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Abstract—Third-party services form an integral part of the 
mobile ecosystem: they ease application development and enable 
features such as analytics, social network integration, and app 
monetization through ads. However, aided by the general opacity 
of mobile systems, such services are also largely invisible to users. 
This has negative consequences for user privacy as third-party 
services can potentially track users without their consent, even 
across multiple applications. Using real-world mobile traffic data 
gathered by the Lumen Privacy Monitor (Lumen), a privacy-
enhancing app with the ability to analyze network traffic on 
mobile devices in user space, we present insights into the mobile 
advertising and tracking ecosystem and its stakeholders. In 
this study, we develop automated methods to detect third-party 
advertising and tracking services at the traffic level. Using this 
technique we identify 2,121 such services, of which 233 were 
previously unknown to other popular advertising and tracking 
blacklists. We then uncover the business relationships between 
the providers of these services and characterize them by their 
prevalence in the mobile and Web ecosystem. Our analysis of the 
privacy policies of the largest advertising and tracking service 
providers shows that sharing harvested data with subsidiaries and 
third-party affiliates is the norm. Finally, we seek to identify the 
services likely to be most impacted by privacy regulations such as 
the European General Data Protection Regulation (GDPR) and 
ePrivacy directives. 

I. INTRODUCTION 

Mobile applications have become increasingly central to 
our daily lives, providing us with a variety of services and 
utilities (often at no cost). We entrust apps with a wealth of 
information that enables them to carry out these functions, 
yet despite our reliance on these apps and our countless daily 
interactions with them, we know very little about what they 
share about us with third-parties, who these third-parties are, 
and what they do with our data. As with the Web [1], many 
mobile app developers integrate third-party services in their 
apps for a variety of purposes including app maintenance 
(i.e., crash reports), analytics services, user engagement, A/B 
testing, social network integration, and advertising. Third-party 
services inherit the set of application permissions requested by 
the host app, allowing them access to a wealth of valuable user 
data, often beyond what they need to provide the expected ser­
vice to the app developer or the end-user [2]–[4], particularly 
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if the same library is used by multiple apps with different 
permissions. 

This has direct consequences for user privacy. However, 
most third-party services, with the exception of online adver­
tising services, operate in the background and do not provide 
any visual clues inside the apps, effectively tracking users 
without their knowledge or consent while remaining virtually 
invisible. The general lack of transparency in mobile systems 
leaves users unable to identify the third-party services used by 
their apps, let alone know to which extent these services are 
able to collect, correlate, and aggregate their personal data 
and online activity across apps and platforms. As a result, 
end users and developers alike have no insight into how these 
services operate at the network level, whether or how they 
handle sensitive data, and once the data leaves the device, 
whether they further share (or sell) it with other third parties, 
including affiliated advertising services and even data brokers. 
Despite the enormous research efforts conducted by academics 
and regulators to illuminate this ecosystem [5]–[9], there is a 
dearth of knowledge when it comes to understanding at scale 
the companies that own these services, where they operate, 
their relationships and partnerships, and what their privacy and 
data sharing policies are. 

In this work, we focus on studying third-party services 
whose main function relies on collecting tracking information 
from users, which we henceforth refer to as Advertising and 
Tracking Services (ATS). To understand how mobile apps 
that utilize ATSes operate under the hood, and the privacy 
cost of using them for the users, we need a holistic view 
of the complex ecosystem of mobile ATSes. However, gath­
ering large-scale comprehensive data from mobile apps is 
challenging [3], [10], [11]. Use of large-scale traffic traces 
gathered from ISPs lacks contextual information that is only 
available on the device (e.g., flow-to-app mapping) [12]; and 
while relying on dynamic analysis to study apps [4] yields 
good coverage of tracking activities and can scale up via 
use of “UI monkeys” to synthesize user input [13]–[16], it 
lacks the depth achieved when analyzing apps using real user 
input, especially when apps require users to log in [17]. 
Similarly, use of static analysis [18]–[20] has allowed studying 
mobile applications without running or interacting with them, 
but requires a significant amount of manual inspection and 
validation, thus making it difficult to scale. 

To overcome the limitations of existing mobile app analysis 
methods, we leverage Lumen Privacy Monitor (Lumen) 1, a 
mobile app that provides both users and researchers insight into 
network traffic generated by all apps, from the vantage point 

1https://www.haystack.mobi 

http:www.ndss-symposium.org
http://dx.doi.org/10.14722/ndss.2018.23353


of the device itself and with real user-stimuli while operating 
entirely in user-space and without requiring root access. Lumen 
is available for free on Google Play, and provides us with 
anonymized, yet rich app traffic data from its users. 

We analyze data gathered by Lumen and other publicly-
available resources to make the following contributions: 

Identifying mobile ATSes. We develop an automated ap­
proach to identify third-party services, ATSes, and any other 
ATS-capable services whose primary service does not appear 
to be ATS-related, yet perform harvesting of unique identifiers 
(ATS-C, Section IV). With our approach we are able to 
identify 2,121 ATS domains of which 233 were previously 
unreported in popular commercial ATS lists and 730 ATS-C 
services. 

Uncovering parent companies. We then perform a character­
ization of the 2,121 ATS domains identified by our approach 
(Section V). We obtain the parent organizations of these ser­
vices (after accounting for business mergers and acquisitions) 
and identify the dominant organizations in the mobile ATS 
ecosystem. We find that Alphabet-owned ATSes have presence 
in over 73% of apps in our dataset. This raises questions about 
Alphabet’s monopoly in the mobile ATS ecosystem. 

Cross-device tracking. Advertising and tracking services seek 
new mechanisms to track users across devices and platforms 
(i.e., cross-device tracking) [22], [23]. We find that there is 
a high proliferation of cross-device tracking services, with 
39% of our ATS domains. 17 of the top-20 largest ATS 
organizations have a presence both on the Web and in the 
mobile ecosystem. 

Privacy policies and user transparency. Our analysis of 
the privacy policies of the most dominant ATS organizations 
(having presence in over 80% of all apps in our study) 
reveals that eight of the top-10 organizations reserve the right 
to sell or share data with other organizations, while all of 
them reserve the right to share data with their subsidiaries. 
This demonstrates that a small number of companies have a 
monopoly on controlling a large portion of the ecosystem and 
that they have the ability to track users and share the tracking 
data with other entities, all with little to no transparency. 

Understanding the global flow of data and the implications 
of current and proposed regulations. We study how ATS-
related data is exported across borders and explore the impact 
of the European General Data Protection Regulation (GDPR) 
and ePrivacy directives on ATSes (Section VI). We find that 
the European regulations are likely to impact ATS providers 
in the United States and China more significantly than others. 

II. THE MOBILE ADVERTISING AND TRACKING
 
ECOSYSTEM
 

A study of the privacy policies of some of the well-known 
dominant players in the third-party mobile advertising and 
tracking ecosystem reveals their lax data sharing policies and 
demonstrates that the flow of user private information can 
violate the user-app trust relationships when it is collected by 
third parties. Some of these services explicitly claim that they 
do not sell their data to third-parties, but their parent companies 

Fig. 1: A screenshot of a data exchange website allowing 
potential customers to query sample data. 

allow data sharing between subsidiaries in their privacy policy– 
e.g., Facebook Graph API can share its data with Facebook 
Ads. Others, explicitly say that they reserve the right to share 
aggregate (or sometimes even non-anonymized) data with their, 
often undisclosed, third-party “partners”. This is not helped by 
the fact that there have been numerous cases where companies 
with large amounts of user data have been found to sell this 
data to other companies [24]. 

