Statistics
	Structural Estimates without Assumption O

	Extensions to the Identification Result
	Bounding  Using Assumption M
	Asymmetric Firms
	Unobserved Heterogeneity
	External Benefits of Research

	Incentive Compatibility in the Model of IP Sharing
	Omitted Proofs
	Proof of Propositions 2 and 3
	Proof of Proposition 5

	Data Appendix
	SBIR Data from the Office of Naval Research
	Federal Procurement Data System
	SBIR Solicitations

	Computational Methods
	Computing and Optimizing the Likelihood Function
	Computing the Likelihood Function
	Optimizing the Likelihood Function

	Inverting the Characteristic Function
	Solving for the Equilibrium Effort Function


