
Browser Feature Usage on the Modern Web
 

Peter Snyder Cynthia Taylor 

Department of Computer 
Science
 

University of Illinois at Chicago
 
Chicago, IL 60607
 

ar
X

iv
:1

60
5.

06
46

7v
1 

[c
s.

N
I]

 2
0 

M
ay

 2
01

6

 ABSTRACT 

Modern web browsers are incredibly complex, with millions 
of lines of code and over one thousand JavaScript functions 
and properties available to website authors. This work inves
tigates how these browser features are used on the modern, 
open web. We find that JavaScript features differ wildly in 
popularity, with over 50% of provided features never used in 
the Alexa 10k. 
We also look at how popular ad and tracking blockers 

change the distribution of features used by sites, and identify 
a set of approximately 10% of features that are disproportion
ately blocked (prevented from executing by these extensions 
at least 90% of the time they are used). We additionally find 
that in the presence of these blockers, over 83% of available 
features are executed on less than 1% of the most popular 
10,000 websites. 

We additionally measure a variety of aspects of browser 
feature usage on the web, including how complex sites have 
become in terms of feature usage, how the length of time a 
browser feature has been in the browser relates to its usage 
on the web, and how many security vulnerabilities have been 
associated with related browser features. 

1. INTRODUCTION 
The web is the world’s largest open application platform. 

While initially developed for simple document delivery, it 
has grown to become the most popular way of delivering 
applications to users. Along with this growth in popularity 
has been a growth in complexity, as the web has picked up 
more and more capabilities over time. 

This growth in complexity has been guided by both browser 
vendors and web standards. Many of these new web capa
bilities are provided through new JavaScript APIs (referred 
to in this paper as features). These features are organized 
into collections of related features which are published as 
part of standards documents (in this paper, we refer to these 
collections of APIs as standards). 
To maximize compatibility between websites and web 

browsers, browser vendors rarely remove features from browsers. 
Browser vendors aim to provide website authors with new 
features without breaking sites that rely on older browser 
features. The result is an ever growing set of features in the 
browser. 
Many web browser features have been controversial and 

even actively opposed by privacy and free software activists 
for imposing significant costs on users, in the form of infor
mation leakage or loss of control. The WebRTC [9] standard 
has been criticized for revealing users IP addresses [46], and 

protestors have literally taken to the streets [47] to oppose 
the Encrypted Media Extensions [15] standard. This stan
dard aims to give content owners much more control over 
how their content is experienced within the browser. Such 
features could be used to prevent users from exerting control 
over their browsing experience. 
Similarly, while the complexity (measured as the number 

of resources requested) is well understood [11], what is not 
understood is how much of the functionality available in 
the browser gets used, by which sites, how often, and for 
what purpose. Several questions remain, including whether 
recently introduced features are as popular as old features, 
whether popular websites use different features than less pop
ular sites, or how the use of popular site altering extensions, 
like those that block advertisements and online tracking, 
impact which browser features are used. 

This paper answers those questions by examining the uti
lization of browser features on the web. By examining the 
JavaScript feature usage of the ten thousand most popular 
sites on the web, we measured which browser features are 
frequently used by site authors, and which browser features 
are rarely used on the web. We find, for example, that 50% 
of the JavaScript provided features in the web browser are 
never used by the top ten thousand most popular websites. 
Ad and tracking blocking extensions are a common way 

that users modify their web browsing experience. We addi
tionally measure the utilization of browser features under 
these blockers to determine the change in browser feature 
usage when users install these popular extensions. We find 
that installing advertising and tracking blocking extensions 
not only unsurprisingly reduces the amount of JavaScript 
users execute when browsing the web, but changes the kinds 
of features their browsers execute; we identify a substantial 
set of browser features (approximately 10%) that are used by 
websites, but which ad and tracking blockers prevent from 
executing more than ninety percent of the time. Similarly, 
we find that over 83% of features available in the browser 
are executed on less than 1% of websites in the presence of 
popular advertising and tracking blocking extensions. 

2. BACKGROUND 
In this section, we discuss the complexity of the modern 

web browser, along with the use of ad and tracking blockers. 

2.1 Modern Web Features 
The complexity of modern web browsers has grown to 

encompass countless potential use cases. While the core 
functionality embodied by the combination of HTML, CSS, 
and JavaScript is largely stable, over the past few years, 



0

10

20

30

40

0

5

10

15

W
eb S

tandards
M

illion LO
C

2009 2010 2011 2012 2013 2014 2015

Chrome
Firefox
Safari
IE

Figure 1: Feature families and lines of code in popular 
browsers over time. 

many features have been added to provide for new use cases. 
Figure 1 shows the number of standards available in modern 
browsers, using data from W3C documents [60] and Can 
I Use [14]. Figure 1 also shows the total number of lines 
of code for Firefox and Chrome [10]. One relevant point 
of note in the figure is that in mid 2013, Google moved 
to the Blink rendering engine, which entailed removing at 
least 8.8 million lines of code from Chrome related to the 
formerly-used WebKit engine [34]. 
Vendors are very wary of removing features from the 

browser, even if they are used by a very small fraction of all 
websites [1, 2]. Because the web is evolving and competing 
with native applications, browser vendors are incentivized to 
continue adding new features to the web browser and not re
move old features. This is exacerbated by browsers typically 
having a unified code base across different types of computers 
including mobile devices, browser-based computers such as 
Google Chromebooks, and traditional personal computers. 
Browser vendors then expose unique hardware capabilities 
like webcams, rotation sensors, vibration motors, or ambient 
light sensors [30, 31, 33, 54] directly through JavaScript, re
gardless of whether the executing device has such a capability. 
Furthermore, as new features are added, the current best 
practice is to roll them out directly to web developers as 
time limited experiments, and allow them to move directly 
from experimental features to standard features, available in 
all browsers that adhere to the HTML living standard. [48]. 

Individual websites are also quite complex. Butkiewicz et 
al. surveyed 2000 random websites and found that loading 
the base page for a URL required fetching a median of 40 
objects, and that 50% of websites fetched at least 6 Javascript 
objects [11]. 

2.2 Ads and Tracking Blocking 
Researchers have previously investigated how people use 

ad blockers. Pujol et al. measured AdBlock usage in the 
wild, discovering that while a significant fraction of very 
active web users use AdBlock, most users primarily use its 
ad blocking, and not its privacy preserving, features [44]. 

User tracking is a more insidious aspect of the modern web. 
Recent work by Radler found that users were much less aware 
of cross-website tracking than they were about collection of 
data by single sites such as Facebook and Google, and that 
users who were aware of it had greater concerns about un
wanted access to private information than those who weren’t 
aware [45]. Tracking users’ web browsing activity across 
websites is largely unregulated, and a complex network of 
mechanisms and businesses have sprung up to provide a vari
ety of services in this space [17]. Krishnamurthy and Willis 
found that aggregation of user-related data is both growing 
and becoming more concentrated, i.e. being conducted by a 
smaller number of companies [32]. 

Traditionally, tracking was done via client-side cookies, giv
ing users a measure of control over how much they are tracked 
(i.e. they can always delete cookies). However, a wide variety 
of non-cookie tracking measures have been developed that 
take this control away from users, and these are what track
ing blockers have been designed to prevent. These include 
browser fingerprinting [16], JavaScript fingerprinting [37, 40], 
Canvas fingerprinting [38], clock skew fingerprinting [29], 
history sniffing [27], cross origin timing attacks [55], ever-
cookies [28], and Flash cookie respawning [7, 49]. A variety 
of these tracking behaviors have been observed in widespread 
use in the wild [3, 7, 36, 41, 42, 49, 50]. 
Especially relevant to our work is the use of JavaScript 

APIs for tracking. While some APIs, such as Beacon [20], are 
designed specifically for tracking, other APIs were designed 
to support various other functionality and co-opted into 
behaving as trackers [38, 59]. Balebako et al. evaluated tools 
which purport to prevent tracking and found that blocking 
add-ons were effective [8]. 

3. DATA SOURCES 
This work draws on several existing sets of data. This sec

tion proceeds by detailing how we determined which websites 
are more popular and how often they are visited, how we 
determined the current JavaScript-exposed feature set of a 
modern web browser, what web standard those features be
long to and when they were introduced, how we determined 
the known vulnerabilities in the web browser (and which 
browser feature standard the vulnerability was associated 
with), and which browser plugins we used as representative 
of common browser modifications. 

