
Competition and Consumer Protection in the 21st Century Hearings,

Project Number P181201

David Choffnes, Northeastern University
August 14, 2018

This comment refers to topic #5, “The Commission’s remedial authority to deter unfair and deceptive
conduct in privacy and data security matters.” My research group at Northeastern University has
studied the impact of mobile apps and websites on consumer privacy for the past four years,
resulting in numerous peer-reviewed articles, datasets, and software artifacts that we have made
available to the public and that have been reviewed by the FTC.

These studies identify how personally identifiable information (PII) is routinely exposed over
the Internet, sometimes unencrypted, not only the companies that develop the mobile apps being
used, but also to a large number of analytics and advertising services with which the user has no
direct relationship. In many cases, users are unaware of the data collection, and in a substantial
number of cases the data collection is poorly disclosed, if at all. In some notable cases, extremely
sensitive PII has been gathered, including user passwords being send to third parties, fine-grained
GPS locations shared on average every two minutes by a retail app running in the background,
and screen activities being recorded an uploaded to a third party. In fact, we found through a
longitudinal study that such data collection is getting worse, not better, over time.

There is a clear need to discuss the privacy risks that consumers face, how to design and
enforce policies that limit unintentional or unexpected data collection, and how regulators can
reliably and continuously audit whether online services are compliant not only with their own
privacy disclosures, but with the laws that govern data collection. To help inform this discussion,
below is a summary of the most relevant peer-reviewed papers that my group has published at
top conferences for Internet measurement, security, and privacy in the recent few years. There is
also a link to our work with a documentary filmmaker, where we found a surprising amount of
location sharing.

•	 ReCon [4]: In this study, we used machine learning on network traffic generated while using
hundreds of apps to learn how they were sharing personal information with other parties,
including how substantial numbers of apps were sending passwords in plaintext.

•	 Harvest documentary: We worked with a filmmaker to track data leakage from an average
person’s phone for a week. What we found was surprising even for us, and became the topic
of a nice 11-minute film: https://vimeo.com/189449163

•	 App vs web tracking [1]: When you can access the same online service via a website and
app, do they leak the same PII or is one better than the other? We found the answer is that
there is no clear winner. The differences between app and web can be surprising, and you
can explore our data here: https://recon.meddle.mobi/appvsweb/index.html

•	 Privacy leaks over time [3]: Our devices regularly indicate that apps need to be updated
for “bug fixes and improvements,” but an important question is whether some of those ”im
provements” are more data tracking. We looked at historical versions of hundreds of pop
ular apps to find out. We found that, by many measures, privacy in terms of data exposed
to other parties over the Internet is getting worse, but it’s also highly variable over time.
We also found apps unintentionally sharing consumers’ passwords with third parties (their
analytics providers), and responsibly disclosed so they could fix it. We made an interface for

1

https://recon.meddle.mobi/appvsweb/index.html
https://vimeo.com/189449163

exploring the data to see how your apps are changing data collection over time, which you
can find here: https://recon.meddle.mobi/appversions/

•	 Is your phone listening/watching you? [2]: We recently undertook a large-scale study (thou
sands of apps) to determine whether apps on our phones are surreptitiously recording our
conversations via built-in microphones and/or images/video from our cameras. The good
news is that we did not find apps abusing the microphone or camera, but we did find screen
recording behavior that is alarming both in terms of privacy risks but also because it does
not require permission from, or notification to, the user.

Appended to the end of this document are copies of the referenced manuscripts. Do not hesi
tate to reach out with any questions.

About the author
David Choffnes is an assistant professor in the College of Computer and Information Science at
Northeastern University (2013–present), and a founding member of Northeastern’s Cybersecu
rity and Privacy Institute. He is a recipient of the NSF CAREER award, the ACM/CRA Com
puting Innovation Fellowship, and the Outstanding Dissertation Award in EECS at Northwest
ern University. His research has been covered by the popular press including CBS News, PBS,
NPR, the Boston Globe, NBC News, WIRED, Vice News, and USA Today, and is supported by
the National Science Foundation, Department of Homeland Security, Measurement Lab, Google
Research, Comcast, Verizon, ARCEP, and the Data Transparency Lab.

2

https://recon.meddle.mobi/appversions

References

[1] C. Leung, J. Ren, D. Choffnes, and C. Wilson. Should you use the app for that? comparing the
privacy implications of web- and app-based online services. In Proc. of IMC, 2016.

[2] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. Choffnes. Panoptispy: Characterizing audio
and video exfiltration from Android applications. In Proc. of PETS, 2018.

[3] J. Ren, M. Lindorfer, D. Dubois, A. Rao, D. R. Choffnes, and N. Vallina-Rodriguez. Bug fixes,
improvements, ... and privacy leaks - a longitudinal study of PII leaks across Android app
versions. In Proc. of NDSS, 2018.

[4] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. R. Choffnes. ReCon: Revealing and controlling
privacy leaks in mobile network traffic. In Proc. of ACM MobiSys, 2016.

3

ReCon: Revealing and Controlling PII Leaks

in Mobile Network Traffic

Jingjing Ren Ashwin Rao Martina Lindorfer
Northeastern University University of Helsinki SBA Research

Boston, USA

Arnaud Legout

Inria

Sophia Antipolis, France

Abstract
It is well known that apps running on mobile devices extensively
track and leak users’ personally identifiable information (PII);
however, these users have little visibility into PII leaked through the
network traffic generated by their devices, and have poor control
over how, when and where that traffic is sent and handled by third
parties. In this paper, we present the design, implementation, and
evaluation of ReCon: a cross-platform system that reveals PII leaks
and gives users control over them without requiring any special
privileges or custom OSes. ReCon leverages machine learning
to reveal potential PII leaks by inspecting network traffic, and
provides a visualization tool to empower users with the ability
to control these leaks via blocking or substitution of PII. We
evaluate ReCon’s effectiveness with measurements from controlled
experiments using leaks from the 100 most popular iOS, Android,
and Windows Phone apps, and via an IRB-approved user study with
92 participants. We show that ReCon is accurate, efficient, and
identifies a wider range of PII than previous approaches.

1. INTRODUCTION
There has been a dramatic shift toward using mobile devices

such as smartphones and tablets as the primary interface to access
Internet services. Unlike their fixed-line counterparts, these devices
also offer ubiquitous mobile connectivity and are equipped with a
wide array of sensors (e.g., GPS, camera, and microphone).

This combination of rich sensors and ubiquitous connectivity
makes these devices perfect candidates for privacy invasion.
Apps extensively track users and leak their personally identifiable
information (PII) [17, 23, 27, 35, 58], and users are generally
unaware and unable to stop them [21, 29]. Cases of PII leaks
dramatically increased from 13.45% of apps in 2010 to 49.78%
of apps in 2014, and the vast majority of these leaks occur over IP
networks (less than 1% of apps leak data over SMS) [44].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

David Choffnes
Northeastern University

Previous attempts to address PII leaks face challenges of a lack
of visibility into network traffic generated by mobile devices and
the inability to control the traffic. Passively gathered datasets
from large mobile ISPs [58, 60] provide visibility but give users no
control over network flows. Likewise, custom Android extensions
that are often integrated in dynamic analysis tools provide control
over network flows but measurement visibility is limited to the
devices running these custom OSes or apps [24], often requiring
warranty-voiding “jailbreaking.” Static analysis tools can identify
PII leaks based on the content of the code implementing an app, but
suffer from imprecision and cannot defend against dynamic code
loading at run time.

We argue that improving mobile privacy requires (1) trusted third-
party systems that enable auditing and control over PII leaks, and
(2) a way for such auditors to identify PII leaks. Our key observation
is that a PII leak must (by definition) occur over the network, so
interposing on network traffic is a naturally platform-independent
way to detect and mitigate PII leaks. Based on this insight, we
propose a simpler, more effective strategy than previous approaches:
interposing on network traffic to improve visibility and control for
PII leaks.

Using this approach, we focus on the problem of identifying
and mitigating PII leaks at the network level. We describe the
design and implementation of a system to address this problem
called ReCon, which detects PII leaks from network flows alone,
presents this information to users, and allows users fine-grained
control over which information is sent to third parties. We use
machine learning and crowdsourcing-based reinforcement to build
classifiers that reliably detect PII in network flows, even when we
do not know a priori what information is leaked and in what format.
To address flows using SSL or obfuscation, we describe techniques
that allow our system to detect PII leaks in encrypted flows with
user opt in, and adapt to obfuscation.1

By operating on network traffic alone, ReCon can be deployed
in mobile networks [4], in home networks, in the cloud, or on
mobile devices. ReCon is currently deployed using VPN tunnels to
software middleboxes running on popular cloud platforms, because
this allows us to immediately deploy to arbitrary mobile device
OSes and ISPs.

Our key contributions are as follows:
MobiSys ’16, June 25–30, 2016, Singapore.
� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1We support SSL decryption for controlled experiments and private
ISBN 978-1-4503-4269-8/16/06. . . $15.00 ReCon instances, but disable them in user studies for privacy
DOI: http://dx.doi.org/10.1145/2906388.2906392 reasons.

c

http://dx.doi.org/10.1145/2906388.2906392
mailto:permissions@acm.org

•	 A study using controlled experiments to demonstrate how
PII leaks from iOS, Android, and Windows Phone devices,
motivating the need for (and potential effectiveness of) systems
that identify PII leaks from network flows. We find extensive
leaks of device identifiers (> 50% of the top 100 apps from
all 3 OSes), user identifiers (> 14% of top 100 Android/iOS
apps), locations (14-26% of top 100 Android/iOS apps) and
even passwords (3 apps) in plaintext traffic.

•	 An approach for the detection and extraction of PII leaks from
arbitrary network flows, using machine learning informed by
extensive ground truth for more than 72,000 flows generated by
mobile apps.

•	 A system that enables users to view PII leaks from network
flows, provide feedback about relevant leaks, and optionally
modify leaks.

•	 An evaluation of our system, showing it is efficient
(classification can be done in less than one ms), and that it
accurately identifies leaks (with 98.1% accuracy for the vast
majority of flows in our dataset). We show that a simple
C4.5 Decision Tree (DT) classifier is able to identify PII leaks
with accuracy comparable to several ensemble methods atop
DTs (AdaBoost, Bagging, and Blending) that take significantly
more processing time (by a factor of 7.24).

•	 A comparison with three alternative techniques for detecting
PII leaks using information flow analysis. We show that overall
ReCon finds more PII leaks than all three approaches. Further,
ReCon can leverage information flow analysis techniques to
improve its coverage, as we demonstrate in §5.3.

•	 A characterization of our approach on traffic generated by user
devices as part of an IRB-approved user study. We demonstrate
that our approach successfully identifies PII leaks (with users
providing 5,351 labels for PII leaks) and characterize how
these users’ PII is leaked “in the wild.” For example, we find
previously unreported sensitive information such as usernames
and passwords (21 apps) being leaked in plaintext flows.

In the next section, we motivate our work using the results of
controlled experiments identifying extensive information leakage
in popular apps. We then describe the design (§3) and
implementation (§4) of ReCon. We validate our design choices
using controlled experiments in §5 and in §6 we show their
relevance “in the wild” with a deployment of ReCon using an IRB-
approved study with 92 participants. We discuss related work in §7
and conclude in §8.
The code and data from our controlled experiments are open-source
and publicly available at:

http://recon.meddle.mobi/codeanddata.html

2. MOTIVATION AND CHALLENGES
In this section, we use controlled experiments to measure PII

leakage with ground-truth information. We find a surprisingly
large volume of PII leaks from popular apps from four app stores,
particularly in plaintext (unencrypted) flows. Based on these
results, we identify several core challenges for detecting PII leaks
when we do not have ground-truth information, i.e., for network
traffic generated by arbitrary users’ devices. In the next section,
we describe how to automatically infer PII leaks in network flows
when the contents of PII is not known in advance.

2.1 Definition of PII
Personally identifiable information (PII) is a generic term

referring to “information which can be used to distinguish or

trace an individual’s identity” [38]. These can include geographic
locations, unique identifiers, phone numbers and other similar data.

Central to this work is identifying PII leaked by apps over the
network. In this paper, we define PII to be either (1) Device
Identifiers specific to a device or OS installation (ICCID, IMEI,
IMSI, MAC address, Android ID, Android Advertiser ID, iOS
IFA ID, Windows Phone Device ID), (2) User Identifiers, which
identify the user (name, gender, date of birth, e-mail address,
mailing address, relationship status), (3) Contact Information
(phone numbers, address book information), (4) Location (GPS
latitude and longitude, zip code), or (5) Credentials (username,
password). This list of PII is informed by information leaks
observed in this study. While this list is not exhaustive, we believe
it covers most of the PII that concerns users. We will update the list
of tracked PII as we learn of additional types of PII leaks.

2.2 Threat Model
To improve user privacy, we should inform users of any PII that

is exposed to eavesdroppers over insecure connections, and any
unnecessary PII exposed to other parties over secure (i.e., encrypted)
connections. Determining what information is necessary to share
remains an open problem that we do not solve in this work, so we
consider the upper bound of all PII transmitted to other parties.

Specifically, we define a “leak” as any PII, as described in Section
§2.1, that is sent over the network from a device to a first or third
party over both secure (i.e., HTTPS) and insecure (i.e., HTTP)
channels. We further define the following two threat scenarios:
Data-exfiltrating apps. In this scenario, the app developers either
directly, or indirectly via advertising and analytics libraries, collect
PII from the users’ mobile devices, beyond what would be required
for the main functionality of the apps. In this work, we do not
establish whether a PII leak is required for app functionality; rather,
we make all leaks transparent to users so they can decide whether
any individual leak is acceptable.
Eavesdropping on network traffic. Here, the adversary learns
PII about a user by listening to network traffic that is exposed
in plaintext (e.g., at an unencrypted wireless access point, or by
tapping on wired network traffic). Sensitive information, such
as passwords, are sent over insecure channels, leaving the users
vulnerable to eavesdropping by this adversary.

ReCon addresses both scenarios by automatically detecting PII
leaks in network flows, presenting the detected leaks to users and
allowing them to modify or block leaks. Clearly, some information
should never be sent over insecure channels. Thus, whenever ReCon
detects a security critical leak, such as a password being sent over
HTTP, we follow a responsible disclosure procedure and notify the
developer.

2.3 Controlled Experiments for Ground Truth
Our goal with controlled experiments is to obtain ground-truth

information about network flows generated by apps and devices.
We use this data to identify PII in network flows and to evaluate
ReCon (§5).
Experiment setup. We conduct controlled experiments using
Android devices (running Android 5.1.1), an iPhone (running iOS
8.4.1) and a Windows Phone (running Windows 8.10.14226.359).
We start each set of experiments with a factory reset of the
device followed by connecting the device to Meddle [49]. Meddle
provides visibility into network traffic through redirection, i.e.,
sending all device traffic to a proxy server using native support
for virtual private network (VPN) tunnels. Once traffic arrives at
the proxy server, we use software middleboxes to intercept and
modify the traffic. We additionally use SSLsplit [9] to decrypt and

http://recon.meddle.mobi/codeanddata.html

inspect SSL flows only during our controlled experiments where
no human subject traffic is intercepted. Our dataset and the full
details of our experiments are available on our project page at
http://recon.meddle.mobi/codeanddata.html.
Manual tests. We manually test the 100 most popular free apps
for Android, iOS, and Windows Phone from the Google Play store,
the iOS App Store, and the Windows Phone Store on August 9,
2015 as reported by App Annie [2]. For each app, we install
it, interact with it for up to 5 minutes, and uninstall it. We give
apps permission to access to all requested resources (e.g., contacts
or location). This allows us to characterize real user interactions
with popular apps in a controlled environment. We enter unique
and distinguishable user credentials when interacting with apps to
easily extract the corresponding PII from network flows (if they are
not obfuscated). Specific inputs, such as valid login credentials,
e-mail addresses and names, are hard to generate with automated
tools [20]. Consequently, our manual tests allow us to study app
behavior and leaks of PII not covered by our automated tests.
Automated tests. We include fully-automated tests on the 100
Android apps used in the manual tests and also 850 of the top
1,000 Android apps from the free, third-party Android market
AppsApk.com [3] that were successfully downloaded and installed
on an Android device.2 We perform this test to understand how
third-party apps differ from those in the standard Google Play
store, as they are not subject to Google Play’s restrictions and
vetting process (but can still be installed by users without rooting
their phones). We automate experiments using adb to install each
app, connect the device to the Meddle platform, start the app,
perform approximately 10,000 actions using Monkey [11], and
finally uninstall the app and reboot the device to end any lingering
connections. We limit the automated tests to Android devices
because iOS and Windows do not provide equivalent scripting
functionality.
Analysis. We use tcpdump [10] to dump raw IP traffic and bro [5]
to extract the HTTP flows that we consider in this study, then we
search for the conspicuous PII that we loaded onto devices and
used as input to text fields. We classify some of the destinations of
PII leaks as trackers using a publicly available database of tracker
domains [1], and recent research on mobile ads [22, 34, 43].

2.4 PII Leaked from Popular Apps
We use the traffic traces from our controlled experiments to

identify how apps leak PII over HTTP and HTTPS. For our analysis
we focus on the PII listed in §2.1. Some of this information may be
required for normal app operation; however, sensitive information
such as credentials should never travel across the network in
plaintext.

Table 1 presents PII leaked by iOS, Android and Windows
apps in plaintext. Device identifiers, which can be used to track
user’s behavior, are the PII leaked most frequently by popular
apps. Table 1 shows that other PII—user identifiers, contacts,
location, and credentials such as username and password—are
also leaked in plaintext. Importantly, our manual tests identify
important PII not found by automated tests (e.g.,, Monkey) such
as user identifiers and credentials. Thus, previous studies based
on automation underestimate leakage and are insufficient for good
coverage of PII leaks.
Cross-platform app behavior. We observed that the information
leaked by an app varied across OSes. Of the top 100 apps for
Android, 16 apps are available on all the three OSes. Of these
16 apps, 11 apps leaked PII in plaintext on at least one OS: 2

214 apps appear both in the AppsApk and Google Play stores, but
AppsApk hosts significantly older versions.

apps leaked PII on all the three OSes, 5 apps leaked PII in exactly
one OS, and the remaining 4 apps leaked PII in 2 of the OSes. A
key take-away is that PII analysis based only on one OS does not
generalize to all OSes.
Leaks over SSL. During our experiments, we observed that PII is
also sent over encrypted channels. In many cases, this is normal
app behavior (e.g., sending credentials when logging in to a site,
or sending GPS data to a navigation app). However, when such
information leaks to third parties, there is a potential PII leak. We
focus on the PII leaked to tracker domains [1], and find that 6 iOS
apps, 2 Android apps and 1 Windows app send PII to trackers over
SSL. The vast majority of this information is device identifiers,
with three cases of username leaks. While SSL traffic contains a
minority of PII leaks, there is clearly still a need to address leaks
from encrypted flows.

Our observations are a conservative estimate of PII leakage
because we did not attempt to detect obfuscated PII leaks (e.g.,
via salted hashing), and several apps used certificate pinning (10
iOS, 15 Android, and 7 Windows apps) or did not work with VPNs
enabled (4 iOS apps and 1 Android app). 3 Our results in §5.3
indicate that obfuscation is rare today, and our results above show
that significant PII leaks are indeed visible in plaintext.

2.5 Summary and Challenges
While the study above trivially revealed significant PII leaks from

popular mobile apps, several key challenges remain for detecting
PII leaks more broadly.
Detection without knowing PII. A key challenge is how to detect
PII when we do not know the contents of PII in advance. One
strawman solution is to simply block all advertising and tracking
sites. However, this is a blunt and indiscriminate approach that
can disrupt business models supporting free apps. In fact, the
developers of the top paid iOS app Peace (which blocks all ads)
recently withdrew their app from the App Store for this reason [40].

Another strawman solution is to automatically (and/or
symbolically) run every app in every app store to determine
when PII is leaked. This allows us to formulate a regular
expression to identify PII leaks from every app regardless of the
user: we simply replace the PII with a wildcard.

There are several reasons why this is insufficient to identify PII
leaks for arbitrary user flows. First, it is impractically expensive to
run this automation for all apps in every app store, and there are no
publicly available tools for doing this outside of Android. Second,
it is difficult (if not impossible) to use automation to explore
every possible code path that would result in PII leaks, meaning
this approach would miss significant PII. Third, this approach is
incredibly brittle – if a tracker changes the contents of flows leaking
PII at all, the regular expression would fail.

These issues suggest an alternative approach to identifying PII in
network flows: use machine learning to build a model of PII leaks
that accurately identifies them for arbitrary users. This would allow
us to use a small set of training flows, combined with user feedback
about suspected PII leaks, to inform the identification of a PII leaks
for a large number of apps.
Encoding and formatting. PII leaked over the network can be
encoded using Unicode and other techniques like gzip, JSON, and
XML, so a technique to identify PII in network flows must support a
variety of formats. In our experience, it is relatively straightforward
to extract the encoding for a flow and search for PII using this
encoding. We support the encodings mentioned above, and will
add support for others as we encounter them.

3Details and the complete dataset can be found on our website.

http:AppsApk.com
http://recon.meddle.mobi/codeanddata.html

Apps leaking a given PII
Testing # of Device User Contact

OS Store Technique Apps Identifier Identifier Information Location Credentials
iOS App Store Manual 100 47 (47.0%) 14 (14.0%) 2 (2.0%) 26 (26.0%) 8 (8.0%)
Android Google Play Manual 100 52 (52.0%) 15 (15.0%) 1 (1.0%) 14 (14.0%) 7 (7.0%)
Windows WP Store Manual 100 55 (55.0%) 3 (3.0%) 0 (0.0%) 8 (8.0%) 1 (1.0%)
Android AppsApk Automated 850 155 (18.2%) 6 (0.7%) 8 (0.9%) 40 (4.7%) 0 (0.0%)
Android Google Play Automated 100 52 (52.0%) 0 (0.0%) 0 (0.0%) 6 (6.0%) 0 (0.0%)

Table 1: Summary of PII leaked in plaintext (HTTP) by iOS, Android and Windows Phone apps. User identifiers and credentials are
leaked across all platforms. Popular iOS apps leak location information more often than the popular Android and Windows apps.

Encryption. Flows in the mobile environment increasingly use
encryption (often via SSL). Sandvine reports that in 2014 in North
American mobile traffic, approximately 12.5% of upstream bytes
use SSL, up from 9.78% the previous year [54]. By comparison,
11.8% of bytes came from HTTP in 2014, down from 14.66% the
previous year. A key challenge is how to detect PII leaks in such
encrypted flows. ReCon identifies PII leaks in plaintext network
traffic, so it would require access to the original plaintext content
to work. While getting such access is a challenge orthogonal to
this work, we argue that this is feasible for a wide range of traffic
if users run an SSL proxy on a trusted computer (e.g., the user’s
home appliance, such as a computer or home gateway) or use recent
techniques for mediated access to encrypted traffic [48, 55].
Obfuscation of PII. The parties leaking PII may use obfuscation
to hide their information leaks. In our experiments, we found little
evidence of this (§ 5.3). In the future, we anticipate combining our
approach with static and dynamic analysis techniques to identify
how information is being obfuscated, and adjust our system to
identify the obfuscated PII. For example, using information flow
analysis, we can reverse-engineer how obfuscation is done (e.g.,
for salted hashing, learn the salt and hash function), then use this
information when analyzing network traces to identify leaked PII.
In the ensuing cat-and-mouse game, we envision automating this
process of reverse engineering obfuscation.

3. RECON GOALS AND DESIGN
The previous section shows that current OSes do not provide

sufficient visibility into PII leaks, provide few options to control
it, and thus significant amounts of potentially sensitive information
is exfiltrated from user devices. To address this, we built ReCon,
a tool that detects PII leaks, visualizes how users’ information is
shared with various sites, and allows users to change the shared
information (including modifying PII or even blocking connections
entirely).

The high-level goal of our work is to explore the extent to which
we can address privacy issues in mobile systems at the network
level. The sub-goals of ReCon are as follows:
•	 Accurately identify PII in network flows, without requiring the

knowledge of users’ PII a priori.
•	 Improve awareness of PII leaks by presenting this information

to users.
•	 Automatically improve the classification of sensitive PII based

on user feedback.
•	 Enable users to change these flows by modifying or removing

PII.
To achieve the first three goals, we determine what PII is leaked

in network flows using network trace analysis, machine learning,
and user feedback. We achieve the last goal by providing users with
an interface to block or modify the PII shared over the network.

This paper focuses on how to address the research challenges in
detecting and revealing PII leaks; as part of ongoing work outside
the scope of this paper, we are investigating other UIs for modifying
PII leaks, how to use crowdsourcing to help design PII-modifying
rules, and how we can use ReCon to provide other types of privacy
(e.g., k-anonymity).

Figure 1 presents the architecture of the ReCon system. In the
“offline” phase, we use labeled network traces to determine which
features of network flows to use for learning when PII is being
leaked, then train a classifier using this data, finally producing a
model for predicting whether PII is leaked. When new network
flows enter ReCon (the “online” phase), we use the model to
determine whether a flow is leaking PII and present the suspected
PII leak to the user via the ReCon Web UI (Fig. 2). We currently
detect PII as described in the previous section, and will add other
PII types as we discover them. Note that our approach can detect
any PII that appears in network traffic as long as we obtain labeled
examples.

We collect labels from users (i.e., whether our suspected PII is
correct) via the UI and integrate the results into our classifier to
improve future predictions (left). In addition, ReCon supports a
map view, where we display the location information that each
domain is learning about the user (right). By using a Web interface,
ReCon users can gain visibility and control into their PII leaks
without installing an app. A demo of ReCon is available at
http://recon.meddle.mobi/DTL-ReconDemo.mp4.

To support control of PII, ReCon allows users to tell the system
to replace PII with other text (or nothing) for future flows (see
the drop-down boxes in Fig. 2(a)). Users can specify blocking or
replacement of PII based on category, domain, or app. This protects
users’ PII for future network activity, but does not entirely prevent
PII from leaking in the first place. To address this, we support
interactive PII labeling and filtering, using push notifications4 or
other channels to notify the user of leaks immediately when they
are detected (as done in a related study [15]).

3.1 Non-Goals
ReCon is not intended as a blanket replacement for existing

approaches to improve privacy in the mobile environment. For
example, information flow analysis [24] may identify PII leaks not
revealed by ReCon. In fact, ReCon can leverage information flow
analysis techniques to improve its coverage, as we demonstrate
in §5.3. Importantly, ReCon allows us to identify and block
unobfuscated PII in network flows from arbitrary devices without
requiring OS modifications or taint tracking.

The need for access to plaintext traffic is an inherent limitation of
our approach. We discussed several ways to address encryption and
obfuscation of PII in the previous section. If these should fail, we

4Push notifications require a companion app, and we currently
support Android (we plan to release iOS and Windows versions
soon).

http://recon.meddle.mobi/DTL-ReconDemo.mp4

Features

Initial Training

Continuous training with user feedback

Training

Model Prediction User
Interface

Rewriter

Model

User Feedback

Flows

Flows

Figure 1: ReCon architecture. We initially select features and
train a model using labeled network flows (top), then use this model
to predict whether new network flows are leaking PII. Based on
user feedback, we retrain our classifier (bottom). Periodically, we
update our classifier with results from new controlled experiments.

(a) PII leaks and actions (b) Map view of location leaks

Figure 2: Screen capture of the ReCon user interface. Users can
view how their PII is leaked, validate the suspected PII leaks, and
create custom filters to block or modify leaks.

can recover plaintext traffic with OS support for access to network
traffic content as it appears before encryption or obfuscation. Of
course, getting such support from an OS could be challenging.
Alternatively, policymakers such as the FTC could intervene by
barring developers from using techniques that explicitly eschew
auditing tools such as ReCon, by citing it as a type of “deceptive
business practice” currently disallowed in the US.

3.2 Deployment Model and User Adoption
Because ReCon needs access only to network traffic to identify

and modify PII leaks, it admits a variety of deployment models,
e.g.,, in the cloud, in home devices, inside an ISP, or on mobile
devices. We are currently hosting this service on Meddle in a cloud-
based deployment because it provides immediate cross-platform
support with low overheads [49]. We are also in discussions with
Telefonica to deploy ReCon on their Awazza [4] APN proxy, which
has attracted thousands of users.

3.3 Protecting User Privacy
An important concern with a ReCon user study is privacy.

Using an IRB-approved protocol [8], we encrypt and anonymize
all captured flows before storing them. We have two deployment
models: the first study (approval #13-08-04) captures all of a
subject’s Internet traffic and entails in-person, signed informed
consent; the second study (approval #13-11-17) captures only
HTTP GET/POST parameters (where most leaks occur) and users
consent via an online form. The secret key is stored on a separate
secure server and users can delete their data at any time.

We will make the ReCon source code publicly available. For
those who want to run their own ReCon instance (e.g., if they do
not want to participate in our study), our system requires only that
a user has root on a Linux OS. ReCon can be deployed in a single-
machine instance on a home computer, as Raspberry Pi plugged
into a home router, a dedicated server in an enterprise, a VM in
the cloud, or in the device itself. One can also selectively route
traffic to different ReCon instances, e.g.,, to a cloud instance for
HTTP traffic and a trusted home instance or on-device software
such as HayStack [51] to decrypt HTTPS connections to identify
PII leaked over SSL.

4. RECON IMPLEMENTATION
We now discuss key aspects of our implementation. We then

evaluate our design decisions in the following section, and finally
demonstrate how they hold up “in the wild” via a user study with 92
participants. Table 2 presents a roadmap for the remainder of the
paper, highlighting key design decisions, evaluation criteria, and
results. The ReCon pipeline begins with parsing network flows,
then passing each flow to a machine learning classifier for labeling
it as containing a PII leak or not.

4.1 Machine Learning Techniques
We use the weka data mining tool [28] to train classifiers that

predict PII leaks. We train our classifier by extracting relevant
features and providing labels for flows that leak PII as described
below. Our input dataset is the set of labeled flows from our
controlled experiments in §2.3. To evaluate our classifiers, we use
k-fold cross validation, where a random (k - 1)/k of the flows in
our dataset are used to train the classifier, and the remaining 1/k of
the flows are tested for accuracy. This process is repeated n times
to understand the stability of our results (see §5).
Feature extraction. The problem of identifying whether a flow
contains PII is similar to the document classification problem,5

so we use the “bag-of-words” model [32]. We choose certain
characters as separators and consider anything between those
separators to be words. Then for each flow, we produce a vector
of binary values where each word that appears in a flow is set to 1,
and each word that does not is set to 0.

A key challenge for feature extraction in network flows is that
there is no standard token (e.g., whitespace or punctuation) to use
for splitting flows into words. For example, a colon (:) could
be part of a MAC address (e.g., 02:00:00:00:00), a time-of
day (e.g., 11:59), or JSON data (e.g., username:user007).
Further frustrating attempts to select features, one domain uses
“=>” as a delimiter (in username =>user007). In these cases,
there is no single technique that covers all flows. Instead, we
use a number of different delimiters “,;/(){}[]" to handle
the common case, and treat ambiguous delimiters by inspecting
the surrounding content to determine the encoding type based on

5Here, network flows are documents and structured data are words.

Section Topic Dataset Key results
4.1
4.2
5.2

5.3

6

Implementation
"

Evaluation: ML techniques

Evaluation: IFA comparison

Evaluation: “in the wild”

Controlled exp.
Controlled exp.
Controlled exp.

Automated exp.

User study

Feature extraction and selection, per-domain per-OS classifiers
Automatically identifying PII in flows
Decision trees provide best trade-off for accuracy/speed, per-domain per-OS classifiers
outperform general ones, feature selection balances accuracy and training time, heuristics
for PII extraction are accurate
ReCon generally outperforms information flow analysis techniques, and can learn new
association rules from them to further improve accuracy
ReCon is efficient, users labels confirm accuracy of ReCon even for apps not previously
seen, retraining based on user labels substantially improves accuracy, significant amounts
of sensitive information is leaked in plaintext from popular apps.

Table 2: Roadmap for key topics covered in §4, §5 and §6. We train and test our classifier using 10-fold cross-validation, i.e., a random
9/10 samples for training and the remaining 1/10 for testing; we repeat this process 10 times to tune our parameters.

context (e.g., looking at content-encoding hints in the HTTP header
or whether the content appears in a GET parameter).
Feature selection. A simple bag-of-words model produces too
many features to be useful for training accurate classifiers that
make predictions within milliseconds (to intercept PII leaks in real
time). To reduce the feature set, we assume that low-frequency
words are unlikely to be associated with PII leaks, because when
PII does leak, it rarely leaks just once. On the other hand, session
keys and other ephemeral identifiers tend to appear in exactly one
flow. Based on this intuition, we apply a simple threshold-based
filter that removes a feature if its word frequency is too small.
We select a reasonable threshold value empirically, by balancing
accuracy and classification time for labeled data (discussed in
§5.2.3). To avoid filtering PII leaks that occur rarely in our labeled
data, we oversample rarely occurring PII leaks(so that their number
occurrences is greater than the filter threshold). In addition, we
randomize PII values (e.g.,, locations, device IDs) in each flow
when training to prevent the classifier from using a PII value as
a feature.

While the above filter removes ephemeral identifiers from our
feature set, we must also address the problem of words that
commonly appear. Several important examples include information
typically found in HTTP flows, such as content-length:,
en- us, and expires. We thus add stop-word-based filtering
on HTTP flows, where the stop words are determined by term
frequency—inverse document frequency (tf-idf). We include only
features that have fairly low tf-idf values and that did not appear
adjacent to a PII leak in a flow from our controlled experiments.
Per-domain-and-OS and general classifiers. We find that PII
leaks to the same destination domain use the same (or similar)
data encodings to transfer data over the network, but that this
encoding may differ across different OSes. Based on this
observation, we build per-domain-and-OS models (one classifier
for each [destination domain, OS] pair) instead of one single
general classifier. We identify the domain associated with each
flow based on the Host: parameter in the HTTP header. If this
header is not available, we can also identify the domain associated
with each IP address by finding the corresponding DNS lookup
in packet traces. We identify the OS based on the fact that
different OSes use different authentication mechanisms in our
VPN, and users tell us in advance which OS they are using. This
improves prediction accuracy because the classifier typically needs
to learn a small set of association rules. Further, per-domain
and-OS classifiers improve performance in terms of lower-latency
predictions (§5.2.3), important for detecting and intercepting PII
leaks in-band.

The above approach works well if there is a sufficiently large
sample of labeled data to train to the per-domain per-OS classifier.
For domains that do not see sufficient traffic, we build a (cross

domain) general classifier. The general classifier tends to have
few labeled PII leaks, making it susceptible to bias (e.g., 5% of
flows in our general classifier are PII leaks). To address this, we
use undersampling on negative samples, using 1/10 sampling to
randomly choose a subset of available samples.

