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This comment refers to topic #5, “The Commission’s remedial authority to deter unfair and deceptive 
conduct in privacy and data security matters.” My research group at Northeastern University has 
studied the impact of mobile apps and websites on consumer privacy for the past four years, 
resulting in numerous peer-reviewed articles, datasets, and software artifacts that we have made 
available to the public and that have been reviewed by the FTC. 

These studies identify how personally identifiable information (PII) is routinely exposed over 
the Internet, sometimes unencrypted, not only the companies that develop the mobile apps being 
used, but also to a large number of analytics and advertising services with which the user has no 
direct relationship. In many cases, users are unaware of the data collection, and in a substantial 
number of cases the data collection is poorly disclosed, if at all. In some notable cases, extremely 
sensitive PII has been gathered, including user passwords being send to third parties, fine-grained 
GPS locations shared on average every two minutes by a retail app running in the background, 
and screen activities being recorded an uploaded to a third party. In fact, we found through a 
longitudinal study that such data collection is getting worse, not better, over time. 

There is a clear need to discuss the privacy risks that consumers face, how to design and 
enforce policies that limit unintentional or unexpected data collection, and how regulators can 
reliably and continuously audit whether online services are compliant not only with their own 
privacy disclosures, but with the laws that govern data collection. To help inform this discussion, 
below is a summary of the most relevant peer-reviewed papers that my group has published at 
top conferences for Internet measurement, security, and privacy in the recent few years. There is 
also a link to our work with a documentary filmmaker, where we found a surprising amount of 
location sharing. 

•	 ReCon [4]: In this study, we used machine learning on network traffic generated while using 
hundreds of apps to learn how they were sharing personal information with other parties, 
including how substantial numbers of apps were sending passwords in plaintext. 

•	 Harvest documentary: We worked with a filmmaker to track data leakage from an average 
person’s phone for a week. What we found was surprising even for us, and became the topic 
of a nice 11-minute film: https://vimeo.com/189449163 

•	 App vs web tracking [1]: When you can access the same online service via a website and 
app, do they leak the same PII or is one better than the other? We found the answer is that 
there is no clear winner. The differences between app and web can be surprising, and you 
can explore our data here: https://recon.meddle.mobi/appvsweb/index.html 

•	 Privacy leaks over time [3]: Our devices regularly indicate that apps need to be updated 
for “bug fixes and improvements,” but an important question is whether some of those ”im­
provements” are more data tracking. We looked at historical versions of hundreds of pop­
ular apps to find out. We found that, by many measures, privacy in terms of data exposed 
to other parties over the Internet is getting worse, but it’s also highly variable over time. 
We also found apps unintentionally sharing consumers’ passwords with third parties (their 
analytics providers), and responsibly disclosed so they could fix it. We made an interface for 
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exploring the data to see how your apps are changing data collection over time, which you 
can find here: https://recon.meddle.mobi/appversions/ 

•	 Is your phone listening/watching you? [2]: We recently undertook a large-scale study (thou­
sands of apps) to determine whether apps on our phones are surreptitiously recording our 
conversations via built-in microphones and/or images/video from our cameras. The good 
news is that we did not find apps abusing the microphone or camera, but we did find screen 
recording behavior that is alarming both in terms of privacy risks but also because it does 
not require permission from, or notification to, the user. 

Appended to the end of this document are copies of the referenced manuscripts. Do not hesi­
tate to reach out with any questions. 
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Abstract 
It is well known that apps running on mobile devices extensively 
track and leak users’ personally identifiable information (PII); 
however, these users have little visibility into PII leaked through the 
network traffic generated by their devices, and have poor control 
over how, when and where that traffic is sent and handled by third 
parties. In this paper, we present the design, implementation, and 
evaluation of ReCon: a cross-platform system that reveals PII leaks 
and gives users control over them without requiring any special 
privileges or custom OSes. ReCon leverages machine learning 
to reveal potential PII leaks by inspecting network traffic, and 
provides a visualization tool to empower users with the ability 
to control these leaks via blocking or substitution of PII. We 
evaluate ReCon’s effectiveness with measurements from controlled 
experiments using leaks from the 100 most popular iOS, Android, 
and Windows Phone apps, and via an IRB-approved user study with 
92 participants. We show that ReCon is accurate, efficient, and 
identifies a wider range of PII than previous approaches. 

1. INTRODUCTION 
There has been a dramatic shift toward using mobile devices 

such as smartphones and tablets as the primary interface to access 
Internet services. Unlike their fixed-line counterparts, these devices 
also offer ubiquitous mobile connectivity and are equipped with a 
wide array of sensors (e.g., GPS, camera, and microphone). 

This combination of rich sensors and ubiquitous connectivity 
makes these devices perfect candidates for privacy invasion. 
Apps extensively track users and leak their personally identifiable 
information (PII) [17, 23, 27, 35, 58], and users are generally 
unaware and unable to stop them [21, 29]. Cases of PII leaks 
dramatically increased from 13.45% of apps in 2010 to 49.78% 
of apps in 2014, and the vast majority of these leaks occur over IP 
networks (less than 1% of apps leak data over SMS) [44]. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 
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Previous attempts to address PII leaks face challenges of a lack 
of visibility into network traffic generated by mobile devices and 
the inability to control the traffic. Passively gathered datasets 
from large mobile ISPs [58, 60] provide visibility but give users no 
control over network flows. Likewise, custom Android extensions 
that are often integrated in dynamic analysis tools provide control 
over network flows but measurement visibility is limited to the 
devices running these custom OSes or apps [24], often requiring 
warranty-voiding “jailbreaking.” Static analysis tools can identify 
PII leaks based on the content of the code implementing an app, but 
suffer from imprecision and cannot defend against dynamic code 
loading at run time. 

We argue that improving mobile privacy requires (1) trusted third-
party systems that enable auditing and control over PII leaks, and 
(2) a way for such auditors to identify PII leaks. Our key observation 
is that a PII leak must (by definition) occur over the network, so 
interposing on network traffic is a naturally platform-independent 
way to detect and mitigate PII leaks. Based on this insight, we 
propose a simpler, more effective strategy than previous approaches: 
interposing on network traffic to improve visibility and control for 
PII leaks. 

Using this approach, we focus on the problem of identifying 
and mitigating PII leaks at the network level. We describe the 
design and implementation of a system to address this problem 
called ReCon, which detects PII leaks from network flows alone, 
presents this information to users, and allows users fine-grained 
control over which information is sent to third parties. We use 
machine learning and crowdsourcing-based reinforcement to build 
classifiers that reliably detect PII in network flows, even when we 
do not know a priori what information is leaked and in what format. 
To address flows using SSL or obfuscation, we describe techniques 
that allow our system to detect PII leaks in encrypted flows with 
user opt in, and adapt to obfuscation.1 

By operating on network traffic alone, ReCon can be deployed 
in mobile networks [4], in home networks, in the cloud, or on 
mobile devices. ReCon is currently deployed using VPN tunnels to 
software middleboxes running on popular cloud platforms, because 
this allows us to immediately deploy to arbitrary mobile device 
OSes and ISPs. 

Our key contributions are as follows: 
MobiSys ’16, June 25–30, 2016, Singapore. 
� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM. 

1We support SSL decryption for controlled experiments and private
ISBN 978-1-4503-4269-8/16/06. . . $15.00 ReCon instances, but disable them in user studies for privacy 
DOI: http://dx.doi.org/10.1145/2906388.2906392 reasons. 

c

http://dx.doi.org/10.1145/2906388.2906392
mailto:permissions@acm.org


•	 A study using controlled experiments to demonstrate how 
PII leaks from iOS, Android, and Windows Phone devices, 
motivating the need for (and potential effectiveness of) systems 
that identify PII leaks from network flows. We find extensive 
leaks of device identifiers (> 50% of the top 100 apps from 
all 3 OSes), user identifiers (> 14% of top 100 Android/iOS 
apps), locations (14-26% of top 100 Android/iOS apps) and 
even passwords (3 apps) in plaintext traffic. 

•	 An approach for the detection and extraction of PII leaks from 
arbitrary network flows, using machine learning informed by 
extensive ground truth for more than 72,000 flows generated by 
mobile apps. 

•	 A system that enables users to view PII leaks from network 
flows, provide feedback about relevant leaks, and optionally 
modify leaks. 

•	 An evaluation of our system, showing it is efficient 
(classification can be done in less than one ms), and that it 
accurately identifies leaks (with 98.1% accuracy for the vast 
majority of flows in our dataset). We show that a simple 
C4.5 Decision Tree (DT) classifier is able to identify PII leaks 
with accuracy comparable to several ensemble methods atop 
DTs (AdaBoost, Bagging, and Blending) that take significantly 
more processing time (by a factor of 7.24). 

•	 A comparison with three alternative techniques for detecting 
PII leaks using information flow analysis. We show that overall 
ReCon finds more PII leaks than all three approaches. Further, 
ReCon can leverage information flow analysis techniques to 
improve its coverage, as we demonstrate in §5.3. 

•	 A characterization of our approach on traffic generated by user 
devices as part of an IRB-approved user study. We demonstrate 
that our approach successfully identifies PII leaks (with users 
providing 5,351 labels for PII leaks) and characterize how 
these users’ PII is leaked “in the wild.” For example, we find 
previously unreported sensitive information such as usernames 
and passwords (21 apps) being leaked in plaintext flows. 

In the next section, we motivate our work using the results of 
controlled experiments identifying extensive information leakage 
in popular apps. We then describe the design (§3) and 
implementation (§4) of ReCon. We validate our design choices 
using controlled experiments in §5 and in §6 we show their 
relevance “in the wild” with a deployment of ReCon using an IRB-
approved study with 92 participants. We discuss related work in §7 
and conclude in §8. 
The code and data from our controlled experiments are open-source 
and publicly available at: 

http://recon.meddle.mobi/codeanddata.html 

2. MOTIVATION AND CHALLENGES 
In this section, we use controlled experiments to measure PII 

leakage with ground-truth information. We find a surprisingly 
large volume of PII leaks from popular apps from four app stores, 
particularly in plaintext (unencrypted) flows. Based on these 
results, we identify several core challenges for detecting PII leaks 
when we do not have ground-truth information, i.e., for network 
traffic generated by arbitrary users’ devices. In the next section, 
we describe how to automatically infer PII leaks in network flows 
when the contents of PII is not known in advance. 

2.1 Definition of PII 
Personally identifiable information (PII) is a generic term 

referring to “information which can be used to distinguish or 

trace an individual’s identity” [38]. These can include geographic 
locations, unique identifiers, phone numbers and other similar data. 

Central to this work is identifying PII leaked by apps over the 
network. In this paper, we define PII to be either (1) Device 
Identifiers specific to a device or OS installation (ICCID, IMEI, 
IMSI, MAC address, Android ID, Android Advertiser ID, iOS 
IFA ID, Windows Phone Device ID), (2) User Identifiers, which 
identify the user (name, gender, date of birth, e-mail address, 
mailing address, relationship status), (3) Contact Information 
(phone numbers, address book information), (4) Location (GPS 
latitude and longitude, zip code), or (5) Credentials (username, 
password). This list of PII is informed by information leaks 
observed in this study. While this list is not exhaustive, we believe 
it covers most of the PII that concerns users. We will update the list 
of tracked PII as we learn of additional types of PII leaks. 

2.2 Threat Model 
To improve user privacy, we should inform users of any PII that 

is exposed to eavesdroppers over insecure connections, and any 
unnecessary PII exposed to other parties over secure (i.e., encrypted) 
connections. Determining what information is necessary to share 
remains an open problem that we do not solve in this work, so we 
consider the upper bound of all PII transmitted to other parties. 

Specifically, we define a “leak” as any PII, as described in Section 
§2.1, that is sent over the network from a device to a first or third 
party over both secure (i.e., HTTPS) and insecure (i.e., HTTP) 
channels. We further define the following two threat scenarios: 
Data-exfiltrating apps. In this scenario, the app developers either 
directly, or indirectly via advertising and analytics libraries, collect 
PII from the users’ mobile devices, beyond what would be required 
for the main functionality of the apps. In this work, we do not 
establish whether a PII leak is required for app functionality; rather, 
we make all leaks transparent to users so they can decide whether 
any individual leak is acceptable. 
Eavesdropping on network traffic. Here, the adversary learns 
PII about a user by listening to network traffic that is exposed 
in plaintext (e.g., at an unencrypted wireless access point, or by 
tapping on wired network traffic). Sensitive information, such 
as passwords, are sent over insecure channels, leaving the users 
vulnerable to eavesdropping by this adversary. 

ReCon addresses both scenarios by automatically detecting PII 
leaks in network flows, presenting the detected leaks to users and 
allowing them to modify or block leaks. Clearly, some information 
should never be sent over insecure channels. Thus, whenever ReCon 
detects a security critical leak, such as a password being sent over 
HTTP, we follow a responsible disclosure procedure and notify the 
developer. 

2.3 Controlled Experiments for Ground Truth 
Our goal with controlled experiments is to obtain ground-truth 

information about network flows generated by apps and devices. 
We use this data to identify PII in network flows and to evaluate 
ReCon (§5). 
Experiment setup. We conduct controlled experiments using 
Android devices (running Android 5.1.1), an iPhone (running iOS 
8.4.1) and a Windows Phone (running Windows 8.10.14226.359). 
We start each set of experiments with a factory reset of the 
device followed by connecting the device to Meddle [49]. Meddle 
provides visibility into network traffic through redirection, i.e., 
sending all device traffic to a proxy server using native support 
for virtual private network (VPN) tunnels. Once traffic arrives at 
the proxy server, we use software middleboxes to intercept and 
modify the traffic. We additionally use SSLsplit [9] to decrypt and 
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inspect SSL flows only during our controlled experiments where 
no human subject traffic is intercepted. Our dataset and the full 
details of our experiments are available on our project page at 
http://recon.meddle.mobi/codeanddata.html. 
Manual tests. We manually test the 100 most popular free apps 
for Android, iOS, and Windows Phone from the Google Play store, 
the iOS App Store, and the Windows Phone Store on August 9, 
2015 as reported by App Annie [2]. For each app, we install 
it, interact with it for up to 5 minutes, and uninstall it. We give 
apps permission to access to all requested resources (e.g., contacts 
or location). This allows us to characterize real user interactions 
with popular apps in a controlled environment. We enter unique 
and distinguishable user credentials when interacting with apps to 
easily extract the corresponding PII from network flows (if they are 
not obfuscated). Specific inputs, such as valid login credentials, 
e-mail addresses and names, are hard to generate with automated 
tools [20]. Consequently, our manual tests allow us to study app 
behavior and leaks of PII not covered by our automated tests. 
Automated tests. We include fully-automated tests on the 100 
Android apps used in the manual tests and also 850 of the top 
1,000 Android apps from the free, third-party Android market 
AppsApk.com [3] that were successfully downloaded and installed 
on an Android device.2 We perform this test to understand how 
third-party apps differ from those in the standard Google Play 
store, as they are not subject to Google Play’s restrictions and 
vetting process (but can still be installed by users without rooting 
their phones). We automate experiments using adb to install each 
app, connect the device to the Meddle platform, start the app, 
perform approximately 10,000 actions using Monkey [11], and 
finally uninstall the app and reboot the device to end any lingering 
connections. We limit the automated tests to Android devices 
because iOS and Windows do not provide equivalent scripting 
functionality. 
Analysis. We use tcpdump [10] to dump raw IP traffic and bro [5] 
to extract the HTTP flows that we consider in this study, then we 
search for the conspicuous PII that we loaded onto devices and 
used as input to text fields. We classify some of the destinations of 
PII leaks as trackers using a publicly available database of tracker 
domains [1], and recent research on mobile ads [22, 34, 43]. 

2.4 PII Leaked from Popular Apps 
We use the traffic traces from our controlled experiments to 

identify how apps leak PII over HTTP and HTTPS. For our analysis 
we focus on the PII listed in §2.1. Some of this information may be 
required for normal app operation; however, sensitive information 
such as credentials should never travel across the network in 
plaintext. 

Table 1 presents PII leaked by iOS, Android and Windows 
apps in plaintext. Device identifiers, which can be used to track 
user’s behavior, are the PII leaked most frequently by popular 
apps. Table 1 shows that other PII—user identifiers, contacts, 
location, and credentials such as username and password—are 
also leaked in plaintext. Importantly, our manual tests identify 
important PII not found by automated tests (e.g.,, Monkey) such 
as user identifiers and credentials. Thus, previous studies based 
on automation underestimate leakage and are insufficient for good 
coverage of PII leaks. 
Cross-platform app behavior. We observed that the information 
leaked by an app varied across OSes. Of the top 100 apps for 
Android, 16 apps are available on all the three OSes. Of these 
16 apps, 11 apps leaked PII in plaintext on at least one OS: 2 

214 apps appear both in the AppsApk and Google Play stores, but
AppsApk hosts significantly older versions. 

apps leaked PII on all the three OSes, 5 apps leaked PII in exactly 
one OS, and the remaining 4 apps leaked PII in 2 of the OSes. A 
key take-away is that PII analysis based only on one OS does not 
generalize to all OSes. 
Leaks over SSL. During our experiments, we observed that PII is 
also sent over encrypted channels. In many cases, this is normal 
app behavior (e.g., sending credentials when logging in to a site, 
or sending GPS data to a navigation app). However, when such 
information leaks to third parties, there is a potential PII leak. We 
focus on the PII leaked to tracker domains [1], and find that 6 iOS 
apps, 2 Android apps and 1 Windows app send PII to trackers over 
SSL. The vast majority of this information is device identifiers, 
with three cases of username leaks. While SSL traffic contains a 
minority of PII leaks, there is clearly still a need to address leaks 
from encrypted flows. 

Our observations are a conservative estimate of PII leakage 
because we did not attempt to detect obfuscated PII leaks (e.g., 
via salted hashing), and several apps used certificate pinning (10 
iOS, 15 Android, and 7 Windows apps) or did not work with VPNs 
enabled (4 iOS apps and 1 Android app). 3 Our results in §5.3 
indicate that obfuscation is rare today, and our results above show 
that significant PII leaks are indeed visible in plaintext. 

2.5 Summary and Challenges 
While the study above trivially revealed significant PII leaks from 

popular mobile apps, several key challenges remain for detecting 
PII leaks more broadly. 
Detection without knowing PII. A key challenge is how to detect 
PII when we do not know the contents of PII in advance. One 
strawman solution is to simply block all advertising and tracking 
sites. However, this is a blunt and indiscriminate approach that 
can disrupt business models supporting free apps. In fact, the 
developers of the top paid iOS app Peace (which blocks all ads) 
recently withdrew their app from the App Store for this reason [40]. 

Another strawman solution is to automatically (and/or 
symbolically) run every app in every app store to determine 
when PII is leaked. This allows us to formulate a regular 
expression to identify PII leaks from every app regardless of the 
user: we simply replace the PII with a wildcard. 

There are several reasons why this is insufficient to identify PII 
leaks for arbitrary user flows. First, it is impractically expensive to 
run this automation for all apps in every app store, and there are no 
publicly available tools for doing this outside of Android. Second, 
it is difficult (if not impossible) to use automation to explore 
every possible code path that would result in PII leaks, meaning 
this approach would miss significant PII. Third, this approach is 
incredibly brittle – if a tracker changes the contents of flows leaking 
PII at all, the regular expression would fail. 

These issues suggest an alternative approach to identifying PII in 
network flows: use machine learning to build a model of PII leaks 
that accurately identifies them for arbitrary users. This would allow 
us to use a small set of training flows, combined with user feedback 
about suspected PII leaks, to inform the identification of a PII leaks 
for a large number of apps. 
Encoding and formatting. PII leaked over the network can be 
encoded using Unicode and other techniques like gzip, JSON, and 
XML, so a technique to identify PII in network flows must support a 
variety of formats. In our experience, it is relatively straightforward 
to extract the encoding for a flow and search for PII using this 
encoding. We support the encodings mentioned above, and will 
add support for others as we encounter them. 

3Details and the complete dataset can be found on our website. 
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# Apps leaking a given PII 
Testing # of Device User Contact 

OS Store Technique Apps Identifier Identifier Information Location Credentials 
iOS App Store Manual 100 47 (47.0%) 14 (14.0%) 2 (2.0%) 26 (26.0%) 8 (8.0%) 
Android Google Play Manual 100 52 (52.0%) 15 (15.0%) 1 (1.0%) 14 (14.0%) 7 (7.0%) 
Windows WP Store Manual 100 55 (55.0%) 3 (3.0%) 0 (0.0%) 8 (8.0%) 1 (1.0%) 
Android AppsApk Automated 850 155 (18.2%) 6 (0.7%) 8 (0.9%) 40 (4.7%) 0 (0.0%) 
Android Google Play Automated 100 52 (52.0%) 0 (0.0%) 0 (0.0%) 6 (6.0%) 0 (0.0%) 

Table 1: Summary of PII leaked in plaintext (HTTP) by iOS, Android and Windows Phone apps. User identifiers and credentials are 
leaked across all platforms. Popular iOS apps leak location information more often than the popular Android and Windows apps. 

Encryption. Flows in the mobile environment increasingly use 
encryption (often via SSL). Sandvine reports that in 2014 in North 
American mobile traffic, approximately 12.5% of upstream bytes 
use SSL, up from 9.78% the previous year [54]. By comparison, 
11.8% of bytes came from HTTP in 2014, down from 14.66% the 
previous year. A key challenge is how to detect PII leaks in such 
encrypted flows. ReCon identifies PII leaks in plaintext network 
traffic, so it would require access to the original plaintext content 
to work. While getting such access is a challenge orthogonal to 
this work, we argue that this is feasible for a wide range of traffic 
if users run an SSL proxy on a trusted computer (e.g., the user’s 
home appliance, such as a computer or home gateway) or use recent 
techniques for mediated access to encrypted traffic [48, 55]. 
Obfuscation of PII. The parties leaking PII may use obfuscation 
to hide their information leaks. In our experiments, we found little 
evidence of this (§ 5.3). In the future, we anticipate combining our 
approach with static and dynamic analysis techniques to identify 
how information is being obfuscated, and adjust our system to 
identify the obfuscated PII. For example, using information flow 
analysis, we can reverse-engineer how obfuscation is done (e.g., 
for salted hashing, learn the salt and hash function), then use this 
information when analyzing network traces to identify leaked PII. 
In the ensuing cat-and-mouse game, we envision automating this 
process of reverse engineering obfuscation. 

3. RECON GOALS AND DESIGN 
The previous section shows that current OSes do not provide 

sufficient visibility into PII leaks, provide few options to control 
it, and thus significant amounts of potentially sensitive information 
is exfiltrated from user devices. To address this, we built ReCon, 
a tool that detects PII leaks, visualizes how users’ information is 
shared with various sites, and allows users to change the shared 
information (including modifying PII or even blocking connections 
entirely). 

The high-level goal of our work is to explore the extent to which 
we can address privacy issues in mobile systems at the network 
level. The sub-goals of ReCon are as follows: 
•	 Accurately identify PII in network flows, without requiring the 

knowledge of users’ PII a priori. 
•	 Improve awareness of PII leaks by presenting this information 

to users. 
•	 Automatically improve the classification of sensitive PII based 

on user feedback. 
•	 Enable users to change these flows by modifying or removing 

PII. 
To achieve the first three goals, we determine what PII is leaked 

in network flows using network trace analysis, machine learning, 
and user feedback. We achieve the last goal by providing users with 
an interface to block or modify the PII shared over the network. 

This paper focuses on how to address the research challenges in 
detecting and revealing PII leaks; as part of ongoing work outside 
the scope of this paper, we are investigating other UIs for modifying 
PII leaks, how to use crowdsourcing to help design PII-modifying 
rules, and how we can use ReCon to provide other types of privacy 
(e.g., k-anonymity). 

Figure 1 presents the architecture of the ReCon system. In the 
“offline” phase, we use labeled network traces to determine which 
features of network flows to use for learning when PII is being 
leaked, then train a classifier using this data, finally producing a 
model for predicting whether PII is leaked. When new network 
flows enter ReCon (the “online” phase), we use the model to 
determine whether a flow is leaking PII and present the suspected 
PII leak to the user via the ReCon Web UI (Fig. 2). We currently 
detect PII as described in the previous section, and will add other 
PII types as we discover them. Note that our approach can detect 
any PII that appears in network traffic as long as we obtain labeled 
examples. 

We collect labels from users (i.e., whether our suspected PII is 
correct) via the UI and integrate the results into our classifier to 
improve future predictions (left). In addition, ReCon supports a 
map view, where we display the location information that each 
domain is learning about the user (right). By using a Web interface, 
ReCon users can gain visibility and control into their PII leaks 
without installing an app. A demo of ReCon is available at 
http://recon.meddle.mobi/DTL-ReconDemo.mp4. 

To support control of PII, ReCon allows users to tell the system 
to replace PII with other text (or nothing) for future flows (see 
the drop-down boxes in Fig. 2(a)). Users can specify blocking or 
replacement of PII based on category, domain, or app. This protects 
users’ PII for future network activity, but does not entirely prevent 
PII from leaking in the first place. To address this, we support 
interactive PII labeling and filtering, using push notifications4 or 
other channels to notify the user of leaks immediately when they 
are detected (as done in a related study [15]). 

3.1 Non-Goals 
ReCon is not intended as a blanket replacement for existing 

approaches to improve privacy in the mobile environment. For 
example, information flow analysis [24] may identify PII leaks not 
revealed by ReCon. In fact, ReCon can leverage information flow 
analysis techniques to improve its coverage, as we demonstrate 
in §5.3. Importantly, ReCon allows us to identify and block 
unobfuscated PII in network flows from arbitrary devices without 
requiring OS modifications or taint tracking. 

The need for access to plaintext traffic is an inherent limitation of 
our approach. We discussed several ways to address encryption and 
obfuscation of PII in the previous section. If these should fail, we 

4Push notifications require a companion app, and we currently
support Android (we plan to release iOS and Windows versions
soon). 

http://recon.meddle.mobi/DTL-ReconDemo.mp4
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Figure 1: ReCon architecture. We initially select features and 
train a model using labeled network flows (top), then use this model 
to predict whether new network flows are leaking PII. Based on 
user feedback, we retrain our classifier (bottom). Periodically, we 
update our classifier with results from new controlled experiments. 

(a) PII leaks and actions (b) Map view of location leaks 

Figure 2: Screen capture of the ReCon user interface. Users can 
view how their PII is leaked, validate the suspected PII leaks, and 
create custom filters to block or modify leaks. 

can recover plaintext traffic with OS support for access to network 
traffic content as it appears before encryption or obfuscation. Of 
course, getting such support from an OS could be challenging. 
Alternatively, policymakers such as the FTC could intervene by 
barring developers from using techniques that explicitly eschew 
auditing tools such as ReCon, by citing it as a type of “deceptive 
business practice” currently disallowed in the US. 

3.2 Deployment Model and User Adoption 
Because ReCon needs access only to network traffic to identify 

and modify PII leaks, it admits a variety of deployment models, 
e.g.,, in the cloud, in home devices, inside an ISP, or on mobile 
devices. We are currently hosting this service on Meddle in a cloud-
based deployment because it provides immediate cross-platform 
support with low overheads [49]. We are also in discussions with 
Telefonica to deploy ReCon on their Awazza [4] APN proxy, which 
has attracted thousands of users. 

3.3 Protecting User Privacy 
An important concern with a ReCon user study is privacy. 

Using an IRB-approved protocol [8], we encrypt and anonymize 
all captured flows before storing them. We have two deployment 
models: the first study (approval #13-08-04) captures all of a 
subject’s Internet traffic and entails in-person, signed informed 
consent; the second study (approval #13-11-17) captures only 
HTTP GET/POST parameters (where most leaks occur) and users 
consent via an online form. The secret key is stored on a separate 
secure server and users can delete their data at any time. 

We will make the ReCon source code publicly available. For 
those who want to run their own ReCon instance (e.g., if they do 
not want to participate in our study), our system requires only that 
a user has root on a Linux OS. ReCon can be deployed in a single-
machine instance on a home computer, as Raspberry Pi plugged 
into a home router, a dedicated server in an enterprise, a VM in 
the cloud, or in the device itself. One can also selectively route 
traffic to different ReCon instances, e.g.,, to a cloud instance for 
HTTP traffic and a trusted home instance or on-device software 
such as HayStack [51] to decrypt HTTPS connections to identify 
PII leaked over SSL. 

4. RECON IMPLEMENTATION 
We now discuss key aspects of our implementation. We then 

evaluate our design decisions in the following section, and finally 
demonstrate how they hold up “in the wild” via a user study with 92 
participants. Table 2 presents a roadmap for the remainder of the 
paper, highlighting key design decisions, evaluation criteria, and 
results. The ReCon pipeline begins with parsing network flows, 
then passing each flow to a machine learning classifier for labeling 
it as containing a PII leak or not. 