3.1 Alexa Website Rankings 
The Alexa rankings are a well known ordering of websites 

ranked by traffic. Typically, research which uses Alexa relies 
on their ranked list of the worldwide top one million sites. 
However, Alexa exposes more data about these sites through 
their API. In addition to a global ranking of each of these 
sites, there are also local rankings at country granularity, 
breakdowns of which subsites (by fully qualified domain 
name) are most popular, and a breakdown by page load and 
by unique visitor of how many monthly visitors each site 
gets. 



We use the Alexa rankings to determine the 10,000 most 
popular sites, which collectively represent approximately one 
third of all web visits. 

3.2 Web API Features 
We define a feature as a browser capability that is acces

sible through a JavaScript function call or property setting. 
We determined the set of JavaScript-exposed browser fea

tures by reviewing the WebIDL definitions included in the 
Firefox version 46.0.1 source code. WebIDL is a language 
that defines the JavaScript features web browsers provide to 
web authors. In the case of Firefox, these WebIDL files are 
included as text documents in the browser source. 

In the common case, Firefox’s WebIDL files define a map
ping between a JavaScript accessible method or property and 
the C++ code that implements the underlying functionality 
in the browser1 . We examined each of the 757 WebIDL files 
in the Firefox and extracted 1,392 relevant methods and 
properties implemented in the browser. 

3.3 Web API Standards 
Web standards are documents defining functionality that 

web browser vendors should implement. They are generally 
written and formalized by organizations like the W3C, though 
occasionally standards organizations delegate responsibility 
for writing standards to third parties, such as the Khronos 
group (who maintains the current WebGL standard). 
Web API standards are a collection of one or more Web 

API features, generally designed to be used together. For ex
ample, the WebAudio API [4] standard defines 52 JavaScript 
APIs that together allow page authors to do programmatic 
sound synthesis. 

While there are web standards that cover many aspects of 
the web (such as parsing rules, what tags and attributes can 
be used in HTML documents, etc.) this work focuses only on 
web standards that define JavaScript exposed functionality. 

Web API standards documents enumerate the WebIDL 
endpoints that are part of each standard. We identified 74 
standards implemented in Firefox. We associated each of 
the 1,392 features we identified to one of these standards. 
We also found 65 API endpoints implemented in Firefox 
that are not found in any web standard document, which we 
associated with a catch-all Non-Standard categorization. 
In the case of some extremely large standards we iden

tify sub-standards, which define a subset of related features 
intended to be used together. For example, we treat the sub
sections of the HTML standard that define the basic Canvas 
API, or the WebSockets API, as their own standards. 

Because these sub-standards have their own coherent pur
pose, it is meaningful to discuss them independently of their 
parent standards. Furthermore, many have historically been 
implemented in browsers independent of the parent standard 
(i.e. browser vendors added support for “websockets” long 
before they implement support for the current full “HTML5” 
standard. 
Some features appear in multiple web standards. For ex

1In addition to mapping JavaScript to C++ methods and 
structures, WebIDL can also define JavaScript to JavaScript 
methods, as well as intermediate structures that are not ex
posed to the browser. In practice though, the primary role of 
WebIDL in Firefox is to define a mapping between JavaScript 
API endpoints and the underlying implementations, generally 
in C++. 

ample, the Node.prototype.insertBefore feature appears 
in the Document Object Model (DOM) Level 1 Specifica
tion [6], Document Object Model (DOM) Level 2 Core Spec
ification [23] and Document Object Model (DOM) Level 3 
Core Specification [24] standards. In such cases, we attribute 
the feature to the earliest published standard. 

3.4 Historical Firefox Builds 
We determined when features were implemented in Firefox 

by examining the 186 versions of Firefox that have been 
released since 2004 and testing when each of the 1,392 features 
we identified in the current version Firefox first appeared. 
We treat the release date of the earliest verison of Firefox 
that a feature appears in as the feature’s “implementation 
date”. 
Most standards do no have a single implementation date, 

since it could take months or years for a standard to be fully 
implemented in Firefox. We therefore treat the introduc
tion of a standard’s currently most popular feature as the 
standard’s implementation date. For ties (especially relevant 
when no feature in a standard is used), we default to the 
earliest feature available. 

3.5 CVEs 
We collected information about browser vulnerabilities 

and security bugs by finding all Common Vulnerabilities and 
Exposures (CVEs) [53] (security-relevant bugs discovered in 
software) related to the Firefox web browser that had been 
documented in the last three years. 
The CVE database lists 470 issues from the last three 

years that mention Firefox. On manual inspection we found 
that 14 of these were not actually issues in Firefox, but 
issues in other web-related software where Firefox was used 
to demonstrate the vulnerability. 

Of the remaining 456 CVEs, we were able to manually as
sociate 111 CVEs with a specific web standard. For example, 
CVE-2013-0763 [51] describes a potential remote execution 
vulnerability introduced in Firefox’s implementation of the 
WebGL [26] standard, and CVE-2014-1577 [52] documents 
a potential information-disclosing bug related to Firefox’s 
implementation of the Web Audio API standard. 

3.6 Blocking Extensions 
Finally, this work pulls from commerical and crowd-sourced 

browser extensions, which are popularly used to modify the 
browser environment in a way that the user prefers. 

This work relies on two such browser extensions, Ghostery 
and AdBlock Plus. Ghostery is a browser extension that 
allows users to increase their privacy online by modifying 
their browser to not load resources or set cookies associated 
with cross-domain passive tracking, as determined by the 
extension’s maintainer, Ghostery, Inc.. 
This work also uses the AdBlock Plus browser extension, 

which modifies the browser to both not load resources the 
extension associates with advertising, as well as to hide 
elements in the page that are advertising related. This 
extension draws from a crowdsourced list of rules and URLs 
that the extension uses to determine whether a resource is 
advertising-related. 

4. METHODOLOGY 
To understand browser feature usage on the web, we con

ducted a survey of the Alexa 10k, visiting each site ten 



times and recording which browser features were utilized. 
We visited each site five times with an unmodified browsing 
environment, and five times with popular tracking-blocking 
and advertising-blocking extensions installed. This section 
proceeds by describing the goals of this survey, followed by 
how we instrumented the web browser to determine which 
features are used on a given site, and then concludes with 
how we used our instrumented browser to measure feature 
usage on the web. 

4.1 Goals 
The goal of our automated survey is to take a cross section 

of the web as it is commonly experienced by users, and to 
determine which browser features are used in those websites. 
This requires us to take a broad-yet-representative sample of 
the web, and to exhaustively determine the functionalities 
most commonly used on those sites. 
To do so, we built a browser extension to measure which 

features are used when a user interacts with a website. We 
then chose a representative sample of the web to visit. Finally, 
we developed a method for interacting with these sites in 
an automated fashion to elicit the same functionality that 
a human web user would experience. Each of these steps is 
described in further detail in the proceeding subsections. 
This automated approach only attempts to measure the 

“open web”, or the subset of webpage functionality that a 
user encounters without logging into a website. Users may 
encounter different types of functionality when interacting 
with websites that they have created accounts for and estab
lished relationships with, but such measurements are beyond 
the scope of this paper. 

4.2 Measuring Extension 
We instrumented a recent version of the Firefox web 

browser (version 46.0.1) with a custom browser extension 
which records each time a JavaScript feature has been used 
on a visited page. Our extension injects JavaScript into each 
page after the browser has created the DOM for that page, 
and before any of the page’s content has been loaded. By 
injecting this JavaScript into the beginning of the <head> 
element, we can modify those methods and properties com
prising the DOM before it becomes available to the JavaScript 
of the requested page. 
The JavaScript that the extension injects into each re

quested page modifies the DOM to count each instance an 
instrumented method is called or that an instrumented prop
erty is written. How the extension measures these method 
calls and property writes is detailed in the following two 
subsections. Figure 2 presents a representative diagram of 
the crawling process. 

4.2.1 Measuring Method Calls 
The browser extension counts method invocations by over

writing each method on the defining element’s prototype. 
This approach allows us to shim in our own logging func
tionality for each method call, and then call the original 
method to preserve the original functionality. This replaces 
each reference to the DOM’s methods with the extension’s 
instrumented version. 

We also take advantage of closures in JavaScript to ensure 
that web pages are not able to bypass the instrumented 
versions of each method by looking up–or otherwise directly 
accessing–the original versions of each DOM method. 

1 Each browser requests
the selected page

Proxy injects hooks at
beginning of <head>

2
Gremlins interact,
extension records

3

blocking,example.com,Crypto.getRandomValues(),1
blocking,example.com,Node.cloneNode(),10

default,example.com,Crypto.getRandomValues(),1
default,example.com,Node.cloneNode(),4

Figure 2: One iteration of the feature invocation measure
ment process. 