Note that we do not need to train classifiers on every domain in
the Internet; rather, we train only on domains contacted by users’
traffic. Further, we do not need every user to label every PII leak;
rather, we need only a small number of labeled instances from a
small number of users to identify PII leaks for all users whose
traffic visits those domains.
Adapting to PII leaks “in the wild.” A key challenge for any
ML technique is identifying flows leaking PII that were never
seen in controlled experiments. To mitigate this problem, we
integrate user feedback from flows that we did identify using one
of our classifiers. Specifically, when a user provides feedback
that we have correctly identified PII, we can search for that PII
in historical flows to identify cases ReCon missed due to lack of
sufficient training data. Further, we can use these flows to retrain
our classifier to successfully catch these instances in future network
flows. We discuss the effectiveness of this approach in §6.

Any system that allows user feedback is susceptible to incorrect
labels, e.g., via user error or Sybil attacks. There are two ways to
address this. First, we can simply train per-user classifiers, so any
erroneous labels only affect the user(s) who provide them. Second,
we can train system-wide classifiers if we can reliably distinguish
good labels from bad ones. To this end, we envision using existing
majority-voting algorithms and/or reputation systems [36].

4.2 Automatically Extracting PII
A machine learning classifier indicates whether a flow contains

PII, but does not indicate which content in the flow is a PII
leak. The latter information is critical if we want to present users
with information about their leaks and allow them to validate the
predictions.

A key challenge for extracting PII is that the key/value pairs
used for leaking PII vary across domains and devices; e.g., the key
“device_id” or “q” might each indicate an IMEI value for different
domains, but “q” is not always associated with a PII leak. While
we found no solution that perfectly addresses this ambiguity, we
developed effective heuristics for identifying “suspicious” keys that
are likely associated with PII values.

We use two steps to automatically extract PII leaks from a
network flows classified as a leak. The first step is based on the
relative probability that a suspicious key is associated with a PII
leak, calculated as follows:

= KPII Ptype,key Kall

where type is the PII type (e.g., IMEI, e-mail address), key is the
suspicious key for that type of PII, KPII is the number of times
the key appeared in flows identified with PII leaks, and Kall is the
number times the key appeared in all flows. The system looks for
suspicious keys that have Ptype,key greater than a threshold. We set
this value to an empirically determined value, 0.2, based on finding
the best trade-off between false positives (FPs) and true positives
(TPs) for our dataset. For users wanting more or less sensitivity,
we will make this a configurable threshold in ReCon (e.g., if a user
wants to increase the likelihood of increasing TPs at the potential
cost of increased FPs).

In the second step, we use a decision tree classifier, and observe
that the root of each tree is likely a key corresponding to a PII value.
We thus add these roots to the suspicious key set and assign them a
large P value.

In the next section, we evaluate ReCon using controlled
experiments on a pre-labeled dataset. This evaluation will only use
the initial training phase. Next, we evaluate ReCon in the wild
with a user study on our public deployment (§6). This evaluation
will use both the initial training phase and the continuous training
phase obtained from real users.

5. EVALUATION
This section evaluates the effectiveness of ReCon in terms of

accuracy and performance. First, we describe our methodology,
then we describe the results from controlled experiments in terms
of classifier accuracy compared to ground truth and to information
flow analysis. In the next section, we evaluate our system based on
results from a user study.

Our key finding are: 1) we demonstrate that a decision-tree
classifier is both accurate (99% overall) and efficient (trains in
seconds, predicts in sub-milliseconds); 2) ReCon identifies more
PII than static and dynamic information-flow analysis techniques,
and can learn from the results of these approaches to improve its
coverage of PII leaks. Note that this paper focuses on reliably
identifying leaks and enabling control, but does not evaluate the
control functionality.

5.1 Dataset and Methodology
To evaluate ReCon accuracy, we need app-generated traffic

and a set of labels indicating which of the corresponding flows
leak PII. For this analysis, we reuse the data from controlled
experiments presented in §2.3; Table 3 summarizes this dataset
using the number of flows generated by the apps, and fraction that
leak PII. We identify that more than 6,500 flows leak PII, and
a significant fraction of those flows leak PII to known trackers.
The code and data from our controlled experiments are open-
source and publicly available at http://recon.meddle.
mobi/codeanddata.html.

Recall from §4.1 that we use k-fold cross-validation to evaluate
our accuracy by training and testing on different random subsets of
our labeled dataset. We tried both k = 10 and k = 5, and found
these values caused only a small difference (less than 1%) in the
resulting accuracy.

We use this labeled dataset to train classifiers and evaluate their
effectiveness using the following metrics. We define a positive flow
to be one that leaks PII; likewise a negative flow is one that does not
leak PII. A false positive occurs when a flow does not leak PII but
the classifier predicts a PII leak; a false negative occurs when a flow
leaks PII but the classifier predicts that it does not. We measure the
false positive rate (FPR) and false negative rate (FNR); we also
include the following metrics:

•	 Correctly classified rate (CCR): the sum of true positive (TP)
and true negative (TN) samples divided by the total number of
samples. CCR = (TN + TP)/(TN + TP + FN + FP).
A good classifier has a CCR value close to 1.

•	 Area under the curve (AUC): where the curve refers to receiver
operating characteristic (ROC). In this approach, the x-axis is
the false positive rate and y-axis is the true positive rate (ranging
in value from 0 to 1). If the ROC curve is x = y (AUC = 0.5),
then the classification is no better than randomly guessing. A
good classifier has a AUC value near 1.

To evaluate the efficiency of the classifier, we investigate the
runtime (in milliseconds) for predicting a PII leak and extracting
the suspected PII. We want this value to be significantly lower than
typical Internet latencies.

We use the weka data mining tool to investigate the above metrics
for several candidate machine learning approaches to identify a
technique that is both efficient and accurate. Specifically, we
test Naive Bayes, C4.5 Decision Tree (DT) and several ensemble
methods atop DTs (AdaBoost, Bagging, and Blending).

5.2 Lab Experiments
In this section, we evaluate the impact of different implementation

decisions and demonstrate the overall effectiveness of our adopted
approach.

5.2.1 Machine Learning Approaches
A key question we must address is which classifier to use. We

believe that a DT-based classifier is a reasonable choice, because
most PII leaks occur in structured data (i.e., key/value pairs), and a
decision tree can naturally represent chained dependencies between
these keys and the likelihood of leaking PII.

To evaluate this claim, we tested a variety of classifiers according
to the accuracy metrics from the previous section, and present the
results in Fig. 3. We plot the accuracy using a CDF over the domains
that we use to build per-domain per-OS classifiers as described in
§4.1. The top two graphs (overall accuracy via CCR and AUC),
show that Naive Bayes has the worst performance, and nearly all
the DT-based ensemble methods have high CCR and AUC values.
(Note that the x-axis does not start at 0.)

Among the ensemble methods, Blending with DTs and k-nearest
neighbor (kNN) yields the highest accuracy; however, the resulting
accuracy is not significantly better than a simple DT. Importantly,
a simple DT takes significantly less time to train than ensemble
methods. For ensemble methods, the training time largely depends
on the number of iterations for training. When we set this value to
10, we find that ensemble methods take 7.24 times longer to train
than a simple DT on the same dataset. Given the significant extra
cost with minimal gain in accuracy, we currently use simple DTs.

The bottom figures show that most DT-based classifiers have
zero FPs (71.4%) and FNs (76.2%) for the majority of domains.
Further, the overall accuracy across all per-domain per-OS
classifiers is >99%. The domains with poor accuracy are the
trackers rlcdn.com and turn.com, due to the fact their positive
and negative flows are very similar. For example, the key
partner_uid is associated both with an Android ID value and
another unknown identifier.

To provide intuition as to why DTs work well, and why PII
leak detection presents a nontrivial machine-learning problem, we
include several examples of DTs trained using our data. Some cases
of PII leaks are simple: Fig. 4(a) shows that Android Advertiser
ID is always leaked to the tracker applovin.com when the text
idfa is present in network traffic. Other cases are not trivial,

http:applovin.com
http:turn.com
http:rlcdn.com
http://recon.meddle

Manual tests Automated tests (Monkey)
OS (Store) iOS (App) Android (Play) Windows (WP) Android (Play) Android (AppsApk)
Apps tested 100 100 100 100 850
Apps leaking PII 63 56 61 52 164
HTTP flows 14683 14355 12487 7186 17499

Leaking PII 845 1800 969 1174 1776
Flows to trackers 1254 1854 1253 1377 5893

Leaking PII to trackers 508 567 4 414 649

Table 3: Summary of HTTP flows from controlled experiments. Manual tests generated similar numbers of flows across platforms, but
Android leaked proportionately more PII. Collectively, our dataset contains more than 6500 flows with PII leaks.

 1 1

 0

General Classifier

Decision Tree
AdaBoost

Bagging
Blending

Naive Bayes General Classifier

C
D

F
 o

f
N

u
m

b
e

r
o

f
D

o
m

a
in

s

C
D

F
 o

f
N

u
m

b
e

r
o

f
D

o
m

a
in

s

C
D

F
 o

f
N

u
m

b
e

r
o

f
D

o
m

a
in

s

C
D

F
 o

f
N

u
m

b
e

r
o

f
D

o
m

a
in

s

0.8 0.8

 0.6

 0.4

 0.2

 0.6

 0.4

 0.2

 0
 0.5 0.6 0.7 0.8 0.9 1 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Correctly Classified Rate Area Under Curve

(a) CCR (x-axis does not start at 0) (b) AUC (x-axis does not start at 0)

 1 1

General Classifier General Classifier

0

 0.8

 0.6

 0.4

 0.2

 0.8

 0.6

 0.4

 0.2

 0
 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False Negative Rate False Positive Rate

(c) FNR (d) FPR

Figure 3: CDF of per-domain-and-OS (PDAO) classifier accuracy, for alternative classification approaches. For the 42 PDAO
classifiers, DT-based classifiers outperform Naive Bayes, and they exhibit good accuracy (high CCR and AUC, low FPR and FNR).
The vertical line depicts accuracy when using one classifier across all domains, which leads to significantly worse performance.

as seen in Fig. 4(b). Here, we find that auid is not always
associated with an IMEI value, and the DT captures the fact that
the IMEI will not be present for a getImage.php5 request if
the urid is present. Finally, Fig. 4(c) gives an example of a non
trival DT for a different type of PII—e-mail address. Here, the
term email appears in both positive and negative flows, so this
feature cannot be used alone. However, our classifier learns that the
leak happens in a /user/ request when the terms session and
deviceId are not present.6 Overall, 62% of DTs are the simple
case (Fig. 4(a)), but more than a third have a depth greater than two,
indicating a significant fraction of cases where association rules are
nontrivial.

5.2.2 Per-Domain-and-OS Classifiers
We now evaluate the impact of using individual per-domain

and-OS (PDAO) classifiers, instead of one general classifier for all
flows. We build PDAO classifiers for all domains with greater than
100 samples (i.e., labeled flows), at least one of which leaks PII. For
the remaining flows, there is insufficient training data to inform a
6Note that in this domain deviceId is actually used for an app
specific identifier, not a device identifier.

classifier, so we create a general classifier based on the assumption
that a significant fraction of the flows use a common structure for
leaking PII.7

We evaluate the impact of PDAO classifiers on overall accuracy
in Figure 3. The vertical lines in the subgraphs represent values
for the general classifier, which is trained using all flows from all
domains. The figure shows that >95% of the PDAO classifiers
have higher accuracy than the general classifier. Further, the high-
accuracy PDAO classifiers cover the vast majority of flows in our
dataset (91%). Last, training PDAO classifiers is substantially
less expensive in terms of runtime: it takes minutes to train PDAO
classifiers for thousands of flows, but it takes hours to train general
classifiers for the same flows.

5.2.3 Feature Selection
The accuracy of the classifiers described above largely depends

on correctly identifying the subset of features for training. Further,
the training time for classifiers increases significantly as the number
7Note that once ReCon acquires sufficient labeled data (e.g., from
users or controlled experiments) for a destination domain, we
create a PDAO classifier.

CCR: 99.92% Domain: applovin.com CCR: 99.09% Domain: myadas.com CCR: 100% Domain: oovoo.com
FPR: 0% In training set: FPR: 0.5% In training set: FPR: 0% In training set:
FNR: 0.52% #Positive: 191 FNR: 4.1% #Positive: 72 FNR: 0% #Positive: 84
AUC: 0.9950 #Negative: 1010 #Negative: 770Flow contains

534.30Nexus
AUC: 1	 #Negative: 40AUC: 0.9900

Yes
Yes

Flow contains
/user/

No
No

Flow contains
auid

Flow contains
connFlow contains

idfa
Flow contains
sessionNegativeYes No

Yes No

No

Flow contains
deviceId

Positive Negative Yes

Yes No Yes	 No

Negative Flow contains
/getImage.php5

Negative

Flow contains
urid

No
Negative	 No Yes

Yes Negative Positive
Positive Negative	 Positive Negative

(a) Simple DT for device identifier (b) Non-trivial DT for device identifier (c) Non-trivial DT for e-mail address

Figure 4: Example decision trees (DTs) for ReCon’s per-domain per-OS classifiers. The classifier beings at the root (top) node, and
traverses the tree based on whether the term at each node is present. The leaves (boxes) indicate whether there is a PII leak (positive) or not
(negative) for each path. The top right of each figure shows the number of positive/negative samples used to train each DT.

 4.5 1 4.5 0.18 4.5

50

 100

 150

 200

 250

 300

 350

 400

 450
Number of Features

Training Time

0

Overall Accuracy
Area Under the curve

Training Time

False Negative Rate
False Positive Rate

Training Time

4.4

 4.3

 4.2

 4.1

 4

 3.9

T
ra

in
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

R
a

te

T
ra

in
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

0.16

 0.14

 0.12

T
ra

in
in

g
 T

im
e

 (
s
e

c
o

n
d

s
)

O
v
e

ra
ll
 A

c
c
u

ra
c
y

 4.4

 4.3

 4.4

 4.3

 4.2

 4.1

 4

 3.9

N
u

m
b

e
r

o
f

F
e

a
tu

re
s

0.995

 0.99

 0.985

 4.20.1

 0.08

 0.06

 0.04

 0.02

 4.1

 4

 3.9

 0.98 3.8 0 3.8

 5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

3.8
 0 10 20 30 40 50 60 70 80 90 100

Threshold for word occurence Number of Features	 Number of Features

(a) #features changes as threshold changes	 (b) accuracy and training time over (c) false negative and false positive rate and
#features (y-axes do not start at 0) training time over #features

Figure 5: Feature selection for the tracker domain mopub.com. Using ⇡200 features leads to high accuracy and low training times; however,
adding more features increases training time with no benefit to accuracy.

of features increases, meaning that an efficient classifier requires
culling of unimportant features. A key challenge in ReCon is
determining how to select such features given the large potential
set derived from the bag-of-words approach.

We use Figure 5 to illustrate this problem and how we address
it. Here, we focus on statistics for the tracker domain mopub.com
(266 flows out of 1,276 leak PII); other domains exhibited similar
properties.

First, we focus on the threshold for including features in our
training set. As described in § 4.1, we filter out features from
words that appear infrequently. Fig. 5(a) shows the impact of
this decision on training time, where the x-axis is the minimum
number of appearances for a word to be included as a feature, and
the y-axis is the time required to train a classifier on the resulting
features. The figure shows that including all words (threshold = 1)
significantly increases training time, but there is a minimal impact
on training time if the threshold is greater than or equal to 20. The
corresponding number of features decreases from 450 to 29 as the
threshold for word occurrence increases from 1 to 99.

Picking the right number of features is also important for
classifier accuracy, as too many features may lead to overfitting and
too few features may lead to an incomplete model. We evaluate
this using Fig. 5(b), where the x-axis is the number of features,
the left y-axis is accuracy (the y-axis does not start at zero), and
the right y-axis is training time. Even small numbers of features
lead to high accuracy for this domain, but increasing the number
of features beyond 250 does not improve performance (but does

increase training time). We see a similar effect on the FP rate in
Fig. 5(c).

While the training time may not seem high in this context,
we note that this cost must be incurred for each domain and
each time we want to update the classifier with user-labeled
flows. With potentially thousands of flows and labels in a large-
scale deployment, such training times can significantly affect the
scalability and responsiveness of ReCon.

With this in mind, we propose the following strategies for
picking threshold values. First, we can use the above analysis
to find the best threshold, then periodically update this threshold
based on new labeled data. Second, we can pick a fixed threshold
based on the average threshold across all domains (word frequency
= 21). We evaluated the impact of these two approaches, and found
they were nearly identical for our dataset. This suggests that a
fixed value is sufficient for our dataset, but we propose periodically
updating this threshold by performing the above analysis daily or
weekly as a low-priority background process.

5.2.4 PII Extraction Strategies
As discussed in § 4.2, we use two heuristics to identify key/value

pairs that are likely to leak PII. We use our dataset to evaluate
this approach, and find that the FP and FN rates are 2.2% and
3.5%, respectively. By comparison, a naive approach that treats
each key/value pair equally yields FP and FN rates of 5.1% and
18.8%, respectively. Our approach is thus significantly better, and
our FP and FN rates are low enough to correctly extract PII the vast
majority of the time.

http:mopub.com
http:mopub.com
http:oovoo.com

5.3 Comparison with IFA
Our labeled dataset in the above analysis may miss PII leaks

that are obfuscated or otherwise hidden from our analysis. We
now evaluate our approach by comparing with one that is resilient
to such issues: information flow analysis (IFA). We experiment
with three IFA techniques: (1) static IFA with FlowDroid [13],
(2) dynamic IFA with TaintDroid [24] (via Andrubis [44]), and
(3) AppAudit [59], which uses a combination of both static
and approximated dynamic analysis. Each of these tools has
limitations: some are very resource intensive and some pose
restrictions on the type of apps they can successfully analyze.
Static IFA. FlowDroid detects PII leaks as data flowing between
sensitive sources and sinks, which are configured via a list of
Android API calls. However, the analysis is quite resource
intensive: for 4.99% of apps, our available memory of 8GB was
insufficient for analysis; for 17.24% of apps the analysis exceeded
our analysis timeout of 30 minutes. The detected leaks are reported
as paths between the API calls. Note that this approach can lead to
false positives, since a detected leak may never be triggered during
app execution.
Dynamic IFA. Andrubis is an app analysis sandbox that uses
TaintDroid to identify PII leaks from Android apps during dynamic
analysis. Andrubis installs each app in an emulated Android
environment and monitors its behavior for 240 seconds. Besides
calling all of the app’s registered components and simulating
common events, such as incoming SMS and location changes, it
uses Monkey [11] to generate approximately 8,000 pseudo-random
user events. In addition to detailed analysis report including all
detected data leaks, it also provides the recorded network packet
traces. However, this analysis fails for 33.73% of apps because
they exceed the file size and/or API level limit of Andrubis.
Hybrid IFA. AppAudit flags functions that potentially leak PII
through static analysis, then performs simulated dynamic analysis
to filter out candidate functions to confirm PII leaks. It reports
leaks to the network, file system and through SMS from sources
such as the location, contacts and device identifiers. The analysis
failed for 17.33% of apps. Note that AppAudit only approximates
the execution of suspicious functions, and thus does not record any
network packet traces.
Methodology and results. We use the 850 apps from AppsApk.com
and the top 100 apps from Google Play from §2.3, and focus on the
750 apps that produced network traffic in our experiments. Since
static and hybrid IFA approaches do not provide network flows,
they only indicate whether an app will potentially leak a certain
type of PII. To compare these techniques with dynamic analysis,
we base our comparison on the number of apps that potentially
leak a certain type of PII. Specifically, we flag an app as leaking
a certain type of PII if any tool detected an actual or potential PII
leak in that category (this occurs for 278 apps). We further filtered
out cases where dynamic analysis incorrectly flagged a PII leak.

Table 4 shows the number and percentage of apps that
were flagged by FlowDroid, Andrubis, AppAudit and ReCon.
FlowDroid mainly identified potential location and phone number
leaks, while AppAudit mainly identified IMEI leaks. Andrubis
performed well in detecting device identifiers (ICCID, IMEI, IMSI)
and the phone number. Importantly, ReCon identifies more PII
leaks overall, and in more categories than IFA.

The above results are encouraging for ReCon, and we further
investigated mismatches between ReCon and TaintDroid results,
since the latter provides network traces that we can process
via ReCon. Note, as the authors of TaintDroid themselves
acknowledge [24], it may generate false positives (particularly for
arrays and IMSI values), due to propagating taint labels per variable

and IPC message. We thus manually inspected flows flagged as
leaking PII, and discarded cases where the identified PII did not
appear in plaintext network flows (i.e., false positives). Table 5
shows the results of our analysis, grouped by PII type.

We use the plaintext leaks identified by Andrubis as ground truth,
and evaluate our system by sending the Andrubis network traffic
through ReCon trained with the pre-labeled dataset described in
Section §5.1. The ReCon false positive rate was quite low (0.11%),
but the false negative rate was relatively high (15.6%). The vast
majority of false negative flows were Device ID leaks (124/457 are
obfuscated and 140/457 are false positive reports from Andrubis).
Importantly, when we retrain ReCon’s classifier with the Andrubis
data, we find that all of the false negatives disappear. Thus, ReCon
is adaptive in that its accuracy should only improve as we provide
it more and diverse sets of labeled data. In the next section we
describe results suggesting that we can also use crowdsourcing to
provide labeled data.

In addition, we can use network traces labeled by IFA to train
ReCon even in the presence of PII obfuscation. This works because
ReCon does not search for PII itself, but rather the contextual clues
in network traffic that reliably indicate that PII is leaking.

Finally, ReCon identified several instances of PII leaks that are
not tracked by IFA. These include the Android ID, MAC address,
user credentials, gender, birthdays, ZIP codes, and e-mail addresses.

6. RECON IN THE WILD
We now describe the results of our IRB-approved user study,

where participants used ReCon for at least one week and up
to over 200 days, interacted with our system via the UI, and
completed a follow-up survey. Our study is biased toward flows
from the US due to initial recruitment in the Boston area, but
includes connections from users in 21 countries in four continents.
While we cannot claim representativeness, we can use the user
feedback quantitatively, to understand the impact of labeling on our
classifiers. We also use the study qualitatively, to understand what
PII was leaked from participant devices but not in our controlled
experiments, and to understand users’ opinions about privacy.

The study includes 92 users in total, with 63 iOS devices and 33
Android devices (some users have more than one device). In the
initial training phase, we initialized the ReCon classifiers with the
pre-labeled dataset discussed in §5. Then we use the continuous
user feedback to retrain the classifiers. The anonymized results of
PII leaks discovered from our ongoing user study can be found at
http://recon.meddle.mobi/app-report.html.
Runtime. While the previous section focused on runtime in terms
of training time, an important goal for ReCon is to predict and
extract PII in-band with network flows so that we can block/modify
the PII as requested by users. As a result, the network delay
experienced by ReCon traffic depends on the efficiency of the
classifier.

We evaluated ReCon performance in terms of PII prediction and
extraction times. The combined cost of these steps is less than
0.25 ms per flow on average (std. dev. 0.88), and never exceeds
6.47 ms per flow. We believe this is sufficiently small compared
to end-to-end delays of tens or hundreds of milliseconds in mobile
networks.
Accuracy “in the wild.” Participants were asked to view their PII
leaks via the ReCon UI, and label them as correct or incorrect. As
of Dec 8, 2015, our study covers 1,120,278 flows, 9,573 of which
contained PII leaks that ReCon identified. Of those, there are 5,351
TP leaks, 39 FP leaks and 4,183 unlabeled leaks. Table 6 shows the
results across all users. The users in the study found few cases when
ReCon incorrectly labeled PII leaks. The vast majority (85.6%) of

http://recon.meddle.mobi/app-report.html
http:AppsApk.com

Approach
#apps leaking PII

(#reports)
Device

Identifier
User

Identifier
Contact

Information
Location Credentials

FlowDroid (Static IFA)
Andrubis (Dynamic IFA)
AppAudit (Hybrid IFA)
ReCon

91 (546)
90 (497)
64 (620)

155 (750)

51 (21.52%)
78 (35.46%)
57 (24.05%)
145 (61.18%)

0(-)
⇥
⇥

6 (100%)

9 (52.94%)
10 (62.50%)
3 (17.65%)
4 (23.53%)

52 (64.20%)
3 (3.75%)
4 (4.94%)

29 (35.80%)

⇥
⇥
⇥

0 (-)
Union of all approaches 278 (750) 237 6 17 81 0

Table 4: Comparison of ReCon with information flow analysis (IFA) tools. This comparison is based on automated tests for 750 Android
apps (apps from the Google Play and AppsApk dataset for which we observed network flows). We present the number of Android apps
detected as leaking PII (or in the case of FlowDroid, flagged as potentially leaking PII), as well as the percentage of leaking apps detected by
each tool out of all leaking apps detected by any of the tested tools in each category (⇥ means the tool does not track that type of information).
User credentials were not leaked because our automation tools cannot input them.

Type of PII being leaked
leaks Device User Con- Loca- Cred
detected Id. Id. tacts tion entials
plaintext 173 N/A 10 8 N/A
obfuscated 124 N/A 16 0 N/AAndrubis incorrect 140 N/A 24 6 N/A
Total 457 N/A 50 14 N/A

TP 146 17 7 35 0ReCon FN 27 0 0 0 0

Table 5: Comparison with Andrubis (which internally uses
TaintDroid), for Android apps only. Note that this table
counts the number of flows leaking PII, not the number of apps.
TaintDroid has a higher false positive rate than ReCon, but catches
more device identifiers. After retraining ReCon with these results,
ReCon correctly identifies all PII leaks. Further, ReCon identifies
PII leaks that TaintDroid does not.

unlabeled data is device identifiers, likely because it is difficult for
users to find such identifiers to compare with our results.
Impact of user feedback on accuracy. To evaluate the impact
of retraining classifiers based on user feedback, we compare the
results without user feedback (using our initial training set only)
with those that incorporate user feedback. After retraining the
classifier, the false positive rate decreased by 92% (from 39 to
3), with a minor impact on false negatives (0.5% increase, or
18/5,351).
Retraining classifiers. As discussed in §4.1, we retrain ReCon
classifiers periodically and after collecting sufficient samples. We
provide options to set the frequency of retraining and the retraining
process is relatively low cost. In our experience, retraining the
general classifier once a day or once a week is sufficient to retain
high accuracy. This is a process that occurs in the background,
takes little time per domain (0.9 s per domain on average), and is
easily parallelized to reduce retraining time.
User survey. To qualitatively answer whether ReCon is effective,
we conducted a survey where we asked participants, “Have you
changed your ways of using your smartphone and its applications
based on the information provided by our system?” Of those who
responded to the voluntary survey, a majority (20/26) indicated that
they found the system useful and changed their habits related to
privacy when using mobile devices. This is in line with results
from Balebako et al. [15], who found that users “do care about
applications that share privacy-sensitive information with third
parties, and would want more information about data sharing.”

In terms of overhead, we found that a large majority of users
(19/26) observed that battery consumption and Internet speed
were the same better when using ReCon. While the remaining

users observed increased battery consumption and/or believed their
Internet connections were slower, we do not have sufficient data
to validate whether this was due to ReCon or other factors such
inherent network variations or increased user awareness of these
issues due to our question.
PII leak characterization. We now investigate the PII leaked in
the user study. As Table 6 shows, the most commonly leaked PII is
device identifiers, likely used by advertising and analytic services.
The next most common leak is location, which typically occurs
for apps that customize their behavior based on user location. We
also find user identifiers commonly being leaked (e.g., name and
gender), suggesting a deeper level of tracking than anonymous
device identifiers. Depressingly, even in our small user study
we found 171 cases of credentials being leaked in plaintext (102
verified by users). For example, the Epocrates iOS app (used by
more than 1 million physicians and health professionals) and the
popular dating app Match.com (used by millions, both Android and
iOS were affected) leaked user credentials in plaintext. Following
responsible disclosure principles, we notified the app developers.
The Epocrates app was fixed as of November, 2015 (and the
vulnerability was made public [6] after we gave them time to reach
out to users to convince them to upgrade), and Match.com fixed
their password exposure in January, 2016 without notifying us or
the public. These results highlight the negative impact of closed
mobile systems—even basic security is often violated by sending
passwords in plaintext (21 apps in our study).

We further investigate the leaks according to OS (Table 6).8 We
find that the average iOS user in our study experienced more data
leaks than the average Android user, and particularly experienced
higher relative rates of device identifier, location, and credential
leaks.

We investigated the above leaks to identify several apps
responsible for “suspicious” leaks. For example, the ABC Player
app is inferring and transmitting the user’s gender. Last, All
Recipes—a cookbook app—is tracking user locations even when
there is no obvious reason for it to do so.

7. RELATED WORK
Our work builds upon and complements a series of related

work on privacy and tracking. Early work focused on tracking
via Web browsers [7, 53]. Mobile devices make significant PII
available to apps, and early studies showed PII such as location,
usernames, passwords and phone numbers were leaked by popular
apps [57]. Several efforts systematically identify PII leaks from
mobile devices, and develop defenses against them.

8Note that these results are purely observational and we do not
claim any representativeness. However, we did normalize our
results according to the number of users per OS.

http:Match.com
http:Match.com

Feedback on leaks
Leak Type total correct wrong no label/unknown
Device ID. 3229 12 35 3182

216 2 437
3 1 2

4751 0 85
30 0 6

2
 0 397
30 0 1
8 0 0

227 0 11
72 1 62

Table 6: Summary of leaks predicted by OS. We observe a higher
number of leaks for iOS because the number of iOS devices (63) is
more than the number of Android devices (33).

Dynamic analysis. One approach, dynamic taint tracking,
modifies the device OS to track access to PII at runtime [24]
using dynamic information flow analysis, which taints PII as it
is copied, mutated and exfiltrated by apps. This ensures that all
access to PII being tracked by the OS is flagged; however, it
can result in large false positive rates (due to coarse-granularity
tainting), false negatives (e.g., because the OS does not store
leaked PII such as a user’s password), and incur significant runtime
overheads that discourage widespread use. Running taint tracking
today requires rooting the device, which is typically conducted
only by advanced users, and can void the owner’s warranty.
Other approaches that instrument apps with taint tracking code
still either require modifications to platform libraries [16], and
thus rooting, or resigning the app under analysis [50], essentially
breaking Android’s app update and resource sharing mechanisms.
When taint tracking is performed as part of an automated analysis
environment, user input generation is crucial to improve coverage
of leaks. Tools such as Dynodroid [47], PUMA [30], and A3E [14]
automatically generate UI events to explore UI states, but require
manual input for more complex user interactions, e.g., logging in
to sites [20]. Finally, taint tracking does not address the problem
of which PII leaks should be blocked (and how), a problem that
is difficult to address in practice [34]. Nevertheless, automated
dynamic analysis approaches are complementary to ReCon: as we
demonstrated in §5.3, ReCon can learn from PII leaks identified
through dynamic information flow analysis.
Static analysis. Another approach is to perform static analysis
(e.g., using data flow analysis or symbolic execution) to determine
a priori whether an app will leak privacy information [12, 13, 19,
23, 25, 31, 37, 39, 46, 59, 61–63]. This approach can avoid run
time overhead by performing analysis before code is executed, but
state-of-the-art tools suffer from imprecision [18] and symbolic
execution can be too time-intensive to be practical. Further,
deploying this solution generally requires an app store to support
the analysis, make decisions about which kinds of leaks are
problematic, and work with developers to address them. Static
analysis is also limited by code obfuscation, and tends not to handle
reflection and dynamically loaded code [64]. A recent study [44]
finds dynamically loaded code is increasingly common, comprising
almost 30% of goodware app code loaded at runtime.
New execution model. Privacy capsules [33] (PC) are an OS
abstraction that prevent privacy leaks by ensuring that an app
cannot access untrusted devices (e.g., a network interface) after it
accesses private information, unless the user explicitly authorizes
it. The authors show the approach is low cost and effective for some
apps, but it is currently deployed only as a prototype extension to
Android and requires app modifications for compliance.

A
nd

ro
id

iO

S User ID. 655
Contact Info. 6
Location 4836
Credential 36
Device ID. 399
User ID. 31
Contact Info. 8
Location 238
Credential 135

Network flow analysis. ReCon analyzes network flows to identify
PII leaks. Previous studies using network traces gathered inside
a mobile network [26, 58], in an ISP [45], and in a lab setting [41]
identified significant tracking, despite not having access to software
instrumentation. In this work, we build on these observations
to both identify how users’ privacy is violated and control these
privacy leaks regardless of the device OS or network being used.

PrivacyGuard [56], AntMonitor [42] and HayStack [51] use
the Android VPNService to intercept traffic and perform traffic
analysis. A limitation of these approaches is they rely on hard-
coded identifiers for PII, or require knowledge of a user’s PII
to work. Further, these approaches currently work only for the
Android OS. In contrast, ReCon is cross-platform, does not require
a priori knowledge of PII, and is adaptive to changes in how PII
leaks.

8. CONCLUSION
In this paper we presented ReCon, a system that improves

visibility and control over privacy leaks in traffic from mobile
devices. We argued that since PII leaks occur over the network,
detecting these leaks at the network layer admits an immediately
deployable and cross-platform solution to the problem. Our
approach based on machine learning has good accuracy and low
overhead, and adapts to feedback from users and other sources of
ground-truth information.

We believe that this approach opens a new avenue for research on
privacy systems, and provides opportunities to improve privacy for
average users. We are investigating how to use ReCon to build a
system to provide properties such as k-anonymity, or allow users
to explicitly control how much of their PII is shared with third
parties—potentially doing so in exchange for micropayments or
access to app features.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd, Ben

Greenstein, for their feedback. We also thank our study
participants, and for contributions toward early work in this area
from Justine Sherry, Amy Tang, and Shen Wang.

The ReCon project is supported by the Data Transparency Lab.
The research leading to these results has also received funding from
the FFG – Austrian Research Promotion under grant COMET K1
and from u’smile, the Josef Ressel Center for User-Friendly Secure
Mobile Environments. Ashwin Rao was partially supported by a
research grant from Nokia.

10. REFERENCES
[1] Ad blocking with ad server hostnames and ip addresses.

http://pgl.yoyo.org/adservers/.

[2] App Annie App Store Stats.

http://www.appannie.com/.

[3] AppsApk.com. http://www.appsapk.com/.
[4] AwaZza. http://www.awazza.com/web/.
[5] Bro: a System for Detecting Network Intruders in

Real-Time. https://www.bro.org.

[6] Epocrates upgrade message.

https://www.epocrates.com/support/
upgrade/message-full.

[7] Lightbeam for Firefox.
http://www.mozilla.org/en-US/lightbeam/.