4.1 Machine Learning Techniques 
We use the weka data mining tool [28] to train classifiers that 

predict PII leaks. We train our classifier by extracting relevant 
features and providing labels for flows that leak PII as described 
below. Our input dataset is the set of labeled flows from our 
controlled experiments in §2.3. To evaluate our classifiers, we use 
k-fold cross validation, where a random (k - 1)/k of the flows in 
our dataset are used to train the classifier, and the remaining 1/k of 
the flows are tested for accuracy. This process is repeated n times 
to understand the stability of our results (see §5). 
Feature extraction. The problem of identifying whether a flow 
contains PII is similar to the document classification problem,5 

so we use the “bag-of-words” model [32]. We choose certain 
characters as separators and consider anything between those 
separators to be words. Then for each flow, we produce a vector 
of binary values where each word that appears in a flow is set to 1, 
and each word that does not is set to 0. 

A key challenge for feature extraction in network flows is that 
there is no standard token (e.g., whitespace or punctuation) to use 
for splitting flows into words. For example, a colon (:) could 
be part of a MAC address (e.g., 02:00:00:00:00), a time-of­
day (e.g., 11:59), or JSON data (e.g., username:user007). 
Further frustrating attempts to select features, one domain uses 
“=>” as a delimiter (in username =>user007). In these cases, 
there is no single technique that covers all flows. Instead, we 
use a number of different delimiters “,;/(){}[]" to handle 
the common case, and treat ambiguous delimiters by inspecting 
the surrounding content to determine the encoding type based on 

5Here, network flows are documents and structured data are words. 



Section Topic Dataset Key results 
4.1 
4.2 
5.2 

5.3 

6 

Implementation 
" 

Evaluation: ML techniques 

Evaluation: IFA comparison 

Evaluation: “in the wild” 

Controlled exp. 
Controlled exp. 
Controlled exp. 

Automated exp. 

User study 

Feature extraction and selection, per-domain per-OS classifiers 
Automatically identifying PII in flows 
Decision trees provide best trade-off for accuracy/speed, per-domain per-OS classifiers 
outperform general ones, feature selection balances accuracy and training time, heuristics 
for PII extraction are accurate 
ReCon generally outperforms information flow analysis techniques, and can learn new 
association rules from them to further improve accuracy 
ReCon is efficient, users labels confirm accuracy of ReCon even for apps not previously 
seen, retraining based on user labels substantially improves accuracy, significant amounts 
of sensitive information is leaked in plaintext from popular apps. 

Table 2: Roadmap for key topics covered in §4, §5 and §6. We train and test our classifier using 10-fold cross-validation, i.e., a random 
9/10 samples for training and the remaining 1/10 for testing; we repeat this process 10 times to tune our parameters. 

context (e.g., looking at content-encoding hints in the HTTP header 
or whether the content appears in a GET parameter). 
Feature selection. A simple bag-of-words model produces too 
many features to be useful for training accurate classifiers that 
make predictions within milliseconds (to intercept PII leaks in real 
time). To reduce the feature set, we assume that low-frequency 
words are unlikely to be associated with PII leaks, because when 
PII does leak, it rarely leaks just once. On the other hand, session 
keys and other ephemeral identifiers tend to appear in exactly one 
flow. Based on this intuition, we apply a simple threshold-based 
filter that removes a feature if its word frequency is too small. 
We select a reasonable threshold value empirically, by balancing 
accuracy and classification time for labeled data (discussed in 
§5.2.3). To avoid filtering PII leaks that occur rarely in our labeled 
data, we oversample rarely occurring PII leaks(so that their number 
occurrences is greater than the filter threshold). In addition, we 
randomize PII values (e.g.,, locations, device IDs) in each flow 
when training to prevent the classifier from using a PII value as 
a feature. 

While the above filter removes ephemeral identifiers from our 
feature set, we must also address the problem of words that 
commonly appear. Several important examples include information 
typically found in HTTP flows, such as content-length:, 
en- us, and expires. We thus add stop-word-based filtering 
on HTTP flows, where the stop words are determined by term 
frequency—inverse document frequency (tf-idf). We include only 
features that have fairly low tf-idf values and that did not appear 
adjacent to a PII leak in a flow from our controlled experiments. 
Per-domain-and-OS and general classifiers. We find that PII 
leaks to the same destination domain use the same (or similar) 
data encodings to transfer data over the network, but that this 
encoding may differ across different OSes. Based on this 
observation, we build per-domain-and-OS models (one classifier 
for each [destination domain, OS] pair) instead of one single 
general classifier. We identify the domain associated with each 
flow based on the Host: parameter in the HTTP header. If this 
header is not available, we can also identify the domain associated 
with each IP address by finding the corresponding DNS lookup 
in packet traces. We identify the OS based on the fact that 
different OSes use different authentication mechanisms in our 
VPN, and users tell us in advance which OS they are using. This 
improves prediction accuracy because the classifier typically needs 
to learn a small set of association rules. Further, per-domain­
and-OS classifiers improve performance in terms of lower-latency 
predictions (§5.2.3), important for detecting and intercepting PII 
leaks in-band. 

The above approach works well if there is a sufficiently large 
sample of labeled data to train to the per-domain per-OS classifier. 
For domains that do not see sufficient traffic, we build a (cross­

domain) general classifier. The general classifier tends to have 
few labeled PII leaks, making it susceptible to bias (e.g., 5% of 
flows in our general classifier are PII leaks). To address this, we 
use undersampling on negative samples, using 1/10 sampling to 
randomly choose a subset of available samples. 

Note that we do not need to train classifiers on every domain in 
the Internet; rather, we train only on domains contacted by users’ 
traffic. Further, we do not need every user to label every PII leak; 
rather, we need only a small number of labeled instances from a 
small number of users to identify PII leaks for all users whose 
traffic visits those domains. 
Adapting to PII leaks “in the wild.” A key challenge for any 
ML technique is identifying flows leaking PII that were never 
seen in controlled experiments. To mitigate this problem, we 
integrate user feedback from flows that we did identify using one 
of our classifiers. Specifically, when a user provides feedback 
that we have correctly identified PII, we can search for that PII 
in historical flows to identify cases ReCon missed due to lack of 
sufficient training data. Further, we can use these flows to retrain 
our classifier to successfully catch these instances in future network 
flows. We discuss the effectiveness of this approach in §6. 

Any system that allows user feedback is susceptible to incorrect 
labels, e.g., via user error or Sybil attacks. There are two ways to 
address this. First, we can simply train per-user classifiers, so any 
erroneous labels only affect the user(s) who provide them. Second, 
we can train system-wide classifiers if we can reliably distinguish 
good labels from bad ones. To this end, we envision using existing 
majority-voting algorithms and/or reputation systems [36]. 

4.2 Automatically Extracting PII 
A machine learning classifier indicates whether a flow contains 

PII, but does not indicate which content in the flow is a PII 
leak. The latter information is critical if we want to present users 
with information about their leaks and allow them to validate the 
predictions. 

A key challenge for extracting PII is that the key/value pairs 
used for leaking PII vary across domains and devices; e.g., the key 
“device_id” or “q” might each indicate an IMEI value for different 
domains, but “q” is not always associated with a PII leak. While 
we found no solution that perfectly addresses this ambiguity, we 
developed effective heuristics for identifying “suspicious” keys that 
are likely associated with PII values. 

We use two steps to automatically extract PII leaks from a 
network flows classified as a leak. The first step is based on the 
relative probability that a suspicious key is associated with a PII 
leak, calculated as follows: 

= KPII  Ptype,key Kall 



where type is the PII type (e.g., IMEI, e-mail address), key is the 
suspicious key for that type of PII, KPII  is the number of times 
the key appeared in flows identified with PII leaks, and Kall is the 
number times the key appeared in all flows. The system looks for 
suspicious keys that have Ptype,key greater than a threshold. We set 
this value to an empirically determined value, 0.2, based on finding 
the best trade-off between false positives (FPs) and true positives 
(TPs) for our dataset. For users wanting more or less sensitivity, 
we will make this a configurable threshold in ReCon (e.g., if a user 
wants to increase the likelihood of increasing TPs at the potential 
cost of increased FPs). 

In the second step, we use a decision tree classifier, and observe 
that the root of each tree is likely a key corresponding to a PII value. 
We thus add these roots to the suspicious key set and assign them a 
large P value. 

In the next section, we evaluate ReCon using controlled 
experiments on a pre-labeled dataset. This evaluation will only use 
the initial training phase. Next, we evaluate ReCon in the wild 
with a user study on our public deployment (§6). This evaluation 
will use both the initial training phase and the continuous training 
phase obtained from real users. 

5. EVALUATION 
This section evaluates the effectiveness of ReCon in terms of 

accuracy and performance. First, we describe our methodology, 
then we describe the results from controlled experiments in terms 
of classifier accuracy compared to ground truth and to information 
flow analysis. In the next section, we evaluate our system based on 
results from a user study. 

Our key finding are: 1) we demonstrate that a decision-tree 
classifier is both accurate (99% overall) and efficient (trains in 
seconds, predicts in sub-milliseconds); 2) ReCon identifies more 
PII than static and dynamic information-flow analysis techniques, 
and can learn from the results of these approaches to improve its 
coverage of PII leaks. Note that this paper focuses on reliably 
identifying leaks and enabling control, but does not evaluate the 
control functionality. 

5.1 Dataset and Methodology 
To evaluate ReCon accuracy, we need app-generated traffic 

and a set of labels indicating which of the corresponding flows 
leak PII. For this analysis, we reuse the data from controlled 
experiments presented in §2.3; Table 3 summarizes this dataset 
using the number of flows generated by the apps, and fraction that 
leak PII. We identify that more than 6,500 flows leak PII, and 
a significant fraction of those flows leak PII to known trackers. 
The code and data from our controlled experiments are open-
source and publicly available at http://recon.meddle. 
mobi/codeanddata.html. 

Recall from §4.1 that we use k-fold cross-validation to evaluate 
our accuracy by training and testing on different random subsets of 
our labeled dataset. We tried both k = 10 and k = 5, and found 
these values caused only a small difference (less than 1%) in the 
resulting accuracy. 

We use this labeled dataset to train classifiers and evaluate their 
effectiveness using the following metrics. We define a positive flow 
to be one that leaks PII; likewise a negative flow is one that does not 
leak PII. A false positive occurs when a flow does not leak PII but 
the classifier predicts a PII leak; a false negative occurs when a flow 
leaks PII but the classifier predicts that it does not. We measure the 
false positive rate (FPR) and false negative rate (FNR); we also 
include the following metrics: 

•	 Correctly classified rate (CCR): the sum of true positive (TP) 
and true negative (TN) samples divided by the total number of 
samples. CCR = (TN  + TP )/(TN  + TP  + FN  + FP ). 
A good classifier has a CCR value close to 1. 

•	 Area under the curve (AUC): where the curve refers to receiver 
operating characteristic (ROC). In this approach, the x-axis is 
the false positive rate and y-axis is the true positive rate (ranging 
in value from 0 to 1). If the ROC curve is x = y (AUC = 0.5), 
then the classification is no better than randomly guessing. A 
good classifier has a AUC value near 1. 

To evaluate the efficiency of the classifier, we investigate the 
runtime (in milliseconds) for predicting a PII leak and extracting 
the suspected PII. We want this value to be significantly lower than 
typical Internet latencies. 

We use the weka data mining tool to investigate the above metrics 
for several candidate machine learning approaches to identify a 
technique that is both efficient and accurate. Specifically, we 
test Naive Bayes, C4.5 Decision Tree (DT) and several ensemble 
methods atop DTs (AdaBoost, Bagging, and Blending). 

5.2 Lab Experiments 
In this section, we evaluate the impact of different implementation 

decisions and demonstrate the overall effectiveness of our adopted 
approach. 

5.2.1 Machine Learning Approaches 
A key question we must address is which classifier to use. We 

believe that a DT-based classifier is a reasonable choice, because 
most PII leaks occur in structured data (i.e., key/value pairs), and a 
decision tree can naturally represent chained dependencies between 
these keys and the likelihood of leaking PII. 

To evaluate this claim, we tested a variety of classifiers according 
to the accuracy metrics from the previous section, and present the 
results in Fig. 3. We plot the accuracy using a CDF over the domains 
that we use to build per-domain per-OS classifiers as described in 
§4.1. The top two graphs (overall accuracy via CCR and AUC), 
show that Naive Bayes has the worst performance, and nearly all 
the DT-based ensemble methods have high CCR and AUC values. 
(Note that the x-axis does not start at 0.) 

Among the ensemble methods, Blending with DTs and k-nearest­
neighbor (kNN) yields the highest accuracy; however, the resulting 
accuracy is not significantly better than a simple DT. Importantly, 
a simple DT takes significantly less time to train than ensemble 
methods. For ensemble methods, the training time largely depends 
on the number of iterations for training. When we set this value to 
10, we find that ensemble methods take 7.24 times longer to train 
than a simple DT on the same dataset. Given the significant extra 
cost with minimal gain in accuracy, we currently use simple DTs. 

The bottom figures show that most DT-based classifiers have 
zero FPs (71.4%) and FNs (76.2%) for the majority of domains. 
Further, the overall accuracy across all per-domain per-OS 
classifiers is >99%. The domains with poor accuracy are the 
trackers rlcdn.com and turn.com, due to the fact their positive 
and negative flows are very similar. For example, the key 
partner_uid is associated both with an Android ID value and 
another unknown identifier. 

To provide intuition as to why DTs work well, and why PII 
leak detection presents a nontrivial machine-learning problem, we 
include several examples of DTs trained using our data. Some cases 
of PII leaks are simple: Fig. 4(a) shows that Android Advertiser 
ID is always leaked to the tracker applovin.com when the text 
idfa is present in network traffic. Other cases are not trivial, 

http:applovin.com
http:turn.com
http:rlcdn.com
http://recon.meddle


Manual tests Automated tests (Monkey) 
OS (Store) iOS (App) Android (Play) Windows (WP) Android (Play) Android (AppsApk) 
Apps tested 100 100 100 100 850 
Apps leaking PII 63 56 61 52 164 
HTTP flows 14683 14355 12487 7186 17499 

Leaking PII 845 1800 969 1174 1776 
Flows to trackers 1254 1854 1253 1377 5893 

Leaking PII to trackers 508 567 4 414 649 

Table 3: Summary of HTTP flows from controlled experiments. Manual tests generated similar numbers of flows across platforms, but 
Android leaked proportionately more PII. Collectively, our dataset contains more than 6500 flows with PII leaks.
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Figure 3: CDF of per-domain-and-OS (PDAO) classifier accuracy, for alternative classification approaches. For the 42 PDAO 
classifiers, DT-based classifiers outperform Naive Bayes, and they exhibit good accuracy (high CCR and AUC, low FPR  and FNR). 
The vertical line depicts accuracy when using one classifier across all domains, which leads to significantly worse performance. 

as seen in Fig. 4(b). Here, we find that auid is not always 
associated with an IMEI value, and the DT captures the fact that 
the IMEI will not be present for a getImage.php5 request if 
the urid is present. Finally, Fig. 4(c) gives an example of a non­
trival DT for a different type of PII—e-mail address. Here, the 
term email appears in both positive and negative flows, so this 
feature cannot be used alone. However, our classifier learns that the 
leak happens in a /user/ request when the terms session and 
deviceId are not present.6 Overall, 62% of DTs are the simple 
case (Fig. 4(a)), but more than a third have a depth greater than two, 
indicating a significant fraction of cases where association rules are 
nontrivial. 

5.2.2 Per-Domain-and-OS Classifiers 
We now evaluate the impact of using individual per-domain­

and-OS (PDAO) classifiers, instead of one general classifier for all 
flows. We build PDAO classifiers for all domains with greater than 
100 samples (i.e., labeled flows), at least one of which leaks PII. For 
the remaining flows, there is insufficient training data to inform a 
6Note that in this domain deviceId is actually used for an app­
specific identifier, not a device identifier. 

classifier, so we create a general classifier based on the assumption 
that a significant fraction of the flows use a common structure for 
leaking PII.7 

We evaluate the impact of PDAO classifiers on overall accuracy 
in Figure 3. The vertical lines in the subgraphs represent values 
for the general classifier, which is trained using all flows from all 
domains. The figure shows that >95% of the PDAO classifiers 
have higher accuracy than the general classifier. Further, the high-
accuracy PDAO classifiers cover the vast majority of flows in our 
dataset (91%). Last, training PDAO classifiers is substantially 
less expensive in terms of runtime: it takes minutes to train PDAO 
classifiers for thousands of flows, but it takes hours to train general 
classifiers for the same flows. 

5.2.3 Feature Selection 
The accuracy of the classifiers described above largely depends 

on correctly identifying the subset of features for training. Further, 
the training time for classifiers increases significantly as the number 
7Note that once ReCon acquires sufficient labeled data (e.g., from 
users or controlled experiments) for a destination domain, we 
create a PDAO classifier. 



CCR: 99.92% Domain: applovin.com CCR: 99.09% Domain: myadas.com CCR: 100% Domain: oovoo.com 
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Figure 4: Example decision trees (DTs) for ReCon’s per-domain per-OS classifiers. The classifier beings at the root (top) node, and 
traverses the tree based on whether the term at each node is present. The leaves (boxes) indicate whether there is a PII leak (positive) or not 
(negative) for each path. The top right of each figure shows the number of positive/negative samples used to train each DT.
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Figure 5: Feature selection for the tracker domain mopub.com. Using ⇡200 features leads to high accuracy and low training times; however, 
adding more features increases training time with no benefit to accuracy. 

of features increases, meaning that an efficient classifier requires 
culling of unimportant features. A key challenge in ReCon is 
determining how to select such features given the large potential 
set derived from the bag-of-words approach. 

We use Figure 5 to illustrate this problem and how we address 
it. Here, we focus on statistics for the tracker domain mopub.com 
(266 flows out of 1,276 leak PII); other domains exhibited similar 
properties. 

First, we focus on the threshold for including features in our 
training set. As described in § 4.1, we filter out features from 
words that appear infrequently. Fig. 5(a) shows the impact of 
this decision on training time, where the x-axis is the minimum 
number of appearances for a word to be included as a feature, and 
the y-axis is the time required to train a classifier on the resulting 
features. The figure shows that including all words (threshold = 1) 
significantly increases training time, but there is a minimal impact 
on training time if the threshold is greater than or equal to 20. The 
corresponding number of features decreases from 450 to 29 as the 
threshold for word occurrence increases from 1 to 99. 

Picking the right number of features is also important for 
classifier accuracy, as too many features may lead to overfitting and 
too few features may lead to an incomplete model. We evaluate 
this using Fig. 5(b), where the x-axis is the number of features, 
the left y-axis is accuracy (the y-axis does not start at zero), and 
the right y-axis is training time. Even small numbers of features 
lead to high accuracy for this domain, but increasing the number 
of features beyond 250 does not improve performance (but does 

increase training time). We see a similar effect on the FP rate in 
Fig. 5(c). 

While the training time may not seem high in this context, 
we note that this cost must be incurred for each domain and 
each time we want to update the classifier with user-labeled 
flows. With potentially thousands of flows and labels in a large-
scale deployment, such training times can significantly affect the 
scalability and responsiveness of ReCon. 

With this in mind, we propose the following strategies for 
picking threshold values. First, we can use the above analysis 
to find the best threshold, then periodically update this threshold 
based on new labeled data. Second, we can pick a fixed threshold 
based on the average threshold across all domains (word frequency 
= 21). We evaluated the impact of these two approaches, and found 
they were nearly identical for our dataset. This suggests that a 
fixed value is sufficient for our dataset, but we propose periodically 
updating this threshold by performing the above analysis daily or 
weekly as a low-priority background process. 

5.2.4 PII Extraction Strategies 
As discussed in § 4.2, we use two heuristics to identify key/value 

pairs that are likely to leak PII. We use our dataset to evaluate 
this approach, and find that the FP and FN rates are 2.2% and 
3.5%, respectively. By comparison, a naive approach that treats 
each key/value pair equally yields FP and FN rates of 5.1% and 
18.8%, respectively. Our approach is thus significantly better, and 
our FP and FN rates are low enough to correctly extract PII the vast 
majority of the time. 

http:mopub.com
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5.3 Comparison with IFA 
Our labeled dataset in the above analysis may miss PII leaks 

that are obfuscated or otherwise hidden from our analysis. We 
now evaluate our approach by comparing with one that is resilient 
to such issues: information flow analysis (IFA). We experiment 
with three IFA techniques: (1) static IFA with FlowDroid [13], 
(2) dynamic IFA with TaintDroid [24] (via Andrubis [44]), and 
(3) AppAudit [59], which uses a combination of both static 
and approximated dynamic analysis. Each of these tools has 
limitations: some are very resource intensive and some pose 
restrictions on the type of apps they can successfully analyze. 
Static IFA. FlowDroid detects PII leaks as data flowing between 
sensitive sources and sinks, which are configured via a list of 
Android API calls. However, the analysis is quite resource 
intensive: for 4.99% of apps, our available memory of 8GB was 
insufficient for analysis; for 17.24% of apps the analysis exceeded 
our analysis timeout of 30 minutes. The detected leaks are reported 
as paths between the API calls. Note that this approach can lead to 
false positives, since a detected leak may never be triggered during 
app execution. 
Dynamic IFA. Andrubis is an app analysis sandbox that uses 
TaintDroid to identify PII leaks from Android apps during dynamic 
analysis. Andrubis installs each app in an emulated Android 
environment and monitors its behavior for 240 seconds. Besides 
calling all of the app’s registered components and simulating 
common events, such as incoming SMS and location changes, it 
uses Monkey [11] to generate approximately 8,000 pseudo-random 
user events. In addition to detailed analysis report including all 
detected data leaks, it also provides the recorded network packet 
traces. However, this analysis fails for 33.73% of apps because 
they exceed the file size and/or API level limit of Andrubis. 
Hybrid IFA. AppAudit flags functions that potentially leak PII 
through static analysis, then performs simulated dynamic analysis 
to filter out candidate functions to confirm PII leaks. It reports 
leaks to the network, file system and through SMS from sources 
such as the location, contacts and device identifiers. The analysis 
failed for 17.33% of apps. Note that AppAudit only approximates 
the execution of suspicious functions, and thus does not record any 
network packet traces. 
Methodology and results. We use the 850 apps from AppsApk.com 
and the top 100 apps from Google Play from §2.3, and focus on the 
750 apps that produced network traffic in our experiments. Since 
static and hybrid IFA approaches do not provide network flows, 
they only indicate whether an app will potentially leak a certain 
type of PII. To compare these techniques with dynamic analysis, 
we base our comparison on the number of apps that potentially 
leak a certain type of PII. Specifically, we flag an app as leaking 
a certain type of PII if any tool detected an actual or potential PII 
leak in that category (this occurs for 278 apps). We further filtered 
out cases where dynamic analysis incorrectly flagged a PII leak. 

Table 4 shows the number and percentage of apps that 
were flagged by FlowDroid, Andrubis, AppAudit and ReCon. 
FlowDroid mainly identified potential location and phone number 
leaks, while AppAudit mainly identified IMEI leaks. Andrubis 
performed well in detecting device identifiers (ICCID, IMEI, IMSI) 
and the phone number. Importantly, ReCon identifies more PII 
leaks overall, and in more categories than IFA. 

The above results are encouraging for ReCon, and we further 
investigated mismatches between ReCon and TaintDroid results, 
since the latter provides network traces that we can process 
via ReCon. Note, as the authors of TaintDroid themselves 
acknowledge [24], it may generate false positives (particularly for 
arrays and IMSI values), due to propagating taint labels per variable 

and IPC message. We thus manually inspected flows flagged as 
leaking PII, and discarded cases where the identified PII did not 
appear in plaintext network flows (i.e., false positives). Table 5 
shows the results of our analysis, grouped by PII type. 

We use the plaintext leaks identified by Andrubis as ground truth, 
and evaluate our system by sending the Andrubis network traffic 
through ReCon trained with the pre-labeled dataset described in 
Section §5.1. The ReCon false positive rate was quite low (0.11%), 
but the false negative rate was relatively high (15.6%). The vast 
majority of false negative flows were Device ID leaks (124/457 are 
obfuscated and 140/457 are false positive reports from Andrubis). 
Importantly, when we retrain ReCon’s classifier with the Andrubis 
data, we find that all of the false negatives disappear. Thus, ReCon 
is adaptive in that its accuracy should only improve as we provide 
it more and diverse sets of labeled data. In the next section we 
describe results suggesting that we can also use crowdsourcing to 
provide labeled data. 

In addition, we can use network traces labeled by IFA to train 
ReCon even in the presence of PII obfuscation. This works because 
ReCon does not search for PII itself, but rather the contextual clues 
in network traffic that reliably indicate that PII is leaking. 

Finally, ReCon identified several instances of PII leaks that are 
not tracked by IFA. These include the Android ID, MAC address, 
user credentials, gender, birthdays, ZIP codes, and e-mail addresses. 

6. RECON IN THE WILD 
We now describe the results of our IRB-approved user study, 

where participants used ReCon for at least one week and up 
to over 200 days, interacted with our system via the UI, and 
completed a follow-up survey. Our study is biased toward flows 
from the US due to initial recruitment in the Boston area, but 
includes connections from users in 21 countries in four continents. 
While we cannot claim representativeness, we can use the user 
feedback quantitatively, to understand the impact of labeling on our 
classifiers. We also use the study qualitatively, to understand what 
PII was leaked from participant devices but not in our controlled 
experiments, and to understand users’ opinions about privacy. 

The study includes 92 users in total, with 63 iOS devices and 33 
Android devices (some users have more than one device). In the 
initial training phase, we initialized the ReCon classifiers with the 
pre-labeled dataset discussed in §5. Then we use the continuous 
user feedback to retrain the classifiers. The anonymized results of 
PII leaks discovered from our ongoing user study can be found at 
http://recon.meddle.mobi/app-report.html. 
Runtime. While the previous section focused on runtime in terms 
of training time, an important goal for ReCon is to predict and 
extract PII in-band with network flows so that we can block/modify 
the PII as requested by users. As a result, the network delay 
experienced by ReCon traffic depends on the efficiency of the 
classifier. 

We evaluated ReCon performance in terms of PII prediction and 
extraction times. The combined cost of these steps is less than 
0.25 ms per flow on average (std. dev. 0.88), and never exceeds 
6.47 ms per flow. We believe this is sufficiently small compared 
to end-to-end delays of tens or hundreds of milliseconds in mobile 
networks. 
Accuracy “in the wild.” Participants were asked to view their PII 
leaks via the ReCon UI, and label them as correct or incorrect. As 
of Dec 8, 2015, our study covers 1,120,278 flows, 9,573 of which 
contained PII leaks that ReCon identified. Of those, there are 5,351 
TP leaks, 39 FP leaks and 4,183 unlabeled leaks. Table 6 shows the 
results across all users. The users in the study found few cases when 
ReCon incorrectly labeled PII leaks. The vast majority (85.6%) of 
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Approach 
#apps leaking PII 

(#reports) 
Device 

Identifier 
User 

Identifier 
Contact 

Information 
Location Credentials 

FlowDroid (Static IFA) 
Andrubis (Dynamic IFA) 
AppAudit (Hybrid IFA) 
ReCon 

91 (546) 
90 (497) 
64 (620) 

155 (750) 

51 (21.52%) 
78 (35.46%) 
57 (24.05%) 
145 (61.18%) 

0(-) 
⇥ 
⇥ 

6 (100%) 

9 (52.94%) 
10 (62.50%) 
3 (17.65%) 
4 (23.53%) 

52 (64.20%) 
3 (3.75%) 
4 (4.94%) 

29 (35.80%) 

⇥ 
⇥ 
⇥ 

0 (-) 
Union of all approaches 278 (750) 237 6 17 81 0 

Table 4: Comparison of ReCon with information flow analysis (IFA) tools. This comparison is based on automated tests for 750 Android 
apps (apps from the Google Play and AppsApk dataset for which we observed network flows). We present the number of Android apps 
detected as leaking PII (or in the case of FlowDroid, flagged as potentially leaking PII), as well as the percentage of leaking apps detected by 
each tool out of all leaking apps detected by any of the tested tools in each category (⇥ means the tool does not track that type of information). 
User credentials were not leaked because our automation tools cannot input them. 