4.2.2 Measuring Property Writes 
Properties were more difficult to record. JavaScript pro

vides no way to intercept whether a property has been set or 
read on a client script-created object, or on an object created 
after the instrumenting code has finished executing. However, 
through the use of the non-standard Object.watch()[39] 
method available in Firefox, we were able to capture property-
setting events on one of the singleton objects in the browser 
(e.g. window, window.document, window.navigator). Using 
this Object.watch() method allowed the extension to cap
ture and count all writes to properties on singleton objects 
in the DOM. 

4.2.3 Other Browser Features 
Web standards define other features in the browser too, 

such as events and CSS layout rules, selectors, and instruc
tions. However, our extension-based approach did not allow 
us to measure the use of these features, and so counts of 
their use are not included in this work. 
In the case of standard defined browser events, the ex

tension could have captured some event registrations by 
combination of watching which events were registered to 
addEventListener method calls, and watching for property-
sets to singleton objects. However, we would not have been 
able to capture event registrations using the legacy DOM0 
method of event registration (e.g. assigning a function to 
an object’s onclick property to handle click events) on non-
singleton objects. Since we would only have been able to see 
a subset of event registrations, we decided to omit events 
from this work. 
Similarly, this work does not consider non-JavaScript ex

posed functionality defined in the browser, such as CSS 
selectors and rules. While interesting, this work focuses 
solely on functionality that the browser allows JavaScript 
authors to access. 

4.3 Eliciting Site Functionality 
Using our feature-detecting browser extension, we were 

able to measure which browser features are used on the 10k 
most popular websites. The following subsections describe 
how we simulated human interaction with web pages to cap
ture the features that would be executed when users visited 
these sites, first with the browser in its default state, and 
again with the browser modified with popular advertisting



and-tracking blocking extensions. 

4.3.1 Default Case 
To understand which features are necessary for a site’s ex

ecution, we perform dynamic analysis on live running pages 
in Firefox while using the measuring extension described in 
Section 4.2. The goal is to exercise as much of the function
ality built into the page as possible. While some JavaScript 
features of a site are automatically activated on the home 
page, like advertisements and analytics, many features will 
only be used as a result of user interaction either within the 
page or by navigating to different areas of the site. Here we 
explain our strategy for crawling and interacting with sites. 

In order to trigger as many browser features as possible on 
a website, we used a common site testing methodology called 
“monkey testing”. Monkey testing refers to the strategy of 
instrumenting a page to click, touch, scroll, and enter text 
on random elements or locations on the page. To accomplish 
this, we use a modified version of gremlins.js [61], a library 
built for monkey testing front-end website interfaces. 
We started our measurement by visiting the home page 

of each site and allowing the monkey testing to run for 
30 seconds. Because the randomness of monkey testing 
could cause navigation to other domains, we intercepted 
and prevented any interactions which might navigate to a 
different page. For navigations that would have been to the 
local domain, we noted which URLs the browser would have 
visited in the absence of the interception. 

We then proceeded in a breadth first search of the site’s 
hierarchy using the URLs that would have been visited by 
the actions of the monkey testing. We then selected 3 of these 
URLs that were on the same domain (or related domain, as 
determined by the Alexa data), and visited each, repeating 
the same 30 second monkey testing procedure and recording 
all used features. From each of these 3 sites, we then visited 
three more pages for 30 seconds, which resulted in a total of 
13 pages interacted with for a total of 390 seconds per site. 

If more than three links were clicked during any stage of 
the monkey testing process, we selected which URLs to visit 
by giving preference to URLs where the directory structure 
of the URL had not been previously seen. In contrast to 
traditional interface fuzzing techniques which have as a goal 
finding unintended or malicious functionality [5, 35], we 
were interested in finding all functionalities that users will 
commonly interact with. By selecting URLs with different 
path-segments, we try to visit as many different types of 
pages on the site as possible, with the goal of capturing all 
of the functionality on the site that a user would encounter. 
These properties of our strategy are evaluated in Section 6. 

4.3.2 Blocking Case 
In addition to the default case measurements described in 

Section 4.3.1, we also re-ran the same measurements against 
the Alexa 10k with an ad blocker (AdBlockPlus) and a 
tracking-blocker (Ghostery) to generate a second, ‘blocking’, 
set of measurements. We include these blocking measure
ments as being representative of the types of modifications 
users make to customize their browsing experience. While 
this version of a site no longer represents its author’s in
tended representation (and may in fact break the site), the 
popularity of these content blocking extensions lends cre
dence to the blocking case being a valid alternative method 
of experiencing a given website. 

4.3.3 Automated Crawl 

Domains measured 9,733 
Total website interaction time 480 days 
Web pages visited 2,240,484 
Feature invocations recorded 21,511,926,733 

Table 1: Amount of data gathered regarding JavaScript 
feature usage on the Alexa 10k. “Total website interaction 
time” is an estimate based on the number of pages visited 
and 30 seconds of page interaction per visit. 

For each site in the Alexa 10k, we repeated the above 
procedure ten times to ensure we measure all features used 
on the page, five times in the default case, and 5 time in 
the blocking case. We present findings for why 5 times is 
sufficient to induce all types of site functionality in Section 6. 
Table 1 presents some high level figures of this automated 
crawl. For 267 domains, were unable to measure feature usage 
for a variety of reasons, including non-responsive domains 
and sites that contained syntax errors in their JavaScript 
code that prevented execution. 

5. RESULTS 
In this section we discuss our findings, including the popu

larity distribution of JavaScript features used on the web with 
and without blocking, feature popularity’s relation to fea
ture age, which features are disproportionately blocked, and 
which features are associated with security vulnerabilities. 

5.1 Definitions 
This work uses the term feature popularity to denote 

the percentage of sites that use a given feature at least once 
during automated interaction with the site. A feature that is 
used on every site has a popularity of 1, and a feature that 
is never seen has a popularity of 0. 
Similarly, we use the term standard popularity to de

note the percentage of sites that use at least one feature from 
the standard at least once during the site’s execution. 
Finally, we use the term block rate to denote how fre

quently a browser feature would have been used if not for the 
presence of an advertisement- or tracking-blocking extension. 
In other words, browser features that are used much less 
frequently on the web when a user has AdBlock Plus or 
Ghostery installed have high block rates, while features that 
are still used on roughly the same number of websites in the 
presence of blocking extensions have low block rate. 

5.2 Standard Popularity Distribution 
Figure 3 displays the cumulative distribution of standard 

popularity. Some standards are extremely popular, and 
others are extremely unpopular: six standards are used on 
over 90% of all websites measured, and a full 28 of the 75 
standards measured were used on 1% or fewer sites, with 
eleven not used at all. Standard popularity is not feast or 
famine however, as standards see several different popularity 
levels between those two extremes. 

5.3 Feature Popularity 
We find that browser standards are not equally used on 

the web. Some features are extremely popular, such as the 
Document.prototype.createElement method, which allows 

http:gremlins.js


0%

25%

50%

75%

100%

0 2500 5000 7500 10000

Sites using a standard

P
or

tio
n 

of
 a

ll 
st

an
da

rd
s

Figure 3: Cumulative distribution of standard popularity 
within the Alexa 10k. 

for client-side modification of webpages and is used on 9,079– 
or over 90%–of pages in the Alexa 10k. 
Other browser features are never used. For example, 689 

features, or almost 50% of the 1,392 implemented in the 
browser, are never used once in the 10k most popular sites. 
A further 416 features are used on less than 1% of the 10k 
most popular websites. Put together, this means that over 
79% of the features available in the browser are used by less 
than 1% of the web. 
We also find that browser features do not have equal 

block rates; some features are blocked by advertisement and 
tracking blocking extensions far more often than others. 10% 
of browser features are prevented from executing over 90% 
of the time when browsing with common blocking extensions. 
We also find that 1,159 features, or over 83% of features 
available in the browser, are executed on less than 1% of 
websites in the presence of popular advertising and tracking 
blocking extensions. 

5.4 Standard Popularity in the Alexa 10k 
Standards, sets of related browser features collected and 

standardized together, are not equally popular on the web. 
Figure 4 depicts the relationship between a standards’s pop
ularity (represented by the number of sites the standard was 
used on, log scale) and its block rate. Since a standard’s pop
ularity is the number of sites where a feature in a standard 
appears at least once, the popularity of the standard will be 
equal to at least the popularity of the most popular feature 
in the standard. 
Each quadrant of the graph tells a different story about 

the popularity and desirability of a standard on the web. 