Although some users may become indirectly aware of this 
data sharing between tracking and advertising companies when 
they start seeing related targeted ads in seemingly unrelated 
apps and websites [25], the data (anonymized or otherwise) 
mostly ends up in the hands of data brokers and exchanges 
where it can be sold to the highest bidder without their 
knowledge. Figure 1 shows a screenshot of one such data 
exchange’s website, demonstrating the volume of rich data 
they claim to possess from mobile users alone. This is also 
significant because data breaches are a common occurrence 
that have affected even big players in the mobile world, with 
notable cases like Yahoo (Flurry’s parent company) suffering 
from massive data breaches in 2014 and 2016 [26], [27] that 
compromised private information of hundreds of millions of 
users. 

Mobile tracking and regulatory agencies. Regulatory agen­
cies and policy makers have developed several laws to protect 
user privacy with relative success. However, each jurisdiction 
has its own rules and regulations regarding data collection to 
protect citizens against unlawful and invasive online tracking 
practices. One example of these regulations is the Children’s 
Online Privacy Protection Act (COPPA) rule in the United 
States which bans the collection of private information from 
children and minors under the age of 13 without parental 
consent [28]. Despite this, there have been cases in the past 
where companies have been found in violation of COPPA 
and fined by the Federal Trade Commision (FTC) [29], and 
there are still countless examples of games and children’s 
apps that use third party services collecting tracking data 
without parental consent [30]. The European Union has also 
proposed a regulation to enforce data protection for individuals 
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in the European Union. Named the General Data Protection 
Regulation (GDPR) [31], it will impose strict rules on tracking 
and collection of personal data within the European Union 
when it goes into effect. With app markets containing millions 
of apps, and given the lack of knowledge about the mobile 
tracking ecosystem, it is difficult to enforce these regulations 
at scale. 

Analyzing the mobile ecosystem at a global scale. Previous 
work has shown that 99% app traffic is sent over the network, 
with only 1% of app traffic going over other channels like 
SMS [32]. This means that in order to study interactions 
between apps and third-party advertising and tracking services 
we need to analyze apps at the traffic level. Previous techniques 
to study these interactions trade off scale and comprehen­
siveness, either missing valuable contextual information about 
flows (e.g., flow-to-app attribution and encrypted traffic) in 
network-level traffic analysis, or lacking scale and real-world 
user stimuli in static analysis. To avoid these pitfalls, we need 
a scalable measurement platform to study app behavior at scale 
and with access to rich on-device information. 

In order to study these services, we need to identify the set 
of domain names reached by mobile application and classify 
them by their purpose. However, studying and classifying 
domains is still an open research challenge: it is therefore 
difficult to find out what role each domain plays in an app, 
not to mention attributing ownership. 

First-party domains enable functionalities that are central 
to the app itself —although they can still track users— while 
third-party domains enable third-party functions in other apps. 
For example, Facebook domains are a central part of the 
Facebook app, while the same domains are considered third 
parties when they are used in other apps (e.g., to provide 
Facebook API integration [33]). Our focus is on third-party 
domains since first-party domains are considered to be trusted 
by users when they install apps to provide a function, while 
third-party tracking domains may not. Moreover, third-party 
domains can still collect tracking information even when they 
do not provide in-app advertisements. Unfortunately, existing 
resources to identify third-party advertising and tracking do­
mains often focus on the desktop platform, leaving out a vast 
number of domain names that are active only in the mobile 
space. 

We define two categories of third-party domains based on 
their business model and observed behavior: 

•	 ATS domains are ones that belong to companies whose pri­
mary service is providing advertising and tracking services, 
either to display targeted advertisements or for analytics and 
other tracking-focused purposes. 

•	 ATS-capable domains (ATS-C) are domains that collect 
tracking information, but whose primary service is not 
specifically providing ads and analytics to app developers. 

An example of an ATS service would be analytics services 
that monitor and report user information, device information, 
in-app events, and other events; while an ATS-C service like 
an integrated map API might collect location data and other 
information to provide area maps and directions to the app, but 
doesn’t necessarily rely on tracking users for monetizing their 
service. However, it should be noted that this doesn’t mean 

UID Description UID Description 

IMEI (,) 
IMSI (,) 
SIM# (,) 
AndSerial 

Device ID. 
SIM ID. 
SIM number. 
OS ID. 

AndId (,) 
Phone # (,) 
Fingerprint 
MAC 

Advertising ID. 
Phone number. 
Device ID. 
Unique hardware ID. 

TABLE I: List of UIDs monitored by Lumen and their consent 
requirements. A , indicates that consent of the user is required 
before harvesting the corresponding UID. 

that ATS-Cs can’t later share their data with third parties or 
sister companies and subsidiaries. 

III. LUMEN PRIVACY MONITOR 

Lumen Privacy Monitor is a home-built Android app that 
aims to promote mobile transparency and user awareness by 
informing users about how their installed apps handle sensitive 
data such as unique identifiers and personally identifiable 
information (PII). Table I lists the UIDs monitored and their 
consent requirements. It runs locally on the device and in­
tercepts all network traffic—both over WiFi and the mobile 
network–without requiring root permissions. Lumen has been 
publicly available on Google Play since October 2015. We 
use anonymized traffic logs from over 11,000 crowdsourced 
Lumen (Lumen)2 users for this study. 

A. Lumen overview 

Lumen works by leveraging the Android VPN permission 
to capture and analyze network traffic, including encrypted 
flows, locally on the device and in user-space. Lumen inserts 
itself as a middleware between apps and the network interface. 

The use of the VPN permission to analyze app traffic on 
user-space is not novel [34], [35]. However, previous tools fea­
tures essential to comprehensively study mobile traffic without 
affecting app execution, including efficient flow-reassembly 
(the ability to parse entire flows) and a non-distruptive TLS 
interception module. For further details about Lumen’s goals, 
design, architecture, capabilities and ethical considerations we 
refer the reader to our previous report [21] and the project 
website 3. 

B. Traffic analysis 

By operating locally on the device, Lumen is able to 
correlate disparate and rich contextual information such as 
process IDs with flows. Lumen uses this vantage point and 
deep packet inspection techniques to analyze app payload and 
identify personal and sensitive data exported by apps. Beyond 
extracting traffic from regular flows, Lumen also deflates 
compressed flows and identifies privacy leaks obfuscated using 
different encoding mechanisms. To a large extent, the features 
implemented by Lumen can be perceived as a mobile and 
user-centric conception of the technologies present in Intrusion 
Detection Systems [36]–[38]. 

Additionally, since a large fraction of mobile apps have 
adopted TLS as the default protocol for data communications, 

2The tool was initially called Haystack. 
3https://www.haystack.mobi 
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Lumen employs a transparent man-in-the-middle (MITM) 
proxy for TLS traffic with user consent. At install time, 
Lumen explains the purpose of performing TLS interception 
and requests the user for permission to install a self-signed CA 
certificate in the root certificate store. 

C. User privacy considerations 

Examining user traffic, especially encrypted flows, raises 
privacy concerns. Lumen aims to preserve user privacy while 
gathering data regarding the export of unique identifiers and 
other PII. The app was built in consultation with our university 
IRB which deemed the current framework as not involving 
human subjects since its focus is on analyzing the behavior of 
software, not its users. In spite of this, we follow the principles 
of informed consent and additionally require users to opt-in 
twice before initiating traffic interception [39]. 

Lumen preserves user privacy by performing flow process­
ing and analysis on the device, only sending summarized and 
anonymized data (Section III-D) for research purposes. We em­
phasize that Lumen does not send back any unique identifiers, 
device fingerprints, or raw captures. To further protect user 
privacy, the Lumen app also: 1) ignores all flows generated 
by browser apps (which may potentially deanonymize a user); 
and 2) allows the user to disable traffic interception at any 
time. 