[8] Meddle IRB consent form. https://docs.google.

com/forms/d/1Y-xNg7cJxRnlTjH_56KUcKB_

6naTfRLqQlcZmHtn5IY/viewform.

https://docs.google
http://www.mozilla.org/en-US/lightbeam
https://www.epocrates.com/support
http:https://www.bro.org
http://www.awazza.com/web
http:http://www.appsapk.com
http:AppsApk.com
http:http://www.appannie.com
http://pgl.yoyo.org/adservers

[9] SSLsplit - transparent and scalable SSL/TLS interception.

http://www.roe.ch/SSLsplit.

[10] Tcpdump. http://www.tcpdump.org/.
[11] UI/Application Exerciser Monkey.

https://developer.android.com/tools/
help/monkey.html.

[12] Y. Agarwal and M. Hall. ProtectMyPrivacy: Detecting and
Mitigating Privacy Leaks on iOS Devices Using
Crowdsourcing. In Proc. of MobiSys, 2013.

[13] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. FlowDroid:
Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proc.
of PLDI, 2014.

[14] T. Azim and I. Neamtiu. Targeted and Depth-first
Exploration for Systematic Testing of Android Apps. In
Proc. of OOPSLA, 2013.

[15] R. Balebako, J. Jung, W. Lu, L. F. Cranor, and C. Nguyen.
"Little Brothers Watching You:" Raising Awareness of Data
Leaks on Smartphones. In Proc. of SOUPS, 2013.

[16] J. Bell and G. Kaiser. Phosphor: Illuminating Dynamic Data
Flow in Commodity JVMs. In Proc. of OOPSLA, 2014.

[17] T. Book and D. S. Wallach. A Case of Collusion: A Study of
the Interface Between Ad Libraries and Their Apps. In Proc.
of ACM SPSM, 2013.

[18] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel,
G. Vigna, and Y. Chen. EdgeMiner: Automatically Detecting
Implicit Control Flow Transitions through the Android
Framework. In Proc. of NDSS, 2015.

[19] X. Chen and S. Zhu. DroidJust: Automated
Functionality-aware Privacy Leakage Analysis for Android
Applications. In Proc. of WiSec, 2015.

[20] S. R. Choudhary, A. Gorla, and A. Orso. Automated Test
Input Generation for Android: Are We There Yet? In Proc.
of the IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2015.

[21] S. Consolvo, J. Jung, B. Greenstein, P. Powledge,
G. Maganis, and D. Avrahami. The Wi-Fi Privacy Ticker:
Improving Awareness & Control of Personal Information
Exposure on Wi-Fi. In Proc. of UbiComp, 2010.

[22] J. Crussell, R. Stevens, and H. Chen. MAdFraud:
Investigating Ad Fraud in Android Applications. In Proc. of
MobiSys, pages 123–134. ACM, 2014.

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proc. of
NDSS, 2011.

[24] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. of USENIX OSDI,
2010.

[25] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically Detecting Potential Privacy
Leaks in Android Applications on a Large Scale. In Proc. of
TRUST, 2012.

[26] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy,
D. Papagiannaki, and P. Rodriguez. Follow the Money:
Understanding Economics of Online Aggregation and
Advertising. In Proc. of IMC, 2013.

[27] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
Exposure Analysis of Mobile In-app Advertisements. In
Proc. of WiSec, 2012.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The WEKA Data Mining Software: An
Update. ACM SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

[29] S. Han, J. Jung, and D. Wetherall. A Study of Third-Party
Tracking by Mobile Apps in the Wild. Technical Report
UW-CSE-12-03-01, University of Washington, 2012.

[30] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan.
PUMA: Programmable UI-automation for Large-scale
Dynamic Analysis of Mobile Apps. In Proc. of MobiSys,
2014.

[31] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan.
PUMA: Programmable UI-Automation for Large-Scale
Dynamic Analysis of Mobile Apps. In Proc. of MobiSys,
2014.

[32] Z. Harris. Distributional structure. Word, 10(23):146–162,
1954.

[33] R. Herbster, S. DellaTorre, P. Druschel, and
B. Bhattacharjee. Privacy capsules: Preventing information
leaks by mobile apps. In Proc. of MobiSys, 2016.

[34] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
"These Aren’t the Droids You’re Looking For": Retrofitting
Android to Protect Data from Imperious Applications. In
Proc. of ACM CCS, 2011.

[35] M. Huber, M. Mulazzani, S. Schrittwieser, and E. Weippl.
Appinspect: Large-scale Evaluation of Social Networking
Apps. In Proc. of ACM COSN, 2013.

[36] S. Jagabathula, L. Subramanian, and A. Venkataraman.
Reputation-based worker filtering in crowdsourcing. In
Advances in Neural Information Processing Systems, pages
2492–2500, 2014.

[37] J. Jeon, K. K. Micinski, and J. S. Foster. SymDroid:
Symbolic Execution for Dalvik Bytecode. Technical Report
CS-TR-5022, University of Maryland, College Park, 2012.

[38] C. Johnson, III. US Office of Management and Budget
Memorandum M-07-16.
http://www.whitehouse.gov/sites/default/
files/omb/memoranda/fy2007/m07-16.pdf,
May 2007.

[39] J. Kim, Y. Yoon, K. Yi, and J. Shin. SCANDAL: Static
Analyzer for Detecting Privacy Leaks in Android
Applications. In Proc. of MoST, 2012.

[40] H. King. No. 1 paid app on iTunes taken down by developer.
http:
//money.cnn.com/2015/09/18/technology/
peace-ad-blocking-app-pulled/index.html,
September 2015.

[41] B. Krishnamurthy and C. Wills. Privacy Diffusion on the
Web: A Longitudinal Perspective. In Proc. of ACM WWW,
2009.

[42] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou. AntMonitor: A system for monitoring from
mobile devices. In Proc. of Wrokshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data, 2015.

[43] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads! Balancing Privacy in an Ad-Supported
Mobile Application Market. In Proc. of ACM HotMobile,
2012.

http://www.whitehouse.gov/sites/default
https://developer.android.com/tools
http:http://www.tcpdump.org
http://www.roe.ch/SSLsplit

[44] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer. Andrubis
1,000,000 Apps Later: A View on Current Android Malware
Behaviors. In Proc. of BADGERS, 2014.

[45] Y. Liu, H. H. Song, I. Bermudez, A. Mislove, M. Baldi, and
A. Tongaonkar. Identifying personal information in internet
traffic. In Proceedings of the 3rd ACM Conference on Online
Social Networks (COSN’15), Palo Alto, CA, November
2015.

[46] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically
Vetting Android Apps for Component Hijacking
Vulnerabilities. In Proc. of ACM CCS, 2012.

[47] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An Input
Generation System for Android Apps. In Proc. of the Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE), 2013.

[48] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,
J. Blackburn, D. R. López, K. Papagiannaki,
P. Rodriguez Rodriguez, and P. Steenkiste. Multi-context
TLS (mcTLS): Enabling secure in-network functionality in
TLS. In Proc. of ACM SIGCOMM, 2015.

[49] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Tang, S. Wang,
J. Sherry, P. Gill, A. Krishnamurthy, A. Legout, A. Mislove,
and D. Choffnes. Using the Middle to Meddle with Mobile.
Technical report, Northeastern University, 2013.

[50] V. Rastogi, Z. Qu, J. McClurg, Y. Cao, Y. Chen, W. Zhu, and
W. Chen. Uranine: Real-time Privacy Leakage Monitoring
without System Modification for Android. In Proc. of
SecureComm, 2015.

[51] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan,
C. Kreibich, P. Gill, M. Allman, and V. Paxson. Haystack: In
Situ Mobile Traffic Analysis in User Space. arXiv preprint
arXiv:1510.01419, 2015.

[52] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. R. Choffnes.
ReCon: Revealing and controlling privacy leaks in mobile
network traffic. CoRR, abs/1507.00255, 2015.

[53] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
Defending Against Third-Party Tracking on the Web. Proc.
of USENIX NSDI, 2012.

[54] Sandvine. Global Internet Phenomena Report.
https://www.sandvine.com/downloads/

general/global-internet-phenomena/2014/
1h-2014-global-internet

phenomena-report.pdf, 1H 2014.
[55] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox:

Deep packet inspection over encrypted traffic. In Proc. of
ACM SIGCOMM, 2015.

[56] Y. Song and U. Hengartner. PrivacyGuard: A VPN-based
Platform to Detect Information Leakage on Android
Devices. In Proc. of ACM SPSM, 2015.

[57] The Wall Street Journal. What They Know - Mobile.
http://blogs.wsj.com/wtk-mobile/, December
2010.

[58] N. Vallina-Rodriguez, J. Shah, A. Finamore, H. Haddadi,
Y. Grunenberger, K. Papagiannaki, and J. Crowcroft.
Breaking for Commercials: Characterizing Mobile
Advertising. In Proc. of IMC, 2012.

[59] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective
Real-time Android Application Auditing. In IEEE
Symposium on Security and Privacy, 2015.

[60] N. Xia, H. H. Song, Y. Liao, M. Iliofotou, A. Nucci, Z.-L.
Zhang, and A. Kuzmanovic. Mosaic: Quantifying Privacy
Leakage in Mobile Networks. In Proc. of ACM SIGCOMM,
2013.

[61] L. K. Yan and H. Yin. DroidScope: Seamlessly
Reconstructing the OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis. In Proc. of USENIX
Security, 2012.

[62] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang. AppIntent: Analyzing Sensitive Data Transmission in
Android for Privacy Leakage Detection. In Proc. of ACM
CCS, 2013.

[63] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S.
Wang, and B. Zang. Vetting undesirable behaviors in
Android apps with permission use analysis. In Proc. of ACM
CCS, 2013.

[64] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo,
and F. Massacci. StaDynA: Addressing the Problem of
Dynamic Code Updates in the Security Analysis of Android
Applications. In Proc. of ACM CODASPY, 2015.

http://blogs.wsj.com/wtk-mobile
https://www.sandvine.com/downloads

Should You Use the App for That?

Comparing the Privacy Implications of App- and

Web-based Online Services

Christophe Leung, Jingjing Ren, David Choffnes, Christo Wilson

Northeastern University

ABSTRACT
Many popular, free online services provide cross-platform
interfaces via Web browsers as well as apps on iOS and An
droid. To monetize these services, many additionally include
tracking and advertising libraries that gather information
about users with significant privacy implications. Given that
the Web-based and mobile-app-based ecosystems evolve in
dependently, an important open question is how these plat
forms compare with respect to user privacy.
In this paper, we conduct the first head-to-head study of

50 popular, free online services to understand which is better
for privacy—Web or app? We conduct manual tests, extract
personally identifiable information (PII) shared over plain-
text and encrypted connections, and analyze the data to un
derstand di↵erences in user-data collection across platforms
for the same service. While we find that all platforms ex
pose users’ data, there are still opportunities to significantly
limit how much information is shared with other parties by
selectively using the app or Web version of a service.

1. INTRODUCTION
Web browsers and mobile apps are the dominant media

through which people interact with online services such as
social media, news, weather, and dating. Many of these ser
vices are provided for free to users, with providers support
ing their costs through revenue from advertising and data
analytics. This necessarily raises important privacy con
cerns regarding what information is collected about users
and how it is used.
Previous work investigates the question of what infor

mation is collected, either in the Web browsing environ
ment [8, 15, 22, 24, 33–35] or in the mobile environment
[29, 38, 42]. A close reading of this literature reveals dif
ferences between these media, with the Web having more
sophisticated tracking infrastructure overall, versus apps
which have more direct access to sensitive information
through APIs. However, to date no work has directly com
pared these media for the same service to understand a fun-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’16, November 14–16, Santa Monica, CA, USA.
� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4526-2/16/11. . . $15.00

damental question: is there a medium that is better for
privacy—app or Web?
This paper provides a first look at this issue, which re

quires addressing two key challenges. First, we must gather
a representative sample of information that large numbers
of online services expose of the Internet, both via apps and
Web sites. Second, we must reliably identify the personally
identifiable information (PII) in network tra�c generated by
these services. By providing greater transparency into how
apps and Web sites share PII, we seek to provide the com
munity with better insight into the data collected by specific
apps and Web sites, as well as help users make informed de
cisions about how they interact with online services.
To address the first challenge, we use a dataset consisting

of network traces gathered from manual interactions with
iOS, Android, and Web versions of the same 50 free on-
line services. This includes major services like The Weather
Channel, Yelp, and BBC News. We address the second chal
lenge by conducting controlled experiments where ground-
truth information about users’ PII, coupled with state-
of-the-art inference techniques to identify PII in network
flows [38]. Unlike our prior work that exclusively focuses on
PII leaked by apps, this paper aims to provide a comparison
of Web- and app-based data collection by the same service.

Using this approach, we determine the PII exposed by
services over plaintext and/or to advertising and analytics
(A&A) third-party domains, and analyze their implications
on privacy. Our key findings are as follows.

•	 Should you use the app? It depends. Due to
the potentially large set of PII that apps can access
with user permission, we expected that they would
generally leak more PII than Web sites. However, we
find that in 40% of cases, Web sites leak more types of
information than apps. To help guide users toward us
ing an app or Web site for a specific service, we provide
an online interactive interface that makes custom sug
gestions based on user-specified privacy preferences at:

https://recon.meddle.mobi/appvsweb/

•	 What information leaks more from di↵erent

media? We find that locations and names leak more
often from Web sites than from apps, whereas only
apps leak unique identifiers and other device-specific
information. Surprisingly, we find passwords leaked
(albeit over HTTPS) to third parties that have no rea
son to receive them.

•	 Web sites directly contact more trackers and
advertisers than apps. We find that Web sites of
ten include content from multiple advertisers and third DOI: http://dx.doi.org/10.1145/2987443.2987456

c

http://dx.doi.org/10.1145/2987443.2987456
https://recon.meddle.mobi/appvsweb
mailto:permissions@acm.org

parties, and cause browsers to redirect through several
more via real-time bidding. In contrast, most apps
include a single advertisement library, which contacts
fewer domains.

•	 How much tracking is in common between app
and Web for the same service? We find that both
apps and Web sites can leak locations, names, gender,
phone number, and e-mail addresses. Unlike for apps,
we found no evidence in our tests that Web sites are
able to access and share device-specific unique identi
fiers, such as an IMEI and a MAC address. Whether
this is true for other services remains an open question.

In addition to providing an online interface to make
customized privacy recommendations, we make our dataset
and code available at:

https://recon.meddle.mobi/appvsweb/

2. BACKGROUND AND RELATED WORK
Users are increasingly concerned with the amount of track

ing and data collection conducted by online services [32,41].
In response, regulators such as the FTC, FCC, and the EU
Commission enacted rules that protect consumer privacy;
non-profits such as the Data Transparency Lab and Mozilla
support e↵orts to increase transparency of online tracking;
and tools like AdBlock and Disconnect limit tracking.
These e↵orts are supported by a large body of research

that identifies when Personally Identifiable Information
(PII) is exposed by online services. Previous work focuses
either on Web sites or apps to determine privacy risks, but
not both. In contrast, to the best of our knowledge, we are
the first to directly compare information gathered through
Web sites and apps for the same online service, allowing us
to provide a relative ranking of which one is less invasive ac
cording to various metrics. Although this study represents
a snapshot of online service behavior at one point in time,
our approach is general and can be repeated to observe how
the privacy landscape evolves.

2.1 Web Privacy
Well before there were apps and modern smartphones, re

searchers observed that advertisers and analytics companies
were tracking users via Web site content [25]. These ini
tial observations motivated a wide range of research on Web
tracking, from understanding the tracking ecosystem over
time and the economics behind it [11,18,26,27], to identify
ing specific techniques used to track users [5,8,15,22,24,33–
35,39], to examining how tracking varies geographically [16].
While several proposals attempt to help users regain control
over their privacy when browsing the Web [28, 36], tracking
remains pervasive.
Unlike prior work, our paper focuses on characterizing

third-party tracking and the PII they collect for services that
are also available as apps. Further, to the best of our knowl
edge no other study focuses on Web tracking and its privacy
implications from mobile browsers. (For our purposes, only
the operating system’s native browser application is consid
ered. Embedded browser components such as WebViews are
not included.) This is an increasingly important distinction,
as mobile browsers have access to sensors (e.g., GPS) that
are not available on desktops.

2.2 Mobile App Privacy
Due to the rich sensors, APIs, and availability of PII

on mobile devices, a large body of work focuses on under
standing privacy from the perspective of tracking and data-
collection by mobile apps. Early testbed studies showed that
popular apps exposed location, usernames, passwords, and
phone numbers [40]. Follow-up work observed similar behav
ior at scale “in-the-wild” [29, 38, 42]. A number of projects
focus on detecting and mitigating privacy violations from
mobile apps [6, 7, 12, 14, 17, 19, 21, 23, 30, 38, 43–46].
In this paper, we focus on comparing the PII exposed by

mobile apps and Web sites for the same service. To accom
plish this, we use tools from prior work [38] to identify PII
leaks in mobile-device tra�c.

2.3 Mobile Experimentation Methods
For scalability reasons, most previous work uses auto

mated tests to analyze mobile apps [9, 20, 31]. However, a
key limitation of this approach is that they cannot automat
ically explore apps that require signing in [13]. Further, our
recent study shows that automated tools only reveal a small
fraction of the PII exposed when manually interacting with
apps [38]. In this work, we use manual tests of Web sites and
apps, both to ensure that the PII exposure is representative
of what users would see, and to ensure that we explore the
same features of the service across both Web and app.

3. DATA COLLECTION
In this section, we describe the online services we investi

gated, our experimental methodology for eliciting and iden
tifying PII sent over the network, and high-level statistics
about our gathered dataset.

3.1 Selecting Online Services
Our first task is selecting online services to measure, each

of which must meet the following criteria: 1) it must be pop
ular (according to app store rankings) and/or “featured” in
an app store, 2) it must provide a free app in the Google
Play Store and the Apple App Store, 3) it must provide
equivalent functionality via a mobile Web browser, and 4)
it must not implement certificate pinning. For example, In
stagram fails criteria (3) because the mobile Web site does
not o↵er the same functionality as its app. Similarly, Pan
dora fails because it will not stream music via Chrome on
Android. Facebook’s app fails criteria (4). In general, we
omitted any service for which we could not make an apples-
to-apples comparison.
To locate candidate apps, we crawled the top 100 free An

droid apps listed in the US version of the Google Play Store
on March 23, 2016. To avoid personalized recommendations
that would impact the set of presented apps, we browsed
the Google Play Store with a clean browsing history and no
cookies stored. Only 75 apps met the requirements for our
study. We added to this set “featured and recommended”
apps that were promoted on the home page of the Google
Play Store. In total, we selected a subset of 50 services to
test, and chose them based on broadly covering popular apps
across di↵erent app categories, then filling in with apps that
are likely to collect PII (shopping, travel, entertainment).
While we cannot make any claims about generality, we be
lieve this set provides an interesting cross-section of online
services with respect to privacy.

https://recon.meddle.mobi/appvsweb

3.2 Experiment Methodology
Understanding privacy implications of mobile apps and

Web sites requires interacting with these services in ways
that normal users would. Using automated testing frame
works for this purpose is tempting, due to their simplicity,
low e↵ort, and ability to test large numbers of apps in a short
period of time. However, previous work show that such tests
miss important UI features (e.g., logging in, entering valid
user data into text fields) [38]; further, there is a lack of good
automated testing tools for iOS and for mobile browsers.
Instead, we conducted manual tests of 50 online services.

Manual tests avoid the pitfalls of automated ones because
testers can interpret UIs, enter reasonable data into arbi
trary fields, and ensure similar (or identical) service func
tionality is exercised both over apps and Web sites. While
we cannot claim generality or representativeness based on
the 50 online services we tested, these comprise some of the
most popular services used in the United States. We used
the following procedures to test each online service.

Test Environment. Each test consisted of interacting
with a given service via an app or Web site for four min
utes. We collected network tra�c generated during each
experiment using Meddle [37], and used Mitmproxy [3] to
capture both HTTP and the plaintext content of HTTPS
flows. For each service requiring a login, we created a new
account using a previously unused email address.
We used two phones (a Nexus 4 and a Nexus 5) running

stock Android 4.4, and two phones (both iPhone 5’s) run
ning iOS 9.3.1. We specifically chose to test on Android
4.4 because it was the most common Android version in
the-wild as of April 2016 [4]. All three phones were factory
reset before our experiments, and included no apps beyond
the stock services and the 50 apps evaluated in this work.

Interacting with Services. Each experiment used
the following steps. We installed the service’s app, then
connected the device to Meddle using a VPN tunnel. Next,
we opened the app and used it for its intended purpose for
approximately four minutes. We approved any system per
mission requests when prompted. After the time expired,
we closed the VPN connection and uninstalled the app.
We repeated this procedure using the operating system’s

default browser: Chrome for Android, and Safari on iOS.
To avoid contamination due to browsing history and stored
cookies, we used “private mode” browsing. When interacting
with the Web version of the service, we attempted to conduct
identical operations as in the app (to the extent possible).
To ensure fairness, when asked to log-in, we used the same
pre-created account credentials used to test the app.

Note that we cannot claim to exhaustively cover all poten
tial PII leaks using only four minutes of manual app testing.
However, based on a number of tests using longer durations
(10 minutes) for a subset of apps (the five apps that leaked
the most and least during four-minute tests), we found that
four minutes strikes a good balance between providing ad
equate time to use most features of a service, and quickly
covering a reasonably large number of services in a fixed
amount of time. Specifically, we found that the number
of third parties contacted and number of times PII leaked
were roughly proportional to the duration of the experiment
(because longer experiment durations lead to more network
flows), but we generally did not see additional types of PII
leaked during the longer experiment duration (with the ex

ception of one additional PII type, e-mail address, leaked
from one app after four minutes).

Regardless, our results represent a conservative lower
bound on the PII leaked from apps and Web sites. Based
on the substantial amount of leaks discovered, we believe
this to be an important first step toward understanding dif
ferences between PII leaks over apps and Web sites.

Filtering. One issue with collecting network traces
from mobile devices is that flows may be generated by the
foreground process (i.e., the app or Web site we are investi
gating) or background processes. We use three methods to
minimize background tra�c from our traces. First, we use a
clean, factory-reset lab phone to conduct the tests. Second,
we turn o↵ background synchronization and manually close
all background apps before each experiment. Finally, we fil
ter tra�c to domains that are known to be associated with
OS services (e.g., Google Play Services and Apple iCloud).

Identifying PII. The next step in our methodology is
identifying PII in our network traces. This task is greatly
simplified because our experiments are controlled, i.e., we
know all the PII that is available on our test devices. This in
cludes usernames and passwords, MAC address, IMEI, GPS
coordinates, ZIP code, etc.
However, knowing the PII in advance is not a catch-all for

detecting it in network tra�c. GPS locations are sent with
arbitrary precision, unique identifiers are formatted incon
sistently, a user’s inferred gender is not stored in the phone,
etc. Thus, we use the following approach to identify PII.
First, we use the automated ReCon tool [38], which uses ma
chine learning to detect likely PII in network tra�c without
needing to know the precise PII values. Second, to minimize
the risk of ReCon missing PII, we augment its results with
PII found via direct string matching on known PII. Finally,
we manually verify ReCon predictions and excluded false
positives based on our ground-truth information.

Domain Categorization. The final step in our
methodology is labeling all the flows based on their desti
nation. We manually identified first-party flows by looking
for domain names associated with our chosen services (e.g.,
weather.com and imwx.com for the Weather Channel). For
the remaining third-party flows, we further categorize them
as advertisers or analytics by comparing the destination do
main to EasyList [2] and manually verifying the results.

Defining a PII “Leak.” We focus on PII that reduces
users’ privacy either because (1) it is transmitted over the
Internet unencrypted, thus exposing the data to eavesdrop
pers, or (2) it is sent to third parties (encrypted or plaintext)
and is not required for logging into the service, thus exposing
users to profiling. We label network flows containing PII un
der these two conditions a PII leak. If a username, password,
or e-mail address (often used as a username) is transmitted
to a first-party site1 over HTTPS, then we do not consider
them to be leaks. All other cases of transmitted PII are
leaks. For example, a birthday sent to a first party using
encryption is a leak; the same is true if an e-mail address is
sent to a third party (encrypted or not).
While many first party “leaks” may be intended and ac

ceptable to the user, we err on the side of identifying all PII
sharing beyond login credentials to provide a broad view of
data-collection when using online services. Such informa

1Or to a single sign-on service.

http:imwx.com
http:weather.com

tion can help users evaluate (and re-evaluate) the implica
tions of sharing their PII over time and across services and
platforms.

Experiment Limitations. Our experiments are lim
ited to detecting PII leaks that occur directly to first and
third parties, and that are detectable using common encod
ings (i.e., are not obfuscated). Identifying cases of users’
PII shared by other parties indirectly is an important topic
of research beyond the scope of this short paper. We were
not able to measure services that use TLS certificate pin
ning, such as Facebook and Twitter, because they prevent
us from decrypting network tra�c with Meddle.
We found no evidence of PII leaks from browsers them

selves, or from apps to browsers (or vice versa). However,
this was by design and is a limitation of our work. In this
paper, we are primarily concerned with the PII that apps
and Web sites directly gather from users. To achieve this, we
took several steps to eliminate leakages across media, includ
ing: using factory-reset OSes and their respective default
browsers for each session; using private mode to browse,
and di↵erent credentials for each test. Properly identify
ing browser (or cross-site) leaks is an open and challenging
question, one that is outside the scope of this short paper.

3.3 Dataset
We manually tested online services over app and Web ver

sions in the Boston area between March 23 and May 11,
2016. Table 1 summarizes the services that leaked PII by
OS, medium (app vs. Web), and by category. In addition to
the number of services tested under each OS and service cat
egory (first column), we show the average popularity rank
of the apps we tested (second column) using data from App
Annie [1]. We observe that most apps are within the top-40
for their category. We will discuss the information exposed
by these services (third and fourth columns) in Section 4.2.

4. RESULTS
This section summarizes our key findings with respect to

the privacy implications of using apps or Web sites for online
services. We first focus on requests to third-parties, then an
alyze the PII exposed by these services, and finally conclude
with how e↵ectively online services can track users across
app and Web platforms.

4.1 Third-Parties
In this section, we focus on the third-parties that are con

tacted by online services. Specifically, we focus on advertis
ing and analytics (A&A) domains, because it is well-known
that they track users in order to serve targeted ads.

Figure 1a depicts a CDF of the di↵erence in the number
of unique A&A domains contacted by app- and Web-based
versions of the each online service. We present one curve for
each OS. Negative values indicate that the Web version of
the service contacts more domains than the app version.

Figure 1a shows that the vast majority (83% on Android,
78% on iOS) of online services contact more third-parties
via their Web site than their app. Some of the greatest
disparities come from services like Accuweather, BBC News,
and Starbucks, which contact 4 third-parties in-app, but
contact tens of A&A domains on their Web sites.

A&A domains are also responsible for the di↵erent
amounts of network tra�c required to use the service. Fig

ure 1b shows a CDF of the di↵erence in the number of net
work flows between app- and Web-based versions of each
online service. The key takeaway is that the inclusion of
additional A&A sites in Web versions of a service are of
ten responsible (for 73% of Android services and 80% of
iOS) for hundreds and sometimes thousands of extra TCP
connections. Services that trigger over thousands of TCP
connections include All Recipes Dinner Spinner, BBC News
and CNN News, over the course of four-minute interactions
in our experiments. These connections can further be waste
ful in terms of bandwidth, sometimes leading to several MB
of data consumption during only 4 minutes of interaction
time (see Figure 1c).
To summarize, based on the pervasiveness of direct track

ing from A&A sites, we find it is nearly always better to use
an app than a Web version of a service. In the next section,
we include PII leak information to better understand how
much information is exposed by each service.

4.2 PII Leaks
This section focuses on what PII is leaked, how this dif

fers between app- and Web-based versions of services, which
third-parties receive leaked PII, and the amount of overlap
between PII leaked from apps and Web sites.

Aggregate View. We begin with PII leaks aggregated
by platform and category (second and third column groups
in Table 1). The second column group shows the fraction of
services that leak PII, and the average number of domains
receiving PII leaks per service.
A few clear trends emerge. First, we observe that 14%

more services leak PII via apps than via Web sites (first two
rows), though the overall fraction of leaky services is high
in both cases. Next, we see that while similar fractions of
Android and iOS apps leak PII, 24% fewer Web sites leak
PII when loaded in Chrome on Android vs. Safari on iOS.
However, we also see that Web sites leak comparable types
of PII regardless of whether they are loaded in Chrome or
Safari (with phone number being the sole exception).

When grouping services by category, we find that apps
leak an equal or greater amount of PII compared to the
corresponding Web sites. The categories leaking PII to the
most domains are Education and Weather, while Entertain
ment (which is dominated by streaming video apps) is least
likely to leak.

Focusing now on the leaked identifiers in the last column
group in Table 1, we find that every category leaks unique
identifiers (column UID), and almost all Web and apps leak
location (column L, either GPS coordinate or ZIP code).
Some services leak gender and birthdays, even though that
is not something entered by the user during tests (they were
entered at account creation before testing).

Importantly, we found four cases of password leaks to third
parties over HTTPS connections. Specifically, we found that
Grubhub sent passwords to taplytics.com, JetBlue to us
ablenet.com, and The Food Network and NCAA Sports
sent passwords to Gigya, a third-party identity management
service.

We reported the first two cases to Grubhub and JetBlue,
respectively, according to responsible disclosure principles.2

2We did not report the Gigya cases because they were clearly inten
tional behavior and not a security vulnerability per se, even though
users were likely unaware that a third-party credential-management
service was used.

http:ablenet.com
http:taplytics.com

of Avg. PII Leaks: Leaked Identifiers:
Services Rank Services Domains B D E G L N P# U PW UID

All
App
Web

50
50

32.6
-

92.0%
78.0%

4.7 ± 4.7
3.5 ± 3.1

X
X

X X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

Android

O
S

iOS

App 48
48
50

35.4
Web -
App 30.1
Web 50

85.4% 2.4 ± 3.4
52.1% 2.6 ± 2.8
86.0% 4.1 ± 4.4

X X X X X X
X X X X X X X
X X X X X X X X X X

76.0% 3.1 ± 2.8 X X X X X X X X

C
a
t
e
g
o
r
y

Business

Education

Entertainment

Lifestyle

Music

News

Shopping

Social

Travel

App 2
2
4
4
6
6
6
6
4
4
2
2
9
9
2
2
12
12

3.0 100.0% 3.0 ± 0.0
50.0% 3.0 ± 0.0
75.0% 11.7 ± 14.4
50.0% 2.0 ± 1.0
66.7% 6.0 ± 2.5
50.0% 1.3 ± 0.5
100.0% 4.2 ± 2.3
100.0% 4.5 ± 3.4
100.0% 2.8 ± 2.0
50.0% 4.5 ± 1.5
100.0% 4.5 ± 3.5
100.0% 3.0 ± 0.0
100.0% 3.3 ± 0.9
77.8% 4.3 ± 4.2
100.0% 6.0 ± 0.0
100.0% 1.5 ± 0.5
91.7% 3.7 ± 1.3
91.7% 3.1 ± 3.0

X X
Web - X
App 16.1 X X X X
Web - X X X
App 16.3 X X X
Web - X X X X X
App 57.9 X X X X X X X
Web - X X X X X X
App 92.4 X X X X X
Web - X X X
App 4.0 X X X X
Web - X X
App 13.7 X X X X X X X
Web - X X X X
App 24.2 X X X X X
Web - X X X
App 47.2 X X X X X X X X X
Web - X X X X X X X
App 3 3.3 100.0% 8.3 ± 2.1 X X X

Weather
Web 3 100.0% 5.7 ± 3.3 X

Table 1: Summary of tested services, broken down by OS and category. The vast majority of services leak PII, with apps leaking more
frequently than the corresponding Web site. The leaked identifiers are Birthday, Device Info, Email address, Gender, Location, Name,
Phone #, Username, PassWord, and Unique IDentifiers.

Grubhub confirmed that the passwords were inadvertently
sent via an encrypted connection to tapltyics.com, Grub
hub’s analytics provider. Grubhub confirmed it was a bug
and released a new version of the app addressing this bug
within a week after confirmation, and confirmed deletion of
all data by taplytics.com that was sent in error.

JetBlue informed us that the password was intentionally
sent to usablenet.com for authentication services, and that
in addition to using encryption to send the password over
the network, it is also encrypted before storing.3 In The
Food Network and NCAA Sports cases, an important issue
is that users are not made aware that their credentials are
managed by another party, since the login pages are hosted
by the first party site and do not mention the third party.

Following the rows in Table 1, we find that Shopping
and Travel services leak the widest variety of PII, includ
ing phone numbers, as well as usernames and passwords to
third-parties (via HTTPS). On the other hand, Business and
Weather apps leak the fewest types of PII.

In summary, we find that PII leaks are pervasive and di↵er
according to app category. In general, apps leak more PII
than Web sites, which is expected since apps can request
direct access to more types of PII stored on the device than
a Web site. Interestingly, Education and Weather services
are both the most promiscuous at leaking PII (contacting
the largest number of domains) but leak fewer types of PII
than other categories.

Di↵erences in PII Leaks. We now focus on how
app- and Web-based versions of the same service di↵er in
terms of PII leaks. We analyze the number of domains re
ceiving leaks, the number of distinct identifiers leaked, and
the overlap in leaked identifiers.

Figure 1d shows a CDF of the di↵erence in number of
domains receiving PII leaks between app- and Web-based

versions of the each online service, with negative numbers
indicating the Web site leaked PII to more domains. We ob
serve very di↵erent trends compared to A&A domains shown
in Figure 1a. The curves show that there is a slight bias to
ward apps leaking PII to more domains than Web sites.
To understand how many distinct types of PII are leaked,

we plot a PDF of the di↵erence in leaked identifiers for the
app- and Web-based version of the same service (Figure 1e).
The figure shows that the most common case is that both
the app version of the service leaks one more type of distinct
PII than the Web site, and there is a strong bias toward apps
leaking more distinct types of PII than Web sites (positive
x-values).

A key question is whether app- and Web-based versions of
services are leaking the same set of PII or not. We analyze
this using the Jaccard index, which is a metric of set similar
ity where 0 means nothing in common and 1 means the sets
are identical. Figure 1f plots a CDF of Jaccard index values
for the PII leaked by each service’s Web and app versions.
We find that the types of PII leaked by Web- and app-based
versions of the same service share nothing in common more
than half of the time. Overall, 80-90% of services share only
50% of the PII types leaked across app and Web.