Popular, Unblocked Standards. The upper-left quadrant con
tains the standards that occur very frequently on the web, 
and are rarely blocked by advertising and tracking blocking 
extensions. 
One example of this, point CSS-OM, depicts the CSS 

Object Model [43] standard, which allows JavaScript code 
to introspect, modify and add to the styling rules in the 

document. It is positioned near the top of the graph because 
8,193 sites used a feature from the standard at least once 
during measurement. The standard is positioned to the 
left of the graph because the standard has a low block rate 
(12.6%), meaning that the addition of blocking extensions 
had relatively little effect on how frequently a site used any 
feature from the standard. 

Popular, Blocked Standards. The upper-right quadrant of 
the graph shows standards that are used by a large percentage 
of sites on the web, but which blocking extensions frequently 
prevent from executing. 

A representative example of such a standard is the HTML: 
Channel Messaging [21] standard, represented by point H
CM. This standard defines JavaScript methods allowing 
embedded documents (iframes) and windows to communi
cate with their parent document. This functionality is often 
used by embedded-content and popup windows to communi
cate with the hosting page, often in the context of advertising. 
This standard is used on over half of all sites by default, but 
is prevented from being executed over 77% of the time. 

Unpopular, Blocked Standards. The lower-right quadrant of 
the graph shows standards that are rarely used by websites, 
and that are almost always prevented from executing by 
blocking extensions. 

Point ALS shows the Ambient Light Events standard [54], 
which defines events and methods allowing a website to react 
to changes to the level of light the computer, laptop or mobile 
phone is exposed to. The standard is rarely used on the web 
(14 out of 10k sites), but is prevented from being executed 
100% of the time by blocking extensions. 

Unpopular, Unblocked Standards. The lower-left quadrant of 
the graph shows standards that were rarely seen in our study, 
but which were rarely prevented from executing. Point E 
shows the Encodings [56] standard. This standard allows 
JavaScript code to read and convert text between different 
text encodings, such as reading text from a document encoded 
in GBK and inserting it into a website encoded in UTF-8. 
The Encodings [56] standard is rarely used on the web, 

with only 1 of the Alexa 10k sites attempting to use it. 
However, the addition of an advertising or tracking blocking 
extension had no affect on the number of times the standard 
was used; this sole site still used the Encodings standard 
although AdBlock Plus and Ghostery were installed. 

5.5 Standard Popularity by Site Popularity 
The results described in this paper treat all sites in the 

Alexa 10k equally, so that if the most popular and least pop
ular sites use the same standard, both uses of that standard 
are given equal consideration. In this section we examine the 
accuracy of this assumption by measuring the difference be
tween the number of sites using a standard, and the number 
of website visits using a standard. In other words, we weigh 
a standard’s use based on the popularity of the site using it. 

Figure 5 shows the results of this comparison. The x-axis 
shows the percentage of sites examined that use at least one 
feature from a standard, and the y-axis shows the estimated 
percentage of site views on the web that use this standard. 
Standards above the x=y line are more popular on frequently 
visited sites, such that the percentage of page views using 
the standard is greater than the percentage of sites using the 



AJAX

ALS

BA BE

CO

CSS−CR

CSS−FO

CSS−OM

CSS−VM

DO

DOM

DOM1

DOM2−C
DOM2−E

DOM2−H

DOM2−S

DOM2−T

DOM3−C

DOM3−X

DOM4

DOM−PS

DU

E

EC

EME

F

FA

FULL

GEO

GIM

GP

H−B

H−C

H−CM

H−HI

H−P

HRTHTML HTML5

HTML51

H−WB

H−WS

H−WW

IDB

MCD

MCS

MSE

MSR

NS

NT

PE
PL

PT

PT2

PV

RT

SD

SEL

SLC

SO

SVG

SW

TC

TPE

UIE

URL

UTL

V

WCR

WEBA

WEBGL

WEBVTT

WN
WRTC

10

100

1,000

10,000

0% 25% 50% 75% 100%

Block rate

S
ite

s 
us

in
g 

th
is

 s
ta

nd
ar

d

Figure 4: Popularity of standards versus their block rate, on a log scale. 

●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

DOM4

DOM−PS
H−HI

TC
0%

25%

50%

75%

100%

0% 25% 50% 75%

Portion of all websites

P
or

tio
n 

of
 a

ll 
w

eb
si

te
 v

is
its

●
●

●

●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

AJAX

H−P

SLC

V0

2500

5000

7500

2006 2008 2010 2012 2014 2016

Standard introduction date

S
ite

s 
us

in
g 

st
an

da
rd

●● block rate < 33%
33% < block rate < 66%
66% < block rate

Figure 5: Comparison of percentage of sites using a standard 
versus percentage of web traffic using a standard. 

standard. 
Generally, the graph shows that standard usage is not 

equally distributed, and that some standards are more popu
lar with more frequently visited sites. However, the general 
trend appears to be for standards to cluster around the x=y 
line, indicating that while there are some differences in stan
dard usage between popular and less popular sites, they do 
not affect our general analysis of standard usage on the web. 

Therefore, for the sake of brevity and simplicity, all other 
measures in this paper treat standard usage on all domains 
as equal, and do not factor a site’s popularity into the mea
surement. 

Figure 6: Comparison of a standard’s availability date, and 
its popularity. 

5.6 Standard Popularity by Introduction Date 
We were also able to measure the relationship between 

when a standard became available in the browser, its popular
ity, and how frequently its execution is prevented by popular 
blocking extensions. Again, to simplify the presentation, the 
graph illustrates the popularity, introduction date, and block 
rate of standards; not of the individual features themselves 
that comprise these standards. 

As the graph shows, there is no simple relationship between 
when a standard was added to the browser, how frequently 
the standard is used on the web today, and how frequently 
the standard is blocked by common blocking extensions. 
However, as Figure 6 indicates, some standards have become 
extremely popular over time, while others, both recent and 



old, have languished in disuse. Further, it appears that some 
standards have been introduced extremely recently but have 
nevertheless been readily adopted by web authors. 

Old, Popular Standards. For example, point AJAX depicts 
the XMLHttpRequest [57], or AJAX standard, used to to 
send information to a server without refetching the entire 
document. This standard has been available in the browser 
for almost as long as Firefox has been released (since 2004), 
and is also extremely popular; this standard’s most popular 
feature, XMLHttpRequest.prototype.open, is used on 7,955 
sites in the Alexa 10k. Standards in this portion of the 
graph have been in the browser for a long time, and appear 
on a large fraction of sites. This cluster of standards also 
have generally low block rates of less than 50%, which are 
considered low in this study. 

Old, Unpopular Standards. Other standards, despite existing 
in the browser nearly since Firefox’s inception, are much 
less popular on the current web. Point H-P shows the 
HTML: Plugins [22] standard, which is a subsection of the 
larger HTML standard that allows document authors to 
detect the names and capabilities of plugins installed in the 
browser (such as Flash, Shockwave, Silverlight, etc.). The 
most popular features of this standard have been available 
in Firefox since 2005. However, the most popular feature 
in this standard, namely, PluginArray.prototype.refresh, 
which checks for changes in browser plugins, is used on less 
than 1% of current websites (90 sites). 

New, Popular Standards. Point SEL depicts the Selectors 
API Level 1 [58] standard, which provides site authors with 
a simpler interface for querying elements in a document. 
Despite being a relatively recent addition to the browser (the 
standard was added in 2013), the most popular feature in 
the standard–the Document.prototype.querySelectorAll 
feature–is used on over 80% of websites. This standard, 
along with the other standards the Selectors API Level 1 
standard is clustered with in the graph, have low block rates. 

New, Unpopular Standards. Point V shows the Vibration [30] 
standard, which allows site authors to trigger a vibration in 
the user’s device on platforms that support it. Despite this 
standard having been available in Firefox longer than the 
previously mentioned Selectors API Level 1 standard, the Vi
bration standard is significantly less popular on the web. The 
sole method in the standard, Navigator.prototype.vibrate, 
is only used once in the Alexa 10k. 

5.7 Standard Blocking 
Many users alter their browsing environment when vis

iting websites. They may do so for a variety of reasons, 
including wishing to limit advertising displayed on the pages 
they read, reducing their exposure to malware distributed 
through advertising networks, and increasing their privacy 
by reducing the amount of tracking they experience online. 
These browser modifications are typically made by installing 
browser extensions. 

We measured the effect that installing two common browser 
extensions, AdBlock Plus and Ghostery, on the type and 
number of features that are executed when visiting websites. 

●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

● ●

●

●

●

PT2

UIE
WCR

WRTC

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Ad block rate

Tr
ac

ki
ng

 b
lo

ck
 r

at
e

Sites using feature

● ● ● ●100 101 102 103

Figure 7: Comparison of block rates of standards using 
advertising vs. tracking blocking extensions. 