D. Lumen Data Summary 

At the time of this study (August 2017), the Lumen dataset 
included the ports, origin app, destination domain, requested 
app permissions, and IP address, TLS-handshake information, 
and types of unique identifiers leaked of over 8.5M flows 
from 14,599 apps to 40,553 unique fully-qualified domain 
names (FQDNs) with 13,453 unique second-level domains 
(SLDs). For devices carrying SIM cards, we also associate the 
Mobile Country Code (MCC) with each flow. This data was 
collected from more than 11,384 Lumen users. Although 73% 
of all Lumen installs are from USA, Spain, Italy, Germany, 
and India, our dataset includes users from over 100 different 
countries4 and is therefore able to provide insights into the 
pervasiveness of mobile ATSes globally. 

We download metadata for each app in our dataset from 
Google Play and find that of the 14,599 monitored by Lumen, 
3.0 % are paid apps, 26 % are free and allow in-app purchases5, 
16 % are not listed on Google Play, and the remaining apps 
are free. The set of apps not available on Google Play range 
from basic Android services to alternative app stores (e.g., 
MoboGenie [40] and Aptoide [41]), removed apps (e.g., Free 
WhatsDog [42]), and pre-installed apps from a number of 
mobile OS vendors (e.g., HTC, LG, Samsung, and Cyanogen). 
Our monitored apps fall under 33 different Google Play 
categories, namely Games (21.8%)6, Educational apps (9.9%), 
and Tools (7.9%). Finally, we consider the apps in our dataset 
to be representative of those used by average mobile users. 
48 % of the apps in our records have more than 1M installs 

4Statistics provided by the Google Play app developer console. 
5Free apps can require in-app payments to enable a feature in the app (e.g., 

to unlock new stages on an arcade game). 
6The Games category groups together 14 different game subcategories such 

as Arcade, Puzzle, and Adventure. 

while 71 % of our measured apps are listed on the Google 
Play Top-50 charts for USA, Spain, Germany, India and UK. 

IV. DOMAIN CLASSIFICATION APPROACH 

To identify ATS-related domains, we first need to distin­
guish third-party destinations contacted by apps from first-
party ones, and then ATS-related domains from those asso­
ciated with other third parties such as audio/video streaming 
SDKs and content delivery networks (CDNs). To filter out first-
party domains, we analyze the domain names of destinations 
as they give us clues about who owns and operates them. We 
describe the problems with existing ATS blacklists and our 
approach for identifying third-party domains and ATSes. 

A. Web-based ATS blacklists and URL categorization services 

Existing ATS blacklists such as EasyList [43] and Mal­
wareBytes hpHosts [44], and URL categorization services such 
as the McAfee URL Classifier [45], OpenDNS Domain Tagger 
[46], and VirusTotal [47]7. can help us in our effort to identify 
and categorize mobile third-party services, we cannot rely on 
them completely for several reasons: 

•	 Existing blacklists are specifically directed at identifying 
Web-specific ATSes and therefore do not account for many 
ATSes that operate exclusively in the mobile ecosystem. 

•	 URL categorization services operate at the SLD level 
and not by the FQDN. As a result, they cannot ac­
curately categorize subdomains used for purposes other 
than that of the original SLD. One such example is 
graph.facebook.com, a subdomain used by the Face-
book Graph API (a known ATS), categorized as social 
networking due to facebook.com being categorized as 
such; or ATSes that are subdomains of known CDNs being 
mis-categorized as CDN. 

•	 Even when considering only SLDs, the insight provided by 
URL classifiers can be incomplete as they are manually 
populated. Table II shows that while over 85% of the 13,453 
Lumen observed SLDs have categories assigned to them 
by both McAfee and VirusTotal, OpenDNS has below 38% 
coverage. We see that 2.9 % of the SLDs in our dataset are 
unclassified in all three services. 

•	 Categories returned by these services may be vague and 
not descriptive of the services provided by the domain; 
e.g., crashlytics.com, a provider of bug tracking and 
analytics services, is categorized as “Software/Hardware” by 
the McAfee service. 

Therefore, rather than completely relying on these lists, we 
use them to train, test, and curate our domain classifier and its 
results. 

B. Our classification approach 

Using Lumen data, we classify domains contacted by apps 
to distinguish third-party domains from first-party ones and 
then automatically categorize third-party services to identify 
ATS and ATS-C domains, as described below: 

7VirusTotal aggregates the insight provided by URL classifiers such as 
Websense ThreatSeeker and Dr. Web. 
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McAfee OpenDNS VirusTotal 

SLD Coverage (%) [N=13,453 ] 96 37 85 
Total / ATS-related categories 89 / 6 59 / 3 153 / 13 

TABLE II: URL classifier coverage for all SLDs in our dataset, 
the number of reported categories, and the categories related 
with ATS services. We identify domains as ATS-related if they 
are categorized by any service as a variant of the following 
terms: Ads, Advertising, Analytics, and Marketing. 

1) We identify third-party domains by analyzing and com­
paring the TLS certificates issued by a candidate third-
party domain (when available), the flows between apps 
and domains, and also public information available on 
Google play. In cases where certificate information is not 
available (i.e., flows are not TLS-based), we classify the 
domain as third party if it is contacted by apps from more 
than one developer. 

2a) Using automated search-engine queries and a front-page 
Web scraper, we identify the third-party domains (ser­
vices) suspected of providing services associated with AT-
Ses. We auto-curate this list by incorporating knowledge 
from Web-based classification services. 

2b) We label domains which receive unique identifiers from 
user devices but were not identified in the previous step 
as ATS-C. Since they possess unique identifiers for users, 
regardless of their current practices, these domains are all 
capable of performing tracking. 

C. Identifying third-party domains 

From the flows in our dataset, we obtain the set of domains 
with which monitored apps communicate. We use the TLS 
certificates issued by these domains (when available) to iden­
tify their controlling organizations8. Additionally, we crawl the 
Google Play store to identify the developers of each app in our 
dataset. We perform token matching of the certificate-derived 
owners and the app developers to identify cases where the 
certificate owner is not the same as the developer of the app. 
When this occurs, we consider the domain to be a third-party 
domain. For example, consider the scenario in Figure 2. Here, 
the organization derived from the TLS certificate issued by 
the domain accuweather.com only matches the name of 
the developers of the two Accuweather apps. Therefore our 
approach considers the domain to be a third-party domain 
for the other two apps. Similarly, urbanairship.com is 
identified as a third-party domain for all four apps connecting 
to it. 

We note that this condition is more strict than simply 
comparing the primary domain of the app with domains it 
communicates with (as has been done in prior work [9]). This 
is to account for apps that embed content from other domains 
(e.g., Facebook Like button, YouTube videos). However, it 
falls short in distinguishing cases where the TLS certificate 
is owned by a CDN (e.g., CloudFlare) or when the domain 
does not have any TLS certificates issued. For both of these 

8We extract them from the Organization or Organization Unit fields when 
the domains are not hosted on popular CDNs which often provide certificates 
with their own organization names. 

com.accuweather.android com.accuweather.paid.android

accuweather.com urbanairship.com

com.google.android.wearable.app com.htc.sense.hsp com.nike.plusgps com.starbucks.mobilecard

Fig. 2: Communication between six apps (in black) and two 
online services (in blue). 

cases, we consider a domain to be a third-party domain if 
apps from more than one developer connect to it. This allows 
us to identify a larger set of third-party domains, but will miss 
less popular third parties that are only used by a single app 
developer. 

D. Developing a classifier to identify ATS domains 

We develop a classifier to automatically identify ATS 
domains from our list of third-party domains. We train the 
classifier using text from: 

1) 2,000 domains from the Alexa Top websites global list 
[48]. These domains are unlikely to be associated with 
advertising and tracking. 

2) 2,000 randomly sampled domains from Easylist [43]. 
These domains are suspected to be associated with ad­
vertising and tracking on the Web. 

We build a Selenium-based scraper using the Firefox 
browser to obtain data used as input to our ATS classifier. This 
scraper does the following for each domain 1) visits the front-
page of a the domain; and 2) issues “about <domain>” 
queries to the DuckDuckGo search engine [49]. We use the 
text collected by the scraper for classification. 