The previous result is perhaps expected because app and
Web A&A systems have di↵erent PII available to them, and
thus use di↵erent mechanisms for tracking. For example,
app-based tracking can identify sessions belonging to the
same user via a device’s unique identifiers, while Web sites
tend to use cookie IDs and cookie matching [10]. However,
in many cases the di↵erences in the types of PII leaks are
substantial; for example Priceline leaked birthdays and gen
der from their Web site, but do not do so from either iOS
or Android apps (each of which in turn leaks di↵erent PII).
In summary, we find that apps are more likely to leak more

PII types than their Web counterparts, and most online ser
3A “best practice” referred to as “encrypted at rest and in motion.”

http:usablenet.com
http:taplytics.com
http:tapltyics.com

 0

 20

 40

 60

 80

 100

 20

 40

 60

 80

 100 100

80 80

 60 60

 40 40

 20 20

Android
iOS

Android
iOS

0

Android
iOS

0

C
D

F
 o

f
S

e
rv

ic
e
s

C
D

F
 o

f
S

e
rv

ic
e
s

%
 o

f
S

e
rv

ic
e
s

C
D

F
 o

f
S

e
rv

ic
e
s

C
D

F
 o

f
S

e
rv

ic
e
s

C
D

F
 o

f
S

e
rv

ic
e
s

-60 -50 -40 -30 -20 -10 0 10 20 -1000 -500 0 500 1000 1500 -5 -4 -3 -2 -1 0 1 2 3

(App - Web) A&A Domains Contacted (App - Web) Flows to A&A Domains (App - Web) MB of Traffic to A&A

(a) A&A domains (b) A&A flows (c) A&A bytes

 100 50 100

Android
iOS

0

Android
iOS

0

Android
iOS

0 0.2 0.4 0.6 0.8 1

40

 30

 20

 10

 80

 60

 40

 20

 0

-15 -10 -5 0 5 10 15 20 25 30 -4 -3 -2 -1 0 1 2 3 4 5

(App - Web) Domains Sent PII (App - Web) Leaked Identifiers Jaccard of Leaked Identifiers

(d) Leak domains (e) Leaked identifiers (f) Jaccard of leaked identifiers

Figure 1: For subfigures (a)-(d), we find the di↵erences between app and Web versions of the same service, in terms of A&A domains
visited, number of flows to them, and the number of bytes they consume, and the number of domains they leak PII to. Subfigures (e)-(f)
compare the set of identifiers leaked by app and Web versions of each service.

vices leak substantially di↵erent PII over the two media. We
believe this occurs due to the fact that apps and Web sites
often have di↵erent mechanisms for data collection, di↵er
ent analytics companies, and di↵erent development teams.
Interestingly, the services we tested provide the same func
tionality over app and Web, and should in theory be able
to provide (at a high level) uniform data collection policies
across platforms. The fact that they do not provides an
opportunity for users to make informed privacy decisions
when choosing whether to install an app or use a Web site
(independent of the reasons behind these di↵erences).

Recipients of PII Leaks. To understand how per
vasively user PII is exposed to other parties, we analyze
our dataset according to which third party is contacted (via
Web or app), and identify whether app- or Web-based track
ers collect more or less of a certain type of PII. We focus
on the top-20 A&A domains receiving PII (sorted by total
leaks in our dataset). Table 2 shows each domain (absent
its top-level domain), the number of services that contact
it, the average number of leaks per service, and the number
of leaked identifiers. We observe significant overlap between
the apps and Web sites that contact each A&A domain, re
vealing that services tend to utilize the same trackers and
ad networks across platforms.

Notably, the A&A domain receiving the most leaks
(Amobee) is used by the fewest services (1). Further, the
third column group shows that Amobee receives a similar
set of PII over app and Web (intersection set size is two).
In addition, we find that Facebook is the most pervasively
contacted domain across our tested apps.
Interestingly, with few exceptions, top A&A domains col

lect at least one type of PII from apps that are not collected
via Web sites. Thus, third-parties are leveraging di↵erent
platforms to expand the set of data that they collect about
users. We also see a small number of cases of platform-
specific data collection, e.g., YieldMo only collects PII from
apps in our set of services.

A&A Domain

of
Services:

App \ Web

Avg.
Leaks:

App Web

Leaked
Identifiers:
App \ Web

amobee 1 1 1 517.0 314.0 3 2 2
moatads 9 7 12 61.4 0.2 1 1 1
vrvm 2 0 0 136.0 0.0 3 0 0

google-analytics 35 32 41 1.8 2.7 1 1 2
facebook 38 36 41 3.7 0.4 2 0 1

groceryserver 1 1 1 154.0 0.0 1 0 0
serving-sys 10 4 6 15.3 0.0 1 0 0

googlesyndication 16 14 23 7.0 0.8 1 1 1
thebrighttag 4 2 4 29.5 0.0 2 0 0

tiqcdn 5 5 9 16.0 3.1 1 1 1
marinsm 1 1 3 96.0 1.0 1 0 1
criteo 7 6 22 8.9 1.1 2 1 2
2mdn 14 9 17 5.8 0.0 1 0 0

monetate 1 1 2 74.0 0.0 1 0 0
247realmedia 1 1 2 48.0 12.0 1 0 1

krxd 7 6 13 8.3 0.0 3 0 0
doubleverify 3 2 7 19.3 0.0 1 0 0
cloudinary 1 1 1 0.0 58.0 0 0 1
webtrends 1 1 1 56.0 0.0 1 0 0

lifto↵ 1 0 0 54.0 0.0 2 0 0

Table 2: Top-20 A&A domains, sorted by total leaks.

Last, we focus on how each type of PII is leaked across
Web sites and apps in Table 3 (again, sorted by total leaks).
We see that locations, names, and unique tracking IDs are
most commonly leaked, with device-specific IDs being leaked
only over apps. The first column group shows that the apps
and Web sites leaking specific pieces of PII have relatively
low overlap (except for location), reinforcing our finding that
services may have very di↵erent privacy profiles across plat
forms. Similarly, the third column group shows that each
type of PII is leaked to a significant number of domains by
both apps and Web sites, though the domains in common
between the two is a fraction of the total.

In summary, we find that there is no clear winner in terms
of privacy-footprint between apps and their Web counter
parts. Services leak significant information on both plat
forms, but typically not the same information.

of Domains
Services: Avg. Leaks: Leaked To:

PII App \ Web App Web App \ Web
Location 30 21 26 367.7 295.2 84 37 76
Name 9 8 16 77.1 138.2 11 7 26

Unique ID 40 0 0 39.0 0.0 65 0 0
Username 3 1 5 23.0 89.8 4 2 10
Gender 4 1 8 2.8 25.0 4 1 11
Phone # 3 1 2 12.7 60.5 3 1 2
Email 11 3 8 2.2 15.5 10 2 8

Device Name 15 0 0 2.7 0.0 13 0 0
Password 4 2 3 2.8 1.7 4 2 2
Birthday 1 0 1 1.0 3.0 1 0 2

Table 3: PII, sorted by total leaks.

5. CONCLUDING DISCUSSION
This paper asks a simple question—are apps or Web sites

better for privacy?—and finds the answer not at all straight
forward. Several clear trends emerged: more domains are
contacted from Web sites, and more device identifiers were
leaked from apps. However, we also found a pervasive track
ing ecosystem that exposes users’ PII across both Web and
app versions of the same service, and across di↵erent ser
vices. In short, there is no single answer to the seminal
question in this work; rather, the answer depends on user
preferences and priorities for controlling access to their PII.
Our analysis provides the necessary data to inform custom
recommendations for privacy via:

https://recon.meddle.mobi/appvsweb/

There are a number of interesting topics for future re

search. For example, we would like to understand cross-
service PII leaks, as well as provide users with actionable
information about how leaked PII can be used by other par
ties to build profiles about them. An interesting question is
how e↵ective are existing browser privacy protection tools
in light of our findings, and how we might augment ReCon
to provide improved protection in the mobile environment.

Acknowledgements
We thank the anonymous reviewers and our shepherd Theo
Benson for their helpful feedback. This work was partially
supported by the Data Transparency Lab, and by NSF
grants IIS-1408345 and IIS-1553088. Any opinions, findings,
and conclusions or recommendations expressed in this ma
terial are those of the authors and do not necessarily reflect
the views of the funding agencies.

6. REFERENCES
[1] App Annie App Store Stats. http://www.appannie.com/.
[2] EasyList. https://easylist.github.io/.
[3] Mitmproxy. https://mitmproxy.org/.
[4]	 Android developer dashboard, April 2016.

http://developer.android.com/about/dashboards/index.html.

[5]	 Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan,

A., and Diaz, C. The web never forgets: Persistent tracking
mechanisms in the wild. In Proc. of CCS (2014).

[6]	 Agarwal, Y., and Hall, M. ProtectMyPrivacy: Detecting and
Mitigating Privacy Leaks on iOS Devices Using Crowdsourcing.
In Proc. of MobiSys (2013).

[7]	 Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,

Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.

FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proc. of
PLDI (2014).

[8]	 Ayenson, M., Wambach, D. J., Soltani, A., Good, N., and
Hoofnagle, C. J. Flash cookies and privacy ii: Now with html5
and etag respawning. Available at SSRN 1898390 (2011).

[9]	 Azim, T., and Neamtiu, I. Targeted and Depth-first Exploration
for Systematic Testing of Android Apps. In Proc. of OOPSLA
(2013).

[10]	 Bashir, M. A., Arshad, S., Robertson, W., and Wilson, C.
Tracing Information Flows Between Ad Exchanges Using
Retargeted Ads. In Proceedings of the 25th USENIX Security
Symposium (2016).

[11]	 Cahn, A., Alfeld, S., Barford, P., and Muthukrishnan, S. An
empirical study of web cookies. In Proc. of WWW (2016).

[12]	 Chen, X., and Zhu, S. DroidJust: Automated
Functionality-aware Privacy Leakage Analysis for Android
Applications. In Proc. of WiSec (2015).

[13]	 Choudhary, S. R., Gorla, A., and Orso, A. Automated Test
Input Generation for Android: Are We There Yet? In Proc. of
the IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2015).

[14]	 Egele, M., Kruegel, C., Kirda, E., and Vigna, G. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proc. of NDSS
(2011).

[15]	 Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P.,
Mayer, J., Narayanan, A., and Felten, E. W. Cookies that give
you away: The surveillance implications of web tracking. In
Proc. of WWW (2015).

[16]	 Falahrastegar, M., Haddadi, H., Uhlig, S., and Mortier, R.
The rise of panopticons: Examining region-specific third-party
web tracking. In Proc of. Tra�c Monitoring and Analysis
(2014).

[17]	 Gibler, C., Crussell, J., Erickson, J., and Chen, H.
AndroidLeaks: Automatically Detecting Potential Privacy
Leaks in Android Applications on a Large Scale. In Proc. of
TRUST (2012).

[18]	 Gill, P., Erramilli, V., Chaintreau, A., Krishnamurthy, B.,
Papagiannaki, K., and Rodriguez, P. Follow the money:
Understanding economics of online aggregation and advertising.
In Proc. of IMC (2013).

[19]	 Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R.
PUMA: Programmable UI-Automation for Large-Scale
Dynamic Analysis of Mobile Apps. In Proc. of MobiSys (2014).

[20]	 Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R.
PUMA: Programmable UI-automation for Large-scale Dynamic
Analysis of Mobile Apps. In Proc. of MobiSys (2014).

[21]	 Jeon, J., Micinski, K. K., and Foster, J. S. SymDroid:
Symbolic Execution for Dalvik Bytecode. Tech. Rep.
CS-TR-5022, University of Maryland, College Park, 2012.

[22]	 Kamkar, S. Evercookie - virtually irrevocable persistent
cookies., September 2010. http://samy.pl/evercookie/.

[23]	 Kim, J., Yoon, Y., Yi, K., and Shin, J. SCANDAL: Static
Analyzer for Detecting Privacy Leaks in Android Applications.
In Proc. of MoST (2012).

[24]	 Kohno, T., Broido, A., and Claffy, K. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure
Computing 2, 2 (2005), 93–108.

[25]	 Krishnamurthy, B., Malandrino, D., and Wills, C. E.
Measuring privacy loss and the impact of privacy protection in
web browsing.

[26]	 Krishnamurthy, B., Naryshkin, K., and Wills, C. Privacy
di↵usion on the web: A longitudinal perspective. In Proc. of
WWW (2009).

[27]	 Krishnamurthy, B., and Wills, C. Privacy leakage vs.
protection measures: the growing disconnect. In Proc. of
W2SP (2011).

[28]	 Li, T.-C., Hang, H., Faloutsos, M., and Efstathopoulos, P.
Trackadvisor: Taking back browsing privacy from third-party
trackers. In Proc. of PAM (2015).

[29]	 Liu, Y., Song, H. H., Bermudez, I., Mislove, A., Baldi, M., and
Tongaonkar, A. Identifying personal information in internet
tra�c. In Proceedings of the 3rd ACM Conference on Online
Social Networks (COSN’15) (Palo Alto, CA, November 2015).

[30]	 Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX: Statically
Vetting Android Apps for Component Hijacking Vulnerabilities.
In Proc. of ACM CCS (2012).

[31]	 Machiry, A., Tahiliani, R., and Naik, M. Dynodroid: An Input
Generation System for Android Apps. In Proc. of the Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE) (2013).

[32]	 McDonald, A. M., and Cranor, L. F. Americans’ attitudes
about internet behavioral advertising practices. In Proc. of
WPES (2010).

[33]	 Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting
canvas in html5. In Proc. of W2SP (2012).

http://samy.pl/evercookie
http://developer.android.com/about/dashboards/index.html
http:https://mitmproxy.org
http:https://easylist.github.io
http:http://www.appannie.com
https://recon.meddle.mobi/appvsweb

[34]	 Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C.,
Piessens, F., and Vigna, G. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In Proc. of IEEE
Symposium on Security and Privacy (2013).

[35]	 Olejnik, L., Castelluccia, C., and Janc, A. Why Johnny Can’t
Browse in Peace: On the Uniqueness of Web Browsing History
Patterns. In Proc. of HotPETs (2012).

[36]	 Papaodyssefs, F., Iordanou, C., Blackburn, J., Laoutaris, N.,
and Papagiannaki, K. Web identity translator: Behavioral
advertising and identity privacy with wit. In Proc. of HotNets
(2015).

[37]	 Rao, A., Kakhki, A. M., Razaghpanah, A., Li, A., nad
Arnaud Legout, D. C., Mislove, A., and Gill, P. Meddle:
Enabling Transparency and Control for Mobile Internet Tra�c.
JoTS, 2015103003 (October 2015).

[38] Ren, J., Rao, A., Lindorfer, M., Legout, A., and Choffnes,
D. R. ReCon: Revealing and controlling privacy leaks in mobile
network tra�c. In Proc. of MobiSys (2016).

[39]	 Roesner, F., Kohno, T., and Wetherall, D. Detecting and
defending against third-party tracking on the web. In Proc. of
NSDI (2012).

[40]	 The Wall Street Journal. What They Know - Mobile.
http://blogs.wsj.com/wtk-mobile/, December 2010.

[41]	 Turow, J., Hennessy, M., and Draper, N. The tradeo↵ fallacy:
How marketers are misrepresenting american consumers and
opening them up to exploitation. Report from the Annenberg
School for Communication, June 2015. https://www.asc.upenn.
edu/sites/default/files/TradeoffFallacy_1.pdf.

[42]	 Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger,
Y., Papagiannaki, K., Haddadi, H., and Crowcroft, J.
Breaking for commercials: Characterizing mobile advertising.
In Proc. of IMC (2012).

[43]	 Xia, M., Gong, L., Lyu, Y., Qi, Z., and Liu, X. E↵ective
Real-time Android Application Auditing. In IEEE Symposium
on Security and Privacy (2015).

[44]	 Yan, L. K., and Yin, H. DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis. In Proc. of USENIX Security (2012).

[45] Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and Wang,
X. S. AppIntent: Analyzing Sensitive Data Transmission in
Android for Privacy Leakage Detection. In Proc. of ACM CCS
(2013).

[46] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang,
X. S., and Zang, B. Vetting undesirable behaviors in Android
apps with permission use analysis. In Proc. of ACM CCS
(2013).

https://www.asc.upenn
http://blogs.wsj.com/wtk-mobile/,December2010

Bug Fixes, Improvements, ... and Privacy Leaks
A Longitudinal Study of PII Leaks Across Android App Versions

Jingjing Ren⇤, Martina Lindorfer†, Daniel J. Dubois⇤ ,

Ashwin Rao‡, David Choffnes⇤ and Narseo Vallina-Rodriguez§

⇤Northeastern University †UC Santa Barbara ‡University of Helsinki §IMDEA Networks Institute and ICSI

Abstract—Is mobile privacy getting better or worse over time?
In this paper, we address this question by studying privacy leaks
from historical and current versions of 512 popular Android
apps, covering 7,665 app releases over 8 years of app version
history. Through automated and scripted interaction with apps
and analysis of the network traffic they generate on real mobile
devices, we identify how privacy changes over time for individual
apps and in aggregate. We find several trends that include
increased collection of personally identifiable information (PII)
across app versions, slow adoption of HTTPS to secure the
information sent to other parties, and a large number of third
parties being able to link user activity and locations across apps.
Interestingly, while privacy is getting worse in aggregate, we
find that the privacy risk of individual apps varies greatly over
time, and a substantial fraction of apps see little change or
even improvement in privacy. Given these trends, we propose
metrics for quantifying privacy risk and for providing this risk
assessment proactively to help users balance the risks and benefits
of installing new versions of apps.

I. INTRODUCTION

As mobile devices and apps become increasingly present
in our everyday lives, the potential for accessing and sharing
personal information has grown. The corresponding privacy risks
from using these apps have received significant attention, not
only from users who are at risk [55], but also from regulators
who enforce laws that protect them [26].

A key problem with the above trend is that once personal
information is shared with another party, it can potentially
be linked to that individual forever. Thus, monitoring privacy
implications of mobile apps should not focus just on a snapshot of
their behavior, but also on how their behavior evolved over time.
In fact, because apps are regularly updated with new versions
(as frequently as once a month on average [12], [19]) that fix
bugs, improve performance, add features, and even change what
is shared with other parties, it is essential to study app behavior
across versions.

In this paper, we are the first to conduct a comprehensive,
longitudinal study of the privacy implications of using multiple
versions of popular mobile apps across each app’s lifetime. We
focus specifically on Android apps1 and identify when personally

1The only platform where we can access historical versions of apps.

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23143
www.ndss-symposium.org

identifiable information (PII) appears in Internet traffic while
using them. Through hybrid automated and scripted interactions
with 512 apps (across 7,665 distinct versions), we compile
a dataset that informs what information is exposed over the
Internet (identifiers, locations, passwords, etc.), how it is exposed
(encrypted or plaintext), and to whom that information is exposed
(first or third party). We analyze this dataset to understand
how privacy has changed over time (for individual apps and
in aggregate across popular apps), why these trends occur, and
what their implications are.

Our work substantially extends existing mobile privacy
research [23], [43], [49], [50] by focusing on multiple versions
of apps instead of individual versions. Moreover, most existing
longitudinal studies infer privacy risks by using static analysis
to monitor library usage and permission requests [12], [15], [53],
[54]. In contrast, we detect actual PII transmitted in network
traffic to other parties while an app is used.

Gathering a longitudinal view of the privacy implications of
using apps over time poses the following challenges:

•	 Monitoring app behavior across versions for a large number
of apps requires a methodology that scales accordingly.
Manually logging into apps and interacting with them can
comprehensively trigger privacy leaks, but this is infeasible
at scale. Instead, we use a semi-automated approach that
incorporates random interactions [33] and manually generated
scripts for logging into apps.

•	 We need a way to identify the privacy risks for each app. To
this end, we analyze network traffic2 generated by the mobile
device running the app, using both simple text matching
on known identifiers and machine-learning inference [50] to
extract identifiers not known in advance.

•	 We need a systematic, configurable, and meaningful way
to compare the privacy guarantees of the apps (and their
versions). To this end, we identify several metrics that provide
insight into privacy trends and implications.

Using the above approach, our study is the first to reveal the
privacy implications of popular apps across multiple versions:

On average, privacy has worsened over time. We analyze privacy
risks along multiple attributes (what PII is leaked, to how many
destinations, and whether it is encrypted) independently and in
combination. We find that apps increasingly leak more types of
PII and to more domains over time, but HTTPS adoption has
seen slow growth. When combining these factors, we find that
about a quarter of apps (26.3%) are getting better with respect to

2We focus only on IP traffic. A recent study [43] showed that less than 1%
of leaks occur over non-IP traffic (i.e., SMS).

http:www.ndss-symposium.org
http://dx.doi.org/10.14722/ndss.2018.23143

privacy, but twice as many are getting worse over time (51.1%),
with only a small fraction (9.5%) staying the same or exhibiting
highly variable privacy risks between versions (13.1%).

Snapshots of privacy leaks from single versions of apps are
incomplete. For all but 7% of the apps in our dataset, studying
one version will miss PII gathered across all versions of the
app. We also find that the set of PII leaked by an app changes
frequently across versions.

HTTPS adoption is slow. Unlike recent trends in HTTPS adoption
for web traffic [25], we find that apps are slow to adopt HTTPS.
In fact, from the moment we see that a domain first starts
supporting HTTPS, it takes five years for at least half of the
apps in our study to start using it. Overall, the fraction of flows
using HTTPS has remained nearly constant over the time period
covered by our study.

Third-party tracking is pervasive. While previous work using
small snapshots of time demonstrates that third parties collect
substantial amounts of PII, we find the problem to be even
worse when considering PII leaks across versions. We find that
there is little correlation between the amount of traffic to a third
party and the volume of PII it leaks. In addition, we analyze
how third parties (among which several are not highlighted in
previous studies) collect locations, email addresses and gender
along with tracking identifiers, enabling fine-grained tracking of
users and their daily activities.

In summary, our key contributions are: (1) a large-scale
privacy analysis across multiple apps and app versions, (2) a
dataset of network traffic generated by running apps, along with
labels describing the PII contained in them, and (3) an analysis
of the origins and privacy implications of these information
leaks. Our data and analysis are available at https://recon.
meddle.mobi/appversions/.

II. RELATED WORK

A large body of related work has investigated the privacy of
mobile apps and their generated network traffic. Most related
studies focus on identifying personal information that is (or
might be) exposed to other parties over the Internet, using one
or more of the following complementary approaches.

Static analysis. This technique entails analyzing an app’s
bytecode using symbolic execution [58] and/or control flow
graphs [10], [11], [22]. Several academic studies leverage static
analysis to inspect app permissions and their associated system
calls [11], [41], to audit third-party library usage [17], [51], and
to analyze flaws in HTTPS usage and certificate validation [24],
[27]. This approach is appealing because it enables large-scale
app analysis without the overhead of running or interacting with
apps. However, static analysis may identify privacy leaks in
code that is rarely or never executed; further, it cannot analyze
dynamically loaded code, which is commonly used to update
app functionality at runtime in as much as 30% of apps [43].

Dynamic analysis. In contrast to static analysis, dynamic
analysis tracks system calls and access to sensitive information
at runtime. In this approach, the runtime (e.g., the OS) is
instrumented to track memory references to private information
and taint the memory it is copied into. This taint propagates
as the information is copied and mutated; ultimately when it is
copied to a sink, such as the network interface, it is flagged as a

PII leak. TaintDroid [23] is commonly used for dynamic analysis
of Android apps. While taint tracking can ensure coverage
of all PII leaks (even those that are obfuscated), it requires
some form of interaction with running apps to trigger leaks.
Typically, researchers use automated “UI monkeys” [33], [44]
for random exploration or more structured approaches [16], [37]
to generate synthetic user actions; however, prior work showed
that this can underestimate PII leaks compared to manual (human)
interactions [50].

Network traffic analysis. This approach relies on the obser
vation that PII exposure almost always occurs over Internet
traffic. Thus, network traffic analysis focuses on identifying PII
contained in app-generated IP traffic [40], [49], [50], [52]. The
benefit of this approach is that it works across platforms without
the need for custom mobile OSes or access to app source code,
and thus is easy to deploy to user devices for the purpose of
real-time analysis and detection of PII leaks. A drawback is
that it requires the ability to reliably identify PII (which may be
encrypted and/or obfuscated) in network traffic. All of the above
approaches support TLS interception to access plaintext traffic to
search for PII, but differ in what they search for: most on-device
approaches search for known PII stored on the device [40], [49],
[50], [52], whereas ReCon [50] also uses a machine-learning
approach to infer a broader range of PII that includes user input.
However, these approaches are susceptible to missing PII leaks
from apps that defend against TLS interception, or that use
non-trivial obfuscation or encryption of PII [21].

Longitudinal analysis. Some existing longitudinal studies use
static analysis to study how apps across several categories [54],
and finance apps in particular [53], change over time in terms
of permission requests and security features and vulnerabilities,
including HTTP(S) usage. Similarly, Book et al. conduct a
longitudinal analysis of ad libraries [15], but they focus only on
permission usage. While partially sharing the goals of our work,
these studies do not actually execute and analyze apps, and thus
are subject to both false positives (by looking at permissions
and code paths that are not used) and false negatives (by not
covering code that is dynamically loaded at runtime).

To the best of our knowledge, our study provides the first
longitudinal analysis of privacy risks in network traffic generated
by running app versions that span each app’s lifetime. Our
work complements and substantially extends the related work
presented above: we study privacy across versions (and thus
over time), whereas most previous work consists of one-off
studies that focus on individual versions of apps available at a
certain moment in time. Moreover, since we monitor the traffic
exchanged by actual apps running on real devices, we overcome
some of the limitations of the discussed static and dynamic
analysis approaches.

III. GOALS AND PII DEFINITIONS

The primary goal of this work is to understand the privacy
implications of using and updating popular Android apps over
time. As privacy is a top-cited reason for why users do not install
app updates [55], studying PII leaks from apps across versions
can help users make more informed decisions. Furthermore, this
information can assist regulators when auditing and enforcing
privacy rules for mobile apps [26]. An explicit non-goal of this
work is coverage of all versions of all apps; rather, we focus on
a diverse set of 512 popular Android apps.

2

https://recon.meddle.mobi/appversions/
https://recon.meddle.mobi/appversions/

Unique Identifier (ID)	 Advertising ID (Ad ID), IMEI, Android ID,
MAC address (MAC Addr), IMSI, Google
Service Framework ID (GSF ID), SIM card
ID (SIM ID), Hardware serial (HW Serial)

Personal Information (User)	 email address, first and last name, date of birth
(DOB), phone number, contact info, gender

Location GPS location (Location), zip code (Zip)
Credential username, password

TABLE I: List of PII categories and types.

A. PII Considered in This Work

Personally identifiable information (PII) is a generic term for
describing “information that can be used to distinguish or trace
an individual’s identity" [38]. In this paper, we define PII to be
a subset of this, based on textual data that can be gathered and
shared by mobile apps. Specifically, we consider the PII listed
in Table I, which is based on a combination of PII accessible
from Android APIs, user-supplied information, and inferred user
information that was reported as being leaked in network traffic
in previous work [40], [49], [50], [52].

B. Threat Model and PII Leaks

We define privacy risks and PII leaks in the context of the
following threat model. We assume that the adversary seeks
to collect PII from an app running on a user’s mobile device.
The adversary is any party that receives this information via
network connections established when running an app, including
the following:

•	 App provider, i.e., the company that releases an app, also
referred to as the first party.

•	 Other parties, e.g., the ones that are contacted by an app as
part of advertising, analytics, or other services, also referred
to as a third party.

•	 Eavesdroppers, who observe network traffic (e.g., an ISP, an
adversary listening to unencrypted WiFi traffic, or one that
taps an Internet connection).

We define two goals of an adversary that motivate our definition
of PII leak as a privacy risk:

Data aggregation. This occurs when first or third parties collect
information about a user over time, including which apps they
use, how often they use them, where they are located when they
do so, etc. The risk from this kind of information gathering
is that it can be used to build rich profiles of individuals,
which can in turn be used for targeted advertising [14], price
discrimination [36], and other differential treatment driven by
algorithms using this information [35].

Eavesdropping. In this scenario, the adversary learns a user’s
information passively by observing network traffic (e.g., plaintext
PII leaks). This presents a privacy risk to users in that it
constitutes a third party for which the user did not explicitly
consent to collect data. Furthermore, it can constitute a security
risk when information exposed to unauthorized third parties
includes credentials (i.e., username and password).

We define a PII leak as any case in which information
listed in Table I is transmitted to a first or third party, with
the exception of credentials that are sent to a first party via an
encrypted channel. The latter is excluded because it is exclusively
provided intentionally by a user. We cannot in general determine

Number of APKs 7,665 (512 unique apps)
APK release timeframe 8 years
Versions per app (mean) 15.0
Versions per app (median) 14
HTTP(S) flows per app (mean) 94.7
Total HTTP(S) traffic 33.6 GB (pcap format)
Total number of flows 675,898
Unique third-party domains 1,913

TABLE II: Dataset description.

whether other cases of PII are intentionally disclosed to other
parties (and/or required for app functionality), so we include
them in our analysis for completeness. Note that the goal of this
work is to increase privacy transparency, so we leave the decision
as to what constitutes an unintentional and important leak to the
users of our dataset and analysis. To this end, our interactive
tool [1] allows users to set preferences for the importance of
each type of leak.

IV. METHODOLOGY

We identify and analyze PII leaks using network traffic
analysis on flows generated by automated and scripted inter
actions with multiple versions of popular Android apps. Our
methodology consists of four high-level steps: (1) selecting
apps for analysis, (2) collecting historical and current versions
for each app, (3) interacting with these APKs (i.e., unique
versions of each app), and (4) identifying and labeling PII leaks.
In this section, we discuss each individual step in detail. We
further discuss the assumptions, limitations, and validation of
our approach. Table II summarizes our dataset.

A. App Selection

We selected 512 apps for analysis in this study, using the
following criteria:

•	 Popularity. We started with the set of apps that was either
in the top 600 popular free apps according to the Google
Play Store ranking, or in the top 50 in each app category, as
of January 10, 2017. We exclude apps that require financial
accounts or verified identities (e.g., bank and credit card
accounts, social security numbers).

•	 Multiple versions. We considered only apps with more than
three versions compatible with our analysis testbed, which
includes devices running Android 4.4.4 and Android 6.0.
These OS versions run on approximately 50% of Android
devices as of May 2017 [29].

•	 Amenable to traffic analysis. As discussed in Section IV-C,
we collect both unencrypted (HTTP) traffic and the plaintext
context of encrypted (HTTPS) traffic via TLS interception [8].
We exclude 26 apps (e.g., Choice of Love, Nokia Health Mae
and Line Webtoon - Free Comics) where most versions crash
or hang when opened, or that do not permit TLS interception
as explained in Sec. IV-E.

B. APK Collection

After identifying apps to analyze, we gather their historical
and current versions, and label their release dates.

Finding app versions. Officially, the Google Play Store only
supports the download of the most recent version of each app.
However, Backes et al. [12] reported an undocumented API of

3

the Google Play Store that allows downloads of an arbitrary
version of an app (i.e., its Android Package Kit, or APK, file), as
long as the app’s version code3 is known. The authors identify
several patterns, which we build upon, to identify app version
codes. For the 512 selected apps, we downloaded 7,665 APKs.
Some apps have hundreds of versions, and testing all of them
would be prohibitively expensive. Thus, for apps with more than
30 different versions, we sort their releases chronologically and
pick 30 versions that are evenly distributed across all versions.

Inferring APK release date. The API that we use for
downloading APKs does not provide the release date for each app,
information that is essential for understanding how app behavior
changes over time. To address this, we leverage the fact that
developers who release a new version of an app must update the
version code in several files inside the APK (AndroidManifest.xml
and META-INF/MANIFEST.MF). We thus infer the release date
based on the modification time of these files, which assumes that
the developers’ OS timestamps correctly. Of the 7,665 APKs
we downloaded, 429 APKs had timestamps that were obviously
incorrect (e.g., a date before Android’s first release on August
21, 2008 or a date in the future). For these cases, we manually
checked release dates with several third-party services [2]–[5]
that provide release dates for the last three years.

To understand how well our heuristics work, we manually
cross-validated the release dates of 77 APKs by comparing
the file modification times and release dates found using the
above third-party services [2]–[5]). We find that 88% of inferred
release dates differ with the public record by less than a week,
and only two cases have a difference of 30 days or more. We
investigated these last two cases and found that the difference in
release date is likely due to a developer error, not an incorrect
inference. Namely, these are cases where the developer released
a new version of the app without updating the version string
in the APK. As a result, the date from the third-party services
did not correspond to the APK we investigated. The average
interval between each update across apps is 47 days, with a
standard deviation of 181. Note that 21% of the 512 apps were
first released before January 1st, 2012 and exactly half were
released before August 22nd, 2014.

C. Interaction and Traffic Collection

In this step, we interact with each APK and collect the
network traffic generated as a result from these interactions.

Test environment. We conduct experiments using five
Android devices: one Nexus 6P phone and one Nexus 5X phone,
both with Android 6.0.0; and three Nexus 5 phones with Android
4.4.4. We use real Android devices instead of emulated ones to
avoid scenarios where apps and third-party libraries detect the
analysis environment and modify their behavior accordingly. It
has been shown that emulators are easy to fingerprint [47], [57],
a fact that is exploited for example by ad libraries to only show
ads and leak data when executed on a real device [46].

Interaction with apps. Measuring PII leaks from apps
requires interacting with them, and the gold standard for doing so
is via natural human interaction. However, manually interacting
with each of the selected 512 apps (7,665 unique versions) is

3An integer value that can be incremented by arbitrary values from one
version to the next.

not practical. Thus, we use Android’s UI/Application Exerciser
Monkey [33], a tool that automatically generates pseudo-random
UI interaction events (swipes, taps, etc.) for an app. While a
number of other approaches for automation have been proposed,
a recent study [18] showed that Monkey exhibited a better cov
erage in terms of code coverage and fault detection capabilities
than other automated tools. Completely random events would
prevent apples-to-apples comparison among versions of the same
app, so we specify the same random seed that generates the
sequence of events for interaction with all of an app’s versions.4

Specifically, we use Monkey to generate approximately 5,000
user events by specifying five seeds for 1,000 events each.5 We
use 5,000 events because it allows us to test a large number of
APKs in a reasonable amount of time, and because previous
work [42] found that longer interaction times do not substantially
impact the set of PII that leaked. We cross-validate our dataset
with human interactions in Section IV-F.

Many apps (75 in our study) require users to log in with a
username and password before accessing app functionality. Thus,
failure to login can severely underestimate the amount of PII
leaked. We created accounts for testing with each of these apps,
but manually logging into each version is prohibitively expensive.
We avoided this by recording the login events in one version
and replaying the events in other versions using RERAN [28].
We perform both record and replay of login actions on the same
device to ensure a consistent UI layout.