5.7.1 Standard Blocking Frequency 
As discussed in 5.4, browser standards are not equally 

prevented from executing by installing blocking extensions. 
As Figure 4 shows, some standards are greatly impacted by 
installing these advertising and tracking blocking extensions, 
while others are generally not impacted at all. 

For example, the Beacon [20] standard, which allows web
sites to trigger functionality when a user leaves a page, has 
a 83.6% reduction in usage when browsing with blocking 
extensions. Similarly, the SVG standard, which includes 
functionality that allows for fingerprinting users through font 
enumeration2, sees a similar 86.8% reduction in site usage 
when browsing with blocking extensions. 

Other browser standards, such as the core DOM standards, 
see very little reduction in page usage in the presence of 
blocking extensions. 

5.7.2 Standard Blocking Purpose 
In addition to measuring which standards were blocked by 

extensions, we were also able to distinguish which extensions 
did the blocking. Figure 7 plots the block rate of standards 
when sites were visited with only an advertising blocking 
extension installed (x-axis), versus the block rate of standards 
when sites were visited with only a tacking blocking extension 
installed (y-axis). 

Values along the X=Y line in the graph are standards that 
were blocked equally with both types of extensions installed, 
with points closer to the upper-right corner being blocked 
more often, and points closer to the lower-left corner being 
blocked less often. 

Points to the upper-left of the graph depict standards that 
were blocked more frequently by the tracking-blocking ex
tension than the advertising-blocking extension, while points 
to the lower-right of the graph shows standards that were 
blocked more frequently by the advertising-blocking exten
sion. 

As the graph shows, some standards, such as WebRTC [9] 

2The SVGTextContentElement.prototype. 
getComputedTextLength method 



(which is associated with attacks revealing the user’s IP ad
dress), WebCrypto API [25] (which is used by some analytics 
libraries to generate identifying nonces), and Performance 
Timeline Level 2 [18] (which is used to generate high resolu
tion time stamps) are blocked by tracking-blocking extensions 
more often than they are blocked by advertisement blocking 
extensions. 

The opposite is true, to a lesser extent, for the UI Events 
Specification [19] standard, which specifies new ways that 
sites can respond to user interactions. 

5.8 Standards and Browser Vulnerabilities 
Just as all browser standards are not equally popular 

on the web, neither are all standards equally associated 
with known vulnerabilities in Firefox. Some standards have 
been associated with, or implicated in, a large number of 
vulnerabilities, while others have not been associated with 
any publicly known issues. This subsection presents which 
browser standards have been connected to known security 
vulnerabilities (in the form of filed CVEs), and the relative 
popularity and block rates of those standards. 

Column five of table 2 shows the number of CVEs associ
ated with this standard’s implementation in Firefox within 
the last three years. As the table shows, some implemen
tations of web standards have been associated with a large 
number of security bugs even though those standards are not 
popular on the web or are frequently blocked by advertising 
and tracking blocking extensions. 
For example, the Web Audio API [4] standard is an ex

ample of the first case; a standard that is highly unpopular 
with website authors, but which has exposed users to a sub
stantial number of security vulnerabilities. We observe the 
standard in use on fewer that 2% of sites in our collection, 
but its implementation in Firefox is associated with at least 
10 CVEs in the last 3 years. WebRTC [9] is used on less 
than 1% of sites in the Alexa 10k, but is associated with 8 
CVEs in the last 3 years. 

The Scalable Vector Graphics [13] standard is an example 
of the latter case. The standard is very frequently blocked by 
advertising and tracking blocking extensions; the standard is 
used on 1,554 sites in the Alexa 10k, but is prevented from 
executing in 87% of cases. At least 14 CVE’s have been 
reported on Firefox’s implementation of the standard in the 
last 3 years. 

5.9 Site Complexity 
Along with considering which standards are used by which 

sites, we can also evaluate sites based on their complexity. 
We define complexity as the number of standards used on a 
given website. As Figure 8 shows, most sites use a reasonably 
wide array of different standards: between 14 and 32 of the 74 
available in the browser. No site used more than 41 different 
standards, and a second mode exists around the zero mark, 
showing that a small but measurable subset of sites use little 
to no JavaScript at all. 

6. VALIDATION 
This study measures the features executed over repeated, 

automated interactions with a website. We then treat these 
automated measurements as representative of the features 
that would be executed when a human visited the website. 
Our work relies on the assumption that our automated 

measurement technique triggers (at least) all the browser 

0%

1%

2%

3%

4%

0 10 20 30 40

Numer of standards used

P
or

tio
n 

of
 a

ll 
si

te
s

Figure 8: Probability density function of number of standards 
used by sites in the Alexa 10k. 

functionality a human user’s browser will execute when in
teracting with the same website. This section explains how 
we verified this assumption to be reasonable. 

6.1 Internal Validation 

Round # Avg. New Standards 

2 1.56 
3 0.40 
4 0.29 
5 0.00 

Table 3: Average number of new standards encountered on 
each subsequent automated crawl of a domain. 

As discussed in Section 4.3.1, we applied our automated 
measurement technique to each site in the Alexa 10k five 
times. We measured five times with the goal of capturing the 
full set of functionality used on the site, since the measure
ment’s random walk technique means that each subsequent 
measurement may encounter different parts of the site not 
reached previously. 

A natural question then is whether five measurements are 
sufficient to capture all potentially encountered features per 
site, or whether additional measurements are necessary. To 
ensure that five measurements where sufficient, we examined 
how many new standards were encountered on each round of 
measurement. If new standards were still being encountered 
in the final round of measurement, it would indicate we 
had not measured enough, and that our data painted an 
incomplete picture of the types of features used in each site. 

Table 3 shows the results of this verification. The first col
umn lists each round of measurement, and the second column 
lists the corresponding number of new standards encountered 
in the current round that had not yet been observed in the 
previous rounds (averaged across the entire Alexa 10k). As 
the table shows, the average number of new standards ob
served on each site decreased with each measurement, until 
the 5th measurement of each site, at which point we did not 



Standard Name Abbreviation # Features # Sites Block Rate # CVEs 

HTML: Canvas H-C 54 7,061 33.1% 15 
Scalable Vector Graphics 1.1 (2nd Edition) SVG 138 1,554 86.8% 14 
WebGL WEBGL 136 913 60.7% 13 
HTML: Web Workers H-WW 2 952 59.9% 11 
HTML 5 HTML5 69 7,077 26.2% 10 
Web Audio API WEBA 52 157 81.1% 10 
WebRTC 1.0 WRTC 28 30 29.2% 8 
XMLHttpRequest AJAX 13 7,957 13.9% 8 
DOM DOM 36 9,088 2.0% 4 
Indexed Database API IDB 48 302 56.3% 3 
Beacon BE 1 2,373 83.6% 2 
Media Capture and Streams MCS 4 54 49.0% 2 
Web Cryptography API WCR 14 7,113 67.8% 2 
CSSOM View Module CSS-VM 28 4,833 19.0% 1 
Fetch F 21 77 33.3% 1 
Gamepad GP 1 3 0.0% 1 
High Resolution Time, Level 2 HRT 1 5,769 50.2% 1 
HTML: Web Sockets H-WS 2 544 64.6% 1 
HTML: Plugins H-P 10 129 29.3% 1 
Web Notifications WN 5 16 0.0% 1 
Resource Timing RT 3 786 57.5% 1 
Vibration API V 1 1 0.0% 1 
Battery Status API BA 2 2,579 37.3% 0 
CSS Conditional Rules Module, Level 3 CSS-CR 1 449 36.5% 0 
CSS Font Loading Module, Level 3 CSS-FO 12 2,560 33.5% 0 
CSS Object Model (CSSOM) CSS-OM 15 8,193 12.6% 0 
DOM, Level 1 - Specification DOM1 47 9,139 1.8% 0 
DOM, Level 2 - Core Specification DOM2-C 31 8,951 3.0% 0 
DOM, Level 2 - Events Specification DOM2-E 7 9,077 2.7% 0 
DOM, Level 2 - HTML Specification DOM2-H 11 9,003 4.5% 0 
DOM, Level 2 - Style Specification DOM2-S 19 8,835 4.3% 0 
DOM, Level 2 - Traversal and Range Specification DOM2-T 36 4,590 33.4% 0 
DOM, Level 3 - Core Specification DOM3-C 10 8,495 3.9% 0 
DOM, Level 3 - XPath Specification DOM3-X 9 381 79.1% 0 
DOM Parsing and Serialization DOM-PS 3 2,922 60.7% 0 
execCommand EC 12 2,730 24.0% 0 
File API FA 9 1,991 58.0% 0 
Fullscreen API FULL 9 383 79.9% 0 
Geolocation API GEO 4 174 13.1% 0 
HTML: Channel Messaging H-CM 4 5,018 77.4% 0 
HTML: Web Storage H-WS 8 7,875 29.2% 0 
HTML HTML 195 8,980 4.3% 0 
HTML: History Interface H-HI 6 1,729 18.7% 0 
Media Source Extensions MSE 8 1,616 37.5% 0 
Performance Timeline PT 2 4,690 75.8% 0 
Performance Timeline, Level 2 PT2 1 1,728 93.7% 0 
Selection API SEL 14 2,575 36.6% 0 
Selectors API, Level 1 SLC 6 8,674 7.7% 0 
Timing control for script-based animations TC 1 3,568 76.9% 0 
UI Events Specification UIE 8 1,137 56.8% 0 
User Timing, Level 2 UTL 4 3,325 33.7% 0 
DOM4 DOM4 3 5,747 37.6% 0 
Non-Standard NS 65 8,669 24.5% 0 

Table 2: Popularity and blockrate for the web standards that are used on at least 1% of the Alexa 10k or have at least one
 
associated CVE advisory in the last three years.
 