Data pre-processing. We perform several transformations on 
the text before classification. First, we remove English stop-
words and tokenize the texts into words, bi-grams, and tri­
grams and use them as features. We use one hashing vector 
[50] per domain to count the occurrence of each feature and 
then normalize the vector using the l2-norm. 

We evaluate multiple popular text classifiers and find that 
the Linear-kernel SVM classifier has the highest accuracy 
with an F1-score of 0.95 (precision: 0.95, recall: 0.95) when 
differentiating between the Easylist (ATS) and Alexa (non-
ATS) domains. We use this model to classify our identified 
third-party domains as ATS and non-ATS. 

Post-classification processing. To improve the performance 
of our classifier, we need to account for noise in the training 
data (e.g., EasyList contains bbc.co.uk and several other 
popular news sites) and unresponsive sites. Therefore we 
leverage knowledge gathered from multiple external domain 
categorization resources. Specifically, we verify that identified 
ATS domains are not categorized in ATS-unrelated categories 
by the McAfee [45], OpenDNS [46], and Virus Total [47] 
categorization services and eliminate those that are. Similarly, 
we add to our ATS list any domains that are tagged as non-
ATS by our classifier, but are categorized in ATS-related 
categories by all three URL categorization services. This 
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additional step helps us automatically reduce the frequency of 
mis-classifications. However, its effectiveness is still dependent 
on the accuracy of the external URL categorization services. 

Validation. To get an understanding of the accuracy of 
the completely automated ATS-identification process detailed 
above, we perform manual inspection of 200 domains: 100 
randomly-chosen ATS-classified domains and 100 randomly-
chosen non-ATS-classified domains. Our inspection revealed 
that our approach resulted in a 4% false-positive rate and 10% 
false-negative rate. We found that in all cases false-positives 
were due to vague categories in the categorization services; 
e.g., subdomains hosted on akamaihd.net were classified 
as ATS due to either being unresponsive or not returning a 
human-readable website (e.g., a REST API) when queried, 
preventing us from using the website front-page scraping 
method to classify them, and the listing of akamaihd.net 
as a “marketing” (a ATS-related category) domain by the 
VirusTotal service. 

E. Identifying ATS-C domains 

Mobile devices host a variety of unique hardware- and user-
identifiers (UIDs) as those listed in Table I. These UUIDs, 
except for the Android ID, cannot be changed or reset by 
the user. Any third party library, even ATS-C libraries whose 
primary purpose is not providing advertising and tracking 
services, can piggyback app permissions to access UIDs—or 
any other permission-protected data—or obtain them via side-
channels (without user consent)9 to track the user activities 
across different apps on the same device. Therefore, in order 
to understand the mobile ATS ecosystem completely, we also 
focus on identifying ATS-C domains. In Section V-E we 
explore the privacy policies of several of these organizations 
to understand if they sell or share the gathered UIDs. 

We leverage Lumen’s ability to detect and report the pres­
ence of UIDs in traffic payloads to identify ATS-C domains 
from those previously identified third-party domains. We label 
the UID-harvesting domains not previously classified as ATS 
domains, as ATS-C. Although ATS-C domains identified in this 
step are capable of performing targeted advertising and user 
tracking, we do not add them to our ATS list because UIDs 
may be harvested for non-ATS purposes such as preventing 
fraud and abuse [52]. However, when UIDs are used for track­
ing, they are a strong signal for distinguishing Web-specific 
trackers from those providing Android-specific libraries. This 
is due to the inability of web trackers to gain access to such 
system information. 

F. Summarized results 

Using our approach, we identified 8,099 third-party do­
mains and 2,121 ATSes, from the set of all 40,553 domains. 
Of the identified ATSes, 233 were previously unreported in 
any of the popular domain categorization services and Web-
based ATS domain blacklists. We found 2,552 of all domains 

9During the course of our investigation, we discovered during this study 
that the undocumented getprop command [51] can be used by developers 
to obtain a list of identifiers including the device serial number, fingerprint, and 
MAC address. On reporting the use of the command for the purpose of user 
tracking to the Android development team, they indicated that the command 
was working as intended and that blocking consent-free access to identifiers 
via the command would be considered as a feature request in future releases. 

Domains Third-parties UID-harvesting 
third-parties 

ATS ATS-C 

40,553 8,099 1,019 2,121 730 

TABLE III: Number of domains identified in each category. 

ATS overlap ATS-C overlap 
2,121 (100%) 730 (100%) 

McAfee 451 (21.0%) 15 (2.0%) 
OpenDNS 
VirusTotal 

780 (36.0%) 
1,081 (50.0%) 

11 (1.0%) 
62 (8.0%) 

EasyList 818 (38.0%) 176 (24.0%) 
hpHosts 1,652 (77.0%) 258 (35.0%) 

TABLE IV: Overlap between our ATS/ATS-C lists and popular 
categorization services and Web-based ATS blacklists. 

harvesting one or more of the UIDs listed in Table V. Of these, 
we identified 730 as ATS-C and 306 as ATSes–i.e., 39.9% 
of the UID harvesting domains were third party domains. 
Table III shows the number of domains identified in each 
category. We attribute the high number of non-ATS domains 
that collect UIDs identified by our system to a combination 
of it’s false-negative rate (10%) in identifying ATSes and the 
fact that UIDs can be harvested for non-ATS-related first- and 
third-party-related activities. 

Comparison with Web-based ATS lists. In order to under­
stand how our ATS list performs, we make comparisons with 
the following three popular domain categorization services– 
McAfee, OpenDNS, and VirusTotal–and two popular Web-
based ATS blacklists–EasyList and hpHosts. 

We check how many of our identified ATSes were in 
an ATS-related category in the each of the categorization 
services, and listed in one of the blacklists. Table IV shows 
the amount of overlap between our lists and each of the 
five services. As one might expect, we see most overlap 
with the Web-based ATS blacklists from EasyList (38.0%) 
and hpHosts (77.0%). We find that 233 domains in our 
list do not overlap with any of the services. This is due 
to the absence of ATSes geared towards mobile users like 
urbanairship.com, mobiquitynetworks.com, and 
presage.io in the Web-based datasets. 

UID harvesting and ATS-C domains. Table V shows the 
fraction of domains that harvest each type of UID. We find that 
third-party domains, representing only 20.0% of all domains, 
are responsible for a disproportionate fraction (39.9%) of all 
UID harvesting. Interestingly, we also find that only 14.4% 
of all ATSes harvest UIDs from the device, suggesting the 
use of other techniques such as HTTP headers, cookies, and 
tracking pixels for tracking. The most common value harvested 
by ATSes is the semi-persistent Android ID. Interestingly the 
AndroidID is also collected by ATS-C domains along with 
at least one persistent UID in 34% of all cases. In addition 
to making it possible for ATS-C services to persistently track 
a user, this behaviour contradicts Android’s developer policy 
center guidelines which states that the Android ID should not 
be associated with any other personally-identifiable informa­
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UID FQDNs 
N = 40,553 

TPs 
N = 8,099 

ATS 
N = 2,121 

ATS-c 
N = 730 

IMSI 201 (0.5%) 
IMEI 188 (0.5%) 
SIM# 340 (0.8%) 
AndSerial 184 (0.5%) 
AndId 1,611 (4.0%) 
Phone# 102 (0.3%) 
Fingerprint 186 (0.5%) 
MAC 133 (0.3%) 

89 (1.1%) 
101 (1.2%) 
181 (2.2%) 
134 (1.7%) 
597 (7.4%) 
50 (0.6%) 
129 (1.6%) 
73 (0.9%) 

13 (0.6%) 
33 (1.6%) 
55 (2.6%) 
55 (2.6%) 
173 (8.2%) 

8 (0.4%) 
25 (1.2%) 
17 (0.8%) 

76 (10.4%) 
68 (9.3%) 

126 (17.3%) 
79 (10.8%) 
424 (58.1%) 

42 (5.8%) 
104 (14.2%) 

56 (7.7%) 

AnyUID 2,552 (6.3%) 1,019 (12.6%) 306 (14.4%) 713 (97.7%) 

TABLE V: List of UIDs monitored by Lumen and the per­
centage of harvesters in each category. 

tion [53]. Another major concern is that the IMEI, a persistent 
value which uniquely identifies a mobile device, is the fourth 
most commonly harvested UID and is disproportionately gath­
ered by ATS and ATS-C domains. 