Type of PII being leaked 
# leaks Device User Con- Loca- Cred­
detected Id. Id. tacts tion entials 
plaintext 173 N/A 10 8 N/A 
obfuscated 124 N/A 16 0 N/AAndrubis incorrect 140 N/A 24 6 N/A 
Total 457 N/A 50 14 N/A 

TP 146 17 7 35 0ReCon FN 27 0 0 0 0 

Table 5: Comparison with Andrubis (which internally uses 
TaintDroid), for Android apps only. Note that this table 
counts the number of flows leaking PII, not the number of apps. 
TaintDroid has a higher false positive rate than ReCon, but catches 
more device identifiers. After retraining ReCon with these results, 
ReCon correctly identifies all PII leaks. Further, ReCon identifies 
PII leaks that TaintDroid does not. 

unlabeled data is device identifiers, likely because it is difficult for 
users to find such identifiers to compare with our results. 
Impact of user feedback on accuracy. To evaluate the impact 
of retraining classifiers based on user feedback, we compare the 
results without user feedback (using our initial training set only) 
with those that incorporate user feedback. After retraining the 
classifier, the false positive rate decreased by 92% (from 39 to 
3), with a minor impact on false negatives (0.5% increase, or 
18/5,351). 
Retraining classifiers. As discussed in §4.1, we retrain ReCon 
classifiers periodically and after collecting sufficient samples. We 
provide options to set the frequency of retraining and the retraining 
process is relatively low cost. In our experience, retraining the 
general classifier once a day or once a week is sufficient to retain 
high accuracy. This is a process that occurs in the background, 
takes little time per domain (0.9 s per domain on average), and is 
easily parallelized to reduce retraining time. 
User survey. To qualitatively answer whether ReCon is effective, 
we conducted a survey where we asked participants, “Have you 
changed your ways of using your smartphone and its applications 
based on the information provided by our system?” Of those who 
responded to the voluntary survey, a majority (20/26) indicated that 
they found the system useful and changed their habits related to 
privacy when using mobile devices. This is in line with results 
from Balebako et al. [15], who found that users “do care about 
applications that share privacy-sensitive information with third 
parties, and would want more information about data sharing.” 

In terms of overhead, we found that a large majority of users 
(19/26) observed that battery consumption and Internet speed 
were the same better when using ReCon. While the remaining 

users observed increased battery consumption and/or believed their 
Internet connections were slower, we do not have sufficient data 
to validate whether this was due to ReCon or other factors such 
inherent network variations or increased user awareness of these 
issues due to our question. 
PII leak characterization. We now investigate the PII leaked in 
the user study. As Table 6 shows, the most commonly leaked PII is 
device identifiers, likely used by advertising and analytic services. 
The next most common leak is location, which typically occurs 
for apps that customize their behavior based on user location. We 
also find user identifiers commonly being leaked (e.g., name and 
gender), suggesting a deeper level of tracking than anonymous 
device identifiers. Depressingly, even in our small user study 
we found 171 cases of credentials being leaked in plaintext (102 
verified by users). For example, the Epocrates iOS app (used by 
more than 1 million physicians and health professionals) and the 
popular dating app Match.com (used by millions, both Android and 
iOS were affected) leaked user credentials in plaintext. Following 
responsible disclosure principles, we notified the app developers. 
The Epocrates app was fixed as of November, 2015 (and the 
vulnerability was made public [6] after we gave them time to reach 
out to users to convince them to upgrade), and Match.com fixed 
their password exposure in January, 2016 without notifying us or 
the public. These results highlight the negative impact of closed 
mobile systems—even basic security is often violated by sending 
passwords in plaintext (21 apps in our study). 

We further investigate the leaks according to OS (Table 6).8 We 
find that the average iOS user in our study experienced more data 
leaks than the average Android user, and particularly experienced 
higher relative rates of device identifier, location, and credential 
leaks. 

We investigated the above leaks to identify several apps 
responsible for “suspicious” leaks. For example, the ABC Player 
app is inferring and transmitting the user’s gender. Last, All 
Recipes—a cookbook app—is tracking user locations even when 
there is no obvious reason for it to do so. 

7. RELATED WORK 
Our work builds upon and complements a series of related 

work on privacy and tracking. Early work focused on tracking 
via Web browsers [7, 53]. Mobile devices make significant PII 
available to apps, and early studies showed PII such as location, 
usernames, passwords and phone numbers were leaked by popular 
apps [57]. Several efforts systematically identify PII leaks from 
mobile devices, and develop defenses against them. 

8Note that these results are purely observational and we do not
claim any representativeness. However, we did normalize our 
results according to the number of users per OS. 

http:Match.com
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Feedback on leaks 
Leak Type total correct wrong no label/unknown 
Device ID. 3229 12 35 3182 

216 2 437 
3 1 2 

4751 0 85 
30 0 6
 
2
 0 397 
30 0 1 
8 0 0 

227 0 11 
72 1 62 

Table 6: Summary of leaks predicted by OS. We observe a higher 
number of leaks for iOS because the number of iOS devices (63) is 
more than the number of Android devices (33). 

Dynamic analysis. One approach, dynamic taint tracking, 
modifies the device OS to track access to PII at runtime [24] 
using dynamic information flow analysis, which taints PII as it 
is copied, mutated and exfiltrated by apps. This ensures that all 
access to PII being tracked by the OS is flagged; however, it 
can result in large false positive rates (due to coarse-granularity 
tainting), false negatives (e.g., because the OS does not store 
leaked PII such as a user’s password), and incur significant runtime 
overheads that discourage widespread use. Running taint tracking 
today requires rooting the device, which is typically conducted 
only by advanced users, and can void the owner’s warranty. 
Other approaches that instrument apps with taint tracking code 
still either require modifications to platform libraries [16], and 
thus rooting, or resigning the app under analysis [50], essentially 
breaking Android’s app update and resource sharing mechanisms. 
When taint tracking is performed as part of an automated analysis 
environment, user input generation is crucial to improve coverage 
of leaks. Tools such as Dynodroid [47], PUMA [30], and A3E [14] 
automatically generate UI events to explore UI states, but require 
manual input for more complex user interactions, e.g., logging in 
to sites [20]. Finally, taint tracking does not address the problem 
of which PII leaks should be blocked (and how), a problem that 
is difficult to address in practice [34]. Nevertheless, automated 
dynamic analysis approaches are complementary to ReCon: as we 
demonstrated in §5.3, ReCon can learn from PII leaks identified 
through dynamic information flow analysis. 
Static analysis. Another approach is to perform static analysis 
(e.g., using data flow analysis or symbolic execution) to determine 
a priori whether an app will leak privacy information [12, 13, 19, 
23, 25, 31, 37, 39, 46, 59, 61–63]. This approach can avoid run­
time overhead by performing analysis before code is executed, but 
state-of-the-art tools suffer from imprecision [18] and symbolic 
execution can be too time-intensive to be practical. Further, 
deploying this solution generally requires an app store to support 
the analysis, make decisions about which kinds of leaks are 
problematic, and work with developers to address them. Static 
analysis is also limited by code obfuscation, and tends not to handle 
reflection and dynamically loaded code [64]. A recent study [44] 
finds dynamically loaded code is increasingly common, comprising 
almost 30% of goodware app code loaded at runtime. 
New execution model. Privacy capsules [33] (PC) are an OS 
abstraction that prevent privacy leaks by ensuring that an app 
cannot access untrusted devices (e.g., a network interface) after it 
accesses private information, unless the user explicitly authorizes 
it. The authors show the approach is low cost and effective for some 
apps, but it is currently deployed only as a prototype extension to 
Android and requires app modifications for compliance. 
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Network flow analysis. ReCon analyzes network flows to identify 
PII leaks. Previous studies using network traces gathered inside 
a mobile network [26, 58], in an ISP [45], and in a lab setting [41] 
identified significant tracking, despite not having access to software 
instrumentation. In this work, we build on these observations 
to both identify how users’ privacy is violated and control these 
privacy leaks regardless of the device OS or network being used. 

PrivacyGuard [56], AntMonitor [42] and HayStack [51] use 
the Android VPNService to intercept traffic and perform traffic 
analysis. A limitation of these approaches is they rely on hard-
coded identifiers for PII, or require knowledge of a user’s PII 
to work. Further, these approaches currently work only for the 
Android OS. In contrast, ReCon is cross-platform, does not require 
a priori knowledge of PII, and is adaptive to changes in how PII 
leaks. 

8. CONCLUSION 
In this paper we presented ReCon, a system that improves 

visibility and control over privacy leaks in traffic from mobile 
devices. We argued that since PII leaks occur over the network, 
detecting these leaks at the network layer admits an immediately 
deployable and cross-platform solution to the problem. Our 
approach based on machine learning has good accuracy and low 
overhead, and adapts to feedback from users and other sources of 
ground-truth information. 

We believe that this approach opens a new avenue for research on 
privacy systems, and provides opportunities to improve privacy for 
average users. We are investigating how to use ReCon to build a 
system to provide properties such as k-anonymity, or allow users 
to explicitly control how much of their PII is shared with third 
parties—potentially doing so in exchange for micropayments or 
access to app features. 
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ABSTRACT 
Many popular, free online services provide cross-platform 
interfaces via Web browsers as well as apps on iOS and An­
droid. To monetize these services, many additionally include 
tracking and advertising libraries that gather information 
about users with significant privacy implications. Given that 
the Web-based and mobile-app-based ecosystems evolve in­
dependently, an important open question is how these plat­
forms compare with respect to user privacy. 
In this paper, we conduct the first head-to-head study of 

50 popular, free online services to understand which is better 
for privacy—Web or app? We conduct manual tests, extract 
personally identifiable information (PII) shared over plain-
text and encrypted connections, and analyze the data to un­
derstand di↵erences in user-data collection across platforms 
for the same service. While we find that all platforms ex­
pose users’ data, there are still opportunities to significantly 
limit how much information is shared with other parties by 
selectively using the app or Web version of a service. 

1. INTRODUCTION 
Web browsers and mobile apps are the dominant media 

through which people interact with online services such as 
social media, news, weather, and dating. Many of these ser­
vices are provided for free to users, with providers support­
ing their costs through revenue from advertising and data 
analytics. This necessarily raises important privacy con­
cerns regarding what information is collected about users 
and how it is used. 
Previous work investigates the question of what infor­

mation is collected, either in the Web browsing environ­
ment [8, 15, 22, 24, 33–35] or in the mobile environment 
[29, 38, 42]. A close reading of this literature reveals dif­
ferences between these media, with the Web having more 
sophisticated tracking infrastructure overall, versus apps 
which have more direct access to sensitive information 
through APIs. However, to date no work has directly com­
pared these media for the same service to understand a fun-
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damental question: is there a medium that is better for 
privacy—app or Web? 
This paper provides a first look at this issue, which re­

quires addressing two key challenges. First, we must gather 
a representative sample of information that large numbers 
of online services expose of the Internet, both via apps and 
Web sites. Second, we must reliably identify the personally 
identifiable information (PII) in network tra�c generated by 
these services. By providing greater transparency into how 
apps and Web sites share PII, we seek to provide the com­
munity with better insight into the data collected by specific 
apps and Web sites, as well as help users make informed de­
cisions about how they interact with online services. 
To address the first challenge, we use a dataset consisting 

of network traces gathered from manual interactions with 
iOS, Android, and Web versions of the same 50 free on-
line services. This includes major services like The Weather 
Channel, Yelp, and BBC News. We address the second chal­
lenge by conducting controlled experiments where ground-
truth information about users’ PII, coupled with state-
of-the-art inference techniques to identify PII in network 
flows [38]. Unlike our prior work that exclusively focuses on 
PII leaked by apps, this paper aims to provide a comparison 
of Web- and app-based data collection by the same service. 

Using this approach, we determine the PII exposed by 
services over plaintext and/or to advertising and analytics 
(A&A) third-party domains, and analyze their implications 
on privacy. Our key findings are as follows. 

•	 Should you use the app? It depends. Due to 
the potentially large set of PII that apps can access 
with user permission, we expected that they would 
generally leak more PII than Web sites. However, we 
find that in 40% of cases, Web sites leak more types of 
information than apps. To help guide users toward us­
ing an app or Web site for a specific service, we provide 
an online interactive interface that makes custom sug­
gestions based on user-specified privacy preferences at: 

https://recon.meddle.mobi/appvsweb/
 
•	 What information leaks more from di↵erent 

media? We find that locations and names leak more 
often from Web sites than from apps, whereas only 
apps leak unique identifiers and other device-specific 
information. Surprisingly, we find passwords leaked 
(albeit over HTTPS) to third parties that have no rea­
son to receive them. 

•	 Web sites directly contact more trackers and 
advertisers than apps. We find that Web sites of­
ten include content from multiple advertisers and third DOI: http://dx.doi.org/10.1145/2987443.2987456 
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parties, and cause browsers to redirect through several 
more via real-time bidding. In contrast, most apps 
include a single advertisement library, which contacts 
fewer domains. 

•	 How much tracking is in common between app 
and Web for the same service? We find that both 
apps and Web sites can leak locations, names, gender, 
phone number, and e-mail addresses. Unlike for apps, 
we found no evidence in our tests that Web sites are 
able to access and share device-specific unique identi­
fiers, such as an IMEI and a MAC address. Whether 
this is true for other services remains an open question. 

In addition to providing an online interface to make 
customized privacy recommendations, we make our dataset 
and code available at: 

https://recon.meddle.mobi/appvsweb/
 

2. BACKGROUND AND RELATED WORK 
Users are increasingly concerned with the amount of track­

ing and data collection conducted by online services [32,41]. 
In response, regulators such as the FTC, FCC, and the EU 
Commission enacted rules that protect consumer privacy; 
non-profits such as the Data Transparency Lab and Mozilla 
support e↵orts to increase transparency of online tracking; 
and tools like AdBlock and Disconnect limit tracking. 
These e↵orts are supported by a large body of research 

that identifies when Personally Identifiable Information 
(PII) is exposed by online services. Previous work focuses 
either on Web sites or apps to determine privacy risks, but 
not both. In contrast, to the best of our knowledge, we are 
the first to directly compare information gathered through 
Web sites and apps for the same online service, allowing us 
to provide a relative ranking of which one is less invasive ac­
cording to various metrics. Although this study represents 
a snapshot of online service behavior at one point in time, 
our approach is general and can be repeated to observe how 
the privacy landscape evolves. 

2.1 Web Privacy 
Well before there were apps and modern smartphones, re­

searchers observed that advertisers and analytics companies 
were tracking users via Web site content [25]. These ini­
tial observations motivated a wide range of research on Web 
tracking, from understanding the tracking ecosystem over 
time and the economics behind it [11,18,26,27], to identify­
ing specific techniques used to track users [5,8,15,22,24,33– 
35,39], to examining how tracking varies geographically [16]. 
While several proposals attempt to help users regain control 
over their privacy when browsing the Web [28, 36], tracking 
remains pervasive. 
Unlike prior work, our paper focuses on characterizing 

third-party tracking and the PII they collect for services that 
are also available as apps. Further, to the best of our knowl­
edge no other study focuses on Web tracking and its privacy 
implications from mobile browsers. (For our purposes, only 
the operating system’s native browser application is consid­
ered. Embedded browser components such as WebViews are 
not included.) This is an increasingly important distinction, 
as mobile browsers have access to sensors (e.g., GPS) that 
are not available on desktops. 

2.2 Mobile App Privacy 
Due to the rich sensors, APIs, and availability of PII 

on mobile devices, a large body of work focuses on under­
standing privacy from the perspective of tracking and data-
collection by mobile apps. Early testbed studies showed that 
popular apps exposed location, usernames, passwords, and 
phone numbers [40]. Follow-up work observed similar behav­
ior at scale “in-the-wild” [29, 38, 42]. A number of projects 
focus on detecting and mitigating privacy violations from 
mobile apps [6, 7, 12, 14, 17, 19, 21, 23, 30, 38, 43–46]. 
In this paper, we focus on comparing the PII exposed by 

mobile apps and Web sites for the same service. To accom­
plish this, we use tools from prior work [38] to identify PII 
leaks in mobile-device tra�c. 

2.3 Mobile Experimentation Methods 
For scalability reasons, most previous work uses auto­

mated tests to analyze mobile apps [9, 20, 31]. However, a 
key limitation of this approach is that they cannot automat­
ically explore apps that require signing in [13]. Further, our 
recent study shows that automated tools only reveal a small 
fraction of the PII exposed when manually interacting with 
apps [38]. In this work, we use manual tests of Web sites and 
apps, both to ensure that the PII exposure is representative 
of what users would see, and to ensure that we explore the 
same features of the service across both Web and app. 

3. DATA COLLECTION 
In this section, we describe the online services we investi­

gated, our experimental methodology for eliciting and iden­
tifying PII sent over the network, and high-level statistics 
about our gathered dataset. 

3.1 Selecting Online Services 
Our first task is selecting online services to measure, each 

of which must meet the following criteria: 1) it must be pop­
ular (according to app store rankings) and/or “featured” in 
an app store, 2) it must provide a free app in the Google 
Play Store and the Apple App Store, 3) it must provide 
equivalent functionality via a mobile Web browser, and 4) 
it must not implement certificate pinning. For example, In­
stagram fails criteria (3) because the mobile Web site does 
not o↵er the same functionality as its app. Similarly, Pan­
dora fails because it will not stream music via Chrome on 
Android. Facebook’s app fails criteria (4). In general, we 
omitted any service for which we could not make an apples-
to-apples comparison. 
To locate candidate apps, we crawled the top 100 free An­

droid apps listed in the US version of the Google Play Store 
on March 23, 2016. To avoid personalized recommendations 
that would impact the set of presented apps, we browsed 
the Google Play Store with a clean browsing history and no 
cookies stored. Only 75 apps met the requirements for our 
study. We added to this set “featured and recommended” 
apps that were promoted on the home page of the Google 
Play Store. In total, we selected a subset of 50 services to 
test, and chose them based on broadly covering popular apps 
across di↵erent app categories, then filling in with apps that 
are likely to collect PII (shopping, travel, entertainment). 
While we cannot make any claims about generality, we be­
lieve this set provides an interesting cross-section of online 
services with respect to privacy. 

https://recon.meddle.mobi/appvsweb


3.2 Experiment Methodology 
Understanding privacy implications of mobile apps and 

Web sites requires interacting with these services in ways 
that normal users would. Using automated testing frame­
works for this purpose is tempting, due to their simplicity, 
low e↵ort, and ability to test large numbers of apps in a short 
period of time. However, previous work show that such tests 
miss important UI features (e.g., logging in, entering valid 
user data into text fields) [38]; further, there is a lack of good 
automated testing tools for iOS and for mobile browsers. 
Instead, we conducted manual tests of 50 online services. 

Manual tests avoid the pitfalls of automated ones because 
testers can interpret UIs, enter reasonable data into arbi­
trary fields, and ensure similar (or identical) service func­
tionality is exercised both over apps and Web sites. While 
we cannot claim generality or representativeness based on 
the 50 online services we tested, these comprise some of the 
most popular services used in the United States. We used 
the following procedures to test each online service. 

Test Environment. Each test consisted of interacting 
with a given service via an app or Web site for four min­
utes. We collected network tra�c generated during each 
experiment using Meddle [37], and used Mitmproxy [3] to 
capture both HTTP and the plaintext content of HTTPS 
flows. For each service requiring a login, we created a new 
account using a previously unused email address. 
We used two phones (a Nexus 4 and a Nexus 5) running 

stock Android 4.4, and two phones (both iPhone 5’s) run­
ning iOS 9.3.1. We specifically chose to test on Android 
4.4 because it was the most common Android version in­
the-wild as of April 2016 [4]. All three phones were factory 
reset before our experiments, and included no apps beyond 
the stock services and the 50 apps evaluated in this work. 

Interacting with Services. Each experiment used 
the following steps. We installed the service’s app, then 
connected the device to Meddle using a VPN tunnel. Next, 
we opened the app and used it for its intended purpose for 
approximately four minutes. We approved any system per­
mission requests when prompted. After the time expired, 
we closed the VPN connection and uninstalled the app. 
We repeated this procedure using the operating system’s 

default browser: Chrome for Android, and Safari on iOS. 
To avoid contamination due to browsing history and stored 
cookies, we used “private mode” browsing. When interacting 
with the Web version of the service, we attempted to conduct 
identical operations as in the app (to the extent possible). 
To ensure fairness, when asked to log-in, we used the same 
pre-created account credentials used to test the app. 

Note that we cannot claim to exhaustively cover all poten­
tial PII leaks using only four minutes of manual app testing. 
However, based on a number of tests using longer durations 
(10 minutes) for a subset of apps (the five apps that leaked 
the most and least during four-minute tests), we found that 
four minutes strikes a good balance between providing ad­
equate time to use most features of a service, and quickly 
covering a reasonably large number of services in a fixed 
amount of time. Specifically, we found that the number 
of third parties contacted and number of times PII leaked 
were roughly proportional to the duration of the experiment 
(because longer experiment durations lead to more network 
flows), but we generally did not see additional types of PII 
leaked during the longer experiment duration (with the ex­

ception of one additional PII type, e-mail address, leaked 
from one app after four minutes). 

Regardless, our results represent a conservative  lower  
bound on the PII leaked from apps and Web sites. Based  
on the substantial amount of leaks discovered, we believe 
this to be an important first step toward understanding dif­
ferences between PII leaks over apps and Web sites. 

Filtering. One issue with collecting network traces 
from mobile devices is that flows may be generated by the 
foreground process (i.e., the app or Web site we are investi­
gating) or background processes. We use three methods to 
minimize background tra�c from our traces. First, we use a 
clean, factory-reset lab phone to conduct the tests. Second, 
we turn o↵ background synchronization and manually close 
all background apps before each experiment. Finally, we fil­
ter tra�c to domains that are known to be associated with 
OS services (e.g., Google Play Services and Apple iCloud). 

Identifying PII. The next step in our methodology is 
identifying PII in our network traces. This task is greatly 
simplified because our experiments are controlled, i.e., we 
know all the PII that is available on our test devices. This in­
cludes usernames and passwords, MAC address, IMEI, GPS 
coordinates, ZIP code, etc. 
However, knowing the PII in advance is not a catch-all for 

detecting it in network tra�c. GPS locations are sent with 
arbitrary precision, unique identifiers are formatted incon­
sistently, a user’s inferred gender is not stored in the phone, 
etc. Thus, we use the following approach to identify PII. 
First, we use the automated ReCon tool [38], which uses ma­
chine learning to detect likely PII in network tra�c without 
needing to know the precise PII values. Second, to minimize 
the risk of ReCon missing PII, we augment its results with 
PII found via direct string matching on known PII. Finally, 
we manually verify ReCon predictions and excluded false 
positives based on our ground-truth information. 

Domain Categorization. The final step in our 
methodology is labeling all the flows based on their desti­
nation. We manually identified first-party flows by looking 
for domain names associated with our chosen services (e.g., 
weather.com and imwx.com for the Weather Channel). For 
the remaining third-party flows, we further categorize them 
as advertisers or analytics by comparing the destination do­
main to EasyList [2] and manually verifying the results. 

Defining a PII “Leak.” We focus on PII that reduces 
users’ privacy either because (1) it is transmitted over the 
Internet unencrypted, thus exposing the data to eavesdrop­
pers, or (2) it is sent to third parties (encrypted or plaintext) 
and is not required for logging into the service, thus exposing 
users to profiling. We label network flows containing PII un­
der these two conditions a PII leak. If a username, password, 
or e-mail address (often used as a username) is transmitted 
to a first-party site1 over HTTPS, then we do not consider 
them to be leaks. All other cases of transmitted PII are 
leaks. For example, a birthday sent to a first party using 
encryption is a leak; the same is true if an e-mail address is 
sent to a third party (encrypted or not). 
While many first party “leaks” may be intended and ac­

ceptable to the user, we err on the side of identifying all PII 
sharing beyond login credentials to provide a broad view of 
data-collection when using online services. Such informa­

1Or to a single sign-on service. 
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tion can help users evaluate (and re-evaluate) the implica­
tions of sharing their PII over time and across services and 
platforms. 

Experiment Limitations. Our experiments are lim­
ited to detecting PII leaks that occur directly to first and 
third parties, and that are detectable using common encod­
ings (i.e., are not obfuscated). Identifying cases of users’ 
PII shared by other parties indirectly is an important topic 
of research beyond the scope of this short paper. We were 
not able to measure services that use TLS certificate pin­
ning, such as Facebook and Twitter, because they prevent 
us from decrypting network tra�c with Meddle. 
We found no evidence of PII leaks from browsers them­

selves, or from apps to browsers (or vice versa). However, 
this was by design and is a limitation of our work. In this 
paper, we are primarily concerned with the PII that apps 
and Web sites directly gather from users. To achieve this, we 
took several steps to eliminate leakages across media, includ­
ing: using factory-reset OSes and their respective default 
browsers for each session; using private mode to browse, 
and di↵erent credentials for each test. Properly identify­
ing browser (or cross-site) leaks is an open and challenging 
question, one that is outside the scope of this short paper. 

3.3 Dataset 
We manually tested online services over app and Web ver­

sions in the Boston area between March 23 and May 11, 
2016. Table 1 summarizes the services that leaked PII by 
OS, medium (app vs. Web), and by category. In addition to 
the number of services tested under each OS and service cat­
egory (first column), we show the average popularity rank 
of the apps we tested (second column) using data from App 
Annie [1]. We observe that most apps are within the top-40 
for their category. We will discuss the information exposed 
by these services (third and fourth columns) in Section 4.2. 

4. RESULTS 
This section summarizes our key findings with respect to 

the privacy implications of using apps or Web sites for online 
services. We first focus on requests to third-parties, then an­
alyze the PII exposed by these services, and finally conclude 
with how e↵ectively online services can track users across 
app and Web platforms. 

4.1 Third-Parties 
In this section, we focus on the third-parties that are con­

tacted by online services. Specifically, we focus on advertis­
ing and analytics (A&A) domains, because it is well-known 
that they track users in order to serve targeted ads. 

Figure 1a depicts a CDF of the di↵erence in the number 
of unique A&A domains contacted by app- and Web-based 
versions of the each online service. We present one curve for 
each OS. Negative values indicate that the Web version of 
the service contacts more domains than the app version. 

Figure 1a shows that the vast majority (83% on Android, 
78% on iOS) of online services contact more third-parties 
via their Web site than their app. Some of the greatest 
disparities come from services like Accuweather, BBC News, 
and Starbucks, which contact  4 third-parties in-app, but 
contact tens of A&A domains on their Web sites. 

A&A domains are also responsible for the di↵erent 
amounts of network tra�c required to use the service. Fig­

ure 1b shows a CDF of the di↵erence in the number of net­
work flows between app- and Web-based versions of each 
online service. The key takeaway is that the inclusion of 
additional A&A sites in Web versions of a service are of­
ten responsible (for 73% of Android services and 80% of 
iOS) for hundreds and sometimes thousands of extra TCP 
connections. Services that trigger over thousands of TCP 
connections include All Recipes Dinner Spinner, BBC News 
and CNN News, over the course of four-minute interactions 
in our experiments. These connections can further be waste­
ful in terms of bandwidth, sometimes leading to several MB 
of data consumption during only 4 minutes of interaction 
time (see Figure 1c). 
To summarize, based on the pervasiveness of direct track­

ing from A&A sites, we find it is nearly always better to use 
an app than a Web version of a service. In the next section, 
we include PII leak information to better understand how 
much information is exposed by each service. 

4.2 PII Leaks 
This section focuses on what PII is leaked, how this dif­

fers between app- and Web-based versions of services, which 
third-parties receive leaked PII, and the amount of overlap 
between PII leaked from apps and Web sites. 

Aggregate View. We begin with PII leaks aggregated 
by platform and category (second and third column groups 
in Table 1). The second column group shows the fraction of 
services that leak PII, and the average number of domains 
receiving PII leaks per service. 
A few clear trends emerge. First, we observe that 14% 

more services leak PII via apps than via Web sites (first two 
rows), though the overall fraction of leaky services is high 
in both cases. Next, we see that while similar fractions of 
Android and iOS apps leak PII, 24% fewer Web sites leak 
PII when loaded in Chrome on Android vs. Safari on iOS. 
However, we also see that Web sites leak comparable types 
of PII regardless of whether they are loaded in Chrome or 
Safari (with phone number being the sole exception). 

When grouping services by category, we find that apps 
leak an equal or greater amount of PII compared to the 
corresponding Web sites. The categories leaking PII to the 
most domains are Education and Weather, while Entertain­
ment (which is dominated by streaming video apps) is least 
likely to leak. 

Focusing now on the leaked identifiers in the last column 
group in Table 1, we find that every category leaks unique 
identifiers (column UID), and almost all Web and apps leak 
location (column L, either GPS coordinate or ZIP code). 
Some services leak gender and birthdays, even though that 
is not something entered by the user during tests (they were 
entered at account creation before testing). 