Recording network traffic. For each experiment, we run
one app at a time. To collect network traffic while interacting
with the apps, we redirect the traffic to a proxy server that
records plaintext traffic and that uses TLS interception (using
mitmproxy [8]) to record the plaintext content of HTTPS requests.
For apps that prevent TLS interception via certificate pinning,
we use JustTrustMe [7], a tool that modifies Android in such a
way that certificate validation using built-in OS libraries always
succeeds. We test such apps only on devices running Android
4.4.4 (the Nexus 5 phones) because JustTrustMe does not support
later OS versions.

D. Privacy Attributes

After the completion of the experiments, we analyze network
traffic according to the following three privacy attributes to assist
in our subsequent analysis of network flows.

1) PII Leaks: We label each flow with the PII that it leaks
in two phases. First, we use simple string matching to identify
PII that is static and known in advance (e.g., unique identifiers,
personal information, zip code, and credentials). This approach,
however, cannot be reliably applied to dynamic values (e.g.,
fine-grained GPS locations) and to data not directly input into
an app (e.g., gender).

For these cases, we use ReCon [50], which uses machine
learning to infer when PII is leaked without needing to rely on
exact string matching. The key intuition behind ReCon is that
PII is often leaked in a structured format (e.g., key/value pairs

4Note that we do not explicitly account for changes in UI or functionality over
time because doing so requires manual analysis and is infeasible at this scale.
However, we rely on the randomness of Monkey to probabilistically exercise
UIs and functionality as they change.

5Batches of events were required to give apps sufficient time to process
events; failure to do so led to crashes or exits before the events completed.

4

http:META-INF/MANIFEST.MF

such as password=R3Con or adId:93A48DF23), and that
the text surrounding PII leaks can become a reliable indicator
of a leak. ReCon therefore uses a classifier to reliably identify
when network traffic contains a leak (e.g., in a simple case,
looking for password=), without needing to know the precise
PII values. We manually validated all cases of inferred PII leaks
to ensure their correctness.

2) Transport Security: This study focuses exclusively on
HTTP and HTTPS traffic. In addition to the standard ports 80
and 443, we also include port 8080 for HTTP traffic and ports
587, 465, 993, 5222, 5228 and 8883 for HTTPS traffic. We find
that only 0.5% of the flows in our dataset use other ports.

3) Communication with First and Third Parties: An impor
tant privacy concern is who receives the PII. In a network flow,
this corresponds to the owner of the traffic’s destination. We
distinguish between first-party second-level domains (hereafter
simply referred to as domains), in which case the developer of
an app also owns the domain, and third-party domains, which
include ad networks, trackers, social networks, and any other
party that an app contacts. For instance, facebook.com is a
first party to the Facebook app, but it is a third party to a game
app that uses it to share results on Facebook.

Our domain categorization works in two steps. We first take
all the domains that we observed in our experiments and build
a graph of these domains, where each node represents a domain
and each edge connects domains belonging to the same owner.
We then match the owner of each connected subgraph of domains
to the developer of an app and consequently label them as first-
party domains for that app. Our approach is similar to related
work focusing on identifying the organizations behind third-
party ad and tracking services [56], which found that current
domain classification lists are incomplete and too web-centric
to accurately identify mobile third-party domains.

Ownership of domains. To identify a domain’s owner,
we leverage WHOIS information, which contains the name,
email address and physical address of the registrant unless the
registration is protected by WHOIS privacy. As a preprocessing
step, we thus first discard any WHOIS entries that are protected
by WHOIS privacy. We then connect domains as belonging to the
same owner based on (1) the registrant’s name and organization,
and (2) their email address (excluding generic abuse-related
email address from the registrar). This method allows us to
group together disparate domains that belong to the same owner,
e.g., we can identify instagram.com, whatsapp.com and
atlassbx.com as Facebook-owned services.

Ownership of apps. To identify the developer of an app,
we use information from the Google Play Store listing, which
contains the name of the developer, and optionally their website,
email address and physical address. Some developers use third-
party services (e.g., Facebook pages) in lieu of hosting their
own website, or free email providers, such as Gmail. We filter
out such cases from our analysis. Since Google recommends
using “Internet domain ownership as the basis for [...] package
names (in reverse)” [30], in the simplest case the package name
embeds one of the developer’s domains. Otherwise, we compare
the developer information from Google Play against WHOIS
records for a domain as detailed below.

First-party identification. We identify traffic to a domain
as first party when information about the owner of the domain

matches information about the owner of an app. We label any
domain collected from the app’s Google Play Store listing as first
party, as well as the domain in the app’s package name. We also
label as first party any domains that are registered to the same
name, organization, physical address, or email address as the
ones listed for the developer in Google Play. To account for any
inconsistencies in the representation of the physical addresses,
we first convert them with geopy [6] to their coordinates through
the Google Geocoding API [31].

Third-party identification. We label as third party all the
domains that have not been labeled as first party according to
the previous paragraph. This includes ad and tracker domains,
content hosting services or any third-party domain an app
contacts to fetch content.6 Our classification is skewed towards
finding potential third-party services; we validate parts of our
approach in Section IV-F.

E. Assumptions and Limitations

Our approach uses several assumptions and heuristics to
inform our longitudinal analysis of privacy across app versions.
We now discuss these assumptions and the corresponding
limitations of our study.

Coverage. We do not cover all apps or all app versions, but
rather focus on a set containing many versions of popular apps
across multiple categories of the Google Play Store. We believe
this is sufficient to understand privacy trends for important apps,
but our results provide at best a conservative underestimate of
the PII exposed across versions and over time.

TLS interception. TLS interception works when apps trust our
self-signed root certificates, or when they use built-in Android
libraries to validate pinned certificates. We are also constrained
by JustTrustMe. As a result, we cannot intercept TLS traffic for
11 apps that possibly use non-native Android TLS libraries (e.g.,
Dropbox, MyFitnessPal, Snapchat, Twitter) [48].

Obfuscation. Due to the inherent limitation of network traffic
analysis, we do not detect PII leaks using non-trivial obfuscation,
as it requires static or dynamic code analysis. In such cases, we
will underestimate PII leaks. However, we do handle non-ASCII
content encodings and obfuscation. For the former, we examine
the Content-Encoding field in the HTTP header, and decode gzip
flows (2.5% of total flows). We further decode content using
Base64 but did not find any additional leaks using this encoding.
For the latter, we apply standard hash functions (MD5, SHA1,
SHA256, SHA512) on our set of known PII, and match on the
result. This yielded 4,969 leaks (4.3% of all leaks observed in
this study) in 4,251 flows.

Testing old versions today. We assume old versions of apps
exhibit the same behavior today as when they were initially
released. However, for a variety of reasons (e.g., different
behavior of the contacted domain, or domain being no longer
available), this might not always be true. It is likely that this
means we will underestimate the PII leaked by apps (e.g., if a
domain does not resolve to an IP).

6This includes domains provided to their customers by Google App Engine
or Amazon Web Services. We argue that even if the services running on these
platforms belong to a first party, communication to these platforms should
still be considered third-party communication because developers do not have
ownership of, or full control over, the platform.

5

http:atlassbx.com
http:whatsapp.com
http:instagram.com
http:facebook.com

Because we could not run old versions of these apps at the
time they were released, we must use heuristics to determine
whether our analysis might be impacted by such factors. During
the course of our experiments, we found that the behavior of
leaks and domains contacted did not change significantly over
several months; as such, we do not think this is an issue for
recently released app versions.

For older versions of apps, we assume that DNS and HTTP
failures potentially indicate apps that no longer function similarly
to when they were first released. Thus, we exclude APKs for
which more than 10% of DNS requests fail or 10% HTTP
responses are error codes (4xx or 5xx response codes). This was
the case for 15 apps (2.8% of the original selected apps).

F. Validation

To improve confidence in the accuracy and representativeness
of our measurements, we validated several critical aspects of
our approach as follows.

Automated interaction. A limitation of automated interac
tions with apps is that they may not elicit the same privacy-related
behavior as user interactions. To estimate this gap, we compare
our results with those from the natural human interactions
made available by the Lumen [49] project, which provides
on-device privacy analysis and has thousands of users. Lumen
maps network flows to the source APKs and destination domains,
and also labels any PII that matches those stored on the device.
We found 983 APKs that appear in both our and Lumen’s
datasets and 380 of which leaked PII in both studies. The latter
corresponds to 122 distinct apps (24% of the 512 apps in this
study) that cover 23 app categories. On average, our dataset
missed 0.41 PII types per APK found by Lumen, with a range
of 0–3 missing types from automated tests. The most frequently
missed types include Android ID (52%), email (15%), MAC
address (12%) and IMEI (11%). Similarly, the number of unique
domains and protocol pairs per app missed by our automated
tests compared to Lumen is 2.36 (standard deviation of 4.42).
On the other hand, Lumen missed on average 1.38 PII types per
APK that our approach found (with a range of 0—6 types). The
most common missed types are advertiser ID (27%), hardware
serial (18%), Android ID (15%) and Location (15%). In summary,
human interactions find different PII leak types and traffic to
different domains, as expected; however, the gap between these
two datasets is relatively small on average. As a result, we
believe our analysis covers most of the behavior one would
expect to see in the wild.

Repeatability. A potential problem of our study is that our
automated tests use only one round of 5,000 interaction events
for each APK. It is unclear a priori whether this approach will
yield similar results over time, and thus might be biased in
some way. To test whether this is the case, we repeated the
experiments for the five apps (105 APKs) that have a large
variance in leaked PII types across versions. In particular, we
performed a pairwise comparison between the PII types leaked
by different versions of each app and selected the apps with
the largest number of distinct sets of PII types across versions.
For each APK, we performed the same experiment each day
at approximately the same time of day, for ten days. After we
collect the traffic ten times, we compare the number of unique
PII leak types, the number of domains contacted, and the fraction

of flows using HTTPS. We find that the change in results over
repeated experiments is small: for more than 90% of tested
APKs, the variation across experiments is generally no more
than one PII type, two domains, and a fraction of HTTPS traffic
of no more than 6.0%.

Domain categorization. Our approach to distinguish between
first-party and third-party domains largely relies on WHOIS data,
which is known for its incompleteness and noise. To validate our
approach we manually verified the domain classification for a
subset of 20 apps, which we selected randomly from all apps that
leak PII and contacted more than one domain in our experiments.
We inspected 550 app/domain pairs (343 unique domains), 60
of which our approach labeled as first-party domains and the
remaining 490 as third-party domains. We find that all of these
first-party labels are indeed correct, with only a small number
of false negatives: our approach missed 5 first-party domains
for 3 apps. Overall, we find those results encouraging as our
study is focused on analyzing third-party services.

V. LONGITUDINAL ANALYSIS

This section presents our analyses and findings regarding
changes in PII leaks across app versions and time. Section V-A
presents the case of a single notable app (Pinterest). In Sec
tion V-B, we provide a summary of all the PII leaked across all
APKs in our dataset. Section V-C focuses on how specific types
of PII are leaked over time for each app. We analyze trends in
HTTPS adoption and third-party destinations in Sections V-D
and V-E. Section V-F summarizes our key findings.

A. A Notable Example: Pinterest

To demonstrate our analysis of privacy attributes, we use the
Pinterest app as an in-depth example. In Figures 1a and 1b we
show how PII leaks and network flows with third-party services
change in the Pinterest app across different versions.7 In the
plots, each app version is identified by a different version code
on the x-axis, sorted in ascending chronological order.

Figure 1a shows how many times each PII type is leaked
across all network flows for each version, where the y-axis for
each time series represents the number of times it is leaked
during an experiment. The number below the PII type is the
maximum number of times any version of Pinterest leaked the PII
type. The stacked bars are colored according to the domain type
and protocol. The plot shows that the app sends user passwords
to a third party8 and starts leaking gender, location, advertiser ID
and GSF ID in more recent versions. In addition, the frequency
of Android ID leaks increases by two orders of magnitude.

B. Summary of Results

This section focuses on a summary of PII leaked across all
versions (APKs) of all apps that we tested, and their implications
for privacy risks over time.

Table III depicts our results, where each row is a PII type,
and each column counts the number of instances falling into a
given category. The table is sorted in descending order according
to the number of apps leaking each type.

7Similar plots for every app in our dataset can be found online [1].
8We responsibly disclosed this security bug, which Pinterest confirmed and

fixed in later versions not included in this study.

6

PII Type
Leaks Overall

#Apps %Apps #APKs %APKs

Leaks to First Party
HTTP HTTPS

#Apps #APKs #Apps #APKs

Leaks to Third Party
HTTP HTTPS

#Apps #APKs #Apps #APKs
Ad ID 314 62.2% 2,270 29.8% 23 115 32 227 149 700 282 2,037
Location 268 53.1% 1,577 20.7% 27 258 41 301 96 450 209 778
HW Serial 254 50.3% 1,157 15.2% 10 81 21 154 28 170 227 832
IMEI 167 33.1% 1,597 21.0% 45 443 32 250 62 505 123 1,073
Android ID 124 24.6% 1,225 16.1% 18 163 28 272 54 423 104 957
GSF ID 108 21.4% 504 6.6% 0 0 9 68 0 0 99 436
MAC Addr. 71 14.1% 649 8.5% 8 105 12 116 38 307 25 173
Gender 65 12.9% 257 3.4% 6 68 5 16 35 106 42 134
Email 43 8.5% 280 3.7% 12 97 21 124 3 19 14 58
Password 13 2.6% 84 1.1% 6 48 N/A N/A 0 0 7 36
Last Name 6 1.2% 37 0.5% 0 0 2 15 0 0 4 22
First Name 6 1.2% 37 0.5% 0 0 2 15 0 0 4 22
PhoneNo. 3 0.6% 18 0.2% 0 0 2 15 0 0 2 7
SIM ID 2 0.4% 9 0.1% 2 9 0 0 0 0 0 0
Any PII Type 505 7611 - - - - - - - -

TABLE III: Summary of PII types leaked by apps/APKs, sorted by number of apps. The majority of apps and APKs leak at
least one PII type. The fractions for the APKs are significantly lower than the ones for the apps, indicating that not every version
leaks PII. Unique IDs and locations are the most common leaks across apps. Unique IDs are leaked to third parties much more
often than to the first party, given the free monetizing model using ads. We also found 13 cases of password leaks.

1st/HTTP
1st/HTTPS
3rd/HTTP
3rd/HTTPS

2 3 4
20

3
 2

71

30
1

40
2

50
2

60
20

1
60

31
02

60

40
52

60

60
62

Version

Password(2)

Gender(3)

Location(4)

Android ID(232)

GSF ID(1)

Ad ID(12)

(a) PII types by destination type and protocol.
HTTP
HTTPS

2 3 4
20

3
27

1
30

1
40

2
50

2
60

20
1

60
31

02

60
40

52

60
60

62

Version

pinterest(235)
google(3)

flurry(9)
branch(4)

crashlytics(2)
adjust(2)

yoz(3)
pinimg(3)

doubleclick(2)
target(2)

facebook(1)

(b) Domains by protocol.

Fig. 1: Example app privacy attributes for Pinterest. The
x-axis corresponds to chronological versions of the app. In (a),
the y-axis of each stacked bar plot is the number of times a
version leaks a PII type, and the bar plots are colored according
to the domain type and the communication channel; in (b), the
y-axis of each stacked bar plot is the number of times a version
contacts a domain, and the bar plots are colored according to
protocol. For (a) and (b), the number in parentheses to the left of
each y-axis is the maximum y value across all versions. Similar
plots for other apps can be found on our website [1].

The first two columns show the number of apps and APKs
leaking each PII type. In line with previous work [50], we find
that the most commonly leaked PII types are unique identifiers
(more than half of all apps leak an advertiser ID and/or hardware

serial number) and locations (53.1% of apps). We nonetheless
still find a substantial fraction of apps (more than 10%) leaking
highly personal and security-sensitive information such as email
addresses (often to analytics services such as kochava.com and
crashlytics.com), phone numbers (e.g., collected by crash
lytics.com, segment.io, and apptentive.com), and gender.
However, when focusing on APKs (2nd column), we find that
substantially lower fractions leak each PII type—indicating that
most PII types are not leaked in every app version. We explore
this phenomenon in more detail in Section V-C. In the table
we can also see that there are 13 apps leaking passwords: 6
apps leak passwords in plaintext, and 7 apps send passwords
to third-party domains. Of these apps, in the latest version we
tested (not shown in the table), we discovered that 4 apps still
leak plaintext passwords (Meet24, FastMeet, Waplog, Period &
Ovulation Tracker).9

The next group of columns focuses on the number of apps
and APKs leaking each data type to a first party, either via
HTTP or HTTPS. Here we find that there is no clear pattern
for HTTPS prevalence for PII leaks to first parties, except for a
clear (and easily explained) bias toward password encryption.
When compared with the third column group (“Leaks to Third
Party”), it is clear that the vast majority of instances of PII leaks
go to third parties (with the exception of passwords, with small
but nonzero occurrences). This is likely explained by the fact
that PII is typically harvested to monetize users via targeted
ads, often over HTTPS. This result is a double-edged sword:
encryption improves privacy from network eavesdroppers, but it
also frustrates attempts by stakeholders (e.g., users, researchers,
and regulators) to audit leaks.

To understand whether certain categories of apps are rela
tively better or worse for privacy, we grouped them by category
as reported in the Google Play Store.10 Table IV provides results
for the top five and bottom five categories in terms of the average
number of PII types that are leaked by apps in the category.
We find that the categories that leak the largest number of

9We responsibly disclosed these leaks to the developers (multiple times over
a period of months) and received no response.

10We only used the category of the most recent version of the app we tested,
even if the app was assigned a different category in a previous version.

7

http:apptentive.com
http:segment.io
http:lytics.com
http:crashlytics.com
http:kochava.com

App Category Apps APKs #PT #PI #3PD %S

Food & Drink 2 50 2.9 26.3 7.1 52.7
Dating 6 108 2.3 38.4 10.0 60.7
Lifestyle & Beauty 9 137 2.0 40.9 10.7 65.7
Games 76 1231 2.0 70.8 9.7 61.2
Finance 3 28 1.9 42.3 8.2 96.8
...
Auto & Vehicles 7 122 0.8 4.6 8.8 84.9
Weather 10 177 0.8 88.5 7.3 47.7
Libraries & Demo 4 51 0.7 29.6 4.1 82.2
Art & Design 6 101 0.7 7.7 5.2 69.3
Events 6 104 0.6 7.9 5.7 95.6

TABLE IV: Average privacy attributes per app category,
sorted by number of unique PII types (PT) leaked. Only
the top and bottom five categories are shown. PI refers to the
number of instances of PII leaks, 3PD refers to the number of
second-level third-party domains contacted, and S refers to the
fraction of HTTPS flows. Dating and Food & Drink apps are
among the worst in terms of number and types of PII leaks, and
these substantial fractions of their flows are unencrypted.

PII types or cases (and contact the most third-party domains)
include Lifestyle & Beauty, Games, Finance, Entertainment and
Dating, while Art & Design and Events leak the fewest. With
the exception of Finance, the apps that leak the most PII types
also send a significant fraction of their traffic (34–47%) without
encryption, thus exposing PII to network eavesdroppers.

C. Variations in PII Leaks

Since privacy risks across versions of an app rarely stay
the same, a study that looks into a single version of an app is
likely to miss PII leaks affecting a user that regularly uses and
updates the app. In this section, we first quantify how many PII
leaks previous work may miss by focusing on one version, and
then we quantify how the frequency of PII leaks changes across
versions and time.

PII leaks across versions. In Figure 2a we show the CDF
describing the minimum, average, and maximum number of
distinct PII types leaked by individual apps across all their
versions (Min, Average, Max curves); and the CDF describing the
number of distinct PII types leaked during the whole lifetime of
the app (i.e., the union of its versions – Union curve). By looking
at the plot, we find a substantial gap between the maximum
number of PII types leaked by an app version and the minimum,
validating our hypothesis that a study using a single version of
an app is likely to miss a substantial number of PII leaks. Even
when focusing only on the version of an app that leaks the most
PII types (Max curve), there is a substantial fraction of cases
(37%, not shown in the figure) that miss at least one type of
PII leaked by a different version. The average curve is strictly
to the left of the union curve, indicating that a study using an
arbitrary app version is likely to miss at least one type of PII.
In summary, for all but 7% of the apps in our dataset, a study
using only one version is guaranteed to underestimate the PII
gathered over the lifetime of the app.

Privacy severity and changes over time. The previous
analysis shows that PII leaks change over time, but do not give
a clear picture of whether these changes lead to greater or less
privacy risk for users. We propose addressing this by assessing
the risk of PII leaked according the severity of each leaked

type. We begin by assigning PII types to n groups, each of
which has similar severity. These groups can be represented
as an n-dimensional bit vector; for each APK we set the mth
most significant bit to 1 if the APK leaks PII with severity m;
we set the bit to zero otherwise. Importantly, when this vector
is interpreted as an integer, it follows that privacy is getting
worse if the integer value increases between versions, better if
it decreases, and is unchanged if the value is the same.

To provide an example of how this representation informs our
analysis, we use the categories of PII in Table I and define PII
severity levels in the following order (from highest to lowest):
password (plaintext or to a third party), username, personal
information, geolocation, unique identifier. For example, consider
Pinterest (Fig. 1a). Version 2 has a vector of 00001, version
60201 has a vector of 00101, 603102 has 10101, and 604052
has 00111. Note that we picked these values because they
seemed reasonable to us; however, our online interactive tool [1]
allows individuals to explore different relative severity levels
and their impact on whether privacy is getting better or worse.

Figure 2b shows a CDF of every APK’s PII severity score
based on this bitmap representation. We find that nearly two
thirds of APKs leak PII, but almost half of those leak only
unique IDs. We also find a small fraction of APKs leaking very
sensitive information such as passwords (x > 15). To understand
how the severity of PII leaked by each app changes over time,
we find the slope of the linear regression of these scores for the
time-ordered set of APKs belonging to the same app. If the slope
is positive, PII leak severity increased over time, negative means
it decreased, and values of zero indicate no change. Figure 2c
shows a CDF of these slopes for each app. The results indicate
leak severity is more likely to increase (43.6%) than decrease
(36.4%), and does not change for a fifth of apps.

Frequency of PII leaks. The previous paragraphs covered
how many versions leaked each PII type at least once, but not
how frequently each version leaked it. This is an important
distinction because frequently leaked PII can heighten privacy
risks—whether it is fine-grained location tracking over time,
or increasing opportunities for network eavesdroppers to learn
a user’s PII from unencrypted traffic. Our analysis is in part
motivated by findings from Harvest, a documentary film that
used ReCon [50] to identify PII leaked over the course of a
week from a woman’s phone.11 Specifically, her GPS location
was leaked on average once every two minutes by the Michaels
and Jo-Ann Fabrics apps. This behavior, thankfully, was isolated
to one version of the apps; however, it raises the question of
how often such “mistakes” occur in app versions.

To explore this issue, we first investigate the average
frequency (i.e., number of times) that each PII type is leaked
by an app over time (Table V). For each app that leaks a given
PII type, we calculate the mean and standard deviation of the
number of times each PII type leaks across versions. The table
shows that Android ID, Location, and Advertising ID are leaked
most frequently on average, and also see the largest variance in
terms of the number of times they are leaked.

We further investigate whether there are cases of egregious
volumes of PII collection. To isolate this behavior, we calculate
the difference between the minimum and maximum number of

11https://www.harvest-documentary.com

8

https://www.harvest-documentary.com

=10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2

 0.4

 0.6

 0.8

 1

 1 1
0.9 0.9
 0.8 0.8
 0.7 0.7
 0.6 0.6
 0.5 0.5
 0.4 0.4
 0.3 0.3Min

Average
Max

Union

0 1 2 3 4 5 6 7 8

C
D

F
 o

f
A

P
K

s

C
D

F
 o

f
A

p
p
s

C
D

F
 o

f
A

p
p
s

0.2 0.2
0.1

 0.10
 00 5

1
0

1
5

2
0

2
5

-4 -3 -2 -1 0 1 2 3 4

Number of PII Types PII Severity Score Slope

(a) Number of unique PII types per app. (b) PII severity score per APK. Most (c) PII severity score trend per app. Posi-
Minimum, average, and maximum number APKs leak at least one PII type; fortunately, tive values (43.6% of apps) indicate that leak
of PII leaks across versions; and size of high-severity PII leaks are rare. severity increases over time, negative values
the union of PII leaked across versions, as (36.4%) indicate the severity decreases. We
defined in Section V-C. see no change for 20% of apps.

Fig. 2: Privacy trends by PII type and severity across versions and over time.

 100
100

HTTPS Traffic
HTTPS Leaks

Android ID
Location

Ad ID
IMEI

GSF ID

Θ
Θ=50%
Θ=90%

C
D

F
 o

f
D

o
m

a
in

s 80

 60

 40

 20C
D

F
 o

f
A

p
p
s

C
D

F
 o

f
A

P
K

s 80

 60

 40

 20
 0

 01

1
0

1
0
0

1
0
0
0

1
0
0
0
0 05

2
5

1
2
5

6
2
5

3
1
2
5

-0
.2

-0
.1 0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Difference in Leak Frequency Number of Days Slope

(a) Largest frequency difference (b) CDF of days over ⇥% of apps to (c) CDF of the slope of %HTTPS of traf
(logscale) per app. There is a substantial adopt HTTPS per domain. Apps adopt fic/leaks per app. Positive values indicate an
fraction (5.6%) of apps that exhibit a HTTPS extremely slowly: for half of the increase from the first version; negative values
several orders of magnitude difference in domains, it takes over two years for only indicate the opposite. HTTPS adoption does not
the frequency of PII leaks across versions. 10% of apps to adopt HTTPS; and five years change much for most apps over time, and there

for over 50% of apps. is no clear trend showing increased adoption.

Fig. 3: Privacy trends by PII frequency and HTTPS adoption across versions and over time.

PII Type #Apps Mean (Mean) Standard Deviation (Mean)

Ad ID 286 16.29 12.42
Location 256 20.33 11.63
Android ID 119 12.70 9.53
MAC Addr. 56 6.27 6.16
IMEI 140 7.87 5.68
GSF ID 109 8.55 5.37
Email 36 7.42 2.99
Gender 63 4.99 1.81
Password 13 2.48 0.92
HW Serial 240 2.16 0.76

TABLE V: Frequency of apps leaking each PII type, sorted
by the mean of the standard deviation. For each app, we
calculate the mean and the standard deviation of the number of
times each PII type leaks across versions. We show the mean
of both across apps. The table shows that location and unique
IDs are the most tracked information, and that the number of
times they leak takes on a wide range of values.

times each PII is leaked for each version, across all versions of
an app. Figure 3a shows the CDF of this difference over all apps
in our dataset. While the majority of apps see small differences
in the frequency of leaks, there is a substantial fraction (5.6%)
that exhibit a several orders of magnitude difference. To put
this in context, some versions of apps leak PII once every 1

to 10 seconds on average during an experiment. Example apps
include AccuWeather, Learn 50 Languages, Akinator the Genie
FREE, and JW Library, which leak either location or unique ID,
or both, nearly constantly.

In summary, not only are the types of PII leaks changing
across versions, but also the number of times it is leaked over
short periods of time. This has significant privacy implications
for users who do not want their online activity and locations
tracked with fine granularity.

D. HTTPS Adoption Trends

Given developments in the US and abroad concerning privacy,
including reports of widespread Internet surveillance [13] and
recent legislation permitting ISPs to sell user information gleaned
from network traffic [45], there has been a push to encrypt
Internet traffic to the greatest extent possible. Given the vast
amount of personal information stored on mobile devices,
HTTPS adoption by mobile apps can be perceived, at first,
as a positive industry move. In this section, we investigate the
extent to which apps adopt HTTPS across versions.

Aggregate results. We begin by studying the extent to which
apps (across all versions) exclusively use HTTP and HTTPS, or
some combination of the two. We group results according to

9

http:versions.10

Party App/Domain HTTP HTTPS Both
Pairs (#Apps)

All 12,143 (505) 3,559 (29.3%) 6,791 (55.9%) 1793 (14.8%)
First 703 (338) 268 (38.1%) 225 (32.0%) 210 (29.9%)
Third 11,440 (502) 3,291 (28.8%) 6,566 (57.4%) 1583 (13.8%)

TABLE VI: Summary of domains by protocol. The domains
are separated into those that use HTTP only, HTTPS only, and
both protocols. The majority of all flows use HTTPS, but this is
largely due to communication with third-party sites. Substantial
fractions of domains see flows without encryption and only a
third of first party domains exclusively use HTTPS.

the destination second-level domain. Table VI shows the results
of our analysis for all domains, as well as those previously
identified as either first or third party. Across all app/domain
pairs, we see that HTTPS-only adoption is the dominant behavior,
with substantial fractions of app/domain pairs that use HTTP,
and a relatively small fraction that use both HTTP and HTTPS
for the same domain. The latter case is particularly interesting,
because we know the domain supports HTTPS but for some
reason some of the connections are established using plaintext.12

When focusing on first- versus third-party communication,
we find that most of the HTTPS adoption comes from traffic to
third-party domains. In contrast, first-party domains are nearly
evenly distributed across the three categories. It is not clear
why third parties use encryption more often, but reasons might
include improving privacy from eavesdroppers, ensuring integrity
against man-in-the-middle attacks, or making it more difficult
to audit the information they gather. Likewise, the increased
prevalence of mixed HTTP(S) usage for first-party domains
might be due to reasons such as scarce resources for handling
TLS connections, lack of need to secure content transfers, and/or
mismanagement from small operators.

Speed of HTTPS adoption. We now focus on the domains
that we know support HTTPS because we saw at least one
flow from one APK that uses HTTPS for that domain. Once
a domain supports HTTPS at a given date, we expect that any
APKs contacting that domain in the future should be able to use
HTTPS. However, there are many reasons why HTTPS adoption
may not occur immediately for all other apps (e.g., due to using
old versions of third-party libraries, or due to policy decisions
to limit use of HTTPS). In Figure 3b, we investigate how long
it takes a certain fraction (⇥%) of apps to adopt HTTPS for a
domain, relative to the first day the domain supports HTTPS.
The graph clearly shows that HTTPS adoption in mobile apps
is exceedingly slow: for half of the domains we studied, it takes
more than two years for only 10% of apps to adopt HTTPS. To
achieve 50% HTTPS adoption (⇥ = 50% curve), it takes five
years from the moment the domain starts supporting HTTPS.13

This is in stark contrast to web traffic, where the only requirement
for widespread HTTPS adoption is that the server supports TLS
and makes it the default way to access the site.

The key take-away is that improving privacy for the content
of app-generated traffic through HTTPS adoption is a slow
process. This may explain why recent efforts by app stores

12e.g., the overhead of maintaining and establishing TLS connections, to
permit caching of static content, or because HTTP URIs are hard-coded in apps.

13The curves for ⇥=75% and 90% are nearly identical to 50%.

to require HTTPS by default (or otherwise discourage HTTP
use) [20], [39] have faced delayed enforcement [9].

Fraction of HTTPS traffic over time. While the previous
paragraphs focus on how long it takes apps to start using HTTPS,
we now focus on the question of the fraction of app-generated
traffic using HTTPS over time. We analyze this by producing
a time series of the fraction of flows that use HTTPS across
versions of each app in our study. We then find the slope of
the linear regression of this fraction for each app, and plot the
CDF of these values as the red line in Figure 3c. Positive values
indicate an increased fraction of HTTPS traffic over time for an
app, while negative values indicate a decreased fraction. The
figure shows two key trends. First, most of the values are near
zero, indicating that HTTPS adoption does not change much over
time. This is consistent with our results above. Second, with the
exception of outliers, the number of apps that use more and less
HTTPS over time are essentially equal—implying no evidence
to support an increasing overall trend of HTTPS adoption as
seen in web traffic [25].

A particular concern for plaintext traffic is when it contains
users’ PII, as they might be exposed to eavesdroppers in addition
to the destination domain. We now investigate whether, over
time, apps are increasingly using HTTPS when flows contain PII,
to mitigate this additional privacy risk. Similar to the previous
analysis, we do this using the slope of the linear regression for
the fraction of PII leaks over HTTPS across versions of an app.
The blue line in Figure 3c plots the CDF of this slope over all
apps. Again, we find that the dominant trend is that HTTPS
adoption does not change much over time, even for PII leaks.

E. Third-Party Characterization

In this section, we focus on the third parties that gather PII
from apps, what information they gather across all apps in our
study, and the implications of this data collection.

Summary of PII leaks. We now focus on the information
gathered by third parties across all apps and versions in our
study. We summarize our findings in Table VII, which shows
information about PII leaks to third-party domains, sorted by
the number of unique PII types gathered across all APKs. We
show only the top 10 domains due to space limitations.

The table highlights a variety of domains that engage
in broad-spectrum user tracking, usually focusing on unique
identifiers, but also including sensitive information such as phone
numbers and locations. Interestingly, there is little correlation
between the number of flows to a domain and the number of
those flows containing PII. For example, vungle.com leaked
PII in 780 out of 1,405 flows, while doubleclick.net (one of
the most frequently contacted domains) leaked PII in only 5%
of its flows (not shown in the table). The table also shows that
many domains receive more than one type of tracking identifier
(e.g., Ad ID, Android ID, IMEI, GSF ID, IMEI), which allows
them to continue to uniquely identify users even if the Ad ID is
reset by a user. Other third-party domains, such as CDNs, are
frequently contacted, but do not receive PII (e.g., fbcdn.net,
idomob.com, ytimg.com).

Domains contacted over time. In addition to studying the
PII leaked to each domain, it is important to understand how
many domains apps contact over multiple versions and how this

10

http:ytimg.com
http:idomob.com
http:fbcdn.net
http:doubleclick.net
http:vungle.com
http:HTTPS.To

Domain #Flows #PII Leaks #Apps # APKs PII Types

google[*] 170,374 22,383 369 1937 HW Serial, Location, IMEI, Ad ID, GSF ID, Android ID, Gender, MAC Addr.,
First Name, Last Name

crashlytics.com
vungle.com
adjust.com
supersonicads.com
amazon-adsystem.com
kochava.com

6,653
1,405
1,186

791
1,315

633

1,146
780
650
613
438
338

110
21
31

9
15
21

621
132
176

36
71
80

Ad ID, Android ID, PhoneNo., HW Serial, Email, IMEI
Ad ID, Location, Android ID, HW Serial, MAC Addr., Gender
Ad ID, Android ID, IMEI, Password, HW Serial, MAC Addr.
Ad ID, HW Serial, IMEI, Location, Android ID, MAC Addr.
MAC Addr., HW Serial, Android ID, IMEI, Ad ID, Location
Android ID, Ad ID, IMEI, Email, MAC Addr., Gender

tapjoyads.com
mopub.com
applovin.com

5,503
7,560
5,591

5,390
3,657
2,360

43
38
26

440
235
149

IMEI, MAC Addr., HW Serial, Android ID, Ad ID
Ad ID, Android ID, Gender, Location, IMEI
Ad ID, Android ID, IMEI, Gender, Location

TABLE VII: Top 10 third-party domains by flows and leaks across all apps, sorted by the number of PII types, then the
number of PII leaks (see full table online [1]). Third-party domains track mostly unique identifiers and there is little correlation
between the total number of flows and the number of flows containing PII. We group the following domains as google[*]: google.com,
googleapis.com, doubleclick.net, google-analytics.com, gstatic.com, googleusercontent.com, googleadservices.com.