V. ILLUMINATING THE MOBILE ATS ECOSYSTEM 

We now investigate the characteristics of the ATS and 
ATS-C domains identified by our classifier. Specifically, we 
focus on uncovering the organizations that own and operate 
these domains, how they cooperate with each other, how often 
they track users across different devices and platforms (i.e., 
cross-device tracking), and their pervasiveness in different app 
categories. 

A. ATS popularity and parent organizations 

Many ATS domains may belong to the same parent orga­
nization. For example, in Figure 3, which shows the number 
of apps that use the 20 most popular ATS and ATS-C services, 
we see that 16 of the 20 most pervasive ATS and ATS-C 
domains are owned by Google’s parent company Alphabet. 
Since subsidiaries of an organization may share data with one 
another (as we demonstrate in Section V-E), it is important 
to explore these relationships. To uncover these parent-child 
organizational relationships in depth and for all domains in our 
ATS and ATS-C lists, we use the Crunchbase [54] and D&B 
Hoovers [55] databases. These databases provide access to 
complete organization structures and information about com­
pany acquisitions and mergers. In the event that the owner of 
the domain cannot be identified accurately via these databases, 
we resort to obtaining organizational information via any TLS 
certificate associated with it (when available). 

Overall, we identify 292 parent organizations that own 
nearly 2,000 ATS and ATS-C domains. We find that some 
third-party services register subdomains within large cloud 
services or use pseudo-random names through proxies to 
preserve their anonymity. This behavior has consequences 
for our parent organization identification approach as it may 
fail to properly associate such domains with the actual ad­
vertising and tracking service. For example, although the 
domain supersonicads-a.akamaihd.net is hosted on 
Akamai, it is actually operated by SupersonicAds. The problem 
is compounded with non-TLS traffic since we cannot leverage 
TLS certificate information to extract parent organization in­
formation. For such cases, we label the parent organization as 
unknown. 
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services owned by them. 

Figure 4 shows the 20 organizations with the largest app 
penetration and the fraction of services owned by them. We 
find that Alphabet has penetration in over 73% of all our 
measured apps with ownership of only 3.6% of all ATS 
and ATS-C services. Facebook–known by average users for 
providing social networking services–has ATS presence in over 
31% of all measured apps while owning only 0.35% of all 
ATS and ATS-C services through the Facebook Graph API. 
Interestingly, Verizon Wireless provides ATS services to 13.1% 
of our measured apps with all the services coming through 
acquisitions of AOL and other ATS vendors. We see a similar 
trend with Adobe which has presence in 3.3% of all measured 
apps. Our analysis shows that, of the Top 10 most dominant 
organizations in the ATS ecosystem, only Chartboost, Vungle, 
and Adjust provide ATS-related services as their primary 
business. In general, we find that ATS-specialists appear to 
have a competitive market share while owning only a handful 
of services, as illustrated by the larger differences in the app 
and service coverage percentages in Figure 4. 

B. Analyzing ATS domain co-occurrences 

We now focus on identifying which ATS domains are likely 
to operate simultaneously in similar apps. This may occur 
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Fig. 5: Jaccard similarity between the app penetration of pairs 
of ATS domains present in at least 50 apps. Domains are sorted 
by parent organization. Clusters of co-occurring domains show 
domains owned by the same organization are more likely to 
be present in the same app. 

due to developers bundling several ATSes in their app or 
using SDKs which bundle services from multiple domains. 
Frequently co-occurring domains may also be used as a signal 
that the domains are owned and operated by the same parent 
organization. We leverage the Jaccard similarity index for 
the purpose of identifying strongly co-occurring domains. 

appsa∩appsbSpecifically, JS(doma, domb) = . Here, appsxappsa∪appsb 

denotes the applications that are observed to interact with the 
domain domx. 

Figure 5 shows the Jaccard similarities for all pairs of 
domains that were used by at least 50 apps. The results are 
sorted by their parent organization (when this information 
is obtainable). We find that our hypothesis that domains 
belonging to the same organization are more likely to co-
occur is valid – i.e., we see an average similarity score of 0.15 
for such domains vs. 0.03 for domains belonging to different 
organizations. 

We use this insight to associate parent organizations to 
domains having pseudo-random identifiers and those hosted 
on popular CDNs. As an example, we find that the domain 
amazon-d3v1lb83psg9di.cloudfront.net has the 
highest co-occurrence with other AdColony owned domains 
as did supersonicads-a.akamaihd.net with other 
Supersonicads domains (both relationships had JS > 0.7). 
We were also able to uncover previously unknown (to our 
database of organizations) relationships between ironSource 
and Supersonicads, and the anonymously registered domain 
iasds01.com to the IntegralAdScience ATS vendor. All of 

Fig. 6: Jaccard similarity between the app penetration of pairs 
of the largest parent organizations. 

the above findings were confirmed via manual inspection of 
publicly available information on the Web. 

We also leverage the similarity index to identify clusters of 
organizations that occur in similar sets of apps, giving them 
access to similar types of audiences. For example, we find 
that domains from key players such as Alphabet (specifically, 
Doubleclick and Crashlytics), MoatInc., and Facebook have 
high similarity scores. We identify a second cluster of or­
ganizations that provide ATS-related services specifically to 
the mobile gaming market—AppLovin, Vungle, and Unity3D. 
Other strong relationships occur between OnlineMetrix and 
TapJoy, and Ilyon Analytics and Supersonicads. These organi­
zational co-occurrences are fully illustrated in Figure 6. 

C. Application characteristics and ATSes 

Mobile apps may use multiple advertising and tracking 
services simultaneously. For instance, developers may combine 
different ad networks to maximize their revenues [12]. Figure 7 
shows the distribution of the number of domains reached per 
app according to 4 categories: all domains, ATS, ATS-C, and 
domains falling in any other category. The average mobile 
app connects to 11 different domains, out of which 4 and 
2 are ATS and ATS-C domains, respectively (see Figure 8 
for median values). The analysis reveals that ATS and ATS-C 
domains are almost as prevalent as other domain categories 
on mobile apps: 82 % and 29 % of them connect to at least 
one and 5 ATS domains, respectively. The percentage of apps 
connecting at least to 1 and 5 ATS-C domains is 75 % and 29 
%, respectively. Interestingly, only 40 % of the apps voluntarily 
report the presence of ads with the Contains Ads label on their 
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Google Play profile 10. 

Impact of app pricing model. We analyze the presence of 
ATS and ATS-C domains per app monetization model (i.e., 
paid, free, and free apps with in-app purchases). Free apps 
with in-app purchases connect on average to 3 ATS services 
and 2 ATS-C. This ATS and ATS-C penetration is higher than 
on completely free apps: 2 and 1, respectively. Although paid 
apps are not free from tracking, they appear to have the lowest 
number of trackers on average: 1 ATS and 1 ATS-C domain. 
23 % of paid apps have no tracking activity at all as opposed 
to 12 % and 7 % in the case of free apps and free apps with in­
app purchases respectively. This suggests that apps with in-app 
purchases may have more aggressive monetization strategies. 