Importantly, we found four cases of password leaks to third 
parties over HTTPS connections. Specifically, we found that 
Grubhub sent passwords to taplytics.com, JetBlue to us­
ablenet.com, and The Food Network and NCAA Sports 
sent passwords to Gigya, a third-party identity management 
service. 

We reported the first two cases to Grubhub and JetBlue, 
respectively, according to responsible disclosure principles.2 

2We did not report the Gigya cases because they were clearly inten­
tional behavior and not a security vulnerability per se, even though 
users were likely unaware that a third-party credential-management 
service was used. 

http:ablenet.com
http:taplytics.com


# of  Avg.  PII Leaks: Leaked Identifiers: 
Services Rank Services Domains B D E G L N P# U PW UID 

All 
App 
Web 

50 
50 

32.6 
-

92.0% 
78.0% 

4.7 ± 4.7 
3.5 ± 3.1 

X 
X 

X X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 

Android 

O
S

iOS 

App 48 
48 
50 

35.4 
Web -
App 30.1 
Web 50 ­

85.4% 2.4 ± 3.4 
52.1% 2.6 ± 2.8 
86.0% 4.1 ± 4.4 

X X X X X X 
X X X X X X X 
X X X X X X X X X X 

76.0% 3.1 ± 2.8 X X X X X X X X 

C
a
t
e
g
o
r
y

 

Business 

Education 

Entertainment 

Lifestyle 

Music 

News 

Shopping 

Social 

Travel 

App 2 
2 
4 
4 
6 
6 
6 
6 
4 
4 
2 
2 
9 
9 
2 
2 
12 
12 

3.0 100.0% 3.0 ± 0.0 
50.0% 3.0 ± 0.0 
75.0% 11.7 ± 14.4 
50.0% 2.0 ± 1.0 
66.7% 6.0 ± 2.5 
50.0% 1.3 ± 0.5 
100.0% 4.2 ± 2.3 
100.0% 4.5 ± 3.4 
100.0% 2.8 ± 2.0 
50.0% 4.5 ± 1.5 
100.0% 4.5 ± 3.5 
100.0% 3.0 ± 0.0 
100.0% 3.3 ± 0.9 
77.8% 4.3 ± 4.2 
100.0% 6.0 ± 0.0 
100.0% 1.5 ± 0.5 
91.7% 3.7 ± 1.3 
91.7% 3.1 ± 3.0 

X X 
Web - X 
App 16.1 X X X X 
Web - X X X 
App 16.3 X X X 
Web - X X X X X 
App 57.9 X X X X X X X 
Web - X X X X X X 
App 92.4 X X X X X 
Web - X X X 
App 4.0 X X X X 
Web - X X 
App 13.7 X X X X X X X 
Web - X X X X 
App 24.2 X X X X X 
Web - X X X 
App 47.2 X X X X X X X X X 
Web - X X X X X X X 
App 3 3.3 100.0% 8.3 ± 2.1 X X X

Weather 
Web 3 ­ 100.0% 5.7 ± 3.3 X 

Table 1: Summary of tested services, broken down by OS and category. The vast majority of services leak PII, with apps leaking more 
frequently than the corresponding Web site. The leaked identifiers are Birthday, Device Info, Email address, Gender, Location, Name, 
Phone #, Username, PassWord, and Unique IDentifiers. 

Grubhub confirmed that the passwords were inadvertently 
sent via an encrypted connection to tapltyics.com, Grub­
hub’s analytics provider. Grubhub confirmed it was a bug 
and released a new version of the app addressing this bug 
within a week after confirmation, and confirmed deletion of 
all data by taplytics.com that was sent in error. 

JetBlue informed us that the password was intentionally 
sent to usablenet.com for authentication services, and that 
in addition to using encryption to send the password over 
the network, it is also encrypted before storing.3 In The 
Food Network and NCAA Sports cases, an important issue 
is that users are not made aware that their credentials are 
managed by another party, since the login pages are hosted 
by the first party site and do not mention the third party. 

Following the rows in Table 1, we find that Shopping 
and Travel services leak the widest variety of PII, includ­
ing phone numbers, as well as usernames and passwords to 
third-parties (via HTTPS). On the other hand, Business and 
Weather apps leak the fewest types of PII. 

In summary, we find that PII leaks are pervasive and di↵er 
according to app category. In general, apps leak more PII 
than Web sites, which is expected since apps can request 
direct access to more types of PII stored on the device than 
a Web site. Interestingly, Education and Weather services 
are both the most promiscuous at leaking PII (contacting 
the largest number of domains) but leak fewer types of PII 
than other categories. 

Di↵erences in PII Leaks. We now focus on how 
app- and Web-based versions of the same service di↵er in 
terms of PII leaks. We analyze the number of domains re­
ceiving leaks, the number of distinct identifiers leaked, and 
the overlap in leaked identifiers. 

Figure 1d shows a CDF of the di↵erence in number of 
domains receiving PII leaks between app- and Web-based 

versions of the each online service, with negative numbers 
indicating the Web site leaked PII to more domains. We ob­
serve very di↵erent trends compared to A&A domains shown 
in Figure 1a. The curves show that there is a slight bias to­
ward apps leaking PII to more domains than Web sites. 
To understand how many distinct types of PII are leaked, 

we plot a PDF of the di↵erence in leaked identifiers for the 
app- and Web-based version of the same service (Figure 1e). 
The figure shows that the most common case is that both 
the app version of the service leaks one more type of distinct 
PII than the Web site, and there is a strong bias toward apps 
leaking more distinct types of PII than Web sites (positive 
x-values). 

A key question is whether app- and Web-based versions of 
services are leaking the same set of PII or not. We analyze 
this using the Jaccard index, which is a metric of set similar­
ity where 0 means nothing in common and 1 means the sets 
are identical. Figure 1f plots a CDF of Jaccard index values 
for the PII leaked by each service’s Web and app versions. 
We find that the types of PII leaked by Web- and app-based 
versions of the same service share nothing in common more 
than half of the time. Overall, 80-90% of services share only 
50% of the PII types leaked across app and Web. 

The previous result is perhaps expected because app and 
Web A&A systems have di↵erent PII available to them, and 
thus use di↵erent mechanisms for tracking. For example, 
app-based tracking can identify sessions belonging to the 
same user via a device’s unique identifiers, while Web sites 
tend to use cookie IDs and cookie matching [10]. However, 
in many cases the di↵erences in the types of PII leaks are 
substantial; for example Priceline leaked birthdays and gen­
der from their Web site, but do not do so from either iOS 
or Android apps (each of which in turn leaks di↵erent PII). 
In summary, we find that apps are more likely to leak more 

PII types than their Web counterparts, and most online ser­
3A “best practice” referred to as “encrypted at rest and in motion.” 

http:usablenet.com
http:taplytics.com
http:tapltyics.com
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Figure 1: For subfigures (a)-(d), we find the di↵erences between app and Web versions of the same service, in terms of A&A domains 
visited, number of flows to them, and the number of bytes they consume, and the number of domains they leak PII to. Subfigures (e)-(f) 
compare the set of identifiers leaked by app and Web versions of each service. 

vices leak substantially di↵erent PII over the two media. We 
believe this occurs due to the fact that apps and Web sites 
often have di↵erent mechanisms for data collection, di↵er­
ent analytics companies, and di↵erent development teams. 
Interestingly, the services we tested provide the same func­
tionality over app and Web, and should in theory be able 
to provide (at a high level) uniform data collection policies 
across platforms. The fact that they do not provides an 
opportunity for users to make informed privacy decisions 
when choosing whether to install an app or use a Web site 
(independent of the reasons behind these di↵erences). 

Recipients of PII Leaks. To understand how per­
vasively user PII is exposed to other parties, we analyze 
our dataset according to which third party is contacted (via 
Web or app), and identify whether app- or Web-based track­
ers collect more or less of a certain type of PII. We focus 
on the top-20 A&A domains receiving PII (sorted by total 
leaks in our dataset). Table 2 shows each domain (absent 
its top-level domain), the number of services that contact 
it, the average number of leaks per service, and the number 
of leaked identifiers. We observe significant overlap between 
the apps and Web sites that contact each A&A domain, re­
vealing that services tend to utilize the same trackers and 
ad networks across platforms. 

Notably, the A&A domain receiving the most leaks 
(Amobee) is used by the fewest services (1). Further, the 
third column group shows that Amobee receives a similar 
set of PII over app and Web (intersection set size is two). 
In addition, we find that Facebook is the most pervasively 
contacted domain across our tested apps. 
Interestingly, with few exceptions, top A&A domains col­

lect at least one type of PII from apps that are not collected 
via Web sites. Thus, third-parties are leveraging di↵erent 
platforms to expand the set of data that they collect about 
users. We also see a small number of cases of platform-
specific data collection, e.g., YieldMo only collects PII from 
apps in our set of services. 

A&A Domain 

# of  
Services: 

App \ Web 

Avg. 
Leaks: 

App Web 

Leaked 
Identifiers: 
App \ Web 

amobee 1 1 1 517.0 314.0 3 2 2 
moatads 9 7 12 61.4 0.2 1 1 1 
vrvm 2 0 0 136.0 0.0 3 0 0 

google-analytics 35 32 41 1.8 2.7 1 1 2 
facebook 38 36 41 3.7 0.4 2 0 1 

groceryserver 1 1 1 154.0 0.0 1 0 0 
serving-sys 10 4 6 15.3 0.0 1 0 0 

googlesyndication 16 14 23 7.0 0.8 1 1 1 
thebrighttag 4 2 4 29.5 0.0 2 0 0 

tiqcdn 5 5 9 16.0 3.1 1 1 1 
marinsm 1 1 3 96.0 1.0 1 0 1 
criteo 7 6 22 8.9 1.1 2 1 2 
2mdn 14 9 17 5.8 0.0 1 0 0 

monetate 1 1 2 74.0 0.0 1 0 0 
247realmedia 1 1 2 48.0 12.0 1 0 1 

krxd 7 6 13 8.3 0.0 3 0 0 
doubleverify 3 2 7 19.3 0.0 1 0 0 
cloudinary 1 1 1 0.0 58.0 0 0 1 
webtrends 1 1 1 56.0 0.0 1 0 0 

lifto↵ 1 0 0 54.0 0.0 2 0 0 

Table 2: Top-20 A&A domains, sorted by total leaks. 

Last, we focus on how each type of PII is leaked across 
Web sites and apps in Table 3 (again, sorted by total leaks). 
We see that locations, names, and unique tracking IDs are 
most commonly leaked, with device-specific IDs being leaked 
only over apps. The first column group shows that the apps 
and Web sites leaking specific pieces of PII have relatively 
low overlap (except for location), reinforcing our finding that 
services may have very di↵erent privacy profiles across plat­
forms. Similarly, the third column group shows that each 
type of PII is leaked to a significant number of domains by 
both apps and Web sites, though the domains in common 
between the two is a fraction of the total. 

In summary, we find that there is no clear winner in terms 
of privacy-footprint between apps and their Web counter­
parts. Services leak significant information on both plat­
forms, but typically not the same information. 



# of  Domains 
Services: Avg. Leaks: Leaked To: 

PII App \ Web App Web App \ Web 
Location 30 21 26 367.7 295.2 84 37 76 
Name 9 8 16 77.1 138.2 11 7 26 

Unique ID 40 0 0 39.0 0.0 65 0 0 
Username 3 1 5 23.0 89.8 4 2 10 
Gender 4 1 8 2.8 25.0 4 1 11 
Phone # 3 1 2 12.7 60.5 3 1 2 
Email 11 3 8 2.2 15.5 10 2 8 

Device Name 15 0 0 2.7 0.0 13 0 0 
Password 4 2 3 2.8 1.7 4 2 2 
Birthday 1 0 1 1.0 3.0 1 0 2 

Table 3: PII, sorted by total leaks. 

5. CONCLUDING DISCUSSION 
This paper asks a simple question—are apps or Web sites 

better for privacy?—and finds the answer not at all straight­
forward. Several clear trends emerged: more domains are 
contacted from Web sites, and more device identifiers were 
leaked from apps. However, we also found a pervasive track­
ing ecosystem that exposes users’ PII across both Web and 
app versions of the same service, and across di↵erent ser­
vices. In short, there is no single answer to the seminal 
question in this work; rather, the answer depends on user 
preferences and priorities for controlling access to their PII. 
Our analysis provides the necessary data to inform custom 
recommendations for privacy via: 

https://recon.meddle.mobi/appvsweb/
 
There are a number of interesting topics for future re­

search. For example, we would like to understand cross-
service PII leaks, as well as provide users with actionable 
information about how leaked PII can be used by other par­
ties to build profiles about them. An interesting question is 
how e↵ective are existing browser privacy protection tools 
in light of our findings, and how we might augment ReCon 
to provide improved protection in the mobile environment. 

Acknowledgements 
We thank the anonymous reviewers and our shepherd Theo 
Benson for their helpful feedback. This work was partially 
supported by the Data Transparency Lab, and by NSF 
grants IIS-1408345 and IIS-1553088. Any opinions, findings, 
and conclusions or recommendations expressed in this ma­
terial are those of the authors and do not necessarily reflect 
the views of the funding agencies. 

6. REFERENCES 
[1] App Annie App Store Stats. http://www.appannie.com/. 
[2] EasyList. https://easylist.github.io/. 
[3] Mitmproxy. https://mitmproxy.org/. 
[4]	 Android developer dashboard, April 2016.
 

http://developer.android.com/about/dashboards/index.html.
 
[5]	 Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, 

A., and Diaz, C. The web never forgets: Persistent tracking 
mechanisms in the wild. In Proc. of CCS (2014). 

[6]	 Agarwal, Y., and Hall, M. ProtectMyPrivacy: Detecting and 
Mitigating Privacy Leaks on iOS Devices Using Crowdsourcing. 
In Proc. of MobiSys (2013). 

[7]	 Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
 
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
 
FlowDroid: Precise Context, Flow, Field, Object-sensitive and 
Lifecycle-aware Taint Analysis for Android Apps. In Proc. of 
PLDI (2014). 

[8]	 Ayenson, M., Wambach, D. J., Soltani, A., Good, N., and 
Hoofnagle, C. J. Flash cookies and privacy ii: Now with html5 
and etag respawning. Available at SSRN 1898390 (2011). 

[9]	 Azim, T., and Neamtiu, I. Targeted and Depth-first Exploration 
for Systematic Testing of Android Apps. In Proc. of OOPSLA 
(2013). 

[10]	 Bashir, M. A., Arshad, S., Robertson, W., and Wilson, C. 
Tracing Information Flows Between Ad Exchanges Using 
Retargeted Ads. In Proceedings of the 25th USENIX Security 
Symposium (2016). 

[11]	 Cahn, A., Alfeld, S., Barford, P., and Muthukrishnan, S. An 
empirical study of web cookies. In Proc. of WWW (2016). 

[12]	 Chen, X., and Zhu, S. DroidJust: Automated 
Functionality-aware Privacy Leakage Analysis for Android 
Applications. In Proc. of WiSec (2015). 

[13]	 Choudhary, S. R., Gorla, A., and Orso, A. Automated Test 
Input Generation for Android: Are We There Yet? In Proc. of 
the IEEE/ACM International Conference on Automated 
Software Engineering (ASE) (2015). 

[14]	 Egele, M., Kruegel, C., Kirda, E., and Vigna, G. PiOS: 
Detecting Privacy Leaks in iOS Applications. In Proc. of NDSS 
(2011). 

[15]	 Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., 
Mayer, J., Narayanan, A., and Felten, E. W. Cookies that give 
you away: The surveillance implications of web tracking. In 
Proc. of WWW (2015). 

[16]	 Falahrastegar, M., Haddadi, H., Uhlig, S., and Mortier, R. 
The rise of panopticons: Examining region-specific third-party 
web tracking. In Proc of. Tra�c Monitoring and Analysis 
(2014). 

[17]	 Gibler, C., Crussell, J., Erickson, J., and Chen, H. 
AndroidLeaks: Automatically Detecting Potential Privacy 
Leaks in Android Applications on a Large Scale. In Proc. of 
TRUST (2012). 

[18]	 Gill, P., Erramilli, V., Chaintreau, A., Krishnamurthy, B., 
Papagiannaki, K., and Rodriguez, P. Follow the money: 
Understanding economics of online aggregation and advertising. 
In Proc. of IMC (2013). 

[19]	 Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R. 
PUMA: Programmable UI-Automation for Large-Scale 
Dynamic Analysis of Mobile Apps. In Proc. of MobiSys (2014). 

[20]	 Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R. 
PUMA: Programmable UI-automation for Large-scale Dynamic 
Analysis of Mobile Apps. In Proc. of MobiSys (2014). 

[21]	 Jeon, J., Micinski, K. K., and Foster, J. S. SymDroid: 
Symbolic Execution for Dalvik Bytecode. Tech. Rep. 
CS-TR-5022, University of Maryland, College Park, 2012. 

[22]	 Kamkar, S. Evercookie - virtually irrevocable persistent 
cookies., September 2010. http://samy.pl/evercookie/. 

[23]	 Kim, J., Yoon, Y., Yi, K., and Shin, J. SCANDAL: Static 
Analyzer for Detecting Privacy Leaks in Android Applications. 
In Proc. of MoST (2012). 

[24]	 Kohno, T., Broido, A., and Claffy, K. Remote physical device 
fingerprinting. IEEE Transactions on Dependable and Secure 
Computing 2, 2  (2005), 93–108.  

[25]	 Krishnamurthy, B., Malandrino, D., and Wills, C. E. 
Measuring privacy loss and the impact of privacy protection in 
web browsing. 

[26]	 Krishnamurthy, B., Naryshkin, K., and Wills, C. Privacy 
di↵usion on the web: A longitudinal perspective. In Proc. of 
WWW (2009). 

[27]	 Krishnamurthy, B., and Wills, C. Privacy leakage vs. 
protection measures: the growing disconnect. In Proc. of 
W2SP (2011). 

[28]	 Li, T.-C., Hang, H., Faloutsos, M., and Efstathopoulos, P. 
Trackadvisor: Taking back browsing privacy from third-party 
trackers. In Proc. of PAM (2015). 

[29]	 Liu, Y., Song, H. H., Bermudez, I., Mislove, A., Baldi, M., and 
Tongaonkar, A. Identifying personal information in internet 
tra�c. In Proceedings of the 3rd ACM Conference on Online 
Social Networks (COSN’15) (Palo Alto, CA, November 2015). 

[30]	 Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. CHEX: Statically 
Vetting Android Apps for Component Hijacking Vulnerabilities. 
In Proc. of ACM CCS (2012). 

[31]	 Machiry, A., Tahiliani, R., and Naik, M. Dynodroid: An Input 
Generation System for Android Apps. In Proc. of the Joint 
Meeting on Foundations of Software Engineering 
(ESEC/FSE) (2013). 

[32]	 McDonald, A. M., and Cranor, L. F. Americans’ attitudes 
about internet behavioral advertising practices. In Proc. of 
WPES (2010). 

[33]	 Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting 
canvas in html5. In Proc. of W2SP (2012). 

http://samy.pl/evercookie
http://developer.android.com/about/dashboards/index.html
http:https://mitmproxy.org
http:https://easylist.github.io
http:http://www.appannie.com
https://recon.meddle.mobi/appvsweb


[34]	 Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., 
Piessens, F., and Vigna, G. Cookieless monster: Exploring the 
ecosystem of web-based device fingerprinting. In Proc. of IEEE 
Symposium on Security and Privacy (2013). 

[35]	 Olejnik, L., Castelluccia, C., and Janc, A. Why Johnny Can’t 
Browse in Peace: On the Uniqueness of Web Browsing History 
Patterns. In Proc. of HotPETs (2012). 

[36]	 Papaodyssefs, F., Iordanou, C., Blackburn, J., Laoutaris, N., 
and Papagiannaki, K. Web identity translator: Behavioral 
advertising and identity privacy with wit. In Proc. of HotNets 
(2015). 

[37]	 Rao, A., Kakhki, A. M., Razaghpanah, A., Li, A., nad 
Arnaud Legout, D. C., Mislove, A., and Gill, P. Meddle: 
Enabling Transparency and Control for Mobile Internet Tra�c. 
JoTS, 2015103003 (October 2015).  

[38] Ren, J., Rao, A., Lindorfer, M., Legout, A., and Choffnes, 
D. R. ReCon: Revealing and controlling privacy leaks in mobile 
network tra�c. In Proc. of MobiSys (2016). 

[39]	 Roesner, F., Kohno, T., and Wetherall, D. Detecting and 
defending against third-party tracking on the web. In Proc. of 
NSDI (2012). 

[40]	 The Wall Street Journal. What They Know - Mobile. 
http://blogs.wsj.com/wtk-mobile/, December 2010.  

[41]	 Turow, J., Hennessy, M., and Draper, N. The tradeo↵ fallacy: 
How marketers are misrepresenting american consumers and 
opening them up to exploitation. Report from the Annenberg 
School for Communication, June 2015. https://www.asc.upenn. 
edu/sites/default/files/TradeoffFallacy_1.pdf. 

[42]	 Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, 
Y., Papagiannaki, K., Haddadi, H., and Crowcroft, J. 
Breaking for commercials: Characterizing mobile advertising. 
In Proc. of IMC (2012). 

[43]	 Xia, M., Gong, L., Lyu, Y., Qi, Z., and Liu, X. E↵ective 
Real-time Android Application Auditing. In IEEE Symposium 
on Security and Privacy (2015). 

[44]	 Yan, L. K., and Yin, H. DroidScope: Seamlessly Reconstructing 
the OS and Dalvik Semantic Views for Dynamic Android 
Malware Analysis. In Proc. of USENIX Security (2012). 

[45] Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and Wang, 
X. S. AppIntent: Analyzing Sensitive Data Transmission in 
Android for Privacy Leakage Detection. In Proc. of ACM CCS 
(2013). 

[46] Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, 
X. S., and Zang, B. Vetting undesirable behaviors in Android 
apps with permission use analysis. In Proc. of ACM CCS 
(2013). 

https://www.asc.upenn
http://blogs.wsj.com/wtk-mobile/,December2010


Bug Fixes, Improvements, ... and Privacy Leaks 
A Longitudinal Study of PII Leaks Across Android App Versions 

Jingjing Ren⇤, Martina Lindorfer†, Daniel J. Dubois⇤ ,
 
Ashwin Rao‡, David Choffnes⇤ and Narseo Vallina-Rodriguez§
 

⇤Northeastern University †UC Santa Barbara ‡University of Helsinki §IMDEA Networks Institute and ICSI
 
   
 

Abstract—Is mobile privacy getting better or worse over time? 
In this paper, we address this question by studying privacy leaks 
from historical and current versions of 512 popular Android 
apps, covering 7,665 app releases over 8 years of app version 
history. Through automated and scripted interaction with apps 
and analysis of the network traffic they generate on real mobile 
devices, we identify how privacy changes over time for individual 
apps and in aggregate. We find several trends that include 
increased collection of personally identifiable information (PII) 
across app versions, slow adoption of HTTPS to secure the 
information sent to other parties, and a large number of third 
parties being able to link user activity and locations across apps. 
Interestingly, while privacy is getting worse in aggregate, we 
find that the privacy risk of individual apps varies greatly over 
time, and a substantial fraction of apps see little change or 
even improvement in privacy. Given these trends, we propose 
metrics for quantifying privacy risk and for providing this risk 
assessment proactively to help users balance the risks and benefits 
of installing new versions of apps. 

I. INTRODUCTION 

As mobile devices and apps become increasingly present 
in our everyday lives, the potential for accessing and sharing 
personal information has grown. The corresponding privacy risks 
from using these apps have received significant attention, not 
only from users who are at risk [55], but also from regulators 
who enforce laws that protect them [26]. 

A key problem with the above trend is that once personal 
information is shared with another party, it can potentially 
be linked to that individual forever. Thus, monitoring privacy 
implications of mobile apps should not focus just on a snapshot of 
their behavior, but also on how their behavior evolved over time. 
In fact, because apps are regularly updated with new versions 
(as frequently as once a month on average [12], [19]) that fix 
bugs, improve performance, add features, and even change what 
is shared with other parties, it is essential to study app behavior 
across versions. 

In this paper, we are the first to conduct a comprehensive, 
longitudinal study of the privacy implications of using multiple 
versions of popular mobile apps across each app’s lifetime. We 
focus specifically on Android apps1 and identify when personally 

1The only platform where we can access historical versions of apps. 
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identifiable information (PII) appears in Internet traffic while 
using them. Through hybrid automated and scripted interactions 
with 512 apps (across 7,665 distinct versions), we compile 
a dataset that informs what information is exposed over the 
Internet (identifiers, locations, passwords, etc.), how it is exposed 
(encrypted or plaintext), and to whom that information is exposed 
(first or third party). We analyze this dataset to understand 
how privacy has changed over time (for individual apps and 
in aggregate across popular apps), why these trends occur, and 
what their implications are. 

Our work substantially extends existing mobile privacy 
research [23], [43], [49], [50] by focusing on multiple versions 
of apps instead of individual versions. Moreover, most existing 
longitudinal studies infer privacy risks by using static analysis 
to monitor library usage and permission requests [12], [15], [53], 
[54]. In contrast, we detect actual PII transmitted in network 
traffic to other parties while an app is used. 

Gathering a longitudinal view of the privacy implications of 
using apps over time poses the following challenges: 

•	 Monitoring app behavior across versions for a large number 
of apps requires a methodology that scales accordingly. 
Manually logging into apps and interacting with them can 
comprehensively trigger privacy leaks, but this is infeasible 
at scale. Instead, we use a semi-automated approach that 
incorporates random interactions [33] and manually generated 
scripts for logging into apps. 

•	 We need a way to identify the privacy risks for each app. To 
this end, we analyze network traffic2 generated by the mobile 
device running the app, using both simple text matching 
on known identifiers and machine-learning inference [50] to 
extract identifiers not known in advance. 

•	 We need a systematic, configurable, and meaningful way 
to compare the privacy guarantees of the apps (and their 
versions). To this end, we identify several metrics that provide 
insight into privacy trends and implications. 

Using the above approach, our study is the first to reveal the 
privacy implications of popular apps across multiple versions: 

On average, privacy has worsened over time. We analyze privacy 
risks along multiple attributes (what PII is leaked, to how many 
destinations, and whether it is encrypted) independently and in 
combination. We find that apps increasingly leak more types of 
PII and to more domains over time, but HTTPS adoption has 
seen slow growth. When combining these factors, we find that 
about a quarter of apps (26.3%) are getting better with respect to 

2We focus only on IP traffic. A recent study [43] showed that less than 1% 
of leaks occur over non-IP traffic (i.e., SMS). 
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privacy, but twice as many are getting worse over time (51.1%), 
with only a small fraction (9.5%) staying the same or exhibiting 
highly variable privacy risks between versions (13.1%). 

Snapshots of privacy leaks from single versions of apps are 
incomplete. For all but 7% of the apps in our dataset, studying 
one version will miss PII gathered across all versions of the 
app. We also find that the set of PII leaked by an app changes 
frequently across versions. 

HTTPS adoption is slow. Unlike recent trends in HTTPS adoption 
for web traffic [25], we find that apps are slow to adopt HTTPS. 
In fact, from the moment we see that a domain first starts 
supporting HTTPS, it takes five years for at least half of the 
apps in our study to start using it. Overall, the fraction of flows 
using HTTPS has remained nearly constant over the time period 
covered by our study. 

Third-party tracking is pervasive. While previous work using 
small snapshots of time demonstrates that third parties collect 
substantial amounts of PII, we find the problem to be even 
worse when considering PII leaks across versions. We find that 
there is little correlation between the amount of traffic to a third 
party and the volume of PII it leaks. In addition, we analyze 
how third parties (among which several are not highlighted in 
previous studies) collect locations, email addresses and gender 
along with tracking identifiers, enabling fine-grained tracking of 
users and their daily activities. 

In summary, our key contributions are: (1) a large-scale 
privacy analysis across multiple apps and app versions, (2) a 
dataset of network traffic generated by running apps, along with 
labels describing the PII contained in them, and (3) an analysis 
of the origins and privacy implications of these information 
leaks. Our data and analysis are available at https://recon. 
meddle.mobi/appversions/. 

II. RELATED WORK 

A large body of related work has investigated the privacy of 
mobile apps and their generated network traffic. Most related 
studies focus on identifying personal information that is (or 
might be) exposed to other parties over the Internet, using one 
or more of the following complementary approaches. 