 1 3.2 0.5

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

N
u

m
b

e
r

o
f

D
o

m
a

in
s

0
1

/0
1

/1
2

0
7

/0
1

/1
2

0
1

/0
1

/1
3

0
7

/0
1

/1
3

0
1

/0
1

/1
4

0
7

/0
1

/1
4

0
1

/0
1

/1
5

0
7

/0
1

/1
5

0
1

/0
1

/1
6

0
7

/0
1

/1
6

0
1

/0
1

/1
7

Fr
ac

tio
n

of
 A

PK
s

Android ID0.3

 0.9 3
 2.8
 2.6
 2.4
 2.2

 2
 1.8

 0.40.8
 0.7
 0.6
 0.5
 0.4
 0.3
 0.2C

D
F

 o
f

A
P

K
s

AD ID

GSF ID
0.2 IMEI

MAC Addr.
0.1

 0.1
 0 1.6 0

07
/0

1/
12

01
/0

1/
13

07
/0

1/
13

01
/0

1/
14

07
/0

1/
14

01
/0

1/
15

07
/0

1/
15

01
/0

1/
16

07
/0

1/
16

01
/0

1/
17

#Unique Domains

(a) Number of unique domains per
APK. The vast majority of APKs contact
more than one domain, and more than a

(b) Time series of average number of unique
domains receiving PII leaks, bucketed by
month. The number has nearly doubled since

(c) Time series for fractions of APKs leaking
one type of unique ID, bucketed by month. At
around 2014 (vertical line), when Google enforced

quarter contact 10 or more domains. 2012, indicating that users’ mobile activities the use of the Ad ID, the use of other IDs (Android
are increasingly monitored by several parties. ID, GSF ID, IMEI, MAC Address) decreased.

Fig. 4: Privacy trends by domain and tracking identifier across versions and over time.

Domain PII Types leaked with ID #Apps #APKs

google[*] Location, Gender, First Name,
Last Name, Email

124 387

kochava.com Email, Gender 8 36
vungle.com
mopub.com
doubleverify.com
aerserv.com

Location, Gender
Gender, Location
Location
Location

7
6
5
4

34
13

7
10

smartadserver.com Location 3 7
aniview.com Location 3 7
mmnetwork.mobi Location 3 9
56txs4.com Gender 3 11

TABLE VIII: Top 10 domains conducting high-risk tracking
(see full table online [1]). There are several domains that
track non-ID PII along with unique IDs. The google[*] entry
represents the same domains as specified in Table VII.

changes over time. Figure 4a shows a CDF of the number of
domains contacted by each APK; we find that the vast majority
of APKs contact more than one domain, and approximately one
quarter of them contact 10 or more domains. To understand how
this behavior changes over time Fig. 4b presents a time series of
the average number of domains contacted by APKs, grouped by
release date. Most notably, we find that this average has nearly
doubled since 2012, with substantial increases in just the past
two years. Thus, not only are large amounts of PII exposed
to other parties, but each user’s activity in an app tends to be
tracked by more parties.

High-risk tracking. Some third-party domains track both
unique identifiers and other more personal information like
location, email address and gender, which allow the domain to
link individuals and personal information (including locations
of interest such as home, work, etc.) to tracking identifiers. In
other words, even if a third party makes a link between unique
ID and a sensitive piece of personal information once, it can
tie this personal information to unique ID without collecting
the former in the future. This is particularly problematic for
user privacy, since it erodes their ability to control how they are
monitored and allows cross-app tracking.

We extracted the set of domains that tie tracking identifiers
with other personal information and list the top 10 (out
of 95) in Table VIII. Not surprisingly, common advertising
domains such as Google-owned domains doubleclick.net,
googleapis.com, googleadservices.com appear at the top
of the list. In addition, we find high-risk tracking from other
domains, such as startappservice.com, doubleverify.com,
and smartadserver.com.

Tracking identifier variations over time. In line with
Google’s requirements for new apps to use the user-resettable
Ad ID for tracking users instead of persistent identifiers, such
as the IMEI and Android ID, with enforcement of the Ad ID
for new and updated apps in the Play Store starting in August
2014 [32], [34], we found it led to more apps using Ad ID
instead of other identifiers (Figure 4c).

11

http:smartadserver.com
http:doubleverify.com
http:startappservice.com
http:googleadservices.com
http:googleapis.com
http:doubleclick.net
http:googleadservices.com
http:googleusercontent.com
http:gstatic.com
http:google-analytics.com
http:doubleclick.net
http:googleapis.com
http:google.com

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

01
/0

1/
13

01
/0

1/
14

01
/0

1/
15

01
/0

1/
16

01
/0

1/
17

01
/0

1/
18

01
/0

1/
13

07
/0

1/
13

01
/0

1/
14

07
/0

1/
14

01
/0

1/
15

07
/0

1/
15

01
/0

1/
16

07
/0

1/
16

01
/0

1/
17

07
/0

1/
13

01
/0

1/
14

07
/0

1/
14

01
/0

1/
15

07
/0

1/
15

01
/0

1/
16

07
/0

1/
16

01
/0

1/
17

 1000 7 18 Location
Gender166

Ad ID14
Android ID5100 12 HW Serial

IMEI
Mac Addr.

4 10
8 Contact3

Leak610
 2 4

21
01 0

N
u

m
b

e
r

o
f A

p
p

s

(a) doubleclick.net (logscale) (b) supersonicads.com (c) applovin.com

Fig. 5: Third-party domain PII leaks. Each graph represents a time series for a selected domain, with data aggregated into
one-month buckets. We depict the number of apps that contact the domain in red, and the number of apps leaking to the domain in
green. The other lines represent the number of apps leaking the corresponding PII type to the domain. Over time, more apps leak
PII to each of these domains; further, in the case of doubleclick.net the number of PII types being leaked has increased.

Per-domain tracking variations over time. We now inves
tigate the time-evolution of how domains track various PII types,
using a case study of three examples: the frequently contacted
domain doubleclick.net, the less-frequently contacted ap

14plovin.com, and the rarely contacted supersonicads.com.
For each of these domains, we determine the number of apps that
send PII to them during each month, and plot this in Figure 5. In
line with our previous results, we see variations not only in the
number of apps that send a given type of PII to a domain, but also
which PII types are sent. Figure 5a shows that doubleclick.net
started transmitting gender in 2014. In the same year, it briefly
collected IMEI, HW Serial, and Android ID, then stopped doing
so. We see similar behavior for supersonicads.com (Figure 5b)
for three of its gathered PII types (IMEI, HW Serial, and Android
ID); additionally, they stopped collecting MAC address in 2014.
Finally, applovin.com collected users’ gender until 2014.

In summary, we find that an important factor for higher
privacy risks over time is the increased number of third-party
domains that are contacted by apps and that receive PII.

F. Summary and Discussion

We analyzed app privacy leaks over time across three
dimensions (PII leaks, HTTPS adoption, and domains contacted)
independently, and found that by most measures app privacy
is more often getting worse as users upgrade apps. In the next
section, we explore combinations of these dimensions and their
implications for privacy.

We showed that a single version of an app is not enough
to assess its privacy over time. This motivates the need for
continuous privacy monitoring across versions of apps as they
appear. To this end, we will make our data and analysis code
publicly available, and investigate how to fully automate our
experimental testbed.

Our analysis shows that HTTPS adoption is slow for mobile
apps. This exposes users’ app interactions, and potentially PII,
to a larger set of network observers. The problem is often
challenging to fix because it might require changes both at
servers (to support HTTPS), and in the app code and/or the
libraries they include (to use HTTPS).

14We focus on three due to space limitations; more examples are online [1].

Finally, we found that as users interact with apps over time a
large number of domains are able to gather and link significant
amounts of users’ PII. This highlights the need to understand
how other parties gather PII longitudinally, and motivates the
need for tools that allow users to limit this data collection.

VI. MULTIDIMENSIONAL ANALYSIS

The previous sections analyzed privacy one attribute at a
time; here, we focus on an APK’s privacy implications when
considering a combination of privacy attributes. For example,
such analysis can indicate that an app leaking PII over insecure
connections is riskier than one leaking the same PII over
encrypted connections.

In the next section, we formalize the three privacy risk
dimensions we consider in our multidimensional analysis. We
then analyze their combination in Section VI-B. Finally, in
Section VI-C we present a tool that can help individuals to
visualize our dataset and understand app privacy risks in a
user-friendly way.

A. Privacy Risk Dimensions

The privacy risk dimensions we consider in our multidimen
sional analysis are based on the privacy attributes introduced in
Section IV-D, but normalized as real number between 0 and 1,
with 1 indicating the highest privacy risk. Table IX shows the
formal definition of each of them. For each APK j from app
i (ai,j) in our dataset, we define: (i) PII type risk Ri,j , based
on the bit vector representation in Section V-C; (ii) Destination
domain risk Di,j , as the sum of the flows that leak to third-party
domains divided by the maximum number of flows generated
by an APK of app i; (iii) Protocol risk Pi,j , as the percentage
of flows that are sent without encryption.

Ri,j indicates how many PII types have been leaked and
how severe they are. Its value is 1 if the most severe set of
observed PII types have been leaked. Di,j indicates how much
the APK is communicating with third-party domains. Its value
is 1 if all the flows of the APK that generates the most flows
are sent to third parties. Finally, Pi,j indicates the amount of
unencrypted traffic. Its value is 1 when all the traffic is sent
over unencrypted connections.

12

http:applovin.com
http:supersonicads.com
http:doubleclick.net
http:supersonicads.com
http:plovin.com
http:doubleclick.net
http:doubleclick.net
http:applovin.com
http:supersonicads.com
http:doubleclick.net

01
/0

1/
12

07
/0

1/
12

01
/0

1/
13

07
/0

1/
13

01
/0

1/
14

07
/0

1/
14

01
/0

1/
15

07
/0

1/
15

01
/0

1/
16

07
/0

1/
16

01
/0

1/
17

(a) Ri,j vs Di,j (b) Ri,j vs Pi,j	 (c) Di,j vs Pi,j

Fig. 6: Two-dimensional risk analysis. These plots are heat maps, where each cell represents the number of APKs ai,j in our
dataset exhibiting the corresponding risk values x and y. Each axis represents one of the following privacy risks: PII type risk
(Ri,j), destination domain risk (Di,j), and protocol risk (Pi,j). Colors indicate the number of APKs with a given combined risk
value, with red representing five or more APKs.

Notation Explanation	 1

 0.8
s(t) 2 0, . . . , 5 Privacy severity level for PII type t.

C
D

F
 o

f
A

P
K

s

s(t):={ID=1; location=2; user-info=3; (R,D,P)user 0.6
(R,D)
(D,P)

0.4 (R,P)

name=4; password=5}

PII type risk for ai,j , where ⌧ is the set of types Ri,j 2 [0, 1]
leaked and ⌫ is the value corresponding to the 0.2
most severe set of privacy leaks observed.

1 2s(t)�1Ri,j = ⌫

P
t2⌧ 0

 0

0
.2

0
.4

0
.6

0
.8 1Di,j 2 [0, 1] Destination domain risk (third party vs first

party) for ai,j , where hi,j is the number flows
generated by ai,j , and ⇢i,j is the number of Combined Risk
flows in hi,j to third party domains. !

(a) Multidimensional combined risk by APK. CDF of combined ⇢i,jDi,j = min , 1 maxj hi,j	 risk over all the APKs in our dataset. APKs are fairly evenly distributed
across the risk spectrum.

Pi,j 2 [0, 1] Protocol risk (plaintext vs encrypted) for ai,j ,
where ⇡i,j is the number of flows in hi,j that
are in plaintext.	 0.7

⇡i,jPi,j =	 0.65
hi,j

C
o

m
b

in
e

d
 R

is
k

0.6risk(x, y) 2 [0, 1] Combined risk using normalized Euclidean dis (R,D,P)
(R,D)risk(x, y, z) 2 [0, 1] tance. 0.55

1risk(x, y) = p
p

x2 + y2
2
1p
3

(D,P)0.5
(R,P)p

x2 + y2 + z2

0.4
TABLE IX: Definition of the privacy risk dimensions and
risk combination metrics.

0.35

risk(x, y, z) = 0.45

B. Combining Dimensions

We now combine the normalized risk metrics, choosing two
or all three dimensions, and analyze how these combined privacy
metrics change over time. We currently treat each dimension with
equal weight, but note that different relative privacy concerns
(e.g., PII leaks matter more than domains) can be captured by
changing the relative weight of each dimension.

We begin by analyzing the two-dimensional combinations
of privacy metrics, depicted using heatmaps in Figure 6. Each
cell at (x,y) indicates the number of apps with risk scores of
x and y, with red indicating five or more apps. Focusing on
the combination of PII types leaked and destinations contacted
(Figure 6a), we see several clusters emerge. The high density in
the bottom left corner indicates that most APKs send relatively
low-risk PII to relatively few domains. The points in the top left
indicate that when high-risk PII is exposed by apps, they tend to

(b) Longitudinal variation of combined risk. The x-axis represents
the APK release date and the y-axis represents the combined risk(...)
metrics. Risk increases over time, and PII types and domains are by
far the dominant factors for this trend.

Fig. 7: Multidimensional privacy risk analysis.

leak it to few domains (with the exception of Pinterest, which
contacts a large number of domains). Last, there are several
apps that send moderately high-risk PII to many domains (right
side of the figure).

When focusing on Figures 6b and 6c, we find that app
behavior is fairly evenly spread across the x-axis range—
indicating that there is no strong correlation between the fraction
of TLS connections (x-axis) and privacy leaks (Fig. 6b) or
number of domains contacted (Fig. 6c). The exception is that
higher-risk PII tends to leak from apps using mostly encrypted

13

connections (top left), aside from a few cases near x = 0.5
(FastMeet, Meet24, Pinterest, Here WeGo - Offline Maps &
GPS, ViewRanger Trails & Maps).

Based on the plots in Figure 6, we now define the risk
aggregation function, which measures the normalized Euclidean
distance between two different types of risk (see Table IX). This
function captures the combination of different risks as a single
number between 0 and 1.15 Note that this function generalizes
to arbitrary numbers of dimensions.

We first use the aggregate risk function to show in Figure 7a
how all the possible combinations of the risk are distributed
across all APKs in our dataset. The figure shows that most APKs
are neither very low nor very high risk, and that the set of all
APKs in our dataset are fairly evenly spread across the range of
risk scores. Of course, because this does not consider time, it
does not indicate whether recently released APKs are relatively
higher or lower risk.

Is privacy getting better or worse? We investigate this
question with Figure 7b, which shows a time series of the
average privacy risk for APKs, grouped by release date. The
figure shows a clear trend towards higher three-dimensional
privacy risk over time (i.e., risk(Ri,j , Di,j , Pi,j)), with most of
the increase attributable to the combination of more PII types
being leaked and to more domains (the risk(Ri,j , Di,j) curve).
Thus, when it comes to leaking PII and contacting third parties,
apps have gotten substantially worse over time.

To further analyze privacy risk changes, we conduct an app
focused analysis where we plot the combined risk score over time
for each app (over all its APKs) and find the slope of the linear
regression over these scores, as well as the standard deviation of
the scores. Using this data, we categorize privacy risks per app
as getting better, getting worse, staying similar, or exhibiting
high variability over time. Algorithm 1 presents our classification
logic when focusing on the combined score for R and D for
each app. At a high level, we require that the slope and absolute
difference between scores be sufficiently large to indicate that
an app’s privacy became worse or better. If the difference is
not large and there is a relatively large standard deviation, then
we indicate that the app is highly variable; otherwise, the app’s
privacy is labeled as similar.16

Using this approach, we calculated the following fractions
of apps in each category: better (26.3%), worse (51.1%), similar
(9.5%) and variable (13.1%). Thus, while a quarter of apps are
getting better with respect to privacy, twice as many are getting
worse over time and only a small fraction stay the same.

C. Privacy Risk Visualization

We built a web-based interactive tool [1] that allows
individuals to explore the privacy risk data for any app in our
dataset, showing how privacy risks changed across all versions
of each app that the user selects. For this tool, we currently
focus primarily on PII leak types, and allow the user to set
relative leak severity for each PII category (denoted as s(t) in
Table IX); further, we compress our binary representation into a

15Again, different scaling factors on each dimension can represent different
relative risks between dimensions.

16The thresholds (✓D , ✓S) were chosen heuristically, using 1.5 and 0.45
respectively. Users can explore other options via the web interface.

Algorithm 1 Trend Categorization for Privacy Risks.
1: function TREND(app)
2: X list of versions
3: Y list of normalized Euclidean distance of (R, D)
4: Std Standard deviation of Y
5: s Slope of the linear regression line of (X, Y)
6: Y0 s · X + intercept
7: Df Y 0 � Y 0 max min
8: Trend “similar”
9: if Df � ✓D then

10: if s > 0 then Trend “worse”
11: else Trend “better”
12: else if Std > ✓S then Trend “variable”
13: return Trend

scale of 0 to 6 so that it is easier to understand for those who do
not regularly think in terms of bit vectors. As part of ongoing
work, we are investigating other intuitive ways to present our
findings using a single score.

VII. CONCLUSION

This paper provides the first longitudinal study of the privacy
impact of using popular Android apps and their updated versions
over time. We found that the PII shared with other parties changes
over time, with the following trends: (1) overall privacy tends
to worsen across versions; (2) the types of gathered PII change
across versions, limiting the generalizability of single-version
studies; (3) HTTPS adoption is relatively slow for mobile apps;
(4) third parties not only track users pervasively, but also gather
sufficient information to know what apps a user interacts with,
when they do so, and where they are located when they do.

A naïve interpretation of our observed privacy trends is
that users should stop updating apps; however, new versions
of apps also contain bug fixes and improvements (e.g., critical
security updates). Thus, what is needed is information that helps
users make informed decisions when deciding whether to update
the app given a set of changes in a new version. We envision
that our online tool [1] can in part fill this need. Further, we
recommend users to install tools like ReCon [50], Lumen [49],
or AntMonitor [40] to block unwanted privacy leaks that come
from newer versions of apps.

Our dataset and analysis code are available at: https://
recon.meddle.mobi/appversions/.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful feedback.
This work was partially supported by the Data Transparency Lab,
the Academy of Finland PADS project (grant number 303815),
the European Union under the H2020 TYPES (653449) project,
and by DHS S&T contract FA8750-17-2-0145. This material is
also based upon work supported by the NSF under Award No.
CNS-1408632 and No. CNS-1564329, and a Security, Privacy
and Anti-Abuse award from Google. Cloud computing resources
were provided by an AWS Cloud Credits for Research award
and by a Microsoft Azure for Research award. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies or Google.

14

https://recon.meddle.mobi/appversions/
https://recon.meddle.mobi/appversions/

REFERENCES

[1]	 https://recon.meddle.mobi/appversions/.
[2]	 “AndroidAPKsFree,” http://www.androidapksfree.com/.
[3]	 “APK4Fun,” https://www.apk4fun.com/.
[4]	 “APKPure,” https://apkpure.com/.
[5]	 “AppBrain,” http://www.appbrain.com/.
[6]	 “geopy,” https://github.com/geopy/geopy.
[7]	 “JustTrustMe,” https://github.com/Fuzion24/JustTrustMe.
[8]	 “mitmproxy,” https://mitmproxy.org/.
[9]	 Apple, “Supporting App Transport Security,” https://developer.apple.com/

news/?id=12212016b, December 2016.
[10]	 S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel, “FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps,”
in Proc. of PLDI, 2014.

[11]	 K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
Android Permission Specification,” in Proc. of CCS, 2012.

[12]	 M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library Detection
in Android and its Security Applications,” in Proc. of CCS, 2016.

[13]	 J. Ball, B. Schneier, and G. Greenwald, “NSA and GCHQ target Tor
network that protects anonymity of web users,” http://www.theguardian.
com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption, October
2013.

[14]	 M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson, “Tracing
Information Flows Between Ad Exchanges Using Retargeted Ads,” in
Proc. of USENIX Security, 2016.

[15]	 T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal Analysis of
Android Ad Library Permissions,” in Proc. of MoST, 2013.

[16]	 P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda, “Curi
ousDroid: Automated User Interface Interaction for Android Application
Analysis Sandboxes,” in Proc. of FC, 2016.

[17]	 T. Chen, I. Ullah, M. A. Kaafar, and R. Boreli, “Information Leakage
through Mobile Analytics Services,” in Proc. of HotMobile, 2014.

[18]	 S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input Generation
for Android: Are We There Yet?” in Proc. of ASE, 2015.

[19]	 S. Comino, F. M. Manenti, and F. Mariuzzo, “Updates Management in
Mobile Applications. iTunes vs Google Play,” in SSRN, 2016.

[20]	 K. Conger, “Apple will require HTTPS connections for iOS apps by the
end of 2016,” https://techcrunch.com/2016/06/14/apple-will-require-https
connections-for-ios-apps-by-the-end-of-2016, June 2016.

[21]	 A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-Resilient Privacy Leak Detection
for Mobile Apps Through Differential Analysis,” in Proc. of NDSS, 2017.

[22]	 M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting Privacy
Leaks in iOS Applications,” in Proc. of NDSS, 2011.

[23]	 W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones,” in Proc. of USENIX OSDI, 2010.

[24]	 S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärtner, and
B. Freisleben, “Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security,” in Proc. of CCS, 2012.

[25]	 A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz,
“Measuring HTTPS Adoption on the Web,” in Proc. of USENIX Security,
2017.

[26]	 FTC, “Mobile Privacy Disclosures: Building Trust Through Transparency,”
FTC Staff Report, Feb 2013.

[27]	 M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov,
“The Most Dangerous Code in the World: Validating SSL Certificates in
Non-browser Software,” in Proc. of CCS, 2012.

[28]	 L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing- and
Touch-sensitive Record and Replay for Android,” in Proc. of ICSE, 2013.

[29]	 Google, “Android Developers Dashboards,” https://developer.android.com/
about/dashboards/index.html.

[30]	 ——, “App Manifest,” https://developer.android.com/guide/topics/
manifest/manifest-element.html.

[31]	 ——, “Google Maps Geocoding API,” https://developers.google.com/
maps/documentation/geocoding.

[32]	 ——, “Google Play Console Help: Advertising ID,” https://support.google.
com/googleplay/android-developer/answer/6048248.

[33]	 ——, “UI/Application Exerciser Monkey,” https://developer.android.com/
tools/help/monkey.html.

[34]	 ——, “Google Play Services 4.0,” https://android-developers.googleblog.
com/2013/10/google-play-services-40.html, October 2013.

[35]	 A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy, D. Lazer,
A. Mislove, and C. Wilson, “Measuring Personalization of Web Search,”
in Proc. of WWW, 2013.

[36]	 A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson, “Measuring
Price Discrimination and Steering on E-commerce Web Sites,” in Proc.
of IMC, 2014.

[37]	 S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for Large-scale Dynamic Analysis of Mobile
Apps,” in Proc. of MobiSys, 2014.

[38]	 C. Johnson, III, “US Office of Management and Budget Memorandum
M-07-16,” http://www.whitehouse.gov/sites/default/files/omb/memoranda/
fy2007/m07-16.pdf, May 2007.

[39]	 A. Klyubin, “Protecting against unintentional regressions to cleartext traffic
in your Android apps,” https://security.googleblog.com/2016/04/protecting
against-unintentional.html, April 2016.

[40]	 A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopoulou, “AntMonitor: A System for Monitoring from Mobile
Devices,” in Proc. of Workshop on Crowdsourcing and Crowdsharing of
Big (Internet) Data, 2015.

[41]	 I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t kill my
ads! Balancing Privacy in an Ad-Supported Mobile Application Market,”
in Proc. of HotMobile, 2012.

[42]	 C. Leung, J. Ren, D. Choffnes, and C. Wilson, “Should You Use the App
for That? Comparing the Privacy Implications of App- and Web-based
Online Services,” in Proc. of IMC, 2016.

[43]	 M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later: A
View on Current Android Malware Behaviors,” in Proc. of BADGERS,
2014.

[44]	 A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Generation
System for Android Apps,” in Proc. of ESEC/FSE, 2013.

[45]	 B. Naylor, “Congress Overturns Internet Privacy Regulation,”
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet
privacy-regulation, March 2017.

[46]	 X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark Hazard: Learning-
based, Large-scale Discovery of Hidden Sensitive Operations in Android
Apps,” in Proc. of NDSS, 2017.

[47]	 T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage Against the Virtual Machine: Hindering Dynamic
Analysis of Android Malware,” in Proc. of EuroSec, 2014.

[48]	 A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan,
J. Amann, and P. Gill, “Studying TLS Usage in Android Apps,” in Proc.
of CoNEXT, 2017.

[49]	 A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill,
M. Allman, and V. Paxson, “Haystack: In Situ Mobile Traffic Analysis
in User Space,” arXiv preprint arXiv:1510.01419, 2015.

[50]	 J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. R. Choffnes, “ReCon:
Revealing and Controlling Privacy Leaks in Mobile Network Traffic,” in
Proc. of MobiSys, 2016.

[51]	 S. Seneviratne, H. Kolamunna, and A. Seneviratne, “A Measurement
Study of Tracking in Paid Mobile Applications,” in Proc. of WiSec, 2015.

[52]	 Y. Song and U. Hengartner, “PrivacyGuard: A VPN-based Platform to
Detect Information Leakage on Android Devices,” in Proc. of SPSM,
2015.

[53]	 V. F. Taylor and I. Martinovic, “Short Paper: A Longitudinal Study of
Financial Apps in the Google Play Store,” in Proc. of FC, 2017.

[54]	 ——, “To Update or Not to Update: Insights From a Two-Year Study of
Android App Evolution,” in Proc. of ASIACCS, 2017.

[55]	 Y. Tian, B. Liu, W. Dai, B. Ur, P. Tague, and L. F. Cranor, “Supporting
Privacy-Conscious App Update Decisions with User Reviews,” in Proc.
of SPSM, 2015.

[56]	 N. Vallina-Rodriguez, S. Sundaresan, A. Razaghpanah, R. Nithyanand,
M. Allman, C. Kreibich, and P. Gill, “Tracking the Trackers: Towards
Understanding the Mobile Advertising and Tracking Ecosystem,” in Proc.
of the Workshop on Data and Algorithmic Transparency (DAT), 2016.

[57]	 T. Vidas and N. Christin, “Evading Android Runtime Analysis via Sandbox
Detection,” in Proc. of ASIACCS, 2014.

[58]	 Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. Wang, “AppIntent:
Analyzing Sensitive Data Transmission in Android for Privacy Leakage
Detection,” in Proc. of CCS, 2013.

15

https://recon.meddle.mobi/appversions/
http://www.androidapksfree.com/
https://www.apk4fun.com/
https://apkpure.com/
http://www.appbrain.com/
https://github.com/geopy/geopy
https://github.com/Fuzion24/JustTrustMe
https://mitmproxy.org/
https://developer.apple.com/news/?id=12212016b
https://developer.apple.com/news/?id=12212016b
http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
http://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developer.android.com/guide/topics/manifest/manifest-element.html
https://developers.google.com/maps/documentation/geocoding
https://developers.google.com/maps/documentation/geocoding
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://android-developers.googleblog.com/2013/10/google-play-services-40.html
https://android-developers.googleblog.com/2013/10/google-play-services-40.html
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2007/m07-16.pdf
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
https://security.googleblog.com/2016/04/protecting-against-unintentional.html
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-privacy-regulation
http://www.npr.org/2017/03/28/521831393/congress-overturns-internet-privacy-regulation

Proceedings on Privacy Enhancing Technologies ; 2018 (4):33–50

Elleen Pan*, Jingjing Ren, Martina Lindorfer, Christo Wilson, and David Chofnes

Panoptispy: Characterizing Audio and Video
Exfiltration from Android Applications
Abstract: The high-fidelity sensors and ubiquitous in
ternet connectivity ofered by mobile devices have facil
itated an explosion in mobile apps that rely on multi
media features. However, these sensors can also be used
in ways that may violate user’s expectations and per
sonal privacy. For example, apps have been caught tak
ing pictures without the user’s knowledge and passively
listened for inaudible, ultrasonic audio beacons. The de
velopers of mobile device operating systems recognize
that sensor data is sensitive, but unfortunately existing
permission models only mitigate some of the privacy
concerns surrounding multimedia data.
In this work, we present the first large-scale empir
ical study of media permissions and leaks from An
droid apps, covering 17,260 apps from Google Play, Ap
pChina, Mi.com, and Anzhi. We study the behavior of
these apps using a combination of static and dynamic
analysis techniques. Our study reveals several alarming
privacy risks in the Android app ecosystem, including
apps that over-provision their media permissions and
apps that share image and video data with other par
ties in unexpected ways, without user knowledge or con
sent. We also identify a previously unreported privacy
risk that arises from third-party libraries that record
and upload screenshots and videos of the screen with
out informing the user and without requiring any per
missions.

Keywords: privacy; mobile devices; audio, video, and
image leaks

DOI 10.1515/popets-2018-0030

Received 2018-02-28; revised 2018-06-15; accepted 2018-06-16.

*Corresponding Author: Elleen Pan: Northeastern Uni

versity, E-mail:
Jingjing Ren: Northeastern University,
E-mail:
Martina Lindorfer: UC Santa Barbara,
E-mail:
Christo Wilson: Northeastern University,
E-mail:
David Chofnes: Northeastern University,
E-mail:

1 Introduction

The high-fidelity sensors and ubiquitous internet con
nectivity ofered by mobile devices have facilitated nu
merous mobile applications (apps) that rely on multi
media features. For example, a mobile device’s camera
and microphone enable users to capture and share pic
tures, videos, and recorded audio. Apps also use these
sensors to implement important services such as voice
assistants, optical character recognition (OCR), music
identification, and face and object recognition.

In addition to such beneficial use cases, apps may
use these sensors in ways that violate users’ expectations
and privacy. For example, some apps take pictures with
out the user’s knowledge by shrinking the viewfinder
preview window to a 1◊1 pixel, thus making it virtually
invisible [51, 68]. Similarly, Silverpush, an advertising
company, developed a library that passively listened for
inaudible, ultrasonic audio beacons for tracking users’
TV viewing habits [28]. Finally, as a possible example
of things to come, Facebook has been awarded a patent
on using the mobile device’s camera to analyze users’
emotions while they are browsing the newsfeed [70].

Given that sensor data is highly sensitive, the An
droid and iOS operating systems include mandatory
access control mechanisms around most sensors. How
ever, existing permission models only partially mitigate
multimedia privacy concerns because they are coarse
grained and incomplete. For example, when a user grants
a multimedia permission to an app, this permission also
applies to any third-party library code that is included
in the app. Thus, users and even app developers may
be unaware of the extent of privacy risks from such per
missions. In addition, we find that on Android there is
no permission required for third-party code in an app to
continuously record the screen displayed to the user. As
such, users may unwittingly use apps that collect video
recordings containing sensitive information, similar to
session-replay scripts on websites [44]. A key challenge
for understanding these risks is that there is no general
approach to reveal such behavior.

In this work, our goal is to identify and measure
the exfiltration of media (defined as images, video, and
audio) over the network from Android apps. We focus on

Proceedings on Privacy Enhancing Technologies ; 2018 (4):34–50

(potential) privacy risks that are caused by the transfer
of media recordings to parties over the internet, rather
than privacy risks caused solely by apps’ access to the
camera and microphone (e.g., device fingerprinting [42,
46, 80] and location tracking [28]). We define a leak as
either (1) unexpected recording of users’ interactions
with an app, and (2) sharing of multimedia recordings
with other parties over the internet, without explicitly
indicating this to the user either in the privacy policy
or at run time.

To understand media exfiltration by Android apps
and the potential privacy consequences, we empirically
studied the behavior of 17,260 apps collected from
Google Play and three popular third-party app stores.
We analyze these apps using a combination of static
and dynamic analysis techniques. We use static analy
sis on all of the apps in our dataset to determine (1)
whether each app requests access to camera and micro
phone permissions, (2) whether media APIs are actu
ally referenced in the app’s code, and (3) whether these
API references (if they are present) are in code from the
first-party developer or a third-party library. Of course,
static analysis alone cannot tell us whether an app ac
tually invokes media APIs, or exfiltrates media over the
network. Therefore, we use dynamic analysis (on a sub
set of 9,100 apps that have the potential to leak media)
to detect media exfiltration; specifically, we used the Ex
erciser Monkey [26] to automatically interact with each
app in a controlled environment, recorded network traf
fic using Mitmproxy [16], and used the MediaExtract
file carving tool [6] to identify media in network flows.

Our work makes the following contributions:

–	 We present the first large-scale empirical study of
media permissions and leaks from Android apps,
covering 17,260 apps from Google Play, AppChina,
Mi.com, and Anzhi.

–	 We develop a comprehensive methodology for de
tecting media exfiltration that combines analysis
of permissions, method references, third-party li
braries, and automated interactions. We validate
our methodology by analyzing the behavior of a
ground-truth test app that we developed, as well as
through manual examination of key apps that are
known to rely on image, video, and audio collection.

–	 We find a previously unreported privacy risk from
third-party libraries. Namely, they can record the
screen from the app in which they are embedded
without requiring any permissions. Apps often dis
play sensitive information, so this exposes users to
stealthy, undisclosed monitoring by third parties.

–	 Our analysis reveals that several apps share image
and video data with other parties in unexpected
ways. For example, several photo editing apps pro
cess images in the cloud without explicitly mention
ing the behavior in their privacy policy.

–	 Large fractions of apps request multimedia permis
sions that they never use, and/or include code that
uses multimedia sensors without explicitly request
ing permissions for them. This inconsistency in
creases the potential privacy risks for users: previ
ously unused permissions could be exploited by new
third-party code that a developer includes in an app.
Further, third-party code that does not have per
missions to use multimedia in one version of an app
may start exploiting any permissions granted to a
future version of the app for an unrelated purpose.

Taken together, our study reveals several alarming pri
vacy risks in the Android app ecosystem. We have re
sponsibly disclosed confirmed privacy leaks to develop
ers and the Android privacy team, and they took action
to remediate the privacy concerns we discovered (§7.1).