Impact of app category. Figure 8 shows the num­
ber of ATS and ATS-C services per app category. Sur­
prisingly, games and educational apps are the two cate­
gories with the highest number of ATS and ATS-C do­
mains. Our analysis allowed us to identify ATS and 
ATS-C services specialized in providing support to game 
developers such as everyplay.com, playfab.com, 
gameanalytics.com, and mindjolt.com. Of these, the 
ATSes provided by Unity3D and Vungle are the most prevalent 
in mobile gaming apps. As we can see by the distribution 
outliers, users from news and entertainment apps may also 
be exposed to a wide range of ATS and ATS-C domains. 
We hypothesize that this is due to the presence of traditional 
Web trackers embedded in the content rendered by such apps 
(mainly comScore and Google trackers). 

D. Cross-device tracking. 

We now investigate which of these organizations and 
ATSes may have the ability to perform cross-device tracking. 
For that, we analyze whether they have any presence in the 
Web ecosystem. The ability to perform cross-device tracking 
would allow them to link mobile app and Web usage behavior 
and possibly reveal a very privacy-invasive insight into an 
individual’s virtual and real-world habits. To that end, for each 
ATS and ATS-C domain, we measure their penetration in the 
Alexa Top 1,000 websites as third-party Web trackers. We 
crawl the desktop versions of the Alexa Top 1,000 websites 
using the Firefox browser with Selenium. 

In our analysis we find that 39% of all our identified 
ATSes are present as third-parties in at least one of the Alexa 

10Google Play does not require developers to report the presence of third-
party ATS services embedded in their apps and the organizations behind. 
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Fig. 9: Presence of the most popular ATS and ATS-C services 
on measured apps and the Alexa Top 1,000 websites. 

Top 1,000 websites. Additionally, when only considering the 
top 20 mobile ATS and ATS-C services, only domains from 
Crashlytics, Flurry, and Unity3D were absent from the Web. 
Figure 9 shows the pervasiveness of the 20 most popular 
mobile services on the Web. From our top 20 ATS parent or­
ganizations, only Chartboost, Vungle, and Adjust were absent 
from the Web. These findings show that cross-device tracking 
is already widespread: even organizations that do not specialize 
in ATS-related services have presence in both platforms. 

E. Privacy and data sharing policies of ATSes 

To understand the privacy impact of user tracking, we need 
to study data sharing practices of ATS organizations and find 
out which entities will ultimately have access to user data 
after it has been collected. Unfortunately, there is very little 
information available publicly about ATS companies sharing or 
selling user data. However, while with our current framework, 
we are unable to detect and analyze flows of information from 
parent organizations (gathered in their roles as third-parties) 
to their subsidiaries and partners, companies providing ATSes 
publicly outline their policies regarding collection and sharing 
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of tracking data, their partnerships with other companies and 
services, and subsidiaries in their public websites and privacy 
policy documents; which we can use as a proxy to understand 
the scope of such data sharing practices. Studying this public 
information helps us uncover data sharing relationships be­
tween ATSes, entities that can ultimately access tracking data 
beyond the original collecting company or service, and what 
the end users can do to opt out of collection of tracking data 
or its use for targeted ads. Due to the difficulty in scaling 
the manual effort involved in extracting relevant points from 
privacy policies of each parent organization, we focus our 
analysis of privacy policies on the 10 largest ATS parent 
organizations, whose ATSes are present in over 82% of all 
apps in our dataset and whose policies have the largest impact 
on user privacy. 

Table VI shows key points extracted from privacy policies 
and public websites from the top 10 ATS parent organizations. 
We find that each of these organizations operate at least one 
advertising and one tracking service. Further, each of their 
privacy policies specifically state that they allow sharing of 
tracking data with their subsidiaries (even AppsFlyer and 
Adjust which have no publicly known subsidiaries). More 
worrying is the fact that, with the exception of Alphabet and 
Facebook, all organizations also reserve the right to share 
their ATS-related data with third-party partners. Therefore, 
developers who use services provided by these organizations 
provide a gateway for more third-party organizations to track 
their users. 

While some of these organizations provide end users with 
a way to opt out of using tracking data to display targeted ads, 
none allow the users to entirely opt out of tracking or having 
their data shared with other organizations. Even when opting 
out of targeted marketing, users face different procedures from 
different organizations. The organizations which are part of 
the Network Advertising Initiative (NAI)11 and the Digital 
Advertising Alliance12 allow end-users to use web forms 
provided by these organizations to opt out of interest-based 
and targeted ads. However, others such as AppsFlyer, Vungle, 
and Alibaba have more convoluted approaches – e.g., email 
and webforms specific to their organizations. 

VI. USER TRACKING: A REGULATORY CHALLENGE 

Our analysis so far has shown that user tracking is already 
pervasive in the mobile platform and even across platforms. 
Further, the widespread sharing of tracking-related data with 
subsidiaries and third-parties, combined with (often) compli­
cated and non-standard procedures for opting out of interest-
based marketing has significantly reduced user control and 
authority over their own data. In this section, we explore the 
impact of upcoming regulations on UID harvesting and recent 
regulations on tracking vulnerable audiences. 

A. ATSes: A global regulatory problem 

In order to understand how frequently ATS-related data 
flows across borders and jurisdictions, we identify the loca­
tions of the sources (Lumen users) and sinks (ATS-related 
IP addresses) of the flows in our dataset. We use the MCC 

11https://www.networkadvertising.org/ 
12http://digitaladvertisingalliance.org/ 

reported by Lumen to geolocate users and Maxmind database 
[56] to geo-locate ATS servers. Our analysis reveals that the 
United States hosts over 40% of all ATS servers and is at the 
terminating end of over 50% of all cross-border ATS traffic. 
We also find that China and South Korea are hosts to over 
9% of all ATS servers (a majority of which are owned by 
Alibaba and IGAworks). In Figure 10, we display the fraction 
of flows observed to be between Lumen users and ATS servers 
located in each country. We find that the ATS servers in the 
United States have disproportionately higher access to ATS-
related data – i.e., although only 40% of the global ATS servers 
are housed in the country, they are at the terminating end of 
73% of all ATS-related flows. 

Fig. 10: Interactions observed between the 20 most common 
locations of Lumen users and ATS server locations. Percent­
ages indicate the fraction of flows originating (or, terminating) 
at the corresponding country. 

We also find that even users from countries with strong 
consumer and privacy protection laws (e.g., Switzerland, Ger­
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Parent Has subsidiaries?/Data shared 
with subsidiaries/3rd parties? 

Opt-out procedure COPPA/Childrens policy 

Alphabet ,/ ,/ × ,(via account settings) ATSes not directed at children, has complaint email address. 
Facebook ,/ ,/ × ,(via account settings) No policy. 
Twitter ,/ ,/ , ,(via account settings / No policy. 

DAA webform) 
Verizon ,/ ,/ , ,(via account settings) Full policy based on parental consent. 
AppsFlyer × / ,/ , ,(via email) ATSes note directed at children, has complaint email address. 
Chartboost ,/ ,/ , ,(via NAI/DAA No policy, up to developers. 

webforms) 
Vungle ,/ ,/ , ,(via Google ID reset) No policy, up to developers. 
AppLovin ,/ ,/ , ,(via TRUSTe/EU YOC) Does not collect data from children apps, has complaint system but 

no email address. 
Adjust × / ,/ , ,(via NAI webform) No policy, has complaint email address. 
Alibaba ,/ ,/ , ,(via webform) No policy. 

TABLE VI: Privacy policy and public website information from top 10 most dominant ATS providers. 

many, and Spain) have sizable fractions of ATS-related traffic 
flowing into nations with weaker regulatory frameworks. Such 
trans-national flow of data makes it unclear which privacy and 
consumer protection laws are applicable to ATS-related data. 

To address this problem, the European Union is mak­
ing progress to define regulations targeting how personal 
information and metadata may be collected and used for 
marketing: the General Data Protection Regulation (GDPR) 
[57] and the ePrivacy directives [58]. The GDPR rule aims 
to control how organizations collect and store any personal 
data that can, directly or indirectly, identify European citizens. 
This definition includes information such as personal names, 
religion, addresses and biometric information as well as digital 
information and identifiers like email addresses or IMEI codes. 