Static analysis. This technique entails analyzing an app’s 
bytecode using symbolic execution [58] and/or control flow 
graphs [10], [11], [22]. Several academic studies leverage static 
analysis to inspect app permissions and their associated system 
calls [11], [41], to audit third-party library usage [17], [51], and 
to analyze flaws in HTTPS usage and certificate validation [24], 
[27]. This approach is appealing because it enables large-scale 
app analysis without the overhead of running or interacting with 
apps. However, static analysis may identify privacy leaks in 
code that is rarely or never executed; further, it cannot analyze 
dynamically loaded code, which is commonly used to update 
app functionality at runtime in as much as 30% of apps [43]. 

Dynamic analysis. In contrast to static analysis, dynamic 
analysis tracks system calls and access to sensitive information 
at runtime. In this approach, the runtime (e.g., the OS) is 
instrumented to track memory references to private information 
and taint the memory it is copied into. This taint propagates 
as the information is copied and mutated; ultimately when it is 
copied to a sink, such as the network interface, it is flagged as a 

PII leak. TaintDroid [23] is commonly used for dynamic analysis 
of Android apps. While taint tracking can ensure coverage 
of all PII leaks (even those that are obfuscated), it requires 
some form of interaction with running apps to trigger leaks. 
Typically, researchers use automated “UI monkeys” [33], [44] 
for random exploration or more structured approaches [16], [37] 
to generate synthetic user actions; however, prior work showed 
that this can underestimate PII leaks compared to manual (human) 
interactions [50]. 

Network traffic analysis. This approach relies on the obser­
vation that PII exposure almost always occurs over Internet 
traffic. Thus, network traffic analysis focuses on identifying PII 
contained in app-generated IP traffic [40], [49], [50], [52]. The 
benefit of this approach is that it works across platforms without 
the need for custom mobile OSes or access to app source code, 
and thus is easy to deploy to user devices for the purpose of 
real-time analysis and detection of PII leaks. A drawback is 
that it requires the ability to reliably identify PII (which may be 
encrypted and/or obfuscated) in network traffic. All of the above 
approaches support TLS interception to access plaintext traffic to 
search for PII, but differ in what they search for: most on-device 
approaches search for known PII stored on the device [40], [49], 
[50], [52], whereas ReCon [50] also uses a machine-learning 
approach to infer a broader range of PII that includes user input. 
However, these approaches are susceptible to missing PII leaks 
from apps that defend against TLS interception, or that use 
non-trivial obfuscation or encryption of PII [21]. 

Longitudinal analysis. Some existing longitudinal studies use 
static analysis to study how apps across several categories [54], 
and finance apps in particular [53], change over time in terms 
of permission requests and security features and vulnerabilities, 
including HTTP(S) usage. Similarly, Book et al. conduct a 
longitudinal analysis of ad libraries [15], but they focus only on 
permission usage. While partially sharing the goals of our work, 
these studies do not actually execute and analyze apps, and thus 
are subject to both false positives (by looking at permissions 
and code paths that are not used) and false negatives (by not 
covering code that is dynamically loaded at runtime). 

To the best of our knowledge, our study provides the first 
longitudinal analysis of privacy risks in network traffic generated 
by running app versions that span each app’s lifetime. Our 
work complements and substantially extends the related work 
presented above: we study privacy across versions (and thus 
over time), whereas most previous work consists of one-off 
studies that focus on individual versions of apps available at a 
certain moment in time. Moreover, since we monitor the traffic 
exchanged by actual apps running on real devices, we overcome 
some of the limitations of the discussed static and dynamic 
analysis approaches. 

III. GOALS AND PII DEFINITIONS 

The primary goal of this work is to understand the privacy 
implications of using and updating popular Android apps over 
time. As privacy is a top-cited reason for why users do not install 
app updates [55], studying PII leaks from apps across versions 
can help users make more informed decisions. Furthermore, this 
information can assist regulators when auditing and enforcing 
privacy rules for mobile apps [26]. An explicit non-goal of this 
work is coverage of all versions of all apps; rather, we focus on 
a diverse set of 512 popular Android apps. 
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Unique Identifier (ID)	 Advertising ID (Ad ID), IMEI, Android ID, 
MAC address (MAC Addr), IMSI, Google 
Service Framework ID (GSF ID), SIM card 
ID (SIM ID), Hardware serial (HW Serial) 

Personal Information (User)	 email address, first and last name, date of birth 
(DOB), phone number, contact info, gender 

Location GPS location (Location), zip code (Zip) 
Credential username, password 

TABLE I: List of PII categories and types. 

A. PII Considered in This Work 

Personally identifiable information (PII) is a generic term for 
describing “information that can be used to distinguish or trace 
an individual’s identity" [38]. In this paper, we define PII to be 
a subset of this, based on textual data that can be gathered and 
shared by mobile apps. Specifically, we consider the PII listed 
in Table I, which is based on a combination of PII accessible 
from Android APIs, user-supplied information, and inferred user 
information that was reported as being leaked in network traffic 
in previous work [40], [49], [50], [52]. 

B. Threat Model and PII Leaks 

We define privacy risks and PII leaks in the context of the 
following threat model. We assume that the adversary seeks 
to collect PII from an app running on a user’s mobile device. 
The adversary is any party that receives this information via 
network connections established when running an app, including 
the following: 

•	 App provider, i.e., the company that releases an app, also 
referred to as the first party. 

•	 Other parties, e.g., the ones that are contacted by an app as 
part of advertising, analytics, or other services, also referred 
to as a third party. 

•	 Eavesdroppers, who observe network traffic (e.g., an ISP, an 
adversary listening to unencrypted WiFi traffic, or one that 
taps an Internet connection). 

We define two goals of an adversary that motivate our definition 
of PII leak as a privacy risk: 

Data aggregation. This occurs when first or third parties collect 
information about a user over time, including which apps they 
use, how often they use them, where they are located when they 
do so, etc. The risk from this kind of information gathering 
is that it can be used to build rich profiles of individuals, 
which can in turn be used for targeted advertising [14], price 
discrimination [36], and other differential treatment driven by 
algorithms using this information [35]. 

Eavesdropping. In this scenario, the adversary learns a user’s 
information passively by observing network traffic (e.g., plaintext 
PII leaks). This presents a privacy risk to users in that it 
constitutes a third party for which the user did not explicitly 
consent to collect data. Furthermore, it can constitute a security 
risk when information exposed to unauthorized third parties 
includes credentials (i.e., username and password). 

We define a PII leak as any case in which information 
listed in Table I is transmitted to a first or third party, with 
the exception of credentials that are sent to a first party via an 
encrypted channel. The latter is excluded because it is exclusively 
provided intentionally by a user. We cannot in general determine 

Number of APKs 7,665 (512 unique apps) 
APK release timeframe 8 years 
Versions per app (mean) 15.0 
Versions per app (median) 14 
HTTP(S) flows per app (mean) 94.7 
Total HTTP(S) traffic 33.6 GB (pcap format) 
Total number of flows 675,898 
Unique third-party domains 1,913 

TABLE II: Dataset description. 

whether other cases of PII are intentionally disclosed to other 
parties (and/or required for app functionality), so we include 
them in our analysis for completeness. Note that the goal of this 
work is to increase privacy transparency, so we leave the decision 
as to what constitutes an unintentional and important leak to the 
users of our dataset and analysis. To this end, our interactive 
tool [1] allows users to set preferences for the importance of 
each type of leak. 

IV. METHODOLOGY 

We identify and analyze PII leaks using network traffic 
analysis on flows generated by automated and scripted inter­
actions with multiple versions of popular Android apps. Our 
methodology consists of four high-level steps: (1) selecting 
apps for analysis, (2) collecting historical and current versions 
for each app, (3) interacting with these APKs (i.e., unique 
versions of each app), and (4) identifying and labeling PII leaks. 
In this section, we discuss each individual step in detail. We 
further discuss the assumptions, limitations, and validation of 
our approach. Table II summarizes our dataset. 

A. App Selection 

We selected 512 apps for analysis in this study, using the 
following criteria: 

•	 Popularity. We started with the set of apps that was either 
in the top 600 popular free apps according to the Google 
Play Store ranking, or in the top 50 in each app category, as 
of January 10, 2017. We exclude apps that require financial 
accounts or verified identities (e.g., bank and credit card 
accounts, social security numbers). 

•	 Multiple versions. We considered only apps with more than 
three versions compatible with our analysis testbed, which 
includes devices running Android 4.4.4 and Android 6.0. 
These OS versions run on approximately 50% of Android 
devices as of May 2017 [29]. 

•	 Amenable to traffic analysis. As discussed in Section IV-C, 
we collect both unencrypted (HTTP) traffic and the plaintext 
context of encrypted (HTTPS) traffic via TLS interception [8]. 
We exclude 26 apps (e.g., Choice of Love, Nokia Health Mae 
and Line Webtoon - Free Comics) where most versions crash 
or hang when opened, or that do not permit TLS interception 
as explained in Sec. IV-E. 

B. APK Collection 

After identifying apps to analyze, we gather their historical 
and current versions, and label their release dates. 

Finding app versions. Officially, the Google Play Store only 
supports the download of the most recent version of each app. 
However, Backes et al. [12] reported an undocumented API of 
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the Google Play Store that allows downloads of an arbitrary 
version of an app (i.e., its Android Package Kit, or APK, file), as 
long as the app’s version code3 is known. The authors identify 
several patterns, which we build upon, to identify app version 
codes. For the 512 selected apps, we downloaded 7,665 APKs. 
Some apps have hundreds of versions, and testing all of them 
would be prohibitively expensive. Thus, for apps with more than 
30 different versions, we sort their releases chronologically and 
pick 30 versions that are evenly distributed across all versions. 

Inferring APK release date. The API that we use for 
downloading APKs does not provide the release date for each app, 
information that is essential for understanding how app behavior 
changes over time. To address this, we leverage the fact that 
developers who release a new version of an app must update the 
version code in several files inside the APK (AndroidManifest.xml 
and META-INF/MANIFEST.MF). We thus infer the release date 
based on the modification time of these files, which assumes that 
the developers’ OS timestamps correctly. Of the 7,665 APKs 
we downloaded, 429 APKs had timestamps that were obviously 
incorrect (e.g., a date before Android’s first release on August 
21, 2008 or a date in the future). For these cases, we manually 
checked release dates with several third-party services [2]–[5] 
that provide release dates for the last three years. 

To understand how well our heuristics work, we manually 
cross-validated the release dates of 77 APKs by comparing 
the file modification times and release dates found using the 
above third-party services [2]–[5]). We find that 88% of inferred 
release dates differ with the public record by less than a week, 
and only two cases have a difference of 30 days or more. We 
investigated these last two cases and found that the difference in 
release date is likely due to a developer error, not an incorrect 
inference. Namely, these are cases where the developer released 
a new version of the app without updating the version string 
in the APK. As a result, the date from the third-party services 
did not correspond to the APK we investigated. The average 
interval between each update across apps is 47 days, with a 
standard deviation of 181. Note that 21% of the 512 apps were 
first released before January 1st, 2012 and exactly half were 
released before August 22nd, 2014. 

C. Interaction and Traffic Collection 

In this step, we interact with each APK and collect the 
network traffic generated as a result from these interactions. 

Test environment. We conduct experiments using five 
Android devices: one Nexus 6P phone and one Nexus 5X phone, 
both with Android 6.0.0; and three Nexus 5 phones with Android 
4.4.4. We use real Android devices instead of emulated ones to 
avoid scenarios where apps and third-party libraries detect the 
analysis environment and modify their behavior accordingly. It 
has been shown that emulators are easy to fingerprint [47], [57], 
a fact that is exploited for example by ad libraries to only show 
ads and leak data when executed on a real device [46]. 

Interaction with apps. Measuring PII leaks from apps 
requires interacting with them, and the gold standard for doing so 
is via natural human interaction. However, manually interacting 
with each of the selected 512 apps (7,665 unique versions) is 

3An integer value that can be incremented by arbitrary values from one 
version to the next. 

not practical. Thus, we use Android’s UI/Application Exerciser 
Monkey [33], a tool that automatically generates pseudo-random 
UI interaction events (swipes, taps, etc.) for an app. While a 
number of other approaches for automation have been proposed, 
a recent study [18] showed that Monkey exhibited a better cov­
erage in terms of code coverage and fault detection capabilities 
than other automated tools. Completely random events would 
prevent apples-to-apples comparison among versions of the same 
app, so we specify the same random seed that generates the 
sequence of events for interaction with all of an app’s versions.4 

Specifically, we use Monkey to generate approximately 5,000 
user events by specifying five seeds for 1,000 events each.5 We 
use 5,000 events because it allows us to test a large number of 
APKs in a reasonable amount of time, and because previous 
work [42] found that longer interaction times do not substantially 
impact the set of PII that leaked. We cross-validate our dataset 
with human interactions in Section IV-F. 

Many apps (75 in our study) require users to log in with a 
username and password before accessing app functionality. Thus, 
failure to login can severely underestimate the amount of PII 
leaked. We created accounts for testing with each of these apps, 
but manually logging into each version is prohibitively expensive. 
We avoided this by recording the login events in one version 
and replaying the events in other versions using RERAN [28]. 
We perform both record and replay of login actions on the same 
device to ensure a consistent UI layout. 

Recording network traffic. For each experiment, we run 
one app at a time. To collect network traffic while interacting 
with the apps, we redirect the traffic to a proxy server that 
records plaintext traffic and that uses TLS interception (using 
mitmproxy [8]) to record the plaintext content of HTTPS requests. 
For apps that prevent TLS interception via certificate pinning, 
we use JustTrustMe [7], a tool that modifies Android in such a 
way that certificate validation using built-in OS libraries always 
succeeds. We test such apps only on devices running Android 
4.4.4 (the Nexus 5 phones) because JustTrustMe does not support 
later OS versions. 

D. Privacy Attributes 

After the completion of the experiments, we analyze network 
traffic according to the following three privacy attributes to assist 
in our subsequent analysis of network flows. 

1) PII Leaks: We label each flow with the PII that it leaks 
in two phases. First, we use simple string matching to identify 
PII that is static and known in advance (e.g., unique identifiers, 
personal information, zip code, and credentials). This approach, 
however, cannot be reliably applied to dynamic values (e.g., 
fine-grained GPS locations) and to data not directly input into 
an app (e.g., gender). 

For these cases, we use ReCon [50], which uses machine 
learning to infer when PII is leaked without needing to rely on 
exact string matching. The key intuition behind ReCon is that 
PII is often leaked in a structured format (e.g., key/value pairs 

4Note that we do not explicitly account for changes in UI or functionality over 
time because doing so requires manual analysis and is infeasible at this scale. 
However, we rely on the randomness of Monkey to probabilistically exercise 
UIs and functionality as they change. 

5Batches of events were required to give apps sufficient time to process 
events; failure to do so led to crashes or exits before the events completed. 
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such as password=R3Con or adId:93A48DF23), and that 
the text surrounding PII leaks can become a reliable indicator 
of a leak. ReCon therefore uses a classifier to reliably identify 
when network traffic contains a leak (e.g., in a simple case, 
looking for password=), without needing to know the precise 
PII values. We manually validated all cases of inferred PII leaks 
to ensure their correctness. 

2) Transport Security: This study focuses exclusively on 
HTTP and HTTPS traffic. In addition to the standard ports 80 
and 443, we also include port 8080 for HTTP traffic and ports 
587, 465, 993, 5222, 5228 and 8883 for HTTPS traffic. We find 
that only 0.5% of the flows in our dataset use other ports. 

3) Communication with First and Third Parties: An impor­
tant privacy concern is who receives the PII. In a network flow, 
this corresponds to the owner of the traffic’s destination. We 
distinguish between first-party second-level domains (hereafter 
simply referred to as domains), in which case the developer of 
an app also owns the domain, and third-party domains, which 
include ad networks, trackers, social networks, and any other 
party that an app contacts. For instance, facebook.com is a 
first party to the Facebook app, but it is a third party to a game 
app that uses it to share results on Facebook. 

Our domain categorization works in two steps. We first take 
all the domains that we observed in our experiments and build 
a graph of these domains, where each node represents a domain 
and each edge connects domains belonging to the same owner. 
We then match the owner of each connected subgraph of domains 
to the developer of an app and consequently label them as first-
party domains for that app. Our approach is similar to related 
work focusing on identifying the organizations behind third-
party ad and tracking services [56], which found that current 
domain classification lists are incomplete and too web-centric 
to accurately identify mobile third-party domains. 

Ownership of domains. To identify a domain’s owner, 
we leverage WHOIS information, which contains the name, 
email address and physical address of the registrant unless the 
registration is protected by WHOIS privacy. As a preprocessing 
step, we thus first discard any WHOIS entries that are protected 
by WHOIS privacy. We then connect domains as belonging to the 
same owner based on (1) the registrant’s name and organization, 
and (2) their email address (excluding generic abuse-related 
email address from the registrar). This method allows us to 
group together disparate domains that belong to the same owner, 
e.g., we can identify instagram.com, whatsapp.com and 
atlassbx.com as Facebook-owned services. 

Ownership of apps. To identify the developer of an app, 
we use information from the Google Play Store listing, which 
contains the name of the developer, and optionally their website, 
email address and physical address. Some developers use third-
party services (e.g., Facebook pages) in lieu of hosting their 
own website, or free email providers, such as Gmail. We filter 
out such cases from our analysis. Since Google recommends 
using “Internet domain ownership as the basis for [...] package 
names (in reverse)” [30], in the simplest case the package name 
embeds one of the developer’s domains. Otherwise, we compare 
the developer information from Google Play against WHOIS 
records for a domain as detailed below. 

First-party identification. We identify traffic to a domain 
as first party when information about the owner of the domain 

matches information about the owner of an app. We label any 
domain collected from the app’s Google Play Store listing as first 
party, as well as the domain in the app’s package name. We also 
label as first party any domains that are registered to the same 
name, organization, physical address, or email address as the 
ones listed for the developer in Google Play. To account for any 
inconsistencies in the representation of the physical addresses, 
we first convert them with geopy [6] to their coordinates through 
the Google Geocoding API [31]. 

Third-party identification. We label as third party all the 
domains that have not been labeled as first party according to 
the previous paragraph. This includes ad and tracker domains, 
content hosting services or any third-party domain an app 
contacts to fetch content.6 Our classification is skewed towards 
finding potential third-party services; we validate parts of our 
approach in Section IV-F. 

E. Assumptions and Limitations 

Our approach uses several assumptions and heuristics to 
inform our longitudinal analysis of privacy across app versions. 
We now discuss these assumptions and the corresponding 
limitations of our study. 

Coverage. We do not cover all apps or all app versions, but 
rather focus on a set containing many versions of popular apps 
across multiple categories of the Google Play Store. We believe 
this is sufficient to understand privacy trends for important apps, 
but our results provide at best a conservative underestimate of 
the PII exposed across versions and over time. 

TLS interception. TLS interception works when apps trust our 
self-signed root certificates, or when they use built-in Android 
libraries to validate pinned certificates. We are also constrained 
by JustTrustMe. As a result, we cannot intercept TLS traffic for 
11 apps that possibly use non-native Android TLS libraries (e.g., 
Dropbox, MyFitnessPal, Snapchat, Twitter) [48]. 

Obfuscation. Due to the inherent limitation of network traffic 
analysis, we do not detect PII leaks using non-trivial obfuscation, 
as it requires static or dynamic code analysis. In such cases, we 
will underestimate PII leaks. However, we do handle non-ASCII 
content encodings and obfuscation. For the former, we examine 
the Content-Encoding field in the HTTP header, and decode gzip 
flows (2.5% of total flows). We further decode content using 
Base64 but did not find any additional leaks using this encoding. 
For the latter, we apply standard hash functions (MD5, SHA1, 
SHA256, SHA512) on our set of known PII, and match on the 
result. This yielded 4,969 leaks (4.3% of all leaks observed in 
this study) in 4,251 flows. 

Testing old versions today. We assume old versions of apps 
exhibit the same behavior today as when they were initially 
released. However, for a variety of reasons (e.g., different 
behavior of the contacted domain, or domain being no longer 
available), this might not always be true. It is likely that this 
means we will underestimate the PII leaked by apps (e.g., if a 
domain does not resolve to an IP). 

6This includes domains provided to their customers by Google App Engine 
or Amazon Web Services. We argue that even if the services running on these 
platforms belong to a first party, communication to these platforms should 
still be considered third-party communication because developers do not have 
ownership of, or full control over, the platform. 
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Because we could not run old versions of these apps at the 
time they were released, we must use heuristics to determine 
whether our analysis might be impacted by such factors. During 
the course of our experiments, we found that the behavior of 
leaks and domains contacted did not change significantly over 
several months; as such, we do not think this is an issue for 
recently released app versions. 

For older versions of apps, we assume that DNS and HTTP 
failures potentially indicate apps that no longer function similarly 
to when they were first released. Thus, we exclude APKs for 
which more than 10% of DNS requests fail or 10% HTTP 
responses are error codes (4xx or 5xx response codes). This was 
the case for 15 apps (2.8% of the original selected apps). 

F. Validation 

To improve confidence in the accuracy and representativeness 
of our measurements, we validated several critical aspects of 
our approach as follows. 

Automated interaction. A limitation of automated interac­
tions with apps is that they may not elicit the same privacy-related 
behavior as user interactions. To estimate this gap, we compare 
our results with those from the natural human interactions 
made available by the Lumen [49] project, which provides 
on-device privacy analysis and has thousands of users. Lumen 
maps network flows to the source APKs and destination domains, 
and also labels any PII that matches those stored on the device. 
We found 983 APKs that appear in both our and Lumen’s 
datasets and 380 of which leaked PII in both studies. The latter 
corresponds to 122 distinct apps (24% of the 512 apps in this 
study) that cover 23 app categories. On average, our dataset 
missed 0.41 PII types per APK found by Lumen, with a range 
of 0–3 missing types from automated tests. The most frequently 
missed types include Android ID (52%), email (15%), MAC 
address (12%) and IMEI (11%). Similarly, the number of unique 
domains and protocol pairs per app missed by our automated 
tests compared to Lumen is 2.36 (standard deviation of 4.42). 
On the other hand, Lumen missed on average 1.38 PII types per 
APK that our approach found (with a range of 0—6 types). The 
most common missed types are advertiser ID (27%), hardware 
serial (18%), Android ID (15%) and Location (15%). In summary, 
human interactions find different PII leak types and traffic to 
different domains, as expected; however, the gap between these 
two datasets is relatively small on average. As a result, we 
believe our analysis covers most of the behavior one would 
expect to see in the wild. 

Repeatability. A potential problem of our study is that our 
automated tests use only one round of 5,000 interaction events 
for each APK. It is unclear a priori whether this approach will 
yield similar results over time, and thus might be biased in 
some way. To test whether this is the case, we repeated the 
experiments for the five apps (105 APKs) that have a large 
variance in leaked PII types across versions. In particular, we 
performed a pairwise comparison between the PII types leaked 
by different versions of each app and selected the apps with 
the largest number of distinct sets of PII types across versions. 
For each APK, we performed the same experiment each day 
at approximately the same time of day, for ten days. After we 
collect the traffic ten times, we compare the number of unique 
PII leak types, the number of domains contacted, and the fraction 

of flows using HTTPS. We find that the change in results over 
repeated experiments is small: for more than 90% of tested 
APKs, the variation across experiments is generally no more 
than one PII type, two domains, and a fraction of HTTPS traffic 
of no more than 6.0%. 

Domain categorization. Our approach to distinguish between 
first-party and third-party domains largely relies on WHOIS data, 
which is known for its incompleteness and noise. To validate our 
approach we manually verified the domain classification for a 
subset of 20 apps, which we selected randomly from all apps that 
leak PII and contacted more than one domain in our experiments. 
We inspected 550 app/domain pairs (343 unique domains), 60 
of which our approach labeled as first-party domains and the 
remaining 490 as third-party domains. We find that all of these 
first-party labels are indeed correct, with only a small number 
of false negatives: our approach missed 5 first-party domains 
for 3 apps. Overall, we find those results encouraging as our 
study is focused on analyzing third-party services. 

V. LONGITUDINAL ANALYSIS 

This section presents our analyses and findings regarding 
changes in PII leaks across app versions and time. Section V-A 
presents the case of a single notable app (Pinterest). In Sec­
tion V-B, we provide a summary of all the PII leaked across all 
APKs in our dataset. Section V-C focuses on how specific types 
of PII are leaked over time for each app. We analyze trends in 
HTTPS adoption and third-party destinations in Sections V-D 
and V-E. Section V-F summarizes our key findings. 

A. A Notable Example: Pinterest 

To demonstrate our analysis of privacy attributes, we use the 
Pinterest app as an in-depth example. In Figures 1a and 1b we 
show how PII leaks and network flows with third-party services 
change in the Pinterest app across different versions.7 In the 
plots, each app version is identified by a different version code 
on the x-axis, sorted in ascending chronological order. 

Figure 1a shows how many times each PII type is leaked 
across all network flows for each version, where the y-axis for 
each time series represents the number of times it is leaked 
during an experiment. The number below the PII type is the 
maximum number of times any version of Pinterest leaked the PII 
type. The stacked bars are colored according to the domain type 
and protocol. The plot shows that the app sends user passwords 
to a third party8 and starts leaking gender, location, advertiser ID 
and GSF ID in more recent versions. In addition, the frequency 
of Android ID leaks increases by two orders of magnitude. 

B. Summary of Results 

This section focuses on a summary of PII leaked across all 
versions (APKs) of all apps that we tested, and their implications 
for privacy risks over time. 

Table III depicts our results, where each row is a PII type, 
and each column counts the number of instances falling into a 
given category. The table is sorted in descending order according 
to the number of apps leaking each type. 

7Similar plots for every app in our dataset can be found online [1]. 
8We responsibly disclosed this security bug, which Pinterest confirmed and 

fixed in later versions not included in this study. 
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PII Type 
Leaks Overall 

#Apps %Apps #APKs %APKs 

Leaks to First Party 
HTTP HTTPS 

#Apps #APKs #Apps #APKs 

Leaks to Third Party 
HTTP HTTPS 

#Apps #APKs #Apps #APKs 
Ad ID 314 62.2% 2,270 29.8% 23 115 32 227 149 700 282 2,037 
Location 268 53.1% 1,577 20.7% 27 258 41 301 96 450 209 778 
HW Serial 254 50.3% 1,157 15.2% 10 81 21 154 28 170 227 832 
IMEI 167 33.1% 1,597 21.0% 45 443 32 250 62 505 123 1,073 
Android ID 124 24.6% 1,225 16.1% 18 163 28 272 54 423 104 957 
GSF ID 108 21.4% 504 6.6% 0 0 9 68 0 0 99 436 
MAC Addr. 71 14.1% 649 8.5% 8 105 12 116 38 307 25 173 
Gender 65 12.9% 257 3.4% 6 68 5 16 35 106 42 134 
Email 43 8.5% 280 3.7% 12 97 21 124 3 19 14 58 
Password 13 2.6% 84 1.1% 6 48 N/A N/A 0 0 7 36 
Last Name 6 1.2% 37 0.5% 0 0 2 15 0 0 4 22 
First Name 6 1.2% 37 0.5% 0 0 2 15 0 0 4 22 
PhoneNo. 3 0.6% 18 0.2% 0 0 2 15 0 0 2 7 
SIM ID 2 0.4% 9 0.1% 2 9 0 0 0 0 0 0 
Any PII Type 505 7611 - - - - - - - -

TABLE III: Summary of PII types leaked by apps/APKs, sorted by number of apps. The majority of apps and APKs leak at 
least one PII type. The fractions for the APKs are significantly lower than the ones for the apps, indicating that not every version 
leaks PII. Unique IDs and locations are the most common leaks across apps. Unique IDs are leaked to third parties much more 
often than to the first party, given the free monetizing model using ads. We also found 13 cases of password leaks. 
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Fig. 1: Example app privacy attributes for Pinterest. The 
x-axis corresponds to chronological versions of the app. In (a), 
the y-axis of each stacked bar plot is the number of times a 
version leaks a PII type, and the bar plots are colored according 
to the domain type and the communication channel; in (b), the 
y-axis of each stacked bar plot is the number of times a version 
contacts a domain, and the bar plots are colored according to 
protocol. For (a) and (b), the number in parentheses to the left of 
each y-axis is the maximum y value across all versions. Similar 
plots for other apps can be found on our website [1]. 