Our dataset and analysis results are publicly available
at https://recon.meddle.mobi/panoptispy/.

2 Related Work

We begin by surveying related work on mobile device
privacy in general, and media leaks in particular. We
also discuss existing approaches and tools for investigat
ing the security and privacy ofered by Android apps.

2.1 Privacy Measurements

Tracking and PII collection. Several studies have
documented the growing prevalence of tracking in mo
bile apps. Vallina-Rodriguez et al. presented a broad
characterization of the online advertising platforms used
by apps [72], and follow-up studies revealed the specific
kinds of personally identifiable information (PII) sent to
trackers and analytics services [31, 38, 61, 65, 73, 76].
Book et al. investigated APIs exposed by advertising li
braries that can be used to leak PII [33]. Ren et al. used
longitudinal data to examine how app privacy practices
have changed over time [64]. Other studies have focused
on legal implications of apps’ privacy practices, specifi
cally COPPA and the GDPR [63, 66].

https://recon.meddle.mobi/panoptispy

Proceedings on Privacy Enhancing Technologies ; 2018 (4):35–50

Several studies bridge the gap between tracking on
the web and on mobile devices. Leung et al. directly
compared the privacy practices of web and app-based
versions of the same service [55]. In contrast, two studies
have delved into the mechanisms used by advertisers to
track users’ behavior across devices [34, 81].

While this body of work has significantly advanced
our understanding of the mobile tracking ecosystem, one
shortcoming is that it exclusively focuses on leaks of tex
tual information to third parties (e.g., unique identifiers,
email addresses, names, etc.).

Attacks using multimedia sensors. Several pre
vious studies take an initial look at how a mobile de
vice’s cameras and microphones can be used to vio
late user privacy and security. For example, uninten
tional variations in the manufacturing of mobile de
vice cameras, microphones, and speakers can be used
to create fingerprints that uniquely identify mobile de
vices [42, 46, 80]. Petracca et al. demonstrated nu
merous attacks that apps with microphone permissions
can implement by passively eavesdropping in the back
ground [60]. Similarly, Fiebig et al. demonstrated that
apps with camera permissions could passively capture
keystrokes and even users’ fingerprints [45].

Two studies have examined the deployment and im
plications of ultrasonic beacons. Arp et al. measured the
prevalence of ultrasonic beacons in the wild, and found
them deployed on websites and in stores. Furthermore,
they found 234 apps in the Google Play Store that were
constantly, passively monitoring for these beacons, in
order to track users’ online and o�ine browsing be
haviors [28]. Mavroudis et al. consider various attacks
against users that leverage ultrasonic beacons, including
de-anonymizing Tor users [59].

Shrivastava et al. developed a testing framework
that probes the computer vision algorithms used by
apps with camera permissions [67]. They found that
many apps included libraries that implement character,
face, and barcode detection. Furthermore, the authors
surveyed users and found that 19% of apps in their study
extracted information from images that users did not
expect, and that this made users very uncomfortable.

Our work. Our study complements and extends the
existing measurement work on the privacy implications
of media sensors on mobile devices in two significant
ways. First, existing studies focus on how apps can ex
tract and distill privacy-sensitive data from images and
audio (e.g., fingerprints). In contrast, we focus on the
wholesale exfiltration of media over the internet. Sec
ond, prior work does not consider the privacy implica

tions of static screenshots and captured videos of the
screen. As we will show, these represent significant pri
vacy risks since they can be surreptitiously recorded by
any app without the need for explicit permissions.

2.2 Privacy Measurement and Tools

Numerous tools from the research community help iden
tify, and in some cases mitigate, security and privacy
risks on mobile devices.

Static analysis. Previous work analyzed the pri
vacy implications of Android app bytecode using a va
riety of static analysis techniques, such as static data
flow (taint) analysis [29, 36, 47, 52], and symbolic exe
cution [50, 78]. These systems uncover many PII leaks,
but they often overestimate the number of leaks, thus
leading to false positives. Further, code that is heavily
obfuscated or dynamically loaded at run time can lead
to false negatives (recent measurements indicate that
30% of Android apps load code at run time [56]).

Dynamic taint analysis. TaintDroid was the first
system to pioneer the use of dynamic taint track
ing to analyze privacy leaks on Android [43]. Subse
quent systems have refined these dynamic analysis tech
niques [75, 77, 79]. Additionally, there are several tools
to assist in automating the testing process for Android
apps, i.e., to increase code coverage when performing
taint analysis [37, 39, 48, 49, 58]. Unfortunately, dy
namic analysis alone sufers from false negatives, as fully
exercising all code paths in complex apps is generally
not feasible. Further, taint tracking imposes run-time
overheads that make it challenging to run analysis at
large scale in a reasonable amount of time.

Dynamic network tra�c analysis. A separate
line of work focuses on identifying privacy leaks in net
work tra�c [54, 63, 65, 69]. The advantage is that these
approaches are easily deployable for end-user devices,
either via a Virtual Private Network (VPN) proxy or
by conducting analysis on a home router. When com
bined with ground-truth information about PII and/or
machine learning, this approach can provide good cov
erage of privacy leaks with few false positives and nega
tives. However, such approaches will not work well if the
PII is exfiltrated using sophisticated obfuscation [40].

Our work. No single method is totally efective at
detecting all privacy leaks from Android apps. Thus, in
this study we leverage a combination of static analysis
and dynamic network tra�c analysis to measure media
leaks. As we discuss in § 5, we first use static analysis

Proceedings on Privacy Enhancing Technologies ; 2018 (4):36–50

to examine the permissions requested by apps and ref
erences to sensitive API calls. We then run the apps
and automatically interact with them in an attempt to
trigger those APIs, and subsequently analyze the cor
responding network tra�c that those apps generate to
identify media leaks.

3 Threat Model
Our goal is to identify and measure exfiltration of media
(i.e., images, audio, and video) by Android apps over
the network. Media exfiltration presents new privacy
implications compared to well-known PII leaks. They
provide an extra channel to carry PII and private infor
mation (e.g., a user’s images) that prior approaches do
not identify. Furthermore, screen recording reveals data
as it is entered, which the user may reasonably expect
not to be shared until submitted. Finally, screen record
ing might reveal highly sensitive information, such as
passwords: Android has the option to toggle password
visibility globally in its security settings (i.e., showing
the entered characters briefly before masking them) or
locally for individual input fields (i.e., unmasking the
whole password) if enabled by the developer.

Definition of media leaks. We assume that the
user has either granted no permissions, or granted an
app permissions to use media sensor(s) for a user-
identifiable purpose of that app. For example, a user
would grant no media permissions to a simple Solitaire
app, and would grant camera permissions to an app that
allows the user to take and edit photos. A suspicious or
unexpected media exfiltration is one that meets at least
one of the following criteria:

–	 It does not further the primary purpose of the app.
Media shared outside of an app’s primary purpose
presents privacy risks since users do not expect it.
In many cases, this shairng is due to third-party
tracking or analytics libraries. For other cases, we
manually inspect the app being studied to assess
this property.

–	 It is not disclosed to the user. Media sharing that
is not disclosed may not only be unexpected by the
user, but also may violate privacy laws. We manu
ally verify whether an app provides visual cues to
users, requests users’ consent, and/or clearly dis
closes this behavior in its privacy policy.

–	 It is not employed by similar apps. We determine
this based on comparisons with apps that have
nearly identical functionality. If other, similar apps
do not exfiltrate media, then it is a good indicator
that such functionality is suspicious. We then man
ually investigate and subjectively label such cases.

–	 It is not encrypted over the internet. This creates
opportunities for eavesdroppers to passively observe
sensitive content. We check this property based on
whether media is sent over an unencrypted channel.

We assume that apps do not attempt to break the per
mission model, nor break out of the Android sandbox
(e.g., by exploiting OS-level vulnerabilities). We further
assume that apps access media sensors using only stan
dard Android APIs that are available to all app develop
ers on recent Android platforms, as opposed to hidden
or privileged APIs. We do not examine media exfiltra
tion from apps’ background activity. We also do not
consider data that is reshared after collection, as was
the case for the Cambridge Analytica controversy.

Privacy legislation. While we do not provide a le
gal analysis of privacy leaks in this study, our definition
of leaks is in line with recent legislation that requires
companies to disclose and explain the purpose of col
lected PII. The European Union’s General Data Pro
tection Regulation (GDPR) restricts and requires full
disclosure of PII collection and usage [11]. The Califor
nia Online Privacy Protection Act (CalOPPA) requires
any party who collects PII from Californian consumers
to provide a privacy policy outlining what data is col
lected and who it is shared with, and to comply with
posted policies [5]. The Fair Information Practice Prin
ciples is a set of principles adopted by the US Privacy
Act and other frameworks worldwide. It details prin
ciples such as transparency, purpose specification, and
data minimization, among others [8].

4 Background

Before we describe our methodology for investigating
media leaks from Android apps, it is important to review
the permission model and APIs ofered by Android to
access media resources.

Media permissions. Android restricts access to
sensitive OS capabilities by forcing developers to ob
tain explicit permission from users. App developers
must list the permissions they plan to use in their

Proceedings on Privacy Enhancing Technologies ; 2018 (4):37–50

AndroidManifest.xml file, which is contained in all An
droid Packages (APKs). To access the camera and mi
crophone, apps must request the following permissions:

– android.permission.CAMERA
– android.permission.RECORD_AUDIO

Additionally, apps may request the permissions
android.permission.READ_EXTERNAL_STORAGE or
android.permission.WRITE_EXTERNAL_STORAGE to ac
cess files that are stored on the device. This poses
another possible outlet for media leaks, as apps can ac
cess and potentially leak photos, videos, or audio clips
stored on the device if granted either of these permis
sions. Note that in the Android permission model, the
permission to write to external storage implicitly grants
read access.

Users can accept or reject permission requests. Prior
to Android API level 23, permission requests needed ap
proval at app install time, and rejection prevented in
stallation. Since API level 23, apps request permissions
(and must handle rejection) at run time.

Media APIs. Once an app has been granted media
permissions, the following API objects become available:

– android.hardware.camera (API level <21)
– android.hardware.camera2 (API level 21+)
– android.media.AudioRecord
– android.media.MediaRecorder

The camera and AudioRecord objects require the
CAMERA and RECORD_AUDIO permissions, respectively.
The MediaRecorder object only requires RECORD_AUDIO
if used solely for audio recording. Otherwise, to record
video, both permissions are required.

Screenshots. Unlike the camera and audio APIs,
the APIs for taking screenshots and recording video of
the screen are not protected by any permission. The An
droid APIs for capturing the screen are:

– android.view.View.getDrawingCache()
– android.view.View.getRootView()

This lack of access control is problematic, as apps can
potentially record users’ screen interactions without
their awareness. However, these two methods are multi
purpose and not solely designed for taking screenshots.
For example, getDrawingCache() caches a bitmap,
which is useful for improving performance when ren
dering repeated UI elements between activities. The
method getRootView() finds the topmost view of the
UI’s layout, which is a hierarchical tree structure con
sisting of ViewGroups (internal nodes) and Views (leaf

nodes). In short, when an app calls these methods it
does not necessarily imply that it is recording the screen.

Note that this approach of capturing the screen is
diferent from that of Android’s MediaProjection API.
The latter provides means to record the screen program
matically, but includes an indication in the form of a
lock icon. Since the user is informed about the record
ing in this case, this API is outside of our threat model.

5 Methodology

In this section, we present our methodology for gather
ing data and measuring media leaks by Android apps.
As shown in Figure 1, our methodology involves both
static and dynamic analysis techniques. We begin by
describing our process for gathering Android apps for
analysis in § 5.1. Next, we discuss our approach for ex
tracting permissions and method usage from APKs us
ing static analysis in § 5.2, and our dynamic testbed for
automatically interacting with apps and inducing media
exfiltration over the network in § 5.3. Finally, in § 5.4 we
explain and validate our approach for detecting media
in network flows.

5.1 Selection of Android Apps

Obtaining a broad understanding of media leaks re
quires testing a large set of apps. However, the time
and resources necessary to dynamically analyze apps is
non-trivial (see § 5.3), and thus we must carefully choose
how to allocate our limited resources.

To provide analytical results that are representa
tive of apps in general, while also covering high-impact
apps, we select popular and random apps from four app
stores. Our set of apps is compiled from several preex
isting sources [27, 40, 64], and covers apps from Google
Play, AppChina, Mi.com, and Anzhi. We chose these
three third-party app stores because they were the three
largest markets (aside from the Google Play) in the An
droZoo dataset [27].

From Google Play, we select 8,038 apps that request
permissions for the camera and/or microphone from a
set of 30,504 apps that are either part of the top 600
popular free apps, top 600 popular apps for each cate
gory, newest 600 overall, or newest 600 in each category
as of April 2017 [40]. We further include 7,665 APKs col
lected from a previous study [64] that were either part of
the top 600 popular free apps or the top 50 in each cat

Proceedings on Privacy Enhancing Technologies ; 2018 (4):38–50

Static Analysis

Dynamic Analysis

Interaction +
Traffic Collection

Media Detection

Permissions
API References Actual Media Leaks

Fig. 1. Design of our experiments. We start with 17,260 apps collected from four app stores on the left. We statically analyze these
apps to extract the media permissions and API references, which then informs our selection of apps to dynamically analyze. The final
output, on the right, are the actual media leaks from apps over the network.

egory as of January 2017. The final Google Play dataset
covers 15,627 unique APKs. From the third-party app
stores, we select the most popular apps as well as 1,000
apps selected uniformly at random from AndroZoo [27].
Specifically, we collect the 510 most popular apps over
all from AppChina, and the most popular apps from
each category from Mi.com (528 apps) and Anzhi (285
apps). In total our dataset contains 17,260 unique apps.

5.2 Static Analysis

The next step is statically analyzing the 17,260 apps in
our dataset. We use static analysis to determine:

1.	 Does the app request permissions for the camera,
microphone, and/or accessing external storage?

2.	 Does its bytecode contain references to the media
APIs listed in § 4?

3.	 Are media API references in third-party library
code, and if so, which library?

We now discuss why each of these pieces of information
is important for our analysis, and how we obtain them.

Permissions. Examining permissions is the first
step towards understanding which apps in our dataset
might leak images, audio, and video, since permissions
are required to access these sensors or files stored in the
external storage. We use the standard Android SDK tool
aapt to retrieve the AndroidManifest.xml file from all
of the apps in our dataset, and scan the results for apps
that request permissions to access the camera, micro
phone, or external storage.

However, an app that requests such permissions
does not necessarily use the corresponding media APIs
or leak media over the network. This can occur when
apps request permissions for functionality that is never
used by the app, i.e., the apps are over-privileged [35].
Further, apps that do not request these permissions may
still potentially leak media, e.g., if they upload images
from the mobile device’s internal storage, or gather and

upload screen captures. As a result, our static analysis
on permissions may have false positives and negatives,
which we control for with later dynamic analysis.

API references. We decompile the apps in our
dataset using dex-method-list [6] and locate references
to the camera, audio, and screen capture APIs listed
in § 4. This allows us to identify apps that are over-
privileged, as well as apps that may be capturing screen-
shots and screen video. However, the methods for cap
turing/recording the screen and reading data from de
vice storage may serve other purposes, meaning that
the static analysis produces a high false positive rate
for API references to screenshot functionality and read
ing from external storage. As a result, we also perform
dynamic analysis on these apps, described in § 5.3.

Third-party libraries. Android apps often include
third-party libraries, some of which have been shown to
be the root causes of privacy leaks (e.g., advertising and
tracking libraries [32]). Libraries are able to access sensi
tive information on mobile devices because they inherit
the capabilities of the app itself. This raises the possi
bility that library code may take actions that users, and
even first-party developers, are unaware of.

In the context of this study, we are interested in
whether references to media APIs are within code from
the first-party app developer or a third-party library.
This information is critical for correctly attributing the
source of media leaks. To identify the libraries within
apps, we rely on LibScout [30] and LibRadar [57]. Both
tools compare the signatures of bytecode against a pre
defined database of known library code. Unfortunately,
because of bytecode obfuscation and the presence of
previously unknown library versions, both tools may
produce false negatives. Furthermore, these tools may
produce false positives if an app includes a library, but
never invokes its methods at run time.

To determine whether media API references oc
cur in first or third-party code, we rely on package
names. Typically, code from the first-party developer
resides in a package name that largely overlaps with

Proceedings on Privacy Enhancing Technologies ; 2018 (4):39–50

Dataset App Source # of APKs Selection Criteria

method-call
3p-lib

appsee
permission

appchina
appmi
anzhi

Google Play
Google Play
Google Play
Google Play
AppChina
Mi.com
Anzhi

127
187
33

8,038
335
331
269

Apps that call camera and audio APIs
Apps that covered the most popular set of third-party libraries
Apps that include the AppSee library
Apps that request either camera and audio permission
Apps that request either camera or audio permission, or call screenshot methods
Apps that request either camera or audio permission, or call screenshot methods
Apps that request either camera or audio permission, or call screenshot methods

Table 1. Summary of the 9,100 apps we selected for dynamic analysis, and the criteria used for their selection. Some of our datasets
(3p-lib and appsee) overlap with the rest of our dataset as we selected them for further testing after initial results.

the application package name. We rely on this assump
tion to distinguish code from first- and third-parties.
For example, all classes related to the main activity
of the app air.com.myheritage.mobile are under the
same package name, yet it also includes packages cor
responding to third-party libraries like com.appsee and
com.google.android.gms.maps.

Privacy policies. Our definition of media leaks re
lies on app privacy policies (§ 3), so we manually inspect
the privacy policies of apps that share media over the
internet. If this type of sharing is not explicitly disclosed
in the app’s privacy policy, we call it a media leak.

5.3 Testbed for Dynamic Analysis

Static analysis provides useful guidance about which
apps may potentially exfiltrate media. However, from
this data alone we cannot infer whether media permis
sions will be used, or whether media APIs will be called
at run time. Thus, results from static analysis alone may
exhibit high false positive rates. On the other hand,
static analysis fails to detect obfuscated and dynami
cally loaded code, causing false negatives. To address
these issues, we conduct dynamic analysis by running
and interacting with apps. Due to resource constraints,1

we are not able to dynamically analyze all 17,260 apps;
instead, as shown in Figure 1, we select apps that are
more likely to leak media content based on their permis
sions and media API references. We dynamically ana
lyzed 9,100 apps (53% of our total dataset). Table 1
shows how these apps are distributed across app store
sources, as well as the criteria for their selection.

In the remainder of this section, we describe our
testbed for dynamically analyzing Android apps.

1 We conduct all dynamic tests on actual Android devices, and
each test takes on the order of minutes.

Automated interaction. Triggering media exfiltra
tion from mobile apps requires executing and interact
ing with them. A natural way to accomplish this is via
human interaction; however, this does not scale to the
size of our dataset. Instead, we use the UI/Application
Exerciser Monkey [26]. Each test consists of interacting
with an app using Monkey for 5,000 user events (lasting
for 16 minutes at most). We configured Monkey to ran
domly select 10 activities in each app and send 500 in
teractions to each activity. We use 5,000 events because
it allows us to test a large number of APKs in a reason
able amount of time, and because previous work found
that longer interaction times did not result in more PII
leaks [55]. Note that we did not use pre-configured text
inputs, which vary across apps and require substantial
manual efort; instead, we relied on random interactions.
Accordingly, we miss some events that only human in
teractions trigger, e.g., in apps that require login.

During each test, we took screenshots from each de
vice at 1-second intervals. We use these screenshots to
manually verify that observed media exfiltration was not
caused by an explicit interaction event (e.g., clicking the
“upload image” button in an app).

Test environment. We conduct experiments us
ing ten Android devices: two Nexus 6P phones and six
Nexus 5X phones with Android 6 (API level 23), and
two Nexus 5 phones with Android 4.4.4 (API level 19).
We use real Android devices instead of emulators to
avoid scenarios where apps and third-party libraries be
have diferently when they detect emulation. We ran
domly assigned apps to devices; 1,814 were ultimately
tested under Android 4.4.4.

Each test was performed in a standardized environ
ment. Before each test, we prepared the device by delet
ing all non-standard apps (i.e., everything except for
the standard app suite provided by Google), clearing
the internal user-accessible storage, and then preload
ing several media files (two decoy Grace Hopper images,
a short video clip, and a short audio clip). These me

Proceedings on Privacy Enhancing Technologies ; 2018 (4):40–50

Category Supported Unsupported

Audio
Image
Video

3gp, aac, id3v2, m4a, ogg, wav
bmp, gif, jpg, png, webp
3gp, mp4, webm

raw

Table 2. Media file types supported by our augmented version of
MediaExtract, based on encoders supported by the Android APIs
(bolded) and common libraries we observe in practice.

dia files were placed in the standard locations within
the Android filesystem (e.g., /sdcard/Pictures). We
preloaded the test devices with media as a means to
catch apps that exfiltrate media from the filesystem
without recording any media themselves. Once the de
vice is cleaned and preloaded, we installed the target
app and exercised it with Monkey.

Recording network tra�c. During each test, we
route network tra�c through Meddle [62] using a VPN,
and use Mitmproxy [16] to record the plaintext con
tent of HTTP and HTTPS flows. For apps that prevent
TLS interception via certificate pinning, we use Just-
TrustMe [13], which modifies Android to bypass cer
tificate pinning for apps that leverage built-in Android
networking APIs and popular libraries (e.g., OkHttp).

5.4 Detection of Media in Network Tra�c

Our dynamic tests produce a large dataset of plaintext
network flows generated by apps. In this section, we dis
cuss how we identified media embedded in these flows.

5.4.1 Media File Extraction and Decoding

We retrieved the raw byte streams of payload content
from each outgoing network flow (typically the payloads
of HTTP POST and PUT messages). We then scanned
these byte streams with MediaExtract [15] to extract
embedded media files. MediaExtract identifies media
files by looking for the “magic numbers” that signify
the beginning of media file headers. For example, JPEG
files are always prefaced with the hexadecimal bytes “FF
D8 FF”. We modified MediaExtract to support two ad
ditional file types: WebP and WebM. We also evalu
ated several other forensics tools (Autopsy [4], Test
Disk/PhotoRec [18], Foremost [9], Scalpel [23], tcpx
tract [24], LaZy_NT [14], PIL [20]), but these tools ei
ther supported fewer file formats than MediaExtract,
identified fewer media files in our data than MediaEx
tract, or extracted incomplete and corrupted media files.

Table 2 shows the media file types that can be na
tively produced by the Android APIs, as well as the file
types supported by our augmented version of MediaEx
tract. We are able to detect all file formats that Android
can natively produce, except for raw audio because it
does not have a distinguishable file header. Fortunately,
it is unlikely that apps will attempt to upload raw au
dio over the network because it is uncompressed, and
the file sizes are large compared to other audio formats.

As with all file carving tools, MediaExtract may
produce false positives, i.e., files that it incorrectly la
bels as media. We verified that all extracted image files
were true positives by manually checking the media con
tent, e.g., by opening an extracted image file. We then
repeated experiments manually to ensure observed leaks
were repeatable. Further, we manually determined that
all extracted audio files Æ1KB in size were false posi
tives. We did not find any true positive audio files in
our extracted dataset, i.e., no apps appeared to exfil
trate audio in our tests. We also verified the origin and
destination of the network flow carrying the media files
to ensure that the tra�c comes from the app itself, as
opposed to a background service or a stock app.

Other encodings. We noticed that some flows in
our dataset relied on specialized encoding formats. We
manually verified that MediaExtract was able to locate
media embedded in Protocol Bufer [22] and Thrift [1]
RPC data structures. Similarly, we pre-processed flows
to decode base64-encoded data before running Media-
Extract.

5.4.2 Validation

We use controlled tests and manual experiments to val
idate our extraction of media files from network flows.

Test app. We wrote a simple Android app that could
produce all supported types of images, video, and audio
files (see Table 2) and upload them to a web server. We
ran this app through our data collection infrastructure
(i.e., Meddle and Mitmproxy) and attempted to recover
the files with MediaExtract. With the exception of raw
audio, we were able to recover all of the uploaded files.

Manual tests. We generated network traces with
well-known apps that we knew would upload media,
such as Imgur and Giphy (images), SoundCloud (audio),
and Sing! by Smule (audio & video). We were able to
recover all images and videos, as well as audio files that
were uploaded in full. However, there were cases where
we could not recover audio data. For example, Shazam

Proceedings on Privacy Enhancing Technologies ; 2018 (4):41–50

Store # of Apps
Audio

Permission API
Camera

Permission API
Screen Capture APIs
Screenshot Video

External Storage Access
Permission

Anzhi
AppChina

Mi.com
Google Play

All

883
468
392

15,627
17,260

12.8% 9.7%
28.4% 22.9%
55.9% 41.8%
45.7% 46.2%
43.8% 43.6%

15.7% 11.7%
37.0% 28.6%
61.0% 45.7%
80.5% 75.1%
75.6% 70.1%

20.7% 1.5%
57.1% 2.4%
81.6% 5.6%
89.1% 10.6%
84.6% 9.8%

23.4%
94.0%
97.4%
92.7%
89.9%

Table 3. Media permission requests and media API references for the app stores in our study. Large fractions of apps request per
missions for media; in general, a smaller fraction actually call methods that use those permissions. A notable exception is the audio
permission—many apps include code that calls audio APIs but do not request permissions for it (bold text in the table).

interspersed small chunks that appear to be an audio
signature, alongside metadata in JSON structures. In
terestingly, voice assistants like Hound and Robin did
not upload audio at all; instead they transcribed it lo
cally on the mobile device and uploaded the text.

6 Aggregate Results

In this section, we present aggregate statistics for our
analysis of media leaks. We begin by investigating the
correlation between media permissions requested and
code references to media-related APIs (§ 6.1), then ana
lyze which libraries call these APIs (§ 6.2). Last, we use
dynamic analysis to determine the media leaks detected
in network tra�c (§ 6.3).

6.1 Permissions and API References

Our first step in understanding the potential for media
leaks is to analyze which media permissions each app
requests, and which media APIs appear in the app’s
code. We summarize the fraction of apps that request
audio and camera permissions, and that call methods to
capture media, in Table 3. Each row corresponds to a
diferent app store, and the Audio and Camera columns
specify the fraction of apps in each store that requests a
corresponding permission and that calls a corresponding
API. The Screen Capture APIs columns refer to meth
ods that are used for taking a screenshot or recording a
screen video, neither of which require permissions. The
rightmost column lists the fraction of apps that request
read or write permission for external storage.

The last row aggregates results over all apps in
our study. We find that among the popular and ran
domly selected apps, a significant fraction of apps re
quests media permissions (43.8% for audio and 75.6%
for camera). However, this is biased towards apps from

Google Play. Among the Chinese app stores, apps from
Mi.com have similar permissions requests compared to
apps from Google Play; for the other two stores, the
rates of permission requests are much lower.

A notable trend is that larger fractions of apps re
quest media permissions than actually call media APIs
(on average), which means apps may declare the permis
sions but never actually use them. Such practices could
impose additional risks, since third-party libraries can
potentially load dynamic code to abuse the granted per
missions without developers or users knowing.

Note that method references do not necessarily
mean that the method is called. Likewise, a third-party
library may be included, but never used. We specu
late that such practices explain the higher percentage
of method references than permission requests for audio
resources (bold text in Table 3).

Furthermore, APIs for taking screenshots and read
ing from device storage also serve other purposes,
which produces a high false positive rate. For exam
ple, methods for reading from device storage are called
in 96.1% of our app set, i.e., 16,580 apps call either
getExternalStorage or MediaStore.

To summarize, significant fractions of apps request
media permissions and include code that can use them.
Interestingly, there is a nontrivial amount of inconsis
tency between permissions and API calls, and thus a
need for developers to more carefully consider how they
request and use media functionality. We speculate the
reasons for over-provisioned permissions may come from
several sources. For one, an app may have required the
permission only in a previous version, but developers
failed to update requested permissions in the current
version. Also, the mapping between Android permis
sions and their associated API is surprisingly poorly
documented, potentially leading to developer confusion.
Last, third-party SDKs provide copy-and-paste instruc
tions for integration that includes all potentially needed
permissions even if the developer does not use library
functionality that requires them.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):42–50

% of Apps Referencing API from the Library
Library # of Apps % of Apps Audio Camera Screenshot Video

com.facebook 8,322 48.22% 0.04% 0.64% 4.54% 0.37%
com.google.android.gms.maps 7,825 45.34% 0 0 0.01% 0

rx 3,602 20.87% 0 0.03% 0.06% 0
com.inmobi 2,411 13.97% 17.13% 0 26.59% 0

com.google.android.gms.vision 1387 8.04% 0 87.60% 0 0
com.tencent.mm 1,316 7.62% 0 0 0.08% 0

com.millennialmedia 1,272 7.37% 0 0 31.29% 0
com.mopub 1,175 6.81% 0 0 45.87% 0

uk.co.senab.photoview 1,163 6.74% 0 0 0.77% 0
net.hockeyapp.android 967 5.60% 0 0 59.77% 0
com.mixpanel.android 853 4.94% 0 0 71.51% 0

com.tapjoy 621 3.60% 0 0 58.13% 0
com.amazon.device.ads 396 2.29% 0 0 62.12% 0

com.smaato.soma 237 1.37% 0 0 97.47% 0
cn.domob 123 0.71% 0 0 86.18% 0

com.adsdk.sdk 105 0.61% 0 0 92.38% 0
com.mdotm.android 58 0.34% 0 0 27.59% 0

com.heyzap 51 0.30% 0 0 19.61% 0
com.mapbox.mapboxsdk 39 0.23% 0 0 12.82% 0

com.skplanet.tad 31 0.18% 0 0 87.10% 0
com.fusepowered 11 0.06% 9.09% 0 100.00% 0

com.tapit 10 0.06% 0 0 100.00% 0
com.noqoush.adfalcon.android.sdk 5 0.03% 0 0 60.00% 0

com.appflood 3 0.02% 0 0 33.33% 0
com.vdopia.ads.lw 3 0.02% 0 0 100.00% 0

Table 4. Identified third-party libraries in our dataset, and the fraction of apps whose library version references media APIs. Of the 163
libraries identified, only the above 25 reference media APIs. Libraries exhibit a diverse set of media API requests across apps, likely due
to di�erent versions of libraries and developer customization.

6.2 Third-party Libraries

It is common practice for apps to include third-party
libraries for purposes such as utility functions, analytics,
and advertising. In many cases, developers may have a
limited (or no) understanding of the code contained in
these libraries. As such, third-party libraries can be an
interesting vector for media leaks.

We investigated the risks from third-party libraries
by analyzing their code for references to media APIs.
Using LibScout, we identified 163 unique libraries based
on their signatures from 17,260 apps. We then matched
these libraries with path names identified by dex
method-list on the files. Note that our list of libraries is
incomplete because both library package names and li
brary method calls might be obfuscated at compile time,
preventing us from properly identifying the library. This
is a challenging and orthogonal research problem [74].
Furthermore, LibScout can only identify libraries in its
signature database, which does not include the libraries
we discuss in detail in §7. For the libraries we could au
tomatically identify, we focus on any references in the
library path to media APIs. Table 4 shows the percent
age of apps that include third-party libraries and those

that call media API(s) in the third-party library path.
We omitted Android libraries and third-party libraries
that do not use media APIs (138/163) from the table,
which account for the majority of libraries.

Among the 25 libraries, we observe a diverse set of
behaviors for permission requests and API calls. Only
com.facebook includes references to every category of
media API. Few libraries include code that accesses the
microphone: com.facebook, com.google.android.gms.
maps, and com.tencent.mm. Only com.facebook, rx,
and com.google.android.gms.vision reference camera
APIs, while only com.facebook references video APIs.
Note that the video API (MediaRecorder) may also be
used for audio recording. Almost all of the libraries refer
ence the APIs that can be used to capture screenshots;
however, we caution that these APIs have other uses
besides recording the screen.

Notably, references to media APIs for the same
third-party library can difer widely depending on which
app included the library. We believe this may be due to
diferent versions of libraries providing diferent func
tionality, or developers who customize the code included
in their apps.

http:com.tencent.mm

Proceedings on Privacy Enhancing Technologies ; 2018 (4):43–50

App Domain Request Method Media Type Description

kr.kkh.image_search2 images.google.com POST (HTTPS) png expected, image search
com.mnnapps.twinfinder_lookalike www.google.com POST (HTTPS) jpg expected, image search

com.allintheloop.sahic collector-10.testfairy.com POST (HTTPS) jpg unexpected, screenshot image of app usage
com.smaper.artisto artisto.smaper.com POST (HTTPS) jpg unexpected, photo editing

com.fotoable.fotobeauty paintlab.fotoable.net POST (HTTP) jpg unexpected, photo editing
com.allintheloop.sahic collector-7.testfairy.com POST (HTTPS) jpg unexpected, screenshot image of app usage

innmov.babymanager babymanagerapp.com POST (HTTPS) jpg expected, sharing screenshot
com.umonistudio.tile log.umsns.com POST (HTTP) jpg expected, sharing screenshot of game score

com.facebook.moments api.facebook.com POST (HTTPS) jpg expected, photo upload
com.kodakalaris.kodakmomentsapp kodakmoments.kodakalaris.com POST (HTTPS) jpg expected, photo upload

com.goodreads match-visualsearch.amazon.com POST (HTTPS) jpg expected, image search
com.main.gopu� c6e83853...0b.api.appsee.com POST (HTTPS) mp4 unexpected, screenshot video of app usage

com.picas.photo.artfilter.android api.picas.tech POST (HTTP) jpg unexpected, photo editing
io.faceapp node-03.faceapp.io POST (HTTPS) jpg unexpected, photo editing

com.neuralprisma api2.neuralprisma.com POST (HTTPS) jpg unexpected, photo editing
io.anyline.examples.store anyline-tracking.azurewebsites.net POST (HTTPS) jpg expected, photo-to-text scanner
com.hound.android.app bh.houndify.com POST (HTTPS) jpg unexpected, screenshot image of app usage
com.msearcher.camfind api.camfindapp.com POST (HTTP) jpg expected, image search

com.momento.cam selfy.s3.amazonaws.com PUT (HTTPS) jpg expected, photo upload
com.intsig.BizCardReader vcf.intsig.net POST (HTTPS) jpg expected, business card scanner

com.zazzle up.zazzle.com POST (HTTP) jpg expected, photo upload

Table 5. Summary of detected media in app-generated network tra�c. Of the 21 cases, we find 12 to be leaks (bolded in the first col
umn): they are either unexpected media transmissions (noted in the last column) or sent in plaintext (bolded in the “Request Method”
column), exposing potentially sensitive information to eavesdroppers.

6.3 Media in Network Tra�c

Next, we analyze the network tra�c generated by the
9,100 apps that we analyzed dynamically (as described
in §5.3). Table 1 summarizes the apps we selected for
dynamic analysis and the criteria we used to do so.