Additionally, whenever user’s sensitive data is sent over 
telecommunication services like the Internet, the European 
Directive 2002/58/CE (a.k.a. the ePrivacy Directive) also ap­
plies. This directive obligates entities that collect user data 
to inform the users about the third-parties who will receive 
this data, and requires them to ask for their consent whenever 
they intend to use the data for purposes other than the original 
purpose for which it was collected. The ePrivacy Regulation, 
currently being debated at the European Union, will replace 
this directive. However, the final text of the ePrivacy regulation 
is unknown as of this writing. In fact, it is not expected to be 
adopted until May 2018 13. As a result, it remains unclear how 
both rules will work together to protect user privacy. Below, we 
summarize the expected high-level impact of these regulations 
on ATSes and mobile apps: 

•	 Applicability. The regulations are aim to protect the privacy 
of any individuals residing in the EU and are directed 
at organizations (including those based outside the EU) 
who gather information, digital or not, that may be used 
to directly or indirectly identify individuals. The current 
terminology suggests that all previously identified ATS and 
ATS-Cs will be subject to this regulation. 

•	 Consent. Any data that may be used to directly or indirectly 
identify an individual must explicitly request user consent – 
i.e., data harvesting requires users to opt-in. Consent has to 
be explicit and must specify the data being gathered and the 
purpose of such gathering. For individuals under the age of 

13http://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX 

13, verifiable consent must be obtained by a guardian. It is 
unclear if the current approach used by Android (requesting 
install-time permissions from users) is sufficient for the 
purpose of gathering consent. Additionally, it is unclear if 
the responsibility of gathering consent falls to the third-
party ATS which receives the data or the mobile app which 
provides access to it. 

•	 Retention. The directive specifies that except for cases 
when the gathered data is essential to the functioning of the 
service (e.g., cookies for shopping carts), personal data must 
be stored in a way that anonymizes the subject. An exception 
is when the data is gathered with the user’s informed consent 
for providing value-added services (e.g., targeted ads). This 
consent, however, may be withdrawn by the user at any 
time. When consent is withdrawn, all data pertaining to that 
individual is subject to erasure. Further, subjects are required 
to have access to their harvested personal data. While these 
retention policies significantly increase consumer protection, 
they do not regulate specifically ATS consent withdrawal 
and data access procedures. This may lead to non-uniform 
and sometimes inefficient procedures – e.g., requiring sub­
jects to make withdrawal requests via email. Table VI shows 
the different ways in which ATS organizations currently 
implement opt-out options: some companies rely on the OS-
provided settings to facilitate opting-out of interest-based 
advertisements, while others use arguably less efficient and 
nonintuitive methods such as webforms and complaint email 
systems. 

•	 Penalties. Organizations that do not comply with the pro­
posed regulations may be issued warnings (for first offenses) 
and face fines of up to 1 Million Euros (or 2% of global 
revenue) for repeat violations. 

Since these regulations also apply to organizations operat­
ing outside the European Union, we seek to understand how 
common it is for UIDs of EU residents to be harvested by 
ATSes outside the European jurisdiction. Figure 11 shows the 
source and destination countries of flows containing UIDs. We 
find that ATSes hosted in the United States and China are 
likely to be the most impacted by the upcoming regulations. 
Our methodology is limited by its inability to identify how 
and when user consent is obtained and how harvested data is 
stored by ATSes, and is therefore unable to identify ATSes that 
are (or, will be) in violation of these regulations. However, we 
note that our analysis of privacy policies of the most dominant 
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Fig. 11: Flow of UIDs from nations in the European Union. 
Percentages indicate the fraction of flows originating (or, 
terminating) at the corresponding country. 

ATS organizations suggests that they all at least claim to be 
in compliance with current regulations in the EU. 

One major shortcoming of the regulations being proposed 
is the absence of strong limitations on how harvested data may 
be shared with subsidiaries and third party organizations. Since 
the regulations are still being drafted, we hope that our work 
will motivate the inclusion of such policies. 

B. Trackers targeted at vulnerable audiences 

As shown in Section V-C and Figure 8, we uncover a 
large number of apps containing ATSes in the gaming and 
educational categories. In the United States there are a number 
of restrictions on how tracking may be performed in products 
directed at children. These are specifically regulated in the 
Children’s Online Privacy Protection Act of 1998 (COPPA) 
[28]. COPPA mainly seeks to enforce that verifiable consent 
of a guardian is obtained before harvesting data of a child 
(under the age of 13) and that data is not retained for a longer 
duration than is necessary for providing the requested service. 

In our analysis, we find that 88 % of the games and 
education apps in our dataset may be required to be COPPA­
compliant–i.e., they are labeled as suitable for children under 
the age of 12 according to their ESRB rating [59]. However, 
24 % of them use at least one ATS or ATS-C service and 
leak unique identifiers to them. A preliminary investigation of 
the privacy policies of the ATSes present in these apps shows 
that a large number do not outline any policy addressing their 

use in apps targeted at children and special data handling for 
UIDs obtained from children. This is potentially in violation 
of the COPPA rule. Surprisingly, many of largest ATS parent 
organizations either do not have a privacy policy or Terms and 
Conditions clause addressing children, have generic clauses 
stating that they do not knowingly collect tracking data from 
minors, or imply that it is the responsibility of app developers 
to make sure their services are not used by minors without 
parental consent (Table VI). 

We note that our current methodology does not allow us 
to investigate possible COPPA violations in depth. To do so, 
it is necessary to check whether each app requests parental 
consent during runtime and the specific content of their (app 
and ATS) privacy policy – a promising avenue for future work. 
A preliminary investigation of ATSes geared at children’s apps 
shows that many of them (e.g., Kidoz) have specific provisions 
in their policies and claim to be in compliance with COPPA. 
However, at the time of writing, Disney was sued for COPPA 
violations in 42 of their apps [30]. 

VII. DISCUSSION 

While new regulations for online marketing and data har­
vesting (such as the previously discussed GDPR and ePrivacy 
directives and COPPA) provide avenues for prosecuting mis­
handling of sensitive data, they fall short in several ways: 

•	 Due to the opacity of the tracking ecosystem, it is difficult 
to uncover and track how organizations collect personal data 
from end users, and how they store and share it with each 
other. 

•	 The regulations leave room for interpretation in several 
cases. Specifically, they do not describe exactly how consent 
must be obtained from users – e.g., it is unclear if gaining 
permissions to access UIDs at install time is sufficient – 
and how consent withdrawal should be facilitated – e.g., is 
it sufficient for a user to uninstall an app, or even if explicit 
notification is required, should easy to access unified web 
forms be made available (as is the case with the DAA). 

•	 While some ATS-related organizations are more responsible 
than others and have comparatively more reasonable data 
sharing policies, current regulations do little to limit the 
sharing and selling of data by these organizations, leaving 
users with almost no control of who has access to their data. 

While our focus is not to find instances of data being shared 
or sold by organizations, examining the privacy policies of the 
key players in the mobile ATS ecosystem reveals data sharing 
policies to be very prevalent, with 8 out of 10 ATSes present in 
over 82% of mobile apps reserving the right to share tracking 
data with third-parties, a major privacy concern that is not 
known by end-users of mobile apps. 

As in the Web ecosystem, a great number of developers 
rely on ATS services to monetize their apps. Privacy control 
tools such as anti-tracking services and ad-blockers have been 
recently the subject of a great deal of discussion due to 
their disruptive nature and interference with the economic 
sustainability of mobile apps and online services [60]. While 
app developers sometimes acknowledge the fact that a great 
number of their users do not want to be tracked, and offer them 
a way to disable targeted advertisements by purchasing paid 
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versions of the same apps, many paid apps still include third-
party services such as analytics services that collect unique 
identifiers, and many developers do not provide any form 
of control or transparency over how user data is collected, 
stored and shared with third party services. App developers and 
organizations that regulate app stores have a responsibility to 
provide more transparency and user control to end-users, least 
the mobile app ecosystem enters an arms race similar to the 
one between publishers and consumers on the Web. 