The first two columns show the number of apps and APKs 
leaking each PII type. In line with previous work [50], we find 
that the most commonly leaked PII types are unique identifiers 
(more than half of all apps leak an advertiser ID and/or hardware 

serial number) and locations (53.1% of apps). We nonetheless 
still find a substantial fraction of apps (more than 10%) leaking 
highly personal and security-sensitive information such as email 
addresses (often to analytics services such as kochava.com and 
crashlytics.com), phone numbers (e.g., collected by crash­
lytics.com, segment.io, and apptentive.com), and gender. 
However, when focusing on APKs (2nd column), we find that 
substantially lower fractions leak each PII type—indicating that 
most PII types are not leaked in every app version. We explore 
this phenomenon in more detail in Section V-C. In the table 
we can also see that there are 13 apps leaking passwords: 6  
apps leak passwords in plaintext, and 7 apps send passwords 
to third-party domains. Of these apps, in the latest version we 
tested (not shown in the table), we discovered that 4 apps still 
leak plaintext passwords (Meet24, FastMeet, Waplog, Period & 
Ovulation Tracker).9 

The next group of columns focuses on the number of apps 
and APKs leaking each data type to a first party, either via 
HTTP or HTTPS. Here we find that there is no clear pattern 
for HTTPS prevalence for PII leaks to first parties, except for a 
clear (and easily explained) bias toward password encryption. 
When compared with the third column group (“Leaks to Third 
Party”), it is clear that the vast majority of instances of PII leaks 
go to third parties (with the exception of passwords, with small 
but nonzero occurrences). This is likely explained by the fact 
that PII is typically harvested to monetize users via targeted 
ads, often over HTTPS. This result is a double-edged sword: 
encryption improves privacy from network eavesdroppers, but it 
also frustrates attempts by stakeholders (e.g., users, researchers, 
and regulators) to audit leaks. 

To understand whether certain categories of apps are rela­
tively better or worse for privacy, we grouped them by category 
as reported in the Google Play Store.10 Table IV provides results 
for the top five and bottom five categories in terms of the average 
number of PII types that are leaked by apps in the category. 
We find that the categories that leak the largest number of 

9We responsibly disclosed these leaks to the developers (multiple times over 
a period of months) and received no response. 

10We only used the category of the most recent version of the app we tested, 
even if the app was assigned a different category in a previous version. 
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App Category Apps APKs #PT #PI #3PD %S 

Food & Drink 2 50 2.9 26.3 7.1 52.7 
Dating 6 108 2.3 38.4 10.0 60.7 
Lifestyle & Beauty 9 137 2.0 40.9 10.7 65.7 
Games 76 1231 2.0 70.8 9.7 61.2 
Finance 3 28 1.9 42.3 8.2 96.8 
... 
Auto & Vehicles 7 122 0.8 4.6 8.8 84.9 
Weather 10 177 0.8 88.5 7.3 47.7 
Libraries & Demo 4 51 0.7 29.6 4.1 82.2 
Art & Design 6 101 0.7 7.7 5.2 69.3 
Events 6 104 0.6 7.9 5.7 95.6 

TABLE IV: Average privacy attributes per app category,
sorted by number of unique PII types (PT) leaked. Only 
the top and bottom five categories are shown. PI refers to the 
number of instances of PII leaks, 3PD refers to the number of 
second-level third-party domains contacted, and S refers to the 
fraction of HTTPS flows. Dating and Food & Drink apps are 
among the worst in terms of number and types of PII leaks, and 
these substantial fractions of their flows are unencrypted. 

PII types or cases (and contact the most third-party domains) 
include Lifestyle & Beauty, Games, Finance, Entertainment and 
Dating, while Art & Design and Events leak the fewest. With 
the exception of Finance, the apps that leak the most PII types 
also send a significant fraction of their traffic (34–47%) without 
encryption, thus exposing PII to network eavesdroppers. 

C. Variations in PII Leaks 

Since privacy risks across versions of an app rarely stay 
the same, a study that looks into a single version of an app is 
likely to miss PII leaks affecting a user that regularly uses and 
updates the app. In this section, we first quantify how many PII 
leaks previous work may miss by focusing on one version, and 
then we quantify how the frequency of PII leaks changes across 
versions and time. 

PII leaks across versions. In Figure 2a we show the CDF 
describing the minimum, average, and maximum number of 
distinct PII types leaked by individual apps across all their 
versions (Min, Average, Max curves); and the CDF describing the 
number of distinct PII types leaked during the whole lifetime of 
the app (i.e., the union of its versions – Union curve). By looking 
at the plot, we find a substantial gap between the maximum 
number of PII types leaked by an app version and the minimum, 
validating our hypothesis that a study using a single version of 
an app is likely to miss a substantial number of PII leaks. Even 
when focusing only on the version of an app that leaks the most 
PII types (Max curve), there is a substantial fraction of cases 
(37%, not shown in the figure) that miss at least one type of 
PII leaked by a different version. The average curve is strictly 
to the left of the union curve, indicating that a study using an 
arbitrary app version is likely to miss at least one type of PII. 
In summary, for all but 7% of the apps in our dataset, a study 
using only one version is guaranteed to underestimate the PII 
gathered over the lifetime of the app. 

Privacy severity and changes over time. The previous 
analysis shows that PII leaks change over time, but do not give 
a clear picture of whether these changes lead to greater or less 
privacy risk for users. We propose addressing this by assessing 
the risk of PII leaked according the severity of each leaked 

type. We begin by assigning PII types to n groups, each of 
which has similar severity. These groups can be represented 
as an n-dimensional bit vector; for each APK we set the mth 
most significant bit to 1 if the APK leaks PII with severity m; 
we set the bit to zero otherwise. Importantly, when this vector 
is interpreted as an integer, it follows that privacy is getting 
worse if the integer value increases between versions, better if 
it decreases, and is unchanged if the value is the same. 

To provide an example of how this representation informs our 
analysis, we use the categories of PII in Table I and define PII 
severity levels in the following order (from highest to lowest): 
password (plaintext or to a third party), username, personal 
information, geolocation, unique identifier. For example, consider 
Pinterest (Fig. 1a). Version 2 has a vector of 00001, version 
60201 has a vector of 00101, 603102 has 10101, and 604052 
has 00111. Note that we picked these values because they 
seemed reasonable to us; however, our online interactive tool [1] 
allows individuals to explore different relative severity levels 
and their impact on whether privacy is getting better or worse. 

Figure 2b shows a CDF of every APK’s PII severity score 
based on this bitmap representation. We find that nearly two 
thirds of APKs leak PII, but almost half of those leak only 
unique IDs. We also find a small fraction of APKs leaking very 
sensitive information such as passwords (x > 15). To understand 
how the severity of PII leaked by each app changes over time, 
we find the slope of the linear regression of these scores for the 
time-ordered set of APKs belonging to the same app. If the slope 
is positive, PII leak severity increased over time, negative means 
it decreased, and values of zero indicate no change. Figure 2c 
shows a CDF of these slopes for each app. The results indicate 
leak severity is more likely to increase (43.6%) than decrease 
(36.4%), and does not change for a fifth of apps. 

Frequency of PII leaks. The previous paragraphs covered 
how many versions leaked each PII type at least once, but not 
how frequently each version leaked it. This is an important 
distinction because frequently leaked PII can heighten privacy 
risks—whether it is fine-grained location tracking over time, 
or increasing opportunities for network eavesdroppers to learn 
a user’s PII from unencrypted traffic. Our analysis is in part 
motivated by findings from Harvest, a documentary film that 
used ReCon [50] to identify PII leaked over the course of a 
week from a woman’s phone.11 Specifically, her GPS location 
was leaked on average once every two minutes by the Michaels 
and Jo-Ann Fabrics apps. This behavior, thankfully, was isolated 
to one version of the apps; however, it raises the question of 
how often such “mistakes” occur in app versions. 

To explore this issue, we first investigate the average 
frequency (i.e., number of times) that each PII type is leaked 
by an app over time (Table V). For each app that leaks a given 
PII type, we calculate the mean and standard deviation of the 
number of times each PII type leaks across versions. The table 
shows that Android ID, Location, and Advertising ID are leaked 
most frequently on average, and also see the largest variance in 
terms of the number of times they are leaked. 

We further investigate whether there are cases of egregious 
volumes of PII collection. To isolate this behavior, we calculate 
the difference between the minimum and maximum number of 

11https://www.harvest-documentary.com 
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Fig. 2: Privacy trends by PII type and severity across versions and over time.
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Fig. 3: Privacy trends by PII frequency and HTTPS adoption across versions and over time. 

PII Type #Apps Mean (Mean) Standard Deviation (Mean) 

Ad ID 286 16.29 12.42 
Location 256 20.33 11.63 
Android ID 119 12.70 9.53 
MAC Addr. 56 6.27 6.16 
IMEI 140 7.87 5.68 
GSF ID 109 8.55 5.37 
Email 36 7.42 2.99 
Gender 63 4.99 1.81 
Password 13 2.48 0.92 
HW Serial 240 2.16 0.76 

TABLE V: Frequency of apps leaking each PII type, sorted
by the mean of the standard deviation. For each app, we 
calculate the mean and the standard deviation of the number of 
times each PII type leaks across versions. We show the mean 
of both across apps. The table shows that location and unique 
IDs are the most tracked information, and that the number of 
times they leak takes on a wide range of values. 

times each PII is leaked for each version, across all versions of 
an app. Figure 3a shows the CDF of this difference over all apps 
in our dataset. While the majority of apps see small differences 
in the frequency of leaks, there is a substantial fraction (5.6%) 
that exhibit a several orders of magnitude difference. To put 
this in context, some versions of apps leak PII once every 1 

to 10 seconds on average during an experiment. Example apps 
include AccuWeather, Learn 50 Languages, Akinator the Genie 
FREE, and JW Library, which leak either location or unique ID, 
or both, nearly constantly. 

In summary, not only are the types of PII leaks changing 
across versions, but also the number of times it is leaked over 
short periods of time. This has significant privacy implications 
for users who do not want their online activity and locations 
tracked with fine granularity. 

D. HTTPS Adoption Trends 

Given developments in the US and abroad concerning privacy, 
including reports of widespread Internet surveillance [13] and 
recent legislation permitting ISPs to sell user information gleaned 
from network traffic [45], there has been a push to encrypt 
Internet traffic to the greatest extent possible. Given the vast 
amount of personal information stored on mobile devices, 
HTTPS adoption by mobile apps can be perceived, at first, 
as a positive industry move. In this section, we investigate the 
extent to which apps adopt HTTPS across versions. 

Aggregate results. We begin by studying the extent to which 
apps (across all versions) exclusively use HTTP and HTTPS, or 
some combination of the two. We group results according to 
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Party App/Domain HTTP HTTPS Both 
Pairs (#Apps) 

All 12,143 (505) 3,559 (29.3%) 6,791 (55.9%) 1793 (14.8%) 
First 703 (338) 268 (38.1%) 225 (32.0%) 210 (29.9%) 
Third 11,440 (502) 3,291 (28.8%) 6,566 (57.4%) 1583 (13.8%) 

TABLE VI: Summary of domains by protocol. The domains 
are separated into those that use HTTP only, HTTPS only, and 
both protocols. The majority of all flows use HTTPS, but this is 
largely due to communication with third-party sites. Substantial 
fractions of domains see flows without encryption and only a 
third of first party domains exclusively use HTTPS. 

the destination second-level domain. Table VI shows the results 
of our analysis for all domains, as well as those previously 
identified as either first or third party. Across all app/domain 
pairs, we see that HTTPS-only adoption is the dominant behavior, 
with substantial fractions of app/domain pairs that use HTTP, 
and a relatively small fraction that use both HTTP and HTTPS 
for the same domain. The latter case is particularly interesting, 
because we know the domain supports HTTPS but for some 
reason some of the connections are established using plaintext.12 

When focusing on first- versus third-party communication, 
we find that most of the HTTPS adoption comes from traffic to 
third-party domains. In contrast, first-party domains are nearly 
evenly distributed across the three categories. It is not clear 
why third parties use encryption more often, but reasons might 
include improving privacy from eavesdroppers, ensuring integrity 
against man-in-the-middle attacks, or making it more difficult 
to audit the information they gather. Likewise, the increased 
prevalence of mixed HTTP(S) usage for first-party domains 
might be due to reasons such as scarce resources for handling 
TLS connections, lack of need to secure content transfers, and/or 
mismanagement from small operators. 

Speed of HTTPS adoption. We now focus on the domains 
that we know support HTTPS because we saw at least one 
flow from one APK that uses HTTPS for that domain. Once 
a domain supports HTTPS at a given date, we expect that any 
APKs contacting that domain in the future should be able to use 
HTTPS. However, there are many reasons why HTTPS adoption 
may not occur immediately for all other apps (e.g., due to using 
old versions of third-party libraries, or due to policy decisions 
to limit use of HTTPS). In Figure 3b, we investigate how long 
it takes a certain fraction (⇥%) of apps to adopt HTTPS for a 
domain, relative to the first day the domain supports HTTPS. 
The graph clearly shows that HTTPS adoption in mobile apps 
is exceedingly slow: for half of the domains we studied, it takes 
more than two years for only 10% of apps to adopt HTTPS. To  
achieve 50% HTTPS adoption (⇥ = 50% curve), it takes five 
years from the moment the domain starts supporting HTTPS.13 

This is in stark contrast to web traffic, where the only requirement 
for widespread HTTPS adoption is that the server supports TLS 
and makes it the default way to access the site. 

The key take-away is that improving privacy for the content 
of app-generated traffic through HTTPS adoption is a slow 
process. This may explain why recent efforts by app stores 

12e.g., the overhead of maintaining and establishing TLS connections, to 
permit caching of static content, or because HTTP URIs are hard-coded in apps. 

13The curves for ⇥=75% and 90% are nearly identical to 50%. 

to require HTTPS by default (or otherwise discourage HTTP 
use) [20], [39] have faced delayed enforcement [9]. 

Fraction of HTTPS traffic over time. While the previous 
paragraphs focus on how long it takes apps to start using HTTPS, 
we now focus on the question of the fraction of app-generated 
traffic using HTTPS over time. We analyze this by producing 
a time series of the fraction of flows that use HTTPS across 
versions of each app in our study. We then find the slope of 
the linear regression of this fraction for each app, and plot the 
CDF of these values as the red line in Figure 3c. Positive values 
indicate an increased fraction of HTTPS traffic over time for an 
app, while negative values indicate a decreased fraction. The 
figure shows two key trends. First, most of the values are near 
zero, indicating that HTTPS adoption does not change much over 
time. This is consistent with our results above. Second, with the 
exception of outliers, the number of apps that use more and less 
HTTPS over time are essentially equal—implying no evidence 
to support an increasing overall trend of HTTPS adoption as 
seen in web traffic [25]. 

A particular concern for plaintext traffic is when it contains 
users’ PII, as they might be exposed to eavesdroppers in addition 
to the destination domain. We now investigate whether, over 
time, apps are increasingly using HTTPS when flows contain PII, 
to mitigate this additional privacy risk. Similar to the previous 
analysis, we do this using the slope of the linear regression for 
the fraction of PII leaks over HTTPS across versions of an app. 
The blue line in Figure 3c plots the CDF of this slope over all 
apps. Again, we find that the dominant trend is that HTTPS 
adoption does not change much over time, even for PII leaks. 

E. Third-Party Characterization 

In this section, we focus on the third parties that gather PII 
from apps, what information they gather across all apps in our 
study, and the implications of this data collection. 

Summary of PII leaks. We now focus on the information 
gathered by third parties across all apps and versions in our 
study. We summarize our findings in Table VII, which shows 
information about PII leaks to third-party domains, sorted by 
the number of unique PII types gathered across all APKs. We 
show only the top 10 domains due to space limitations. 

The table highlights a variety of domains that engage 
in broad-spectrum user tracking, usually focusing on unique 
identifiers, but also including sensitive information such as phone 
numbers and locations. Interestingly, there is little correlation 
between the number of flows to a domain and the number of 
those flows containing PII. For example, vungle.com leaked 
PII in 780 out of 1,405 flows, while doubleclick.net (one of 
the most frequently contacted domains) leaked PII in only 5% 
of its flows (not shown in the table). The table also shows that 
many domains receive more than one type of tracking identifier 
(e.g., Ad ID, Android ID, IMEI, GSF ID, IMEI), which allows 
them to continue to uniquely identify users even if the Ad ID is 
reset by a user. Other third-party domains, such as CDNs, are 
frequently contacted, but do not receive PII (e.g., fbcdn.net, 
idomob.com, ytimg.com). 

Domains contacted over time. In addition to studying the 
PII leaked to each domain, it is important to understand how 
many domains apps contact over multiple versions and how this 
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Domain #Flows #PII Leaks #Apps # APKs PII Types 

google[*] 170,374 22,383 369 1937 HW Serial, Location, IMEI, Ad ID, GSF ID, Android ID, Gender, MAC Addr., 
First Name, Last Name 

crashlytics.com 
vungle.com 
adjust.com 
supersonicads.com 
amazon-adsystem.com 
kochava.com 

6,653 
1,405 
1,186 

791 
1,315 

633 

1,146 
780 
650 
613 
438 
338 

110 
21 
31 

9 
15 
21 

621 
132 
176 

36 
71 
80 

Ad ID, Android ID, PhoneNo., HW Serial, Email, IMEI 
Ad ID, Location, Android ID, HW Serial, MAC Addr., Gender 
Ad ID, Android ID, IMEI, Password, HW Serial, MAC Addr. 
Ad ID, HW Serial, IMEI, Location, Android ID, MAC Addr. 
MAC Addr., HW Serial, Android ID, IMEI, Ad ID, Location 
Android ID, Ad ID, IMEI, Email, MAC Addr., Gender 

tapjoyads.com 
mopub.com 
applovin.com 

5,503 
7,560 
5,591 

5,390 
3,657 
2,360 

43 
38 
26 

440 
235 
149 

IMEI, MAC Addr., HW Serial, Android ID, Ad ID 
Ad ID, Android ID, Gender, Location, IMEI 
Ad ID, Android ID, IMEI, Gender, Location 

TABLE VII: Top 10 third-party domains by flows and leaks across all apps, sorted by the number of PII types, then the
number of PII leaks (see full table online [1]). Third-party domains track mostly unique identifiers and there is little correlation 
between the total number of flows and the number of flows containing PII. We group the following domains as google[*]: google.com, 
googleapis.com, doubleclick.net, google-analytics.com, gstatic.com, googleusercontent.com, googleadservices.com.
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(a) Number of unique domains per 
APK. The vast majority of APKs contact 
more than one domain, and more than a 

(b) Time series of average number of unique 
domains receiving PII leaks, bucketed by 
month. The number has nearly doubled since 

(c) Time series for fractions of APKs leaking 
one type of unique ID, bucketed by month. At 
around 2014 (vertical line), when Google enforced 

quarter contact 10 or more domains. 2012, indicating that users’ mobile activities the use of the Ad ID, the use of other IDs (Android 
are increasingly monitored by several parties. ID, GSF ID, IMEI, MAC Address) decreased. 

Fig. 4: Privacy trends by domain and tracking identifier across versions and over time. 

Domain PII Types leaked with ID #Apps #APKs 

google[*] Location, Gender, First Name, 
Last Name, Email 

124 387 

kochava.com Email, Gender 8 36 
vungle.com 
mopub.com 
doubleverify.com 
aerserv.com 

Location, Gender 
Gender, Location 
Location 
Location 

7 
6 
5 
4 

34 
13 

7 
10 

smartadserver.com Location 3 7 
aniview.com Location 3 7 
mmnetwork.mobi Location 3 9 
56txs4.com Gender 3 11 

TABLE VIII: Top 10 domains conducting high-risk tracking 
(see full table online [1]). There are several domains that 
track non-ID PII along with unique IDs. The google[*] entry 
represents the same domains as specified in Table VII. 

changes over time. Figure 4a shows a CDF of the number of 
domains contacted by each APK; we find that the vast majority 
of APKs contact more than one domain, and approximately one 
quarter of them contact 10 or more domains. To understand how 
this behavior changes over time Fig. 4b presents a time series of 
the average number of domains contacted by APKs, grouped by 
release date. Most notably, we find that this average has nearly 
doubled since 2012, with substantial increases in just the past 
two years. Thus, not only are large amounts of PII exposed 
to other parties, but each user’s activity in an app tends to be 
tracked by more parties. 

High-risk tracking. Some third-party domains track both 
unique identifiers and other more personal information like 
location, email address and gender, which allow the domain to 
link individuals and personal information (including locations 
of interest such as home, work, etc.) to tracking identifiers. In 
other words, even if a third party makes a link between unique 
ID and a sensitive piece of personal information once, it can 
tie this personal information to unique ID without collecting 
the former in the future. This is particularly problematic for 
user privacy, since it erodes their ability to control how they are 
monitored and allows cross-app tracking. 

We extracted the set of domains that tie tracking identifiers 
with other personal information and list the top 10 (out 
of 95) in Table VIII. Not surprisingly, common advertising 
domains such as Google-owned domains doubleclick.net, 
googleapis.com, googleadservices.com appear at the top 
of the list. In addition, we find high-risk tracking from other 
domains, such as startappservice.com, doubleverify.com, 
and smartadserver.com. 

Tracking identifier variations over time. In line with 
Google’s requirements for new apps to use the user-resettable 
Ad ID for tracking users instead of persistent identifiers, such 
as the IMEI and Android ID, with enforcement of the Ad ID 
for new and updated apps in the Play Store starting in August 
2014 [32], [34], we found it led to more apps using Ad ID 
instead of other identifiers (Figure 4c). 
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Fig. 5: Third-party domain PII leaks. Each graph represents a time series for a selected domain, with data aggregated into 
one-month buckets. We depict the number of apps that contact the domain in red, and the number of apps leaking to the domain in 
green. The other lines represent the number of apps leaking the corresponding PII type to the domain. Over time, more apps leak 
PII to each of these domains; further, in the case of doubleclick.net the number of PII types being leaked has increased. 

Per-domain tracking variations over time. We now inves­
tigate the time-evolution of how domains track various PII types, 
using a case study of three examples: the frequently contacted 
domain doubleclick.net, the less-frequently contacted ap­

14plovin.com, and the rarely contacted supersonicads.com. 
For each of these domains, we determine the number of apps that 
send PII to them during each month, and plot this in Figure 5. In 
line with our previous results, we see variations not only in the 
number of apps that send a given type of PII to a domain, but also 
which PII types are sent. Figure 5a shows that doubleclick.net 
started transmitting gender in 2014. In the same year, it briefly 
collected IMEI, HW Serial, and Android ID, then stopped doing 
so. We see similar behavior for supersonicads.com (Figure 5b) 
for three of its gathered PII types (IMEI, HW Serial, and Android 
ID); additionally, they stopped collecting MAC address in 2014. 
Finally, applovin.com collected users’ gender until 2014. 

In summary, we find that an important factor for higher 
privacy risks over time is the increased number of third-party 
domains that are contacted by apps and that receive PII. 

F. Summary and Discussion 

We analyzed app privacy leaks over time across three 
dimensions (PII leaks, HTTPS adoption, and domains contacted) 
independently, and found that by most measures app privacy 
is more often getting worse as users upgrade apps. In the next 
section, we explore combinations of these dimensions and their 
implications for privacy. 

We showed that a single version of an app is not enough 
to assess its privacy over time. This motivates the need for 
continuous privacy monitoring across versions of apps as they 
appear. To this end, we will make our data and analysis code 
publicly available, and investigate how to fully automate our 
experimental testbed. 

Our analysis shows that HTTPS adoption is slow for mobile 
apps. This exposes users’ app interactions, and potentially PII, 
to a larger set of network observers. The problem is often 
challenging to fix because it might require changes both at 
servers (to support HTTPS), and in the app code and/or the 
libraries they include (to use HTTPS). 

14We focus on three due to space limitations; more examples are online [1]. 

Finally, we found that as users interact with apps over time a 
large number of domains are able to gather and link significant 
amounts of users’ PII. This highlights the need to understand 
how other parties gather PII longitudinally, and motivates the 
need for tools that allow users to limit this data collection. 

VI. MULTIDIMENSIONAL ANALYSIS 

The previous sections analyzed privacy one attribute at a 
time; here, we focus on an APK’s privacy implications when 
considering a combination of privacy attributes. For example, 
such analysis can indicate that an app leaking PII over insecure 
connections is riskier than one leaking the same PII over 
encrypted connections. 

In the next section, we formalize the three privacy risk 
dimensions we consider in our multidimensional analysis. We 
then analyze their combination in Section VI-B. Finally, in 
Section VI-C we present a tool that can help individuals to 
visualize our dataset and understand app privacy risks in a 
user-friendly way. 

A. Privacy Risk Dimensions 

The privacy risk dimensions we consider in our multidimen­
sional analysis are based on the privacy attributes introduced in 
Section IV-D, but normalized as real number between 0 and 1, 
with 1 indicating the highest privacy risk. Table IX shows the 
formal definition of each of them. For each APK j from app 
i (ai,j ) in our dataset, we define: (i) PII type risk Ri,j , based 
on the bit vector representation in Section V-C; (ii) Destination 
domain risk Di,j , as the sum of the flows that leak to third-party 
domains divided by the maximum number of flows generated 
by an APK of app i; (iii) Protocol risk Pi,j , as the percentage 
of flows that are sent without encryption. 

Ri,j indicates how many PII types have been leaked and 
how severe they are. Its value is 1 if the most severe set of 
observed PII types have been leaked. Di,j indicates how much 
the APK is communicating with third-party domains. Its value 
is 1 if all the flows of the APK that generates the most flows 
are sent to third parties. Finally, Pi,j indicates the amount of 
unencrypted traffic. Its value is 1 when all the traffic is sent 
over unencrypted connections. 
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(a) Ri,j vs Di,j (b) Ri,j vs Pi,j	 (c) Di,j vs Pi,j 

Fig. 6: Two-dimensional risk analysis. These plots are heat maps, where each cell represents the number of APKs ai,j in our 
dataset exhibiting the corresponding risk values x and y. Each axis represents one of the following privacy risks: PII type risk 
(Ri,j ), destination domain risk (Di,j ), and protocol risk (Pi,j ). Colors indicate the number of APKs with a given combined risk 
value, with red representing five or more APKs. 

Notation Explanation	 1

 0.8
s(t) 2 0, . . . ,  5 Privacy severity level for PII type t. 

C
D

F
 o

f 
A

P
K

s

s(t):={ID=1; location=2; user-info=3; (R,D,P)user­ 0.6
(R,D) 
(D,P)

0.4 (R,P) 

name=4; password=5} 

PII type risk for ai,j , where ⌧ is the set of types Ri,j 2 [0, 1] 
leaked and ⌫ is the value corresponding to the 0.2
most severe set of privacy leaks observed. 

1 2s(t)�1Ri,j = ⌫ 

P 
t2⌧ 0

 0

0
.2

0
.4

0
.6

0
.8 1Di,j 2 [0, 1] Destination domain risk (third party vs first 

party) for ai,j , where hi,j is the number flows 
generated by ai,j , and ⇢i,j is the number of Combined Risk 
flows in hi,j to third party domains.  ! 

(a) Multidimensional combined risk by APK. CDF of combined ⇢i,jDi,j = min , 1 maxj hi,j	 risk over all the APKs in our dataset. APKs are fairly evenly distributed 
across the risk spectrum.

Pi,j 2 [0, 1] Protocol risk (plaintext vs encrypted) for ai,j , 
where ⇡i,j is the number of flows in hi,j that 
are in plaintext.	 0.7 

⇡i,jPi,j =	 0.65
hi,j 
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o

m
b

in
e

d
 R

is
k

0.6risk(x, y) 2 [0, 1] Combined risk using normalized Euclidean dis­ (R,D,P) 
(R,D)risk(x, y, z) 2 [0, 1] tance. 0.55

1risk(x, y) =  p
p

x2 + y2 
2 
1p
3 

(D,P)0.5
(R,P)p

x2 + y2 + z2 

0.4
TABLE IX: Definition of the privacy risk dimensions and
risk combination metrics. 

0.35

risk(x, y, z) =  0.45

B. Combining Dimensions 

We now combine the normalized risk metrics, choosing two 
or all three dimensions, and analyze how these combined privacy 
metrics change over time. We currently treat each dimension with 
equal weight, but note that different relative privacy concerns 
(e.g., PII leaks matter more than domains) can be captured by 
changing the relative weight of each dimension. 

We begin by analyzing the two-dimensional combinations 
of privacy metrics, depicted using heatmaps in Figure 6. Each 
cell at (x,y) indicates the number of apps with risk scores of 
x and y, with red indicating five or more apps. Focusing on 
the combination of PII types leaked and destinations contacted 
(Figure 6a), we see several clusters emerge. The high density in 
the bottom left corner indicates that most APKs send relatively 
low-risk PII to relatively few domains. The points in the top left 
indicate that when high-risk PII is exposed by apps, they tend to

(b) Longitudinal variation of combined risk. The x-axis represents 
the APK release date and the y-axis represents the combined risk(...) 
metrics. Risk increases over time, and PII types and domains are by 
far the dominant factors for this trend. 