Columns one and two list the name and abbreviation of the standard.
 
Column three gives the number of features (methods and properties) from that standard that we were able to instrument.
 
Column four includes the number of pages that used at least one feature from the standard, out of the entire Alexa 10k.
 
Column five shows the number of sites on which no features in the standard executed in the presence of advertising and
 
tracking blocking extensions (given that the website executed at least one feature from the standard in the default case),
 
divided by the number of pages where at least one feature from the standard was executed. In other words, how often the
 
blocking extensions prevented all features in a standard from executing, given at least one feature would have been used.
 
Column six shows the number of CVEs associated with this standard’s implementation in Firefox within the last three years.
 



observe any new features being executed on any site. 
From this we concluded that 5 rounds was a sufficient 

number of measurements for each domain, and that further 
automated measurements of these sites were unlikely to 
observe new feature usage. 

6.2 External Validation 

0 1 2 5 7 17
Number of New Standards Observed

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r 

o
f 

D
o
m

a
in

s

77

8
3 2 1 1

Figure 9: Average number of new standards encountered on 
each subsequent automated crawl of a domain. 

We also tested whether our automated technique observes 
the same set of functionalities as a human web user. We 
chose 100 sites to visit randomly, but weighted each choice 
according to the proportion of visits that site gets according 
to Alexa. We continued to select sites until we had collected 
a set of 100 different sites. We interacted with each site for 
90 seconds in a casual web browsing fashion. This included 
reading articles and blog posts, scrolling through websites, 
browsing site navigation listings, etc. We interacted with 
the home page of the site (the page directed to from the raw 
domain) for 30 seconds, then clicked on a prominent link we 
thought a typical human browser would also choose (such 
as the headline of a featured article) and interacted with 
this second page for 30 more seconds. We then repeated the 
process a third time, loading a third page that was interacted 
with for another 30 seconds. 

After omitting pornographic and non-English sites, We 
were able to complete this process for 92 different websites. 
We then compared the features used during manual interac
tion with our automated measurements of the same domains. 
Figure 9 provides a histogram of this comparison, with the 
x-axis showing the number of new standards observed dur
ing manual interaction that were not observed during the 
automated interaction. As the graph shows, in the majority 
of cases (83.7%), no new features were observed during man
ual interaction that the automated measurements did not 
catch. The graph also shows a few outliers, including one 
very significant outlier, where manual interaction triggered 
standards that our automated technique did not. 
From this we conclude that our automated measurement 

technique did a generally accurate job of emulating the kinds 
of feature use a human user would encounter on the web, even 
if the technique does not perfectly capture human feature 
usage in all cases. 

7. DISCUSSION 
In this section, we discuss the potential ramifications of 

these findings, including what our results mean for the com
plexity of the browser. 

7.1 Popular and Unpopular Browser Features 
There are a small number of standards in the browser 

that are extremely popular with website authors, providing 
features which can be thought of as necessary for making 
modern web pages usable. These standards provide function
ality like querying the document for elements, inspecting and 
validating forms, and making client-side page modifications.3 . 

A much larger portion of the browser’s functionality, how
ever, is unused by most site authors. Eleven different JavaScript
exposed standards in Firefox are completely unused in the 
top ten thousand most popular websites, and 28 (nearly 37% 
of standards available in the browser) are used by less than 
1% of sites. 

While many unpopular features are relatively new to the 
browser, youth alone does not seem to explain the extreme 
unpopularity of most features in the browser on the open 
web. These lesser used features may be of interest only for 
those creating applications which require login, or only small 
niches of developers and site visitors. 

7.2 Blocked Browser Features 
When users employ common advertising and tracking 

blocking extensions, they further reduce the frequency and 
number of standards that are executed in their browser. This 
suggests that some standards are primarily used to support 
the advertising and tracking infrastructure built into the 
modern web. When users browse with these common exten
sions installed, four additional standards go unused on the 
web (a total of 15 standards, or 20% of those available in 
the browser). An additional 20 standards become used on 
less than 1% of websites (for a total of 31 standards, or 41% 
of standards in the browser). 16 standards are blocked over 
75% of the time by blocking extensions. 

Furthermore, while content blocker rules do not target 
JavaScript APIs directly, that a standard like SVG [13], used 
on 16% of the Alexa 10k, would be prevented from running 
87% of the time is circumstantial evidence that whatever 
website functionality this enables is not necessary to the 
millions of people who use content blocking extensions. This 
phenomenon lends credence to what has been called “the 
Website Obesity Crisis” - the conjecture that websites include 
far more functionality than is actually necessary to serve the 
user’s purpose [12]. 
The presence of a large amount of unused functionality 

in the browser seems to contradict the common security 
principal of least privilege, or of giving applications only the 
capabilities they need to accomplish their intended task, and 
no more. This principal exists to limit attack surface and 
limit the unforeseen security risks that can come from the 
unexpected, and unintended, composition of features. As 
the list of CVEs in Figure 2 shows, unpopular and heavily 
blocked features have imposed substantial security costs to 
the browser. 

Even though these features are frequently blocked, the sites 
that they are blocked on are among the most popular websites 

3All of which are covered by the Document Object Model 
(DOM) Level 1 Specification standard, dating back to 1998. 



in the world. That these sites remain both functional and 
popular after having so much of their functionality removed 
speaks to the robustness of the web programming model, that 
these sites can still deliver the user’s desired functionality 
even after being heavily modified. 

7.3 Future Work 
This study develops and validates the use of monkey testing 

to elicit browser feature usage on the open web. The closed 
web (i.e. web content and functionality that are only available 
after logging in to a website) likely uses a broader set of 
features. With the correct credentials, the monkey testing 
approach could be used to evaluate those sites, although it 
would likely need to be improved with an increased crawl 
depth or a rudimentary understanding of site semantics. 

Finally, a more complete treatment of the security implica
tions of these broad APIs would be valuable. In recent years, 
plugins like Java and Flash have become less popular, and the 
native capabilities of browsers have become more impressive. 
The modern browser is a monolithic intermediary between 
web applications and user hardware, like an operating sys
tem. For privacy conscious users or those with special needs 
(like on public kiosks, or electronic medical record readers), 
understanding the privacy and security implications of this 
broad attack surface is very important. 

8. CONCLUSION 
The Web API offers a standardized API for programming 

across operating systems and web browsers. This platform 
has been tremendously useful in the proliferation of the web 
as a platform for both content dissemination and applica
tion distribution, and has enabled the modern web, built 
on JavaScript and offering functionality like video, games, 
and productivity applications. Applications that were once 
only possible as native apps or external plugins are now 
implemented in JavaScript in the browser. 
With this move of the web from a content distribution 

system to an application platform, more browser features 
have been added, not only support these applications, but 
support them across the incredible range of devices we use 
to access the web. Given this, it is not surprising that some 
features implemented within the browser are infrequently 
used. 

Beyond this popularity divide, however, is the segment of 
features which are blocked by content blockers in the vast 
majority of attempted uses. Although consumers are not 
directly rejecting those features as complicit with ads or 
tracking, the mere fact that these features are simultaneously 
popular with site authors but overwhelmingly blocked by site 
users signals that these features may exist in the browser to 
serve the needs of the site author rather than the site visitor. 
That these features can even be blocked at all, however, 

speaks to the robustness of the web’s open standards and 
extensible user agents. Preventing such functionality in 
native applications is far less common and likely more difficult. 
As the role of browser and the web continues to grow, the 
ability of web users to customize their experience will likely 
remain an important aspect of keeping the web user-centric, 
vibrant, and successful. 