VIII. LIMITATIONS 

We note that each of our contributions has its own limi­
tations. First, even though our ATS classification approach is 
able to identify 233 previously unknown ATSes that operate 
in the mobile ecosystem, it is not completely accurate—some 
ATS and ATS-C domains may not have been identified— and 
relies on noisy external data from Web-specific ATS blacklists 
and categorization services for training and post-processing 
(Section IV). Unfortunately, the scale of the ecosystem makes 
manual sanitization infeasible. Second, although our analysis 
of the major organizations engaging in ATS-related activities 
unveiled the pervasiveness of tracking (mobile and cross-
device) and the commercial relationships between popular 
ATSes, it has the shortcoming of being unable to perfectly 
identify the owners of ATSes hosted on popular CDNs and 
with pseudorandom identifiers in their domain names. 

Measuring the real impact of tracking activities is difficult 
especially given that privacy depends on individual factors and 
context. It is beyond the scope of this work to measure the 
real impact for the users. What can be done to inform the 
user and report data flows, however, is to develop privacy-
enhancing tools to show users which entities collect infor­
mation about them and whether the entities collecting this 
information reserve the right to share that information with 
other parties (given that they have a privacy policy). The 
user can then decide based on this information and other 
individual factors whether they want to continue using apps 
that include certain ATSes or not. Finally, in our analysis of 
the impact of the GDPR, ePrivacy, and COPPA regulations, 
we were not specifically able to identify regulation violations 
due to our inability to identify when and how user consent was 
gathered and how user data is handled by ATSes (Section VI). 
Nevertheless, we were able to provide previously unknown 
insights into the operation and pervasiveness of tracking in the 
mobile ecosystem, opening new venues for future research. 

IX. FUTURE WORK 

Our analysis reveals the need for further investigation 
in several directions. One promising avenue includes under­
standing business relationships between organizations (beyond 
the parent-child relationships identified in this work) while 
performing deeper and larger-scale investigations of the pri­
vacy policies of ATS providers and app developers. Such a 
study might more clearly uncover the scale of data sharing 
between seemingly unrelated organizations. Next, our inability 
to specifically identify violations of the GDPR, ePrivacy, and 
COPPA regulations occurs due to the absence of data regarding 
how apps gather user consent. In future work we plan to utilize 
a lab test-bed to analyze how consent is gathered by apps 
that are known to harvest UIDs from the audiences protected 

by these regulations and explore the use of tools such as 
Privee [61] to automatically analyze privacy policies. 

Finally, we also plan to use the results of our study to 
extend the functionality of the Lumen app to provide users 
the ability to block flow of UIDs from their devices to specific 
domains. As such, our vision is not blocking or modifying any 
ATS flow by default, instead giving users the knowledge and 
the power to make informed decisions by themselves to prevent 
abusive practices. Our goal is to empower mobile users, and 
not to weaken developers’ position. 

X. RELATED WORK 

Compared to similar studies that focus on detecting and 
analyzing ATSes in the Web [5]–[8], studying mobile ATSes 
is particularly challenging due to a lack of data collection 
methods to enable monitoring of mobile apps at a large scale. 
The research community and regulatory agents have leveraged 
various techniques to detect privacy violations inflicted by 
mobile apps and to identify third-party advertising and tracking 
services: 

Traffic analysis. Previous research efforts have used mo­
bile ISP traffic logs to characterize mobile advertising traffic 
and their aggregated effect on a mobile network [12], and 
characterizing the economic aspects of the mobile advertising 
industry and online aggregation services [9]. Likewise, other 
researchers instrumented VPN servers to redirect and identify 
privacy leaks on user’s traffic [3]. These approaches have used 
information available in the payload (e.g., the User-Agent 
header value in HTTP flows) of observed flows to infer the 
originating apps. Unfortunately, traffic logs captured at the 
network do not provide sufficient context to accurately identify 
the app originating a given flow, making difficult application 
attribution. To overcome this limitation, various research teams 
developed solutions such as Lumen Privacy Monitor– the 
tool implemented for this study – Privacy Guard [35] and 
AntMonitor [34] to analyze mobile traffic on the app itself 
using the Android VPN permission. 

Dynamic Analysis. This second class of prior work aims 
to understand app behavior using dynamic analysis of app 
binaries in controlled environments. Dynamic analysis calls 
for running an app in a highly controlled environment such 
as a virtual machine [62] or instrumented OS [4], [63]. The 
app is then closely monitored as it conducts its set of tasks, 
with the results indicating precisely how the app and system 
behave during the test (e.g., whether the app exfiltrated location 
information). Dynamic-analysis approaches can automate user 
interaction using UI exercisers, [64]–[66]. However, these 
techniques are well known for not being able to cover all 
contexts and scenarios, such as where user-specific inputs are 
required, as indicated by a previous study [17]. Moreover, the 
artificial workload –user interaction is typically generated by 
UI executioners– and difficulty of deploying custom firmware 
on users’ phones means the results do not directly speak to 
normal users’ activity. 

Static Analysis. Static analysis involves analysis of the app 
code through analyzing executables and producing control flow 
graphs [19], [67], using symbolic execution [18], by auditing 
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third-party library use [2], or through inspection of the permis­
sions apps demand from the user [68]. While static analysis 
typically provides good scale with analysis of over 10K apps 
in many studies, this strategy does not reflect the behavior of 
apps in the wild with real user stimuli. In particular, static 
analysis may understate or overstate the importance of certain 
code paths since it lacks any notion of how users actually 
interact with their apps in practice. Further, these approaches 
face challenges when analysing apps whose code has been 
obfuscated. To deal with these challenges, Continella et al. [69] 
propose a black-box analysis tool to detect privacy leaks in 
mobile apps even when they use obfuscation. Moreover, apps 
can potentially download code during runtime which can not 
be examined via static analysis alone. Backes et al. recently 
studied the presence of third-party libraries (independently of 
their purpose) in top Android apps [70]. 

Cross-device tracking. Zimmeck et al. [22], in a study 
aimed at quantifying the occurrence of cross-device tracking, 
identified 81 mobile ATSes operating in 845 mobile apps 
by analyzing the types of SDKs utilized by the apps (this 
was in addition to 3,243 ATSes operating on mobile versions 
of popular websites). These previous studies have helped to 
improve our understanding of mobile tracking and its impli­
cations on user’s privacy. However, their focus was limited to 
understanding specific apps and trackers, rather than the overall 
dynamics of the mobile ATS ecosystem. 

XI. CONCLUSIONS 

At a high-level, this study provides a new traffic-oriented 
perspective to understand the domains and organizations re­
lated with mobile advertising and tracking (ATS) activities 
and their behavior in the wild. We implemented an automated 
mechanism to identify ATS domains. Our technique allowed 
us to identify many ATS domains which operate specifically 
in the mobile ecosystem and were previously unreported by 
well-known Web-based ATS blacklists like Easylist and other 
popular URL classifiers. We measured the pervasiveness of 
the identified ATSes in the mobile and Web platforms. Our 
investigation also shed light on the relationships between 
different ATS vendors by identifying the parent organizations 
of the services. Our privacy policy analysis of the largest 
organizations revealed the prevalence of intra- and inter-
organization sharing of user data. Finally, we considered how 
ATS-related data (and specifically UID data) flows across 
borders and the impact of privacy regulations in the European 
Union and United States on ATSes. We hope that our findings 
will spark and inform more public discourse and result in 
stronger regulatory frameworks to protect user privacy. 
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