Fig. 7: Multidimensional privacy risk analysis. 

leak it to few domains (with the exception of Pinterest, which 
contacts a large number of domains). Last, there are several 
apps that send moderately high-risk PII to many domains (right 
side of the figure). 

When focusing on Figures 6b and 6c, we find that app 
behavior is fairly evenly spread across the x-axis range— 
indicating that there is no strong correlation between the fraction 
of TLS connections (x-axis) and privacy leaks (Fig. 6b) or 
number of domains contacted (Fig. 6c). The exception is that 
higher-risk PII tends to leak from apps using mostly encrypted 

13 



 
 
 
 
 
 
 

 
 

 

connections (top left), aside from a few cases near x = 0.5 
(FastMeet, Meet24, Pinterest, Here WeGo - Offline Maps & 
GPS, ViewRanger Trails & Maps). 

Based on the plots in Figure 6, we now define the risk 
aggregation function, which measures the normalized Euclidean 
distance between two different types of risk (see Table IX). This 
function captures the combination of different risks as a single 
number between 0 and 1.15 Note that this function generalizes 
to arbitrary numbers of dimensions. 

We first use the aggregate risk function to show in Figure 7a 
how all the possible combinations of the risk are distributed 
across all APKs in our dataset. The figure shows that most APKs 
are neither very low nor very high risk, and that the set of all 
APKs in our dataset are fairly evenly spread across the range of 
risk scores. Of course, because this does not consider time, it 
does not indicate whether recently released APKs are relatively 
higher or lower risk. 

Is privacy getting better or worse? We investigate this 
question with Figure 7b, which shows a time series of the 
average privacy risk for APKs, grouped by release date. The 
figure shows a clear trend towards higher three-dimensional 
privacy risk over time (i.e., risk(Ri,j , Di,j , Pi,j )), with most of 
the increase attributable to the combination of more PII types 
being leaked and to more domains (the risk(Ri,j , Di,j ) curve). 
Thus, when it comes to leaking PII and contacting third parties, 
apps have gotten substantially worse over time. 

To further analyze privacy risk changes, we conduct an app­
focused analysis where we plot the combined risk score over time 
for each app (over all its APKs) and find the slope of the linear 
regression over these scores, as well as the standard deviation of 
the scores. Using this data, we categorize privacy risks per app 
as getting better, getting worse, staying similar, or exhibiting 
high variability over time. Algorithm 1 presents our classification 
logic when focusing on the combined score for R and D for 
each app. At a high level, we require that the slope and absolute 
difference between scores be sufficiently large to indicate that 
an app’s privacy became worse or better. If the difference is 
not large and there is a relatively large standard deviation, then 
we indicate that the app is highly variable; otherwise, the app’s 
privacy is labeled as similar.16 

Using this approach, we calculated the following fractions 
of apps in each category: better (26.3%), worse (51.1%), similar 
(9.5%) and variable (13.1%). Thus, while a quarter of apps are 
getting better with respect to privacy, twice as many are getting 
worse over time and only a small fraction stay the same. 

C. Privacy Risk Visualization 

We built a web-based interactive tool [1] that allows 
individuals to explore the privacy risk data for any app in our 
dataset, showing how privacy risks changed across all versions 
of each app that the user selects. For this tool, we currently 
focus primarily on PII leak types, and allow the user to set 
relative leak severity for each PII category (denoted as s(t) in 
Table IX); further, we compress our binary representation into a 

15Again, different scaling factors on each dimension can represent different 
relative risks between dimensions. 

16The thresholds (✓D , ✓S ) were chosen heuristically, using 1.5 and 0.45 
respectively. Users can explore other options via the web interface. 

Algorithm 1 Trend Categorization for Privacy Risks. 
1: function TREND(app) 
2: X list of versions 
3: Y list of normalized Euclidean distance of (R, D) 
4: Std Standard deviation of Y 
5: s Slope of the linear regression line of (X, Y) 
6: Y0 s · X + intercept 
7: Df Y 0 � Y 0 max min 
8: Trend “similar” 
9: if Df � ✓D then 

10: if s >  0 then Trend “worse” 
11: else Trend “better” 
12: else if Std > ✓S then Trend “variable” 
13: return Trend 

scale of 0 to 6 so that it is easier to understand for those who do 
not regularly think in terms of bit vectors. As part of ongoing 
work, we are investigating other intuitive ways to present our 
findings using a single score. 

VII. CONCLUSION 

This paper provides the first longitudinal study of the privacy 
impact of using popular Android apps and their updated versions 
over time. We found that the PII shared with other parties changes 
over time, with the following trends: (1) overall privacy tends 
to worsen across versions; (2) the types of gathered PII change 
across versions, limiting the generalizability of single-version 
studies; (3) HTTPS adoption is relatively slow for mobile apps; 
(4) third parties not only track users pervasively, but also gather 
sufficient information to know what apps a user interacts with, 
when they do so, and where they are located when they do. 

A naïve interpretation of our observed privacy trends is 
that users should stop updating apps; however, new versions 
of apps also contain bug fixes and improvements (e.g., critical 
security updates). Thus, what is needed is information that helps 
users make informed decisions when deciding whether to update 
the app given a set of changes in a new version. We envision 
that our online tool [1] can in part fill this need. Further, we 
recommend users to install tools like ReCon [50], Lumen [49], 
or AntMonitor [40] to block unwanted privacy leaks that come 
from newer versions of apps. 

Our dataset and analysis code are available at: https:// 
recon.meddle.mobi/appversions/. 
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in ways that may violate user’s expectations and per­
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velopers of mobile device operating systems recognize 
that sensor data is sensitive, but unfortunately existing 
permission models only mitigate some of the privacy 
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ical study of media permissions and leaks from An­
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analysis techniques. Our study reveals several alarming 
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1 Introduction 

The high-fidelity sensors and ubiquitous internet con­
nectivity ofered by mobile devices have facilitated nu­
merous mobile applications (apps) that rely on multi­
media features. For example, a mobile device’s camera 
and microphone enable users to capture and share pic­
tures, videos, and recorded audio. Apps also use these 
sensors to implement important services such as voice 
assistants, optical character recognition (OCR), music 
identification, and face and object recognition. 

In addition to such beneficial use cases, apps may 
use these sensors in ways that violate users’ expectations 
and privacy. For example, some apps take pictures with­
out the user’s knowledge by shrinking the viewfinder 
preview window to a 1◊1 pixel, thus making it virtually 
invisible [51, 68]. Similarly, Silverpush, an advertising 
company, developed a library that passively listened for 
inaudible, ultrasonic audio beacons for tracking users’ 
TV viewing habits [28]. Finally, as a possible example 
of things to come, Facebook has been awarded a patent 
on using the mobile device’s camera to analyze users’ 
emotions while they are browsing the newsfeed [70]. 

Given that sensor data is highly sensitive, the An­
droid and iOS operating systems include mandatory 
access control mechanisms around most sensors. How­
ever, existing permission models only partially mitigate 
multimedia privacy concerns because they are coarse 
grained and incomplete. For example, when a user grants 
a multimedia permission to an app, this permission also 
applies to any third-party library code that is included 
in the app. Thus, users and even app developers may 
be unaware of the extent of privacy risks from such per­
missions. In addition, we find that on Android there is 
no permission required for third-party code in an app to 
continuously record the screen displayed to the user. As 
such, users may unwittingly use apps that collect video 
recordings containing sensitive information, similar to 
session-replay scripts on websites [44]. A key challenge 
for understanding these risks is that there is no general 
approach to reveal such behavior. 

In this work, our goal is to identify and measure 
the exfiltration of media (defined as images, video, and 
audio) over the network from Android apps. We focus on 



Proceedings on Privacy Enhancing Technologies ; 2018 (4):34–50 

(potential) privacy risks that are caused by the transfer 
of media recordings to parties over the internet, rather 
than privacy risks caused solely by apps’ access to the 
camera and microphone (e.g., device fingerprinting [42, 
46, 80] and location tracking [28]). We define a leak as 
either (1) unexpected recording of users’ interactions 
with an app, and (2) sharing of multimedia recordings 
with other parties over the internet, without explicitly 
indicating this to the user either in the privacy policy 
or at run time. 

To understand media exfiltration by Android apps 
and the potential privacy consequences, we empirically 
studied the behavior of 17,260 apps collected from 
Google Play and three popular third-party app stores. 
We analyze these apps using a combination of static 
and dynamic analysis techniques. We use static analy­
sis on all of the apps in our dataset to determine (1) 
whether each app requests access to camera and micro­
phone permissions, (2) whether media APIs are actu­
ally referenced in the app’s code, and (3) whether these 
API references (if they are present) are in code from the 
first-party developer or a third-party library. Of course, 
static analysis alone cannot tell us whether an app ac­
tually invokes media APIs, or exfiltrates media over the 
network. Therefore, we use dynamic analysis (on a sub­
set of 9,100 apps that have the potential to leak media) 
to detect media exfiltration; specifically, we used the Ex­
erciser Monkey [26] to automatically interact with each 
app in a controlled environment, recorded network traf­
fic using Mitmproxy [16], and used the MediaExtract 
file carving tool [6] to identify media in network flows. 

Our work makes the following contributions: 

–	 We present the first large-scale empirical study of 
media permissions and leaks from Android apps, 
covering 17,260 apps from Google Play, AppChina, 
Mi.com, and Anzhi. 

–	 We develop a comprehensive methodology for de­
tecting media exfiltration that combines analysis 
of permissions, method references, third-party li­
braries, and automated interactions. We validate 
our methodology by analyzing the behavior of a 
ground-truth test app that we developed, as well as 
through manual examination of key apps that are 
known to rely on image, video, and audio collection. 

–	 We find a previously unreported privacy risk from 
third-party libraries. Namely, they can record the 
screen from the app in which they are embedded 
without requiring any permissions. Apps often dis­
play sensitive information, so this exposes users to 
stealthy, undisclosed monitoring by third parties. 

–	 Our analysis reveals that several apps share image 
and video data with other parties in unexpected 
ways. For example, several photo editing apps pro­
cess images in the cloud without explicitly mention­
ing the behavior in their privacy policy. 

–	 Large fractions of apps request multimedia permis­
sions that they never use, and/or include code that 
uses multimedia sensors without explicitly request­
ing permissions for them. This inconsistency in­
creases the potential privacy risks for users: previ­
ously unused permissions could be exploited by new 
third-party code that a developer includes in an app. 
Further, third-party code that does not have per­
missions to use multimedia in one version of an app 
may start exploiting any permissions granted to a 
future version of the app for an unrelated purpose. 

Taken together, our study reveals several alarming pri­
vacy risks in the Android app ecosystem. We have re­
sponsibly disclosed confirmed privacy leaks to develop­
ers and the Android privacy team, and they took action 
to remediate the privacy concerns we discovered (§7.1). 

Our dataset and analysis results are publicly available 
at https://recon.meddle.mobi/panoptispy/. 

2 Related Work 

We begin by surveying related work on mobile device 
privacy in general, and media leaks in particular. We 
also discuss existing approaches and tools for investigat­
ing the security and privacy ofered by Android apps. 

2.1 Privacy Measurements 

Tracking and PII collection. Several studies have 
documented the growing prevalence of tracking in mo­
bile apps. Vallina-Rodriguez et al. presented a broad 
characterization of the online advertising platforms used 
by apps [72], and follow-up studies revealed the specific 
kinds of personally identifiable information (PII) sent to 
trackers and analytics services [31, 38, 61, 65, 73, 76]. 
Book et al. investigated APIs exposed by advertising li­
braries that can be used to leak PII [33]. Ren et al. used 
longitudinal data to examine how app privacy practices 
have changed over time [64]. Other studies have focused 
on legal implications of apps’ privacy practices, specifi­
cally COPPA and the GDPR [63, 66]. 

https://recon.meddle.mobi/panoptispy
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Several studies bridge the gap between tracking on 
the web and on mobile devices. Leung et al. directly 
compared the privacy practices of web and app-based 
versions of the same service [55]. In contrast, two studies 
have delved into the mechanisms used by advertisers to 
track users’ behavior across devices [34, 81]. 

While this body of work has significantly advanced 
our understanding of the mobile tracking ecosystem, one 
shortcoming is that it exclusively focuses on leaks of tex­
tual information to third parties (e.g., unique identifiers, 
email addresses, names, etc.). 

Attacks using multimedia sensors. Several pre­
vious studies take an initial look at how a mobile de­
vice’s cameras and microphones can be used to vio­
late user privacy and security. For example, uninten­
tional variations in the manufacturing of mobile de­
vice cameras, microphones, and speakers can be used 
to create fingerprints that uniquely identify mobile de­
vices [42, 46, 80]. Petracca et al. demonstrated nu­
merous attacks that apps with microphone permissions 
can implement by passively eavesdropping in the back­
ground [60]. Similarly, Fiebig et al. demonstrated that 
apps with camera permissions could passively capture 
keystrokes and even users’ fingerprints [45]. 

Two studies have examined the deployment and im­
plications of ultrasonic beacons. Arp et al. measured the 
prevalence of ultrasonic beacons in the wild, and found 
them deployed on websites and in stores. Furthermore, 
they found 234 apps in the Google Play Store that were 
constantly, passively monitoring for these beacons, in 
order to track users’ online and o�ine browsing be­
haviors [28]. Mavroudis et al. consider various attacks 
against users that leverage ultrasonic beacons, including 
de-anonymizing Tor users [59]. 

Shrivastava et al. developed a testing framework 
that probes the computer vision algorithms used by 
apps with camera permissions [67]. They found that 
many apps included libraries that implement character, 
face, and barcode detection. Furthermore, the authors 
surveyed users and found that 19% of apps in their study 
extracted information from images that users did not 
expect, and that this made users very uncomfortable. 

Our work. Our study complements and extends the 
existing measurement work on the privacy implications 
of media sensors on mobile devices in two significant 
ways. First, existing studies focus on how apps can ex­
tract and distill privacy-sensitive data from images and 
audio (e.g., fingerprints). In contrast, we focus on the 
wholesale exfiltration of media over the internet. Sec­
ond, prior work does not consider the privacy implica­

tions of static screenshots and captured videos of the 
screen. As we will show, these represent significant pri­
vacy risks since they can be surreptitiously recorded by 
any app without the need for explicit permissions. 

2.2 Privacy Measurement and Tools 

Numerous tools from the research community help iden­
tify, and in some cases mitigate, security and privacy 
risks on mobile devices. 

Static analysis. Previous work analyzed the pri­
vacy implications of Android app bytecode using a va­
riety of static analysis techniques, such as static data 
flow (taint) analysis [29, 36, 47, 52], and symbolic exe­
cution [50, 78]. These systems uncover many PII leaks, 
but they often overestimate the number of leaks, thus 
leading to false positives. Further, code that is heavily 
obfuscated or dynamically loaded at run time can lead 
to false negatives (recent measurements indicate that 
30% of Android apps load code at run time [56]). 

Dynamic taint analysis. TaintDroid was the first 
system to pioneer the use of dynamic taint track­
ing to analyze privacy leaks on Android [43]. Subse­
quent systems have refined these dynamic analysis tech­
niques [75, 77, 79]. Additionally, there are several tools 
to assist in automating the testing process for Android 
apps, i.e., to increase code coverage when performing 
taint analysis [37, 39, 48, 49, 58]. Unfortunately, dy­
namic analysis alone sufers from false negatives, as fully 
exercising all code paths in complex apps is generally 
not feasible. Further, taint tracking imposes run-time 
overheads that make it challenging to run analysis at 
large scale in a reasonable amount of time. 

Dynamic network tra�c analysis. A separate 
line of work focuses on identifying privacy leaks in net­
work tra�c [54, 63, 65, 69]. The advantage is that these 
approaches are easily deployable for end-user devices, 
either via a Virtual Private Network (VPN) proxy or 
by conducting analysis on a home router. When com­
bined with ground-truth information about PII and/or 
machine learning, this approach can provide good cov­
erage of privacy leaks with few false positives and nega­
tives. However, such approaches will not work well if the 
PII is exfiltrated using sophisticated obfuscation [40]. 

Our work. No single method is totally efective at 
detecting all privacy leaks from Android apps. Thus, in 
this study we leverage a combination of static analysis 
and dynamic network tra�c analysis to measure media 
leaks. As we discuss in § 5, we first use static analysis 
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to examine the permissions requested by apps and ref­
erences to sensitive API calls. We then run the apps 
and automatically interact with them in an attempt to 
trigger those APIs, and subsequently analyze the cor­
responding network tra�c that those apps generate to 
identify media leaks. 

3 Threat Model 
Our goal is to identify and measure exfiltration of media 
(i.e., images, audio, and video) by Android apps over 
the network. Media exfiltration presents new privacy 
implications compared to well-known PII leaks. They 
provide an extra channel to carry PII and private infor­
mation (e.g., a user’s images) that prior approaches do 
not identify. Furthermore, screen recording reveals data 
as it is entered, which the user may reasonably expect 
not to be shared until submitted. Finally, screen record­
ing might reveal highly sensitive information, such as 
passwords: Android has the option to toggle password 
visibility globally in its security settings (i.e., showing 
the entered characters briefly before masking them) or 
locally for individual input fields (i.e., unmasking the 
whole password) if enabled by the developer. 

Definition of media leaks. We assume that the 
user has either granted no permissions, or granted an 
app permissions to use media sensor(s) for a user-
identifiable purpose of that app. For example, a user 
would grant no media permissions to a simple Solitaire 
app, and would grant camera permissions to an app that 
allows the user to take and edit photos. A suspicious or 
unexpected media exfiltration is one that meets at least 
one of the following criteria: 

–	 It does not further the primary purpose of the app. 
Media shared outside of an app’s primary purpose 
presents privacy risks since users do not expect it. 
In many cases, this shairng is due to third-party 
tracking or analytics libraries. For other cases, we 
manually inspect the app being studied to assess 
this property. 

–	 It is not disclosed to the user. Media sharing that 
is not disclosed may not only be unexpected by the 
user, but also may violate privacy laws. We manu­
ally verify whether an app provides visual cues to 
users, requests users’ consent, and/or clearly dis­
closes this behavior in its privacy policy. 

–	 It is not employed by similar apps. We determine 
this based on comparisons with apps that have 
nearly identical functionality. If other, similar apps 
do not exfiltrate media, then it is a good indicator 
that such functionality is suspicious. We then man­
ually investigate and subjectively label such cases. 

–	 It is not encrypted over the internet. This creates 
opportunities for eavesdroppers to passively observe 
sensitive content. We check this property based on 
whether media is sent over an unencrypted channel. 

We assume that apps do not attempt to break the per­
mission model, nor break out of the Android sandbox 
(e.g., by exploiting OS-level vulnerabilities). We further 
assume that apps access media sensors using only stan­
dard Android APIs that are available to all app develop­
ers on recent Android platforms, as opposed to hidden 
or privileged APIs. We do not examine media exfiltra­
tion from apps’ background activity. We also do not 
consider data that is reshared after collection, as was 
the case for the Cambridge Analytica controversy. 

Privacy legislation. While we do not provide a le­
gal analysis of privacy leaks in this study, our definition 
of leaks is in line with recent legislation that requires 
companies to disclose and explain the purpose of col­
lected PII. The European Union’s General Data Pro­
tection Regulation (GDPR) restricts and requires full 
disclosure of PII collection and usage [11]. The Califor­
nia Online Privacy Protection Act (CalOPPA) requires 
any party who collects PII from Californian consumers 
to provide a privacy policy outlining what data is col­
lected and who it is shared with, and to comply with 
posted policies [5]. The Fair Information Practice Prin­
ciples is a set of principles adopted by the US Privacy 
Act and other frameworks worldwide. It details prin­
ciples such as transparency, purpose specification, and 
data minimization, among others [8]. 

4 Background 

Before we describe our methodology for investigating 
media leaks from Android apps, it is important to review 
the permission model and APIs ofered by Android to 
access media resources. 

Media permissions. Android restricts access to 
sensitive OS capabilities by forcing developers to ob­
tain explicit permission from users. App developers 
must list the permissions they plan to use in their 
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AndroidManifest.xml file, which is contained in all An­
droid Packages (APKs). To access the camera and mi­
crophone, apps must request the following permissions: 

– android.permission.CAMERA 
– android.permission.RECORD_AUDIO 

Additionally, apps may request the permissions 
android.permission.READ_EXTERNAL_STORAGE or 
android.permission.WRITE_EXTERNAL_STORAGE to ac­
cess files that are stored on the device. This poses 
another possible outlet for media leaks, as apps can ac­
cess and potentially leak photos, videos, or audio clips 
stored on the device if granted either of these permis­
sions. Note that in the Android permission model, the 
permission to write to external storage implicitly grants 
read access. 

Users can accept or reject permission requests. Prior 
to Android API level 23, permission requests needed ap­
proval at app install time, and rejection prevented in­
stallation. Since API level 23, apps request permissions 
(and must handle rejection) at run time. 

Media APIs. Once an app has been granted media 
permissions, the following API objects become available: 

– android.hardware.camera (API level <21) 
– android.hardware.camera2 (API level 21+) 
– android.media.AudioRecord 
– android.media.MediaRecorder 

The camera and AudioRecord objects require the 
CAMERA and RECORD_AUDIO permissions, respectively. 
The MediaRecorder object only requires RECORD_AUDIO 
if used solely for audio recording. Otherwise, to record 
video, both permissions are required. 

Screenshots. Unlike the camera and audio APIs, 
the APIs for taking screenshots and recording video of 
the screen are not protected by any permission. The An­
droid APIs for capturing the screen are: 

– android.view.View.getDrawingCache() 
– android.view.View.getRootView() 

This lack of access control is problematic, as apps can 
potentially record users’ screen interactions without 
their awareness. However, these two methods are multi­
purpose and not solely designed for taking screenshots. 
For example, getDrawingCache() caches a bitmap, 
which is useful for improving performance when ren­
dering repeated UI elements between activities. The 
method getRootView() finds the topmost view of the 
UI’s layout, which is a hierarchical tree structure con­
sisting of ViewGroups (internal nodes) and Views (leaf 

nodes). In short, when an app calls these methods it 
does not necessarily imply that it is recording the screen. 

Note that this approach of capturing the screen is 
diferent from that of Android’s MediaProjection API. 
The latter provides means to record the screen program­
matically, but includes an indication in the form of a 
lock icon. Since the user is informed about the record­
ing in this case, this API is outside of our threat model. 

5 Methodology 

In this section, we present our methodology for gather­
ing data and measuring media leaks by Android apps. 
As shown in Figure 1, our methodology involves both 
static and dynamic analysis techniques. We begin by 
describing our process for gathering Android apps for 
analysis in § 5.1. Next, we discuss our approach for ex­
tracting permissions and method usage from APKs us­
ing static analysis in § 5.2, and our dynamic testbed for 
automatically interacting with apps and inducing media 
exfiltration over the network in § 5.3. Finally, in § 5.4 we 
explain and validate our approach for detecting media 
in network flows. 

5.1 Selection of Android Apps 

Obtaining a broad understanding of media leaks re­
quires testing a large set of apps. However, the time 
and resources necessary to dynamically analyze apps is 
non-trivial (see § 5.3), and thus we must carefully choose 
how to allocate our limited resources. 

To provide analytical results that are representa­
tive of apps in general, while also covering high-impact 
apps, we select popular and random apps from four app 
stores. Our set of apps is compiled from several preex­
isting sources [27, 40, 64], and covers apps from Google 
Play, AppChina, Mi.com, and Anzhi. We chose these 
three third-party app stores because they were the three 
largest markets (aside from the Google Play) in the An­
droZoo dataset [27]. 

From Google Play, we select 8,038 apps that request 
permissions for the camera and/or microphone from a 
set of 30,504 apps that are either part of the top 600 
popular free apps, top 600 popular apps for each cate­
gory, newest 600 overall, or newest 600 in each category 
as of April 2017 [40]. We further include 7,665 APKs col­
lected from a previous study [64] that were either part of 
the top 600 popular free apps or the top 50 in each cat­
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Fig. 1. Design of our experiments. We start with 17,260 apps collected from four app stores on the left. We statically analyze these 
apps to extract the media permissions and API references, which then informs our selection of apps to dynamically analyze. The final 
output, on the right, are the actual media leaks from apps over the network. 

egory as of January 2017. The final Google Play dataset 
covers 15,627 unique APKs. From the third-party app 
stores, we select the most popular apps as well as 1,000 
apps selected uniformly at random from AndroZoo [27]. 
Specifically, we collect the 510 most popular apps over­
all from AppChina, and the most popular apps from 
each category from Mi.com (528 apps) and Anzhi (285 
apps). In total our dataset contains 17,260 unique apps. 

5.2 Static Analysis 

The next step is statically analyzing the 17,260 apps in 
our dataset. We use static analysis to determine: 

1.	 Does the app request permissions for the camera, 
microphone, and/or accessing external storage? 

2.	 Does its bytecode contain references to the media 
APIs listed in § 4? 

3.	 Are media API references in third-party library 
code, and if so, which library? 

We now discuss why each of these pieces of information 
is important for our analysis, and how we obtain them. 

Permissions. Examining permissions is the first 
step towards understanding which apps in our dataset 
might leak images, audio, and video, since permissions 
are required to access these sensors or files stored in the 
external storage. We use the standard Android SDK tool 
aapt to retrieve the AndroidManifest.xml file from all 
of the apps in our dataset, and scan the results for apps 
that request permissions to access the camera, micro­
phone, or external storage. 

However, an app that requests such permissions 
does not necessarily use the corresponding media APIs 
or leak media over the network. This can occur when 
apps request permissions for functionality that is never 
used by the app, i.e., the apps are over-privileged [35]. 
Further, apps that do not request these permissions may 
still potentially leak media, e.g., if they upload images 
from the mobile device’s internal storage, or gather and 

upload screen captures. As a result, our static analysis 
on permissions may have false positives and negatives, 
which we control for with later dynamic analysis. 

API references. We decompile the apps in our 
dataset using dex-method-list [6] and locate references 
to the camera, audio, and screen capture APIs listed 
in § 4. This allows us to identify apps that are over-
privileged, as well as apps that may be capturing screen-
shots and screen video. However, the methods for cap­
turing/recording the screen and reading data from de­
vice storage may serve other purposes, meaning that 
the static analysis produces a high false positive rate 
for API references to screenshot functionality and read­
ing from external storage. As a result, we also perform 
dynamic analysis on these apps, described in § 5.3. 

Third-party libraries. Android apps often include 
third-party libraries, some of which have been shown to 
be the root causes of privacy leaks (e.g., advertising and 
tracking libraries [32]). Libraries are able to access sensi­
tive information on mobile devices because they inherit 
the capabilities of the app itself. This raises the possi­
bility that library code may take actions that users, and 
even first-party developers, are unaware of. 

In the context of this study, we are interested in 
whether references to media APIs are within code from 
the first-party app developer or a third-party library. 
This information is critical for correctly attributing the 
source of media leaks. To identify the libraries within 
apps, we rely on LibScout [30] and LibRadar [57]. Both 
tools compare the signatures of bytecode against a pre­
defined database of known library code. Unfortunately, 
because of bytecode obfuscation and the presence of 
previously unknown library versions, both tools may 
produce false negatives. Furthermore, these tools may 
produce false positives if an app includes a library, but 
never invokes its methods at run time. 

To determine whether media API references oc­
cur in first or third-party code, we rely on package 
names. Typically, code from the first-party developer 
resides in a package name that largely overlaps with 
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Dataset App Source # of APKs Selection Criteria 

method-call 
3p-lib 

appsee 
permission 

appchina 
appmi 
anzhi 

Google Play 
Google Play 
Google Play 
Google Play 
AppChina 
Mi.com 
Anzhi 

127 
187 
33 

8,038 
335 
331 
269 

Apps that call camera and audio APIs 
Apps that covered the most popular set of third-party libraries 
Apps that include the AppSee library 
Apps that request either camera and audio permission 
Apps that request either camera or audio permission, or call screenshot methods 
Apps that request either camera or audio permission, or call screenshot methods 
Apps that request either camera or audio permission, or call screenshot methods 

Table 1. Summary of the 9,100 apps we selected for dynamic analysis, and the criteria used for their selection. Some of our datasets 
(3p-lib and appsee) overlap with the rest of our dataset as we selected them for further testing after initial results. 

the application package name. We rely on this assump­
tion to distinguish code from first- and third-parties. 
For example, all classes related to the main activity 
of the app air.com.myheritage.mobile are under the 
same package name, yet it also includes packages cor­
responding to third-party libraries like com.appsee and 
com.google.android.gms.maps. 