References 
[1]	 Chromium blink mailing list discussion. https://groups. 

google.com/a/chromium.org/forum/#!topic/blink

dev/1wWhVoKWztY, 2014. [Online; accessed 15-February-2016]. 

[2]	 Chromium blink web features guidelines. https://dev. 
chromium.org/blink#new-features, 2016. [Online; accessed 
15-February-2016]. 

[3]	 Acar, G., Eubank, C., Englehardt, S., Juarez, M., 
Narayanan, A., and Diaz, C. The web never forgets: Per
sistent tracking mechanisms in the wild. In Proceedings of 
the 2014 ACM SIGSAC Conference on Computer and Com
munications Security (2014), ACM, pp. 674–689. 

[4]	 Adenot, P., Wilson, C., and Rogers, C. Web audio api. 
http://www.w3.org/TR/webaudio/, 2013. 

[5]	 Amalfitano, D., Fasolino, A. R., Tramontana, P., 
De Carmine, S., and Memon, A. M. Using gui ripping 
for automated testing of android applications. In Proceed
ings of the 27th IEEE/ACM International Conference on 
Automated Software Engineering (2012), ACM, pp. 258–261. 

[6] Apparao, V., Byrne, S., Champion, M., Isaacs, S., Hors, 
A. L., Nicol, G., Robie, J., Sharpe, P., Smith, B., 
Sorensen, J., Sutor, R., Whitmer, R., and Wilson, 
C. Document object model (dom) level 1 specification. 
https://www.w3.org/TR/REC-DOM-Level-1/, 1998. [Online; 
accessed 10-May-2016]. 

[7]	 Ayenson, M., Wambach, D. J., Soltani, A., Good, N., 
and Hoofnagle, C. J. Flash cookies and privacy ii: Now 
with html5 and etag respawning. Available at SSRN 1898390 
(2011). 

[8]	 Balebako, R., Leon, P., Shay, R., Ur, B., Wang, Y., and 
Cranor, L. Measuring the effectiveness of privacy tools for 
limiting behavioral advertising. In Web 2.0 Security and 
Privacy Workshop (2012). 

[9]	 Bergkvist, A., Burnett, D. C., Jennings, C., Narayanan, 
A., and Aboba, B. Webrtc 1.0: Real-time communication 
between browser. https://www.w3.org/TR/webrtc/, 2016. 
[Online; accessed 10-May-2016]. 

[10]	 Black Duck Software Inc. The chromium (google chrome) 
open source project on open hub. https://www.openhub. 
net/p/chrome/analyses/latest/code_history, 2015. [On
line; accessed 16-October-2015]. 

[11]	 Butkiewicz, M., Madhyastha, H. V., and Sekar, V. Un
derstanding website complexity: measurements, metrics, and 
implications. In Proceedings of the 2011 ACM SIGCOMM 
conference on Internet measurement conference (2011), ACM, 
pp. 313–328. 

[12]	 CegLlowski, M. The website obesity crisis. http:// 
idlewords.com/talks/website_obesity.htm, 2015. 

A˝
McCormack, C., Schepers, D., and Watt, J. Scalable 
vector graphics (svg) 1.1 (second edition). http://www.w3. 
org/TR/SVG11/, 2011. 

[13] Dahlstr ̃ um, E., Dengler, P., Grasso, A., Lilley, C., 

[14]	 Deveria, A. Can i use. http://caniuse.com/. [Online; 
accessed 16-October-2015]. 

[15] Dorwin, D., Smith, J., Watson, M., and Bateman, 
A. Encrypted media extensions. http://www.w3.org/TR/ 
encrypted-media/, 2015. 

[16]	 Eckersley, P. How unique is your web browser? In Privacy 
Enhancing Technologies (2010), Springer, pp. 1–18. 

[17] Falahrastegar, M., Haddadi, H., Uhlig, S., and Mortier, 
R. Anatomy of the third-party web tracking ecosystem. arXiv 
preprint arXiv:1409.1066 (2014). 

https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/1wWhVoKWztY
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/1wWhVoKWztY
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/1wWhVoKWztY
https://dev.chromium.org/blink#new-features
https://dev.chromium.org/blink#new-features
http://www.w3.org/TR/webaudio/
https://www.w3.org/TR/REC-DOM-Level-1/
https://www.w3.org/TR/webrtc/
https://www.openhub.net/p/chrome/analyses/latest/code_history
https://www.openhub.net/p/chrome/analyses/latest/code_history
http://idlewords.com/talks/website_obesity.htm
http://idlewords.com/talks/website_obesity.htm
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://caniuse.com/
http://www.w3.org/TR/encrypted-media/
http://www.w3.org/TR/encrypted-media/


[18]	 Grigorik, I., Mann, J., and Wang, Z. Performance timeline 
level 2. https://w3c.github.io/performance-timeline/, 
2016. [Online; accessed 11-May-2016]. 

[19]	 Grigorik, I., Mann, J., and Wang, Z. Ui events. https:// 
w3c.github.io/uievents/, 2016. [Online; accessed 11-May
2016]. 

[20]	 Grigorik, I., Reitbauer, A., Jain, A., and Mann, J. 
Beacon w3c working draft. http://www.w3.org/TR/beacon/, 
2015. 

J˜

stedt, P., and Denicola, D. Html: Channel mes
saging. https://html.spec.whatwg.org/multipage/comms. 
html#channel-messaging, 2016. [Online; accessed 10-May
2016]. 

[21] Hickson, I., Pieters, S., van Kesteren, A., Ad’gen

[22] Hickson, I., Pieters, S., van Kesteren, A., J ̃Ad’genstedt, 
P., and Denicola, D. Html: Plugins. https://html.spec. 
whatwg.org/multipage/webappapis.html#plugins-2, 2016. 
[Online; accessed 10-May-2016]. 

[23]	 Hors, A. L., Hegaret, P. L., Wood, L., Nicol, G., Robie, 
J., Champion, M., and Byrne, S. Document object model 
(dom) level 2 core specification. https://www.w3.org/TR/DOM
Level-2-Core/, 2000. [Online; accessed 10-May-2016]. 

[24]	 Hors, A. L., Hegaret, P. L., Wood, L., Nicol, G., Robie, 
J., Champion, M., and Byrne, S. Document object model 
(dom) level 3 core specification. https://www.w3.org/TR/DOM
Level-3-Core/, 2004. [Online; accessed 10-May-2016]. 

[25]	 Hors, A. L., Hegaret, P. L., Wood, L., Nicol, G., Ro
bie, J., Champion, M., and Byrne, S. Web cryptography 
api. https://www.w3.org/TR/WebCryptoAPI/, 2014. [Online; 
accessed 11-May-2016]. 

[26]	 Jackson, D. Webgl specification. https://www.khronos. 
org/registry/webgl/specs/1.0/, 2014. 

[27]	 Jang, D., Jhala, R., Lerner, S., and Shacham, H. An 
empirical study of privacy-violating information flows in 
javascript web applications. In Proceedings of the 17th ACM 
conference on Computer and communications security (2010), 
ACM, pp. 270–283. 

[28]	 Kamkar, S. Evercookie - virtually irrevocable persistent 
cookies. http://samy.pl/evercookie/,, 2015. [Online; ac
cessed 15-October-2015]. 

[29]	 Kohno, T., Broido, A., and Claffy, K. C. Remote physical 
device fingerprinting. Dependable and Secure Computing, 
IEEE Transactions on 2, 2 (2005), 93–108. 

[30]	 Kostiainen, A. Vibration. http://www.w3.org/TR/ 
vibration/, 2105. 

[31] Kostiainen, A., Oksanen, I., and Hazaël-Massieux, D. 
Html media capture. http://www.w3.org/TR/html-media
capture/, 2104. 

[32]	 Krishnamurthy, B., and Wills, C. Privacy diffusion on the 
web: a longitudinal perspective. In Proceedings of the 18th 
international conference on World wide web (2009), ACM, 
pp. 541–550. 

[33]	 Lamouri, M., and C̈ı£<ceres, M. Screen orientation. http: 
//www.w3.org/TR/screen-orientation/, 2105. 

[34]	 Lardinois, F. Google has already removed 8.8m lines of 
webkit code from blink. http://techcrunch.com/2013/05/ 
16/google-has-already-removed-8-8m-lines-of-webkit
code-from-blink/, 2013. [Online; accessed 12-May-2016]. 

[35]	 Liu, B., Nath, S., Govindan, R., and Liu, J. Decaf: de
tecting and characterizing ad fraud in mobile apps. In 11th 
USENIX Symposium on Networked Systems Design and Im
plementation (NSDI 14) (2014), pp. 57–70. 