Recall that our testbed gathers all the network traf
fic generated during automatic interactions with these
apps, and we search network flows for media content.
Table 5 shows the list of apps (identified by package
name in the first column) that transmitted media con
tent during our tests. The second column specifies the
destination domain that received the media content, fol
lowed by the HTTP method and whether encryption
was used. The fourth column specifies what type of me
dia was transmitted, and the last column indicates our
analysis of whether the transmission was intentional
(and thus expected) or not, and what kind of media
sharing was identified.

We use bold text in the last column to highlight nine
cases that leak media. These include uploading photos,
screenshots, or even videos of screen interactions. The
bold rows in the third column highlight additional five
cases in which the media content is sent in plaintext,
meaning a network eavesdropper (e.g., on a public WiFi
access point or in the user’s ISP) can also see the media
that is transmitted.

Of the 21 cases of media leaks, just under half (9) are
shared with third parties that the user may not be aware
of. Among the third-party domains, we observe third-
party libraries and cloud services (AWS and Azure).

6.4 Analysis of Large Network Flows

The previous analysis relied on identifying known me
dia types in network tra�c, but could miss cases where
the media encoding is non-standard, obfuscated, or en
crypted at the application layer. In this case, an alter
native approach to detect potential media content is to
look at relatively large flows that could correspond to
images, audio recordings, or videos.

We begin by plotting the size of each network flow
generated during dynamic analysis. We remove flows
generated by Google Play Services from this analysis.
Although these flows are large and frequent, we do not
consider them to be a vector for media leaks. Figure 2
shows the resulting CDF of the number of bytes per flow
across all apps. The vast majority (99.81%) of requests
are no larger than 100 KB and more than 80% contain
fewer than 10 KB. By comparison, the size of extracted
images in our study ranges from 8.2 KB to 1.1 MB.

We further investigated the content of the rela
tively large flows (Ø100 KB) in our dataset, which are
sent to 16 second-level domains (7 of which are third-
party domains), and 12 of which have more than one
large flow (see Table 6). Table 7 lists the apps re
sponsible for those flows. A notable case is the do
main skyhookwireless.com that is contacted by mul
tiple apps and provides services to locate devices (e.g.,
IoT devices). The content of the large HTTP requests
is an XML file with information about nearby access
points (MAC, SSID, signal strength and age) that can
be used to calculate fine-grained geolocations without

http:skyhookwireless.com

Proceedings on Privacy Enhancing Technologies ; 2018 (4):44–50

C
D

F
 o

f
F

lo
w

s

100

 80

 60

 40

 20

 0

 1 10 100 1000

Payload Size (KB)

Fig. 2. CDF of payload size per flow for data sent from the
app to the internet. The vast majority of flows are small (as
expected), but the minority of large flows indicates potentially
significant data exfiltration.

Domain Average Size (KB) # of Flows

radarstick.com 1,190 4
camfindapp.com 1,070 2
kodakalaris.com 1,069 2
*hockeyapp.net 428 1

faceapp.io 308 2
*skyhookwireless.com 289 7

midomi.com 224 5
mysoluto.com 200 24

*google.com 170 52
houndify.com 158 1

*crittercism.com 131 2
smaper.com 118 3

*newrelic.com 110 1
*googleapis.com 102 1

*appsee.com 101 28
marcopolo.me 101 10

Table 6. Second-level domains receiving large requests of at least
100 KB. (*) indicates the domain belongs to a third party.

needing to access GPS. Manual investigation of other
large flows revealed that they generally contained de
tailed information about the device and apps, at a
level that third-party domains can use to fingerprint
users [41, 53, 71]. While outside the scope of our study
of media leaks, these large flows represent an additional
privacy risk that users should be aware of. Further, such
large flows can potentially use substantial portions of a
cellular data plan’s quota.

Crucially, manual analysis of all of these large flows
did not reveal any additional exfiltrated media files.
This is a positive sign, which suggests that the false neg
ative rate of our media-detection methodology is low.

7 Case Studies

The previous section focused on aggregate information
about media leaks that we observed in our dataset. In
this section, we use case studies to highlight several in-

Domain

appsee.com
camfindapp.com
crittercism.com

faceapp.io
google.com
google.com
google.com
google.com

googleapis.com
hockeyapp.net
houndify.com

kodakalaris.com
marcopolo.me

midomi.com
mysoluto.com
mysoluto.com
newrelic.com

radarstick.com
skyhookwireless.com
skyhookwireless.com
skyhookwireless.com
skyhookwireless.com
skyhookwireless.com
skyhookwireless.com
skyhookwireless.com

smaper.com

Package Name of App

com.main.gopu�
com.msearcher.camfind
com.usaa.mobile.android.usaa
io.faceapp
kr.kkh.image_search2
com.mnnapps.twinfinder_lookalike
com.midoapps.cartooneditor
meemtech.flashlight
com.eosmobi.cleaner
org.becu.androidapp
com.hound.android.app
com.kodakalaris.kodakmomentsapp
co.happybits.marcopolo
com.melodis.midomiMusicIdentifier.freemium
com.asurion.solutohome.walmart
com.asurion.solutohome.gigspartner
com.traegergrills.app
com.radarworkx.radarspotter
air.air.com.EasyRandomVideoChat
app.local1285
appinventor.ai_malote1971.SpainParanormalKII
app.qrcode
com.abtnprojects.ambatana
air.com.touchmultimedia.comicpuppetsfree
a2z.Mobile.Event4164
com.smaper.artisto

Table 7. Second-level domains receiving large requests of at least
100 KB and the apps that generated them.

teresting media leaks in detail, identify their root causes,
and discuss their privacy implications.

7.1 Appsee: Screen Recording

Our first case study focuses on a video leak from
the GoPuf app (com.main.gopuff) referenced in Ta
ble 5. The app provides on-demand delivery for
users. The video was leaked to a third-party domain
api.appsee.com that is owned by Appsee [2], an app
analytics platform provider. They ofer the ability to
“[w]atch every user action and understand exactly how
they use your app, which problems they’re experienc
ing, and how to fix them. See the app through your
users’ eyes to pinpoint usability, UX and performance
issues.” [2] As we discuss below, this claim is—much to
the chagrin of user privacy—accurate.

We began by decompiling the APK for GoPuf,
which revealed that GoPuf starts Appsee as soon
as the app launches (using the code in Figure 3).
Our dynamic analysis confirmed this: as soon as a
user opens GoPuf, the app records the screen and
sends a video of this interaction to the following do
main: https://c6e83853bc68d0b076811737cb58920b.
api.appsee.com/upload. Taking a recording of user in

https://c6e83853bc68d0b076811737cb58920b
http:api.appsee.com
http:smaper.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:radarstick.com
http:newrelic.com
http:mysoluto.com
http:mysoluto.com
http:midomi.com
http:marcopolo.me
http:kodakalaris.com
http:houndify.com
http:hockeyapp.net
http:googleapis.com
http:google.com
http:google.com
http:google.com
http:google.com
http:faceapp.io
http:crittercism.com
http:camfindapp.com
http:appsee.com

Proceedings on Privacy Enhancing Technologies ; 2018 (4):45–50

package
com . main . g o p u f f . p r e s e n t a t i o n . view . a c t i v i t i e s ;

public class S p l a s h A c t i v i t y extends BaseAct iv i ty
implements SplashScreenView {

// The method onCreate i s c a l l e d when
// S p l a s h A c t i v i t y i s created
public void onCreate (Bundle paramBundle) {

Appsee . s t a r t (g e t S t r i n g (2 1 3 1 2 9 6 4 3 3)) ;
. . .

}
}

Fig. 3. Code snippet from GoPu�, which uses the Appsee library
to recode the screen as a user interacts with the app. The record
ing starts immediately when the user opens the app, and in some
cases include users’ PII (which is shared with Appsee).

teractions is not itself necessarily a privacy risk. How
ever, even in this simple example we found that PII was
exposed to Appsee—in this case the user’s ZIP code.2

While this specific example exposes relatively low-
risk PII, it is important to reiterate that Appsee re
quires no special permission to record the screen, nor
does it notify the user that she is being recorded. In fact,
Appsee puts the burden on the app developer to protect
sensitive information by calling markViewAsSensitive
in the app’s code, or using server-side configuration
through Appsee’s dashboard [3].

At first glance, this is good news: the developer is
in the position of knowing what views in their app are
sensitive. However, our analysis indicates that many de
velopers either have no sensitive data input, or simply
did not bother to mark any view as sensitive: only five
out of 33 apps in our dataset that include Appsee even
call the markViewAsSensitive method. We show counts
of other method calls in Table 8; most apps start record
ing (16 start and four startScreen), but only a small
fraction of apps made calls to the stop/pause actions.
Thus, in many cases screen recording is started, never
stops, and no views are omitted from recording using
the client-side AppSee API. It is unknown how many
app developers use AppSee’s dashboard to filter sensi
tive views on the server-side.

Screen recording, if adopted at scale and/or in apps
that handle sensitive data, could expose substantial
amounts of users’ PII, especially when the full burden
of securing private information is placed on developers.
Further, we argue that the recording of interactions with
an app (without user knowledge) is itself a privacy vio
lation akin to recording audio or video of the user.

2 We disclosed this to GoPuf, which in response pulled the
Appsee SDK from their iOS and Android apps and updated
their privacy policy [12].

Appsee Method # of Apps # of Occurrences

start 16 37
addEvent 7 27
setUserId 6 6

markViewAsSensitive 5 44
startScreen 4 9

stop 2 2
resume 1 6

pause 1 1
set3rdPartyId 1 1

Total 21 133

Table 8. Number of apps using various methods of the Appsee
library, and how often they called each method.

Given the risks of screen recording, we disclosed this
behavior to Google’s privacy team. Their response was
that “Google constantly monitors apps and analytics
providers to ensure they are policy-compliant. When no
tified of our findings, they reviewed GoPuf and AppSee
and took the appropriate actions.”

7.2 TestFairy: Screenshots

Our next case study focuses on a similar privacy risk:
taking screenshots of the app while in use. TestFairy [25]
is a mobile beta-testing platform that records user
interactions via screenshots. In our dataset, SAHIC
(com.allintheloop.sahic), which is a networking app
for two conferences – SAHIC Cuba and SAHIC South
America 2017 – uses the library and sent 45 screenshots
to testfairy.com. The screenshots, shown in Figure 4,
include (but are not limited to) information such as a
search for attendees, a message to a contact, and a re
sponse to a survey. Attached with the screenshots is in
formation that describes the current view and activity
name of the app as shown in the following request:

https://collector-10.testfairy.com/services/

?method=testfairy.session.addScreenshot\

×tamp=1504971161996\&seq=1\

&sessionToken=80775553-4252621-5418832-376287176

-bab9f09e42c3c2e13a083c070ca30ed203aa05b6\

&lastScreenshotTime=349\&interval=2000\&type=0\

&activityName=com.allintheloop.sahic.MainActivity

While this feature is typically used during beta testing,
the app was not labeled as a beta version in the Google
Play Store. The user is also not informed of the record
ing, nor is she ofered the opportunity to consent to beta
testing upon opening the app. Thus, any reasonable user
of these apps would likely never expect screenshots of
her interactions.

https://collector-10.testfairy.com/services
http:testfairy.com

Proceedings on Privacy Enhancing Technologies ; 2018 (4):46–50

To understand how pervasive this problem is, we ex
amine all the apps in our dataset that include the Test-
Fairy library. Fortunately, we found only one (SAHIC)
out of 16 apps calling any of the TestFairy API methods
for screenshots, and this is consistent with our network
tra�c analysis. Thus, despite a substantial privacy risk
from this feature, we find that nearly all apps we tested
are properly removing TestFairy methods before releas
ing their apps in the Google Play Store.

7.3 Photo Apps: Unexpected Sharing

Many users regularly use the cameras on their phones
to take photos for personal use, then edit those photos
using apps installed on their phones. In fact, both An
droid and iOS already provide powerful built-in ways
to edit photos directly on the phone. That said, there
is also a marketplace of photography apps that provide
photo-editing features (e.g., filters, adding text, etc.). It
is reasonable for most users to assume that such editing
is performed on the device itself; however, we observed
that several photography apps send the photos to their
servers for processing without explicitly notifying users.

An example of this behavior is Photo Cartoon Cam
era - PaintLab (com.fotoable.paintlab), which up
loads to their servers any photo that a user selects for
editing, as well as any photo taken from the app (even
before the user decides to edit the photo). Given that
nothing else in the app indicates the need for an in
ternet connection, the behavior is unexpected. Further,
uploading photos taken from within the app before users
decide to keep them exposes those users to further pri
vacy risks from unintentional photo sharing. This be
havior also appears in InstaBeauty - Makeup Selfie Cam
(com.fotoable.fotobeauty), an app from the same de
veloper, and in five other photo-editing apps.

We crawled the categories of 8,689 unique apps in
our dataset that were from the Google Play Store. Our
crawler was able to identify the categories of 7,022 apps.
Out of those 7,022 apps, 463 apps were part of the “Pho
tography” category. Our experiments detected 6 apps
exhibiting this uploading behavior.

The privacy disclosures for these apps are not
entirely clear. Fotoable, the developer of two afore
mentioned apps, has a privacy policy disclosure that
makes only a general statement that personal infor
mation may be collected and used [10]. Three other
apps, FaceApp (io.faceapp), Picas - Art Photo Filter,
Picture Filter (com.picas.photo.artfilter.android),
and Prisma Photo Editor (com.neuralprisma) specif

ically include users’ photos as “personal information”
collected [7, 19, 21]. However, this disclosure is arguably
misleading as the app does not indicate uploading of
a user’s photo while they are editing it. In one app,
Artisto - Video & Photo Editor (com.smaper.artisto),
the privacy policy does not even seem to apply to this
app—rather, it appears to be a general privacy policy
for the developer’s family of apps, and is focused on
games [17]. Thus, it is reasonable to assume that users
of these apps may not be aware of photo exfiltration and
may not have consented to it.

8 Limitations

We now discuss some important issues and limitations of
our study. From a set of 17,260 apps, we uncovered few
instances of covert recording (i.e. apps taking pictures
or videos without users intentionally doing so). On the
one hand, this is good news: a very large fraction of
apps are not abusing the ability to record media. On
the other hand, it could also indicate that our analysis
missed other cases of media leaks.

Dynamic analysis limitations. A number of fac
tors could lead to this result. First, our media extraction
method is not perfect. For example, an app could trans
form an audio recording into a diferent format (e.g.,
a text transcript or musical features such as beat and
notes) that our system does not detect. Similarly, our
approach does not stitch together a single media file
transferred over multiple flows, or cases where a media
file does not use a standard encoding format. Second, we
may miss cases where multiple apps collude to subvert
the permission model, e.g., when an app uses an In
tent to launch another app [35]. Third, we do not detect
media that is intentionally obfuscated when it is sent
over the network, or encrypted at the application-layer
(Mitmproxy does enable us to bypass TLS encryption).

It is possible for automated interactions to trigger
a legitimate media exfiltration that could be mistak
enly classified as a media leak. To mitigate this issue,
we regularly captured screenshots during the automated
interactions, then manually verified that a media leak
was not generated by an intentional trigger in the app,
e.g., camera shutter or audio recording button.

Static analysis limitations. We used static anal
ysis to identify apps that might record media, namely
by identifying corresponding API calls. It is well known,
however, that the existence of an API call in a piece of

Proceedings on Privacy Enhancing Technologies ; 2018 (4):47–50

Fig. 4. Example screenshots collected by TestFairy. Left: Contact info. Center: Messaging another user. Right: Responses to a survey.

code does not guarantee it will ever be executed. To ad
dress this, we used dynamic analysis to filter out false
positives. However, this does not address false negatives
(where media API calls are reachable, but our auto
mated interaction tool does not trigger them).

Further, our static analysis approach focuses on
methods from the Android SDK and not native code,
so we may miss cases of media leaks. Likewise, we may
miss leaks from dynamically loaded code.

We rely on LibRadar and LibScout to identify third-
party libraries. However, these tools may not be able
to detect obfuscated libraries, or new versions of previ
ously identified libraries. Fortunately, these limitations
did not hinder our ability to identify the sources of me
dia leaks in our study.

Future work. There are several ways to address
the above issues. More sophisticated static analysis ap
proaches could determine whether referenced methods
are reachable during normal interactions with an app. A
better understanding of how media may be sent over the
network, and potentially transformed before transmis
sion, would reduce our false negative rate. Our analysis
could also incorporate analysis of native code that leaks
media recordings.

Lastly, while we focused our analysis on Android
apps, we will investigate in future work whether iOS
apps exhibit similar behavior, as e.g., AppSee and Test-
Fairy also provide iOS SDKs.

9 Conclusion

In this paper, we investigated the potential for, and spe
cific instances of, multimedia recordings being sent over
the internet by 17,260 popular Android apps across mul
tiple app stores. We find that several apps leak content

recorded from the camera and the screen over the in
ternet, and in ways that are either undisclosed or un
expected given the purpose of the app. Importantly, we
find that third-party libraries record a video of a user’s
interaction with an app, including at times sensitive in
put fields, without any permissions or notification to the
user. Further, several apps share users’ photos and other
media over the internet without explicitly indicating
this to the user. We also find that there is poor correla
tion between the permissions that an app requests and
the permissions that an app needs to successfully run its
code. This opens up the potential for unexpected expo
sure to additional media exfiltration with the inclusion
of new libraries in future versions of the app. In ongo
ing work, we are continuing to monitor how multimedia
content leaks over the internet from mobile and IoT de
vices, and assess the implications of such behavior.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Joel Reardon for their valuable feedback.

This material is based upon work supported by the
DHS S&T contract FA8750-17-2-0145; the NSF under
Award No. CNS-1408632, IIS-1408345, and IIS-1553088;
a Security, Privacy and Anti-Abuse award from Google;
a Comcast Innovation Fund grant; and a Data Trans
parency Lab grant. Any opinions, findings, and conclu
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of our sponsors.

Proceedings on Privacy Enhancing Technologies ; 2018 (4):48–50

References

[1]	 Apache Thrift. https://thrift.apache.org/.
[2]	 Appsee Mobile App Analytics. https://www.appsee.com/.
[3]	 Appsee Tutorials: Protecting Users’ Privacy. https:

//www.appsee.com/tutorials/privacy. (last accessed
06/14/2018).

[4]	 Autopsy. https://www.sleuthkit.org/autopsy/.
[5]	 CalOPPA Chapter 22: Internet Privacy Requirements.

https://leginfo.legislature.ca.gov/faces/codes_
displayText.xhtml?lawCode=BPC&division=8.&title=
&part=&chapter=22.&article=.

[6]	 dex-method-list. https://github.com/JakeWharton/dex
method-list.

[7]	 FaceApp Privacy Policy. http://archive.today/2018.
06.14-232005/https://www.faceapp.com/privacy. (last
accessed 06/14/2018).

[8]	 Fair Information Practice Principles (FIPPS). https:
//www.dhs.gov/sites/default/files/publications/
consolidated-powerpoint-final.pdf.

[9]	 Foremost. http://foremost.sourceforge.net/.
[10] Fotoable Privacy Policy.	 http://archive.today/2018.

06.14-230916/https://www.fotoable.com/privacy.html.
(last accessed 06/14/2018).

[11] General Data Protection Regulation (GDPR).	 https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32016R0679&from=EN.

[12] GoPu� Privacy Agreement. https://gopuff.com/privacy
agreement. (last accessed 06/14/2018).

[13] JustTrustMe. https://github.com/Fuzion24/JustTrustMe.
[14] LaZy_NT. https://pypi.python.org/pypi/LaZy_NT.
[15] Mediaextract. https://github.com/panzi/mediaextract.
[16] Mitmproxy. https://mitmproxy.org/.
[17] My.com Terms of Use.	 http://archive.today/2018.06.

14-231903/https://legal.my.com/us/games/tou/. (last
accessed 06/14/2018).

[18] PhotoRec. https://www.cgsecurity.org/wiki/PhotoRec.
[19] Picas.tech Privacy Policy.	 http://archive.today/2018.

06.14-231220/https://www.picas.tech/privacyandroid.
php. (last accessed 06/14/2018).

[20] PIL. https://pypi.python.org/pypi/PIL.
[21] Prisma Privacy Policy.	 http://archive.today/2018.06.

14-232142/http://prisma-ai.com/privacy.html. (last
accessed 06/14/2018).

[22] Protocol Bu�ers. https://developers.google.com/
protocol-buffers/.

[23] Scalpel. https://github.com/sleuthkit/scalpel.
[24] tcpxtract. http://tcpxtract.sourceforge.net/.
[25] TestFairy Mobile Testing Platform.	 https://www.

testfairy.com/.
[26] UI/Application Exerciser Monkey.	 https://developer.

android.com/tools/help/monkey.html.
[27] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and

Yves Le Traon. AndroZoo: Collecting Millions of An
droid Apps for the Research Community. In Proc. of the
International Conference on Mining Software Repositories
(MSR), 2016.

[28] Daniel Arp, Erwin Quiring, Christian Wressnegger, and Kon
rad Rieck. Privacy Threats through Ultrasonic Side Chan

nels on Mobile Devices. In Proc. of the IEEE European
Symposium on Security and Privacy (EuroS&P), 2017.

[29] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric
Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon,
Damien Octeau, and Patrick McDaniel. FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proc. of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2014.

[30] Michael Backes, Sven Bugiel, and Erik Derr. Reliable Third-
Party Library Detection in Android and its Security Appli
cations. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[31] Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith Cra
nor, and Carolyn Nguyen. "Little Brothers Watching You:"
Raising Awareness of Data Leaks on Smartphones. In Proc.
of the Symposium on Usable Privacy and Security (SOUPS),
2013.

[32] Theodore Book, Adam Pridgen, and Dan S. Wallach. Lon
gitudinal Analysis of Android Ad Library Permissions. In
Proc. of the IEEE Mobile Security Technologies Workshop
(MoST), 2013.

[33] Theodore Book and Dan S. Wallach. A Case of Collusion: A
Study of the Interface Between Ad Libraries and Their Apps.
In Proc. of the ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2013.

[34] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina
Yeung. Cross-Device Tracking: Measurement and Disclo
sures. In Proc. of the Privacy Enhancing Technologies
Symposium (PETS), 2017.

[35] Paolo Calciati and Alessandra Gorla.	 How do Apps Evolve
in Their Permission Requests? A Preliminary Study. In
Proc. of the International Conference on Mining Software
Repositories (MSR), 2017.

[36] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel
Egele, Christopher Kruegel, Giovanni Vigna, and Yan Chen.
EdgeMiner: Automatically Detecting Implicit Control Flow
Transitions through the Android Framework. In Proc. of
the Network and Distributed System Security Symposium
(NDSS), 2015.

[37] Patrick Carter, Collin Mulliner, Martina Lindorfer, William
Robertson, and Engin Kirda. CuriousDroid: Automated
User Interface Interaction for Android Application Analysis
Sandboxes. In Proc. of the International Conference on
Financial Cryptography and Data Security (FC), 2016.

[38] Terence Chen, Imdad Ullah, Mohamed Ali Kaafar, and
Roksana Boreli. Information Leakage through Mobile An
alytics Services. In Proc. of the ACM Workshop on Mobile
Computing Systems and Applications (HotMobile), 2014.

[39] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro
Orso. Automated Test Input Generation for Android: Are
We There Yet? In Proc. of the IEEE/ACM International
Conference on Automated Software Engineering (ASE),
2015.

[40] Andrea Continella, Yanick Fratantonio, Martina Lindorfer,
Alessandro Puccetti, Ali Zand, Christopher Kruegel, and
Giovanni Vigna. Obfuscation-Resilient Privacy Leak Detec
tion for Mobile Apps Through Di�erential Analysis. In Proc.
of the Network and Distributed System Security Symposium
(NDSS), 2017.

https://developer
http:testfairy.com
https://www
http:http://tcpxtract.sourceforge.net
https://github.com/sleuthkit/scalpel
http:https://developers.google.com
http:http://archive.today/2018.06
https://pypi.python.org/pypi/PIL
http://archive.today/2018
https://www.cgsecurity.org/wiki/PhotoRec
http:http://archive.today/2018.06
http:https://mitmproxy.org
https://github.com/panzi/mediaextract
https://pypi.python.org/pypi/LaZy_NT
https://github.com/Fuzion24/JustTrustMe
https://gopuff.com/privacy
https://eur
http://archive.today/2018
http:http://foremost.sourceforge.net
www.dhs.gov/sites/default/files/publications
http://archive.today/2018
https://github.com/JakeWharton/dex
https://leginfo.legislature.ca.gov/faces/codes
https://www.sleuthkit.org/autopsy
www.appsee.com/tutorials/privacy.(last
http:https://www.appsee.com
http:https://thrift.apache.org

Proceedings on Privacy Enhancing Technologies ; 2018 (4):49–50

[41] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio
Nucci, and Dawn Song. NetworkProfiler: Towards Auto
matic Fingerprinting of Android Apps. In Proc. of IEEE
International Conference on Computer Communications
(INFOCOM), 2013.

[42] Anupam Das, Nikita Borisov, and Matthew Caesar.	 Do You
Hear What I Hear?: Fingerprinting Smart Devices Through
Embedded Acoustic Components. In Proc. of the ACM
Conference on Computer and Communications Security
(CCS), 2014.

[43] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
TaintDroid: An Information-Flow Tracking System for Re
altime Privacy Monitoring on Smartphones. In Proc. of
the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[44] Steven Englehardt.	 No boundaries: Exfiltration of per
sonal data by session-replay scripts. https://freedom-to
tinker.com/2017/11/15/no-boundaries-exfiltration
of-personal-data-by-session-replay-scripts/, Novem
ber 2017.

[45] Tobias Fiebig, Jan Krissler, and Ronny Hänsch.	 Security
Impact of High Resolution Smartphone Cameras. In Proc. of
the USENIX Workshop on O�ensive Technologies (WOOT),
2014.

[46] Jessica Fridrich. Sensor Defects in Digital Image Forensic. In
Digital Image Forensics, pages 179–218. Springer, 2013.

[47] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao
Chen. AndroidLeaks: Automatically Detecting Potential
Privacy Leaks in Android Applications on a Large Scale.
In Proc. of the International Conference on Trust and
Trustworthy Computing (TRUST), 2012.

[48] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd
Millstein. RERAN: Timing- and Touch-sensitive Record and
Replay for Android. In Proc. of the International Conference
on Software Engineering (ICSE), 2013.

[49] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and
Ramesh Govindan. PUMA: Programmable UI-Automation
for Large-Scale Dynamic Analysis of Mobile Apps. In
Proc. of the International Conference on Mobile Systems,
Applications and Services (MobiSys), 2014.

[50] Jinseong Jeon, Kristopher K. Micinski, and Je�rey S. Foster.
SymDroid: Symbolic Execution for Dalvik Bytecode. Tech
nical Report CS-TR-5022, University of Maryland, College
Park, 2012.

[51] Michael Kassner. Take secret photos by exploiting Android’s
camera app. https://www.techrepublic.com/article/
take-secret-photos-by-exploiting-androids-camera
app/, June 2014.

[52] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum
Shin. SCANDAL: Static Analyzer for Detecting Privacy
Leaks in Android Applications. In Proc. of the IEEE Mobile
Security Technologies Workshop (MoST), 2012.

[53] Tadayoshi Kohno, Andre Broido, and KC Cla�y. Remote
Physical Device Fingerprinting. IEEE Transactions on
Dependable and Secure Computing, 2(2):93–108, 2005.

[54] Anh Le, Janus Varmarken, Simon Langho�, Anastasia
Shuba, Minas Gjoka, and Athina Markopoulou. AntMoni
tor: A System for Monitoring from Mobile Devices. In Proc.
of the ACM Workshop on Crowdsourcing and Crowdsharing

of Big (Internet) Data (C2B(1)D), 2015.
[55] Christophe Leung, Jingjing Ren, David Cho�nes, and

Christo Wilson. Should You Use the App for That?: Com
paring the Privacy Implications of App- and Web-based
Online Services. In Proc. of the Internet Measurement
Conference (IMC), 2016.

[56] Martina Lindorfer, Matthias Neugschwandtner, Lukas We
ichselbaum, Yanick Fratantonio, Victor van der Veen, and
Christian Platzer. Andrubis - 1,000,000 Apps Later: A View
on Current Android Malware Behaviors. In Proc. of the
International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS),
2014.

[57] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen.
LibRadar: Fast and Accurate Detection of Third-party Li
braries in Android Apps. In Proc. of the International
Conference on Software Engineering (ICSE), 2016.

[58] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.	 Dyn
odroid: An Input Generation System for Android Apps.
In Proc. of the Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2013.

[59] Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Fed
erico Maggi, Giovanni Vigna, and Christopher Kruegel. On
the Privacy and Security of the Ultrasound Ecosystem. In
Proc. of the Privacy Enhancing Technologies Symposium
(PETS), 2017.

[60] Giuseppe Petracca, Yuqiong Sun, Trent Jaeger, and Ahmad
Atamli. AuDroid: Preventing Attacks on Audio Channels in
Mobile Devices. In Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2015.

[61] Ashwin Rao, Arash Molavi Kakhki, Abbas Razaghpanah,
Anke Li, David Cho�nes nad Arnaud Legout, Alan Mis-
love, and Phillipa Gill. Meddle: Enabling Transparency and
Control for Mobile Internet Tra�c. Journal of Technology
Science (JoTS), (2015103003), October 2015.

[62] Ashwin Rao, Arash Molavi Kakhki, Abbas Razaghpanah,
Amy Tang, Shen Wang, Justine Sherry, Phillipa Gill, Arvind
Krishnamurthy, Arnaud Legout, Alan Mislove, and David
Cho�nes. Using the Middle to Meddle with Mobile. Tech
nical Report NEU-CCS-2013-12-10, Northeastern University,
2013.

[63] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-
Rodriguez, Srikanth Sundaresan, Mark Allman, Christian
Kreibich, and Phillipa Gill. Apps, Trackers, Privacy, and
Regulators: A Global Study of the Mobile Tracking Ecosys
tem. In Proc. of the Network and Distributed System
Security Symposium (NDSS), 2018.

[64] Jingjing Ren, Martina Lindorfer, Daniel Dubois, Ashwin
Rao, David Cho�nes, and Narseo Vallina-Rodriguez. Bug
Fixes, Improvements, ... and Privacy Leaks – A Longitudinal
Study of PII Leaks Across Android App Versions. In Proc.
of the Network and Distributed System Security Symposium
(NDSS), 2018.

[65] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud
Legout, and David Cho�nes. ReCon: Revealing and Control
ling Privacy Leaks in Mobile Network Tra�c. In Proc. of the
International Conference on Mobile Systems, Applications
and Services (MobiSys), 2016.

[66] Irwin Reyes, Primal Wiesekera, Joel Reardon, Amit
Elazari Bar On, Abbas Razaghpanah, Narseo Vallina

https://www.techrepublic.com/article
https://freedom-to

Proceedings on Privacy Enhancing Technologies ; 2018 (4):50–50

Rodriguez, and Serge Egelman. "Won’t Somebody Think
of the Children?" Examining COPPA Compliance at Scale.
In Proc. of the Privacy Enhancing Technologies Symposium
(PETS), 2018.

[67] Animesh Shrivastava, Puneet Jain, Soteris Demetriou, Lan
don P. Cox, and Kyu-Han Kim. CamForensics: Under
standing Visual Privacy Leaks in the Wild. In Proc. of the
ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2017.

[68] Szymon Sidor.	 Exploring limits of covert data collection on
Android: apps can take photos with your phone without you
knowing. http://www.ez.ai/2014/05/exploring-limits
of-covert-data.html, May 2014.

[69] Yihang Song and Urs Hengartner.	 PrivacyGuard: A VPN-
based Platform to Detect Information Leakage on Android
Devices. In Proc. of the ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2015.

[70] Aatif Sulleyman.	 Facebook could secretly watch
users through webcams, patents reveal. http://www.
independent.co.uk/life-style/gadgets-and-tech/news/
facebook-plans-to-watch-users-through-webcams-spy
patent-application-social-media-a7779711.html, June
2017.

[71] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan
Martinovic. AppScanner: Automatic Fingerprinting of Smart-
phone Apps from Encrypted Network Tra�c. In Proc. of
the IEEE European Symposium on Security and Privacy
(EuroS&P), 2016.

[72] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore,
Hamed Haddadi, Yan Grunenberger, Konstantina Papa
giannaki, and Jon Crowcroft. Breaking for Commercials:
Characterizing Mobile Advertising. In Proc. of the Internet
Measurement Conference (IMC), 2012.

[73] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas
Razaghpanah, Rishab Nithyanand, Mark Allman, Christian
Kreibich, and Phillipa Gill. Tracking the Trackers: Towards
Understanding the Mobile Advertising and Tracking Ecosys
tem. In Proc. of the Workshop on Data and Algorithmic
Transparency (DAT), 2016.

[74] Yan Wang, Haowei Wu, Hailong Zhang, and Atanas
Rountev. Orlis: Obfuscation-Resilient Library Detection
for Android. In Proc. of the IEEE/ACM International
Conference on Mobile Software Engineering and Systems
(MOBILESoft), 2018.

[75] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and
Xue Liu. E�ective Real-time Android Application Auditing.
In Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2015.

[76] Ning Xia, Han Hee Song, Yong Liao, Marios Iliofotou, An
tonio Nucci, Zhi-Li Zhang, and Aleksandar Kuzmanovic.
Mosaic: Quantifying Privacy Leakage in Mobile Networks.
In Proc. of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), 2013.

[77] Lok Kwong Yan and Heng Yin.	 DroidScope: Seamlessly
Reconstructing the OS and Dalvik Semantic Views for Dy
namic Android Malware Analysis. In Proc. of the USENIX
Security Symposium, 2012.

[78] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng
Ning, and X. Sean Wang. AppIntent: Analyzing Sensitive

Data Transmission in Android for Privacy Leakage Detec
tion. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2013.

[79] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei
Gu, Peng Ning, X. Sean Wang, and Binyu Zang. Vetting
Undesirable Behaviors in Android Apps with Permission Use
Analysis. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2013.

[80] Zhe Zhou, Wenrui Diao, Xiangyu Liu, and Kehuan Zhang.
Acoustic Fingerprinting Revisited: Generate Stable Device
ID Stealthily with Inaudible Sound. In Proc. of the ACM
Conference on Computer and Communications Security
(CCS), 2014.

[81] Sebastian Zimmeck, Jie S. Li, Hyungtae Kim, Steven M.
Bellovin, and Tony Jebara. A Privacy Analysis of Cross-
device Tracking. In Proc. of the USENIX Security
Symposium, 2017.

http://www
http://www.ez.ai/2014/05/exploring-limits