[36]	 McDonald, A. M., and Cranor, L. F. Survey of the use 
of adobe flash local shared objects to respawn http cookies, 
a. ISJLP 7 (2011), 639. 

[37] Mowery, K., Bogenreif, D., Yilek, S., and Shacham, 
H. Fingerprinting information in javascript implementations. 
Proceedings of W2SP (2011). 

[38]	 Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting 
canvas in html5. Proceedings of W2SP (2012). 

[39]	 Mozilla Developer Network. Object.prototype.watch() 
- javascript | mdn. https://developer.mozilla.org/en
US/docs/Web/JavaScript/Reference/Global_Objects/ 
Object/watch. [Online; accessed 16-October-2015]. 

[40]	 Mulazzani, M., Reschl, P., Huber, M., Leithner, M., 
Schrittwieser, S., Weippl, E., and Wien, F. Fast and 
reliable browser identification with javascript engine finger
printing. In Web 2.0 Workshop on Security and Privacy 
(W2SP) (2013), vol. 5. 

[41]	 Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, 
C., Piessens, F., and Vigna, G. Cookieless monster: Ex
ploring the ecosystem of web-based device fingerprinting. In 
IEEE Symposium on Security and Privacy (2013). 

[42]	 Olejnik, L., Minh-Dung, T., Castelluccia, C., et al. Sell
ing off privacy at auction. In Annual Network and Distributed 
System Security Symposium (NDSS). IEEE (2014). 

[43]	 Pieters, S., and Glazman, D. Css object model (css-om). 
https://www.w3.org/TR/cssom-1/, 2016. [Online; accessed 
10-May-2016]. 

[44]	 Pujol, E., Hohlfeld, O., and Feldmann, A. Annoyed 
users: Ads and ad-block usage in the wild. In IMC (2015). 

[45]	 Rader, E. Awareness of behavioral tracking and information 
privacy concern in facebook and google. In Proc. of Sympo
sium on Usable Privacy and Security (SOUPS), Menlo Park, 
CA, USA (2014). 

[46]	 Reavy, M. Webrtc privacy. https://mozillamediagoddess. 
org/2015/09/10/webrtc-privacy/, 2015. [Online; accessed 
11-May-2016]. 

[47]	 Rogoff, Z. We’ve got momentum, but we need 
more protest selfies to stop drm in web standards. 
https://www.defectivebydesign.org/weve-got-momentum
but-we-need-more-protest-selfies, 2016. [Online; 
accessed 11-May-2016]. 

[48] Russell, A. Doing science on the web. https:// 
infrequently.org/2015/08/doing-science-on-the-web/, 
2015. 

[49]	 Soltani, A., Canty, S., Mayo, Q., Thomas, L., and Hoof
nagle, C. J. Flash cookies and privacy. In AAAI Spring 
Symposium: Intelligent Information Privacy Management 
(2010), vol. 2010, pp. 158–163. 

[50]	 Sorensen, O. Zombie-cookies: Case studies and mitigation. 
In Internet Technology and Secured Transactions (ICITST), 
2013 8th International Conference for (2013), IEEE, pp. 321– 
326. 

[51] The MITRE Corporation. CVE-2013-0763. 
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE
2013-0763, 2013. [Online; accessed 13-November-2015]. 

https://w3c.github.io/performance-timeline/
https://w3c.github.io/uievents/
https://w3c.github.io/uievents/
http://www.w3.org/TR/beacon/
https://html.spec.whatwg.org/multipage/comms.html#channel-messaging
https://html.spec.whatwg.org/multipage/comms.html#channel-messaging
https://html.spec.whatwg.org/multipage/webappapis.html#plugins-2
https://html.spec.whatwg.org/multipage/webappapis.html#plugins-2
https://www.w3.org/TR/DOM-Level-2-Core/
https://www.w3.org/TR/DOM-Level-2-Core/
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/DOM-Level-3-Core/
https://www.w3.org/TR/WebCryptoAPI/
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://samy.pl/evercookie/,
http://www.w3.org/TR/vibration/
http://www.w3.org/TR/vibration/
http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/html-media-capture/
http://www.w3.org/TR/screen-orientation/
http://www.w3.org/TR/screen-orientation/
http://techcrunch.com/2013/05/16/google-has-already-removed-8-8m-lines-of-webkit-code-from-blink/
http://techcrunch.com/2013/05/16/google-has-already-removed-8-8m-lines-of-webkit-code-from-blink/
http://techcrunch.com/2013/05/16/google-has-already-removed-8-8m-lines-of-webkit-code-from-blink/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/watch
https://www.w3.org/TR/cssom-1/
https://mozillamediagoddess.org/2015/09/10/webrtc-privacy/
https://mozillamediagoddess.org/2015/09/10/webrtc-privacy/
https://www.defectivebydesign.org/weve-got-momentum-but-we-need-more-protest-selfies
https://www.defectivebydesign.org/weve-got-momentum-but-we-need-more-protest-selfies
https://infrequently.org/2015/08/doing-science-on-the-web/
https://infrequently.org/2015/08/doing-science-on-the-web/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0763
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0763


[52]	 The MITRE Corporation. CVE-2014-1577. 
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE
2014-1577, 2014. [Online; accessed 13-November-2015]. 

[53]	 The MITRE Corporation. Common vulnerabilities and ex
posures. https://cve.mitre.org/index.html, 2015. [Online; 
accessed 13-November-2015]. 

[54]	 Turner, D., and Kostiainen, A. Ambient light events. 
http://www.w3.org/TR/ambient-light/, 2105. 

[55]	 Van Goethem, T., Joosen, W., and Nikiforakis, N. The 
clock is still ticking: Timing attacks in the modern web. In 
Proceedings of the 22nd ACM SIGSAC Conference on Com
puter and Communications Security (2015), ACM, pp. 1382– 
1393. 

[56]	 van Kesteren, A. Encoding standard. https://encoding. 
spec.whatwg.org/, 2016. [Online; accessed 11-May-2016]. 

[57]	 van Kesteren, A. Xmlhttprequest. https://xhr.spec. 
whatwg.org/, 2016. [Online; accessed 10-May-2016]. 

[58]	 van Kesteren, A., and Hunt, L. Selectors api level 1. https: 
//www.w3.org/TR/selectors-api/, 2013. [Online; accessed 
10-May-2016]. 

[59]	 Vasilyev, V. fingerprintjs2. https://github.com/Valve, 
2015. 

[60]	 World Wide Web Consortium (W3C). All standards and 
drafts. http://www.w3.org/TR/, 2015. [Online; accessed 16
October-2015]. 

[61]	 Zaninotto, F. Gremlins.js. https://github.com/marmelab/ 
gremlins.js, 2016. 

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1577
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1577
https://cve.mitre.org/index.html
http://www.w3.org/TR/ambient-light/
https://encoding.spec.whatwg.org/
https://encoding.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://xhr.spec.whatwg.org/
https://www.w3.org/TR/selectors-api/
https://www.w3.org/TR/selectors-api/
https://github.com/Valve
http://www.w3.org/TR/
https://github.com/marmelab/gremlins.js
https://github.com/marmelab/gremlins.js
http:Gremlins.js

	1 Introduction
	2 Background
	2.1 Modern Web Features
	2.2 Ads and Tracking Blocking

	3 Data sources
	3.1 Alexa Website Rankings
	3.2 Web API Features
	3.3 Web API Standards
	3.4 Historical Firefox Builds
	3.5 CVEs
	3.6 Blocking Extensions

	4 Methodology
	4.1 Goals
	4.2 Measuring Extension
	4.2.1 Measuring Method Calls
	4.2.2 Measuring Property Writes
	4.2.3 Other Browser Features

	4.3 Eliciting Site Functionality
	4.3.1 Default Case
	4.3.2 Blocking Case
	4.3.3 Automated Crawl


	5 Results
	5.1 Definitions
	5.2 Standard Popularity Distribution
	5.3 Feature Popularity
	5.4 Standard Popularity in the Alexa 10k
	5.5 Standard Popularity by Site Popularity
	5.6 Standard Popularity by Introduction Date
	5.7 Standard Blocking
	5.7.1 Standard Blocking Frequency
	5.7.2 Standard Blocking Purpose

	5.8 Standards and Browser Vulnerabilities
	5.9 Site Complexity

	6 Validation
	6.1 Internal Validation
	6.2 External Validation

	7 Discussion
	7.1 Popular and Unpopular Browser Features
	7.2 Blocked Browser Features
	7.3 Future Work

	8 Conclusion