Privacy policies. Our definition of media leaks re­
lies on app privacy policies (§ 3), so we manually inspect 
the privacy policies of apps that share media over the 
internet. If this type of sharing is not explicitly disclosed 
in the app’s privacy policy, we call it a media leak. 

5.3 Testbed for Dynamic Analysis 

Static analysis provides useful guidance about which 
apps may potentially exfiltrate media. However, from 
this data alone we cannot infer whether media permis­
sions will be used, or whether media APIs will be called 
at run time. Thus, results from static analysis alone may 
exhibit high false positive rates. On the other hand, 
static analysis fails to detect obfuscated and dynami­
cally loaded code, causing false negatives. To address 
these issues, we conduct dynamic analysis by running 
and interacting with apps. Due to resource constraints,1 

we are not able to dynamically analyze all 17,260 apps; 
instead, as shown in Figure 1, we select apps that are 
more likely to leak media content based on their permis­
sions and media API references. We dynamically ana­
lyzed 9,100 apps (53% of our total dataset). Table 1 
shows how these apps are distributed across app store 
sources, as well as the criteria for their selection. 

In the remainder of this section, we describe our 
testbed for dynamically analyzing Android apps. 

1 We conduct all dynamic tests on actual Android devices, and 
each test takes on the order of minutes. 

Automated interaction. Triggering media exfiltra­
tion from mobile apps requires executing and interact­
ing with them. A natural way to accomplish this is via 
human interaction; however, this does not scale to the 
size of our dataset. Instead, we use the UI/Application 
Exerciser Monkey [26]. Each test consists of interacting 
with an app using Monkey for 5,000 user events (lasting 
for 16 minutes at most). We configured Monkey to ran­
domly select 10 activities in each app and send 500 in­
teractions to each activity. We use 5,000 events because 
it allows us to test a large number of APKs in a reason­
able amount of time, and because previous work found 
that longer interaction times did not result in more PII 
leaks [55]. Note that we did not use pre-configured text 
inputs, which vary across apps and require substantial 
manual efort; instead, we relied on random interactions. 
Accordingly, we miss some events that only human in­
teractions trigger, e.g., in apps that require login. 

During each test, we took screenshots from each de­
vice at 1-second intervals. We use these screenshots to 
manually verify that observed media exfiltration was not 
caused by an explicit interaction event (e.g., clicking the 
“upload image” button in an app). 

Test environment. We conduct experiments us­
ing ten Android devices: two Nexus 6P phones and six 
Nexus 5X phones with Android 6 (API level 23), and 
two Nexus 5 phones with Android 4.4.4 (API level 19). 
We use real Android devices instead of emulators to 
avoid scenarios where apps and third-party libraries be­
have diferently when they detect emulation. We ran­
domly assigned apps to devices; 1,814 were ultimately 
tested under Android 4.4.4. 

Each test was performed in a standardized environ­
ment. Before each test, we prepared the device by delet­
ing all non-standard apps (i.e., everything except for 
the standard app suite provided by Google), clearing 
the internal user-accessible storage, and then preload­
ing several media files (two decoy Grace Hopper images, 
a short video clip, and a short audio clip). These me­



Proceedings on Privacy Enhancing Technologies ; 2018 (4):40–50 

Category Supported Unsupported 

Audio 
Image 
Video 

3gp, aac, id3v2,  m4a, ogg, wav  
bmp, gif,  jpg, png, webp 
3gp, mp4, webm 

raw 

Table 2. Media file types supported by our augmented version of 
MediaExtract, based on encoders supported by the Android APIs 
(bolded) and common libraries we observe in practice. 

dia files were placed in the standard locations within 
the Android filesystem (e.g., /sdcard/Pictures). We 
preloaded the test devices with media as a means to 
catch apps that exfiltrate media from the filesystem 
without recording any media themselves. Once the de­
vice is cleaned and preloaded, we installed the target 
app and exercised it with Monkey. 

Recording network tra�c. During each test, we 
route network tra�c through Meddle [62] using a VPN, 
and use Mitmproxy [16] to record the plaintext con­
tent of HTTP and HTTPS flows. For apps that prevent 
TLS interception via certificate pinning, we use Just-
TrustMe [13], which modifies Android to bypass cer­
tificate pinning for apps that leverage built-in Android 
networking APIs and popular libraries (e.g., OkHttp). 

5.4 Detection of Media in Network Tra�c 

Our dynamic tests produce a large dataset of plaintext 
network flows generated by apps. In this section, we dis­
cuss how we identified media embedded in these flows. 

5.4.1 Media File Extraction and Decoding 

We retrieved the raw byte streams of payload content 
from each outgoing network flow (typically the payloads 
of HTTP POST and PUT messages). We then scanned 
these byte streams with MediaExtract [15] to extract 
embedded media files. MediaExtract identifies media 
files by looking for the “magic numbers” that signify 
the beginning of media file headers. For example, JPEG 
files are always prefaced with the hexadecimal bytes “FF 
D8 FF”. We modified MediaExtract to support two ad­
ditional file types: WebP and WebM. We also evalu­
ated several other forensics tools (Autopsy [4], Test­
Disk/PhotoRec [18], Foremost [9], Scalpel [23], tcpx­
tract [24], LaZy_NT [14], PIL [20]), but these tools ei­
ther supported fewer file formats than MediaExtract, 
identified fewer media files in our data than MediaEx­
tract, or extracted incomplete and corrupted media files. 

Table 2 shows the media file types that can be na­
tively produced by the Android APIs, as well as the file 
types supported by our augmented version of MediaEx­
tract. We are able to detect all file formats that Android 
can natively produce, except for raw audio because it 
does not have a distinguishable file header. Fortunately, 
it is unlikely that apps will attempt to upload raw au­
dio over the network because it is uncompressed, and 
the file sizes are large compared to other audio formats. 

As with all file carving tools, MediaExtract may 
produce false positives, i.e., files that it incorrectly la­
bels as media. We verified that all extracted image files 
were true positives by manually checking the media con­
tent, e.g., by opening an extracted image file. We then 
repeated experiments manually to ensure observed leaks 
were repeatable. Further, we manually determined that 
all extracted audio files Æ1KB in size were false posi­
tives. We did not find any true positive audio files in 
our extracted dataset, i.e., no apps appeared to exfil­
trate audio in our tests. We also verified the origin and 
destination of the network flow carrying the media files 
to ensure that the tra�c comes from the app itself, as 
opposed to a background service or a stock app. 

Other encodings. We noticed that some flows in 
our dataset relied on specialized encoding formats. We 
manually verified that MediaExtract was able to locate 
media embedded in Protocol Bufer [22] and Thrift [1] 
RPC data structures. Similarly, we pre-processed flows 
to decode base64-encoded data before running Media-
Extract. 

5.4.2 Validation 

We use controlled tests and manual experiments to val­
idate our extraction of media files from network flows. 

Test app. We wrote a simple Android app that could 
produce all supported types of images, video, and audio 
files (see Table 2) and upload them to a web server. We 
ran this app through our data collection infrastructure 
(i.e., Meddle and Mitmproxy) and attempted to recover 
the files with MediaExtract. With the exception of raw 
audio, we were able to recover all of the uploaded files. 

Manual tests. We generated network traces with 
well-known apps that we knew would upload media, 
such as Imgur and Giphy (images), SoundCloud (audio), 
and Sing! by Smule (audio & video). We were able to 
recover all images and videos, as well as audio files that 
were uploaded in full. However, there were cases where 
we could not recover audio data. For example, Shazam 
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Store # of Apps 
Audio 

Permission API 
Camera 

Permission API 
Screen Capture APIs 
Screenshot Video 

External Storage Access 
Permission 

Anzhi 
AppChina 

Mi.com 
Google Play 

All 

883 
468 
392 

15,627 
17,260 

12.8% 9.7% 
28.4% 22.9% 
55.9% 41.8% 
45.7% 46.2% 
43.8% 43.6% 

15.7% 11.7% 
37.0% 28.6% 
61.0% 45.7% 
80.5% 75.1% 
75.6% 70.1% 

20.7% 1.5% 
57.1% 2.4% 
81.6% 5.6% 
89.1% 10.6% 
84.6% 9.8% 

23.4% 
94.0% 
97.4% 
92.7% 
89.9% 

Table 3. Media permission requests and media API references for the app stores in our study. Large fractions of apps request per­
missions for media; in general, a smaller fraction actually call methods that use those permissions. A notable exception is the audio 
permission—many apps include code that calls audio APIs but do not request permissions for it (bold text in the table). 

interspersed small chunks that appear to be an audio 
signature, alongside metadata in JSON structures. In­
terestingly, voice assistants like Hound and Robin did 
not upload audio at all; instead they transcribed it lo­
cally on the mobile device and uploaded the text. 

6 Aggregate Results 

In this section, we present aggregate statistics for our 
analysis of media leaks. We begin by investigating the 
correlation between media permissions requested and 
code references to media-related APIs (§ 6.1), then ana­
lyze which libraries call these APIs (§ 6.2). Last, we use 
dynamic analysis to determine the media leaks detected 
in network tra�c (§ 6.3). 

6.1 Permissions and API References 

Our first step in understanding the potential for media 
leaks is to analyze which media permissions each app 
requests, and which media APIs appear in the app’s 
code. We summarize the fraction of apps that request 
audio and camera permissions, and that call methods to 
capture media, in Table 3. Each row corresponds to a 
diferent app store, and the Audio and Camera columns 
specify the fraction of apps in each store that requests a 
corresponding permission and that calls a corresponding 
API. The Screen Capture APIs columns refer to meth­
ods that are used for taking a screenshot or recording a 
screen video, neither of which require permissions. The 
rightmost column lists the fraction of apps that request 
read or write permission for external storage. 

The last row aggregates results over all apps in 
our study. We find that among the popular and ran­
domly selected apps, a significant fraction of apps re­
quests media permissions (43.8% for audio and 75.6% 
for camera). However, this is biased towards apps from 

Google Play. Among the Chinese app stores, apps from 
Mi.com have similar permissions requests compared to 
apps from Google Play; for the other two stores, the 
rates of permission requests are much lower. 

A notable trend is that larger fractions of apps re­
quest media permissions than actually call media APIs 
(on average), which means apps may declare the permis­
sions but never actually use them. Such practices could 
impose additional risks, since third-party libraries can 
potentially load dynamic code to abuse the granted per­
missions without developers or users knowing. 

Note that method references do not necessarily 
mean that the method is called. Likewise, a third-party 
library may be included, but never used. We specu­
late that such practices explain the higher percentage 
of method references than permission requests for audio 
resources (bold text in Table 3). 

Furthermore, APIs for taking screenshots and read­
ing from device storage also serve other purposes, 
which produces a high false positive rate. For exam­
ple, methods for reading from device storage are called 
in 96.1% of our app set, i.e., 16,580 apps call either 
getExternalStorage or MediaStore. 

To summarize, significant fractions of apps request 
media permissions and include code that can use them. 
Interestingly, there is a nontrivial amount of inconsis­
tency between permissions and API calls, and thus a 
need for developers to more carefully consider how they 
request and use media functionality. We speculate the 
reasons for over-provisioned permissions may come from 
several sources. For one, an app may have required the 
permission only in a previous version, but developers 
failed to update requested permissions in the current 
version. Also, the mapping between Android permis­
sions and their associated API is surprisingly poorly 
documented, potentially leading to developer confusion. 
Last, third-party SDKs provide copy-and-paste instruc­
tions for integration that includes all potentially needed 
permissions even if the developer does not use library 
functionality that requires them. 
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% of Apps Referencing API from the Library 
Library # of Apps % of Apps Audio Camera Screenshot Video 

com.facebook 8,322 48.22% 0.04% 0.64% 4.54% 0.37% 
com.google.android.gms.maps 7,825 45.34% 0 0 0.01% 0 

rx 3,602 20.87% 0 0.03% 0.06% 0 
com.inmobi 2,411 13.97% 17.13% 0 26.59% 0 

com.google.android.gms.vision 1387 8.04% 0 87.60% 0 0 
com.tencent.mm 1,316 7.62% 0 0 0.08% 0 

com.millennialmedia 1,272 7.37% 0 0 31.29% 0 
com.mopub 1,175 6.81% 0 0 45.87% 0 

uk.co.senab.photoview 1,163 6.74% 0 0 0.77% 0 
net.hockeyapp.android 967 5.60% 0 0 59.77% 0 
com.mixpanel.android 853 4.94% 0 0 71.51% 0 

com.tapjoy 621 3.60% 0 0 58.13% 0 
com.amazon.device.ads 396 2.29% 0 0 62.12% 0 

com.smaato.soma 237 1.37% 0 0 97.47% 0 
cn.domob 123 0.71% 0 0 86.18% 0 

com.adsdk.sdk 105 0.61% 0 0 92.38% 0 
com.mdotm.android 58 0.34% 0 0 27.59% 0 

com.heyzap 51 0.30% 0 0 19.61% 0 
com.mapbox.mapboxsdk 39 0.23% 0 0 12.82% 0 

com.skplanet.tad 31 0.18% 0 0 87.10% 0 
com.fusepowered 11 0.06% 9.09% 0 100.00% 0 

com.tapit 10 0.06% 0 0 100.00% 0 
com.noqoush.adfalcon.android.sdk 5 0.03% 0 0 60.00% 0 

com.appflood 3 0.02% 0 0 33.33% 0 
com.vdopia.ads.lw 3 0.02% 0 0 100.00% 0 

Table 4. Identified third-party libraries in our dataset, and the fraction of apps whose library version references media APIs. Of the 163 
libraries identified, only the above 25 reference media APIs. Libraries exhibit a diverse set of media API requests across apps, likely due 
to di�erent versions of libraries and developer customization. 

6.2 Third-party Libraries 

It is common practice for apps to include third-party 
libraries for purposes such as utility functions, analytics, 
and advertising. In many cases, developers may have a 
limited (or no) understanding of the code contained in 
these libraries. As such, third-party libraries can be an 
interesting vector for media leaks. 

We investigated the risks from third-party libraries 
by analyzing their code for references to media APIs. 
Using LibScout, we identified 163 unique libraries based 
on their signatures from 17,260 apps. We then matched 
these libraries with path names identified by dex­
method-list on the files. Note that our list of libraries is 
incomplete because both library package names and li­
brary method calls might be obfuscated at compile time, 
preventing us from properly identifying the library. This 
is a challenging and orthogonal research problem [74]. 
Furthermore, LibScout can only identify libraries in its 
signature database, which does not include the libraries 
we discuss in detail in §7. For the libraries we could au­
tomatically identify, we focus on any references in the 
library path to media APIs. Table 4 shows the percent­
age of apps that include third-party libraries and those 

that call media API(s) in the third-party library path. 
We omitted Android libraries and third-party libraries 
that do not use media APIs (138/163) from the table, 
which account for the majority of libraries. 

Among the 25 libraries, we observe a diverse set of 
behaviors for permission requests and API calls. Only 
com.facebook includes references to every category of 
media API. Few libraries include code that accesses the 
microphone: com.facebook, com.google.android.gms. 
maps, and com.tencent.mm. Only com.facebook, rx, 
and com.google.android.gms.vision reference camera 
APIs, while only com.facebook references video APIs. 
Note that the video API (MediaRecorder) may  also be  
used for audio recording. Almost all of the libraries refer­
ence the APIs that can be used to capture screenshots; 
however, we caution that these APIs have other uses 
besides recording the screen. 

Notably, references to media APIs for the same 
third-party library can difer widely depending on which 
app included the library. We believe this may be due to 
diferent versions of libraries providing diferent func­
tionality, or developers who customize the code included 
in their apps. 

http:com.tencent.mm
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App Domain Request Method Media Type Description 

kr.kkh.image_search2 images.google.com POST (HTTPS) png expected, image search 
com.mnnapps.twinfinder_lookalike www.google.com POST (HTTPS) jpg expected, image search 

com.allintheloop.sahic collector-10.testfairy.com POST (HTTPS) jpg unexpected, screenshot image of app usage 
com.smaper.artisto artisto.smaper.com POST (HTTPS) jpg unexpected, photo editing 

com.fotoable.fotobeauty paintlab.fotoable.net POST (HTTP) jpg unexpected, photo editing 
com.allintheloop.sahic collector-7.testfairy.com POST (HTTPS) jpg unexpected, screenshot image of app usage 

innmov.babymanager babymanagerapp.com POST (HTTPS) jpg expected, sharing screenshot 
com.umonistudio.tile log.umsns.com POST (HTTP) jpg expected, sharing screenshot of game score 

com.facebook.moments api.facebook.com POST (HTTPS) jpg expected, photo upload 
com.kodakalaris.kodakmomentsapp kodakmoments.kodakalaris.com POST (HTTPS) jpg expected, photo upload 

com.goodreads match-visualsearch.amazon.com POST (HTTPS) jpg expected, image search 
com.main.gopu� c6e83853...0b.api.appsee.com POST (HTTPS) mp4 unexpected, screenshot video of app usage 

com.picas.photo.artfilter.android api.picas.tech POST (HTTP) jpg unexpected, photo editing 
io.faceapp node-03.faceapp.io POST (HTTPS) jpg unexpected, photo editing 

com.neuralprisma api2.neuralprisma.com POST (HTTPS) jpg unexpected, photo editing 
io.anyline.examples.store anyline-tracking.azurewebsites.net POST (HTTPS) jpg expected, photo-to-text scanner 
com.hound.android.app bh.houndify.com POST (HTTPS) jpg unexpected, screenshot image of app usage 
com.msearcher.camfind api.camfindapp.com POST (HTTP) jpg expected, image search 

com.momento.cam selfy.s3.amazonaws.com PUT (HTTPS) jpg expected, photo upload 
com.intsig.BizCardReader vcf.intsig.net POST (HTTPS) jpg expected, business card scanner 

com.zazzle up.zazzle.com POST (HTTP) jpg expected, photo upload 

Table 5. Summary of detected media in app-generated network tra�c. Of the 21 cases, we find 12 to be leaks (bolded in the first col­
umn): they are either unexpected media transmissions (noted in the last column) or sent in plaintext (bolded in the “Request Method” 
column), exposing potentially sensitive information to eavesdroppers. 

6.3 Media in Network Tra�c 

Next, we analyze the network tra�c generated by the 
9,100 apps that we analyzed dynamically (as described 
in §5.3). Table 1 summarizes the apps we selected for 
dynamic analysis and the criteria we used to do so. 

Recall that our testbed gathers all the network traf­
fic generated during automatic interactions with these 
apps, and we search network flows for media content. 
Table 5 shows the list of apps (identified by package 
name in the first column) that transmitted media con­
tent during our tests. The second column specifies the 
destination domain that received the media content, fol­
lowed by the HTTP method and whether encryption 
was used. The fourth column specifies what type of me­
dia was transmitted, and the last column indicates our 
analysis of whether the transmission was intentional 
(and thus expected) or not, and what kind of media 
sharing was identified. 

We use bold text in the last column to highlight nine 
cases that leak media. These include uploading photos, 
screenshots, or even videos of screen interactions. The 
bold rows in the third column highlight additional five 
cases in which the media content is sent in plaintext, 
meaning a network eavesdropper (e.g., on a public WiFi 
access point or in the user’s ISP) can also see the media 
that is transmitted. 

Of the 21 cases of media leaks, just under half (9) are 
shared with third parties that the user may not be aware 
of. Among the third-party domains, we observe third-
party libraries and cloud services (AWS and Azure). 

6.4 Analysis of Large Network Flows 

The previous analysis relied on identifying known me­
dia types in network tra�c, but could miss cases where 
the media encoding is non-standard, obfuscated, or en­
crypted at the application layer. In this case, an alter­
native approach to detect potential media content is to 
look at relatively large flows that could correspond to 
images, audio recordings, or videos. 

We begin by plotting the size of each network flow 
generated during dynamic analysis. We remove flows 
generated by Google Play Services from this analysis. 
Although these flows are large and frequent, we do not 
consider them to be a vector for media leaks. Figure 2 
shows the resulting CDF of the number of bytes per flow 
across all apps. The vast majority (99.81%) of requests 
are no larger than 100 KB and more than 80% contain 
fewer than 10 KB. By comparison, the size of extracted 
images in our study ranges from 8.2 KB to 1.1 MB. 

We further investigated the content of the rela­
tively large flows (Ø100 KB) in our dataset, which are 
sent to 16 second-level domains (7 of which are third-
party domains), and 12 of which have more than one 
large flow (see Table 6). Table 7 lists the apps re­
sponsible for those flows. A notable case is the do­
main skyhookwireless.com that is contacted by mul­
tiple apps and provides services to locate devices (e.g., 
IoT devices). The content of the large HTTP requests 
is an XML file with information about nearby access 
points (MAC, SSID, signal strength and age) that can 
be used to calculate fine-grained geolocations without 

http:skyhookwireless.com
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Fig. 2. CDF of payload size per flow for data sent from the 
app to the internet. The vast majority of flows are small (as 
expected), but the minority of large flows indicates potentially 
significant data exfiltration. 

Domain Average Size (KB) # of Flows 

radarstick.com 1,190 4 
camfindapp.com 1,070 2 
kodakalaris.com 1,069 2 
*hockeyapp.net 428 1 

faceapp.io 308 2 
*skyhookwireless.com 289 7 

midomi.com 224 5 
mysoluto.com 200 24 

*google.com 170 52 
houndify.com 158 1 

*crittercism.com 131 2 
smaper.com 118 3 

*newrelic.com 110 1 
*googleapis.com 102 1 

*appsee.com 101 28 
marcopolo.me 101 10 

Table 6. Second-level domains receiving large requests of at least 
100 KB. (*) indicates the domain belongs to a third party. 

needing to access GPS. Manual investigation of other 
large flows revealed that they generally contained de­
tailed information about the device and apps, at a 
level that third-party domains can use to fingerprint 
users [41, 53, 71]. While outside the scope of our study 
of media leaks, these large flows represent an additional 
privacy risk that users should be aware of. Further, such 
large flows can potentially use substantial portions of a 
cellular data plan’s quota. 

Crucially, manual analysis of all of these large flows 
did not reveal any additional exfiltrated media files. 
This is a positive sign, which suggests that the false neg­
ative rate of our media-detection methodology is low. 

7 Case Studies 

The previous section focused on aggregate information 
about media leaks that we observed in our dataset. In 
this section, we use case studies to highlight several in-

Domain 

appsee.com 
camfindapp.com 
crittercism.com 

faceapp.io 
google.com 
google.com 
google.com 
google.com 

googleapis.com 
hockeyapp.net 
houndify.com 

kodakalaris.com 
marcopolo.me 

midomi.com 
mysoluto.com 
mysoluto.com 
newrelic.com 

radarstick.com 
skyhookwireless.com 
skyhookwireless.com 
skyhookwireless.com 
skyhookwireless.com 
skyhookwireless.com 
skyhookwireless.com 
skyhookwireless.com 

smaper.com 

Package Name of App 

com.main.gopu� 
com.msearcher.camfind 
com.usaa.mobile.android.usaa 
io.faceapp 
kr.kkh.image_search2 
com.mnnapps.twinfinder_lookalike 
com.midoapps.cartooneditor 
meemtech.flashlight 
com.eosmobi.cleaner 
org.becu.androidapp 
com.hound.android.app 
com.kodakalaris.kodakmomentsapp 
co.happybits.marcopolo 
com.melodis.midomiMusicIdentifier.freemium 
com.asurion.solutohome.walmart 
com.asurion.solutohome.gigspartner 
com.traegergrills.app 
com.radarworkx.radarspotter 
air.air.com.EasyRandomVideoChat 
app.local1285 
appinventor.ai_malote1971.SpainParanormalKII 
app.qrcode 
com.abtnprojects.ambatana 
air.com.touchmultimedia.comicpuppetsfree 
a2z.Mobile.Event4164 
com.smaper.artisto 

Table 7. Second-level domains receiving large requests of at least 
100 KB and the apps that generated them. 

teresting media leaks in detail, identify their root causes, 
and discuss their privacy implications. 

7.1 Appsee: Screen Recording 

Our first case study focuses on a video leak from 
the GoPuf app (com.main.gopuff) referenced in Ta­
ble 5. The app provides on-demand delivery for 
users. The video was leaked to a third-party domain 
api.appsee.com that is owned by Appsee [2], an app 
analytics platform provider. They ofer the ability to 
“[w]atch every user action and understand exactly how 
they use your app, which problems they’re experienc­
ing, and how to fix them. See the app through your 
users’ eyes to pinpoint usability, UX and performance 
issues.” [2] As we discuss below, this claim is—much to 
the chagrin of user privacy—accurate. 

We began by decompiling the APK for GoPuf, 
which revealed that GoPuf starts Appsee as soon 
as the app launches (using the code in Figure 3). 
Our dynamic analysis confirmed this: as soon as a 
user opens GoPuf, the app records the screen and 
sends a video of this interaction to the following do­
main: https://c6e83853bc68d0b076811737cb58920b. 
api.appsee.com/upload. Taking a recording of user in­

https://c6e83853bc68d0b076811737cb58920b
http:api.appsee.com
http:smaper.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:skyhookwireless.com
http:radarstick.com
http:newrelic.com
http:mysoluto.com
http:mysoluto.com
http:midomi.com
http:marcopolo.me
http:kodakalaris.com
http:houndify.com
http:hockeyapp.net
http:googleapis.com
http:google.com
http:google.com
http:google.com
http:google.com
http:faceapp.io
http:crittercism.com
http:camfindapp.com
http:appsee.com
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package
com . main . g o p u f f . p r e s e n t a t i o n . view . a c t i v i t i e s ; 

public  class  S p l a s h A c t i v i t y  extends BaseAct iv i ty  
implements SplashScreenView  {

// The method onCreate i s c a l l e d when 
// S p l a s h A c t i v i t y i s created 
public  void  onCreate ( Bundle  paramBundle )  {

Appsee .  s t a r t ( g e t S t r i n g ( 2 1 3 1 2 9 6 4 3 3 ) ) ;  
. . .  

}
} 

Fig. 3. Code snippet from GoPu�, which uses the Appsee library 
to recode the screen as a user interacts with the app. The record­
ing starts immediately when the user opens the app, and in some 
cases include users’ PII (which is shared with Appsee). 

teractions is not itself necessarily a privacy risk. How­
ever, even in this simple example we found that PII was 
exposed to Appsee—in this case the user’s ZIP code.2 

While this specific example exposes relatively low-
risk PII, it is important to reiterate that Appsee re­
quires no special permission to record the screen, nor 
does it notify the user that she is being recorded. In fact, 
Appsee puts the burden on the app developer to protect 
sensitive information by calling markViewAsSensitive 
in the app’s code, or using server-side configuration 
through Appsee’s dashboard [3]. 

At first glance, this is good news: the developer is 
in the position of knowing what views in their app are 
sensitive. However, our analysis indicates that many de­
velopers either have no sensitive data input, or simply 
did not bother to mark any view as sensitive: only five 
out of 33 apps in our dataset that include Appsee even 
call the markViewAsSensitive method. We show counts 
of other method calls in Table 8; most apps start record­
ing (16 start and four startScreen), but only a small 
fraction of apps made calls to the stop/pause actions. 
Thus, in many cases screen recording is started, never 
stops, and no views are omitted from recording using 
the client-side AppSee API. It is unknown how many 
app developers use AppSee’s dashboard to filter sensi­
tive views on the server-side. 

Screen recording, if adopted at scale and/or in apps 
that handle sensitive data, could expose substantial 
amounts of users’ PII, especially when the full burden 
of securing private information is placed on developers. 
Further, we argue that the recording of interactions with 
an app (without user knowledge) is itself a privacy vio­
lation akin to recording audio or video of the user. 

2 We disclosed this to GoPuf, which in response pulled the 
Appsee SDK from their iOS and Android apps and updated 
their privacy policy [12]. 

Appsee Method # of Apps # of Occurrences 

start 16 37 
addEvent 7 27 
setUserId 6 6 

markViewAsSensitive 5 44 
startScreen 4 9 

stop 2 2 
resume 1 6 

pause 1 1 
set3rdPartyId 1 1 

Total 21 133 

Table 8. Number of apps using various methods of the Appsee 
library, and how often they called each method. 

Given the risks of screen recording, we disclosed this 
behavior to Google’s privacy team. Their response was 
that “Google constantly monitors apps and analytics 
providers to ensure they are policy-compliant. When no­
tified of our findings, they reviewed GoPuf and AppSee 
and took the appropriate actions.” 

7.2 TestFairy: Screenshots 

Our next case study focuses on a similar privacy risk: 
taking screenshots of the app while in use. TestFairy [25] 
is a mobile beta-testing platform that records user 
interactions via screenshots. In our dataset, SAHIC 
(com.allintheloop.sahic), which is a networking app 
for two conferences – SAHIC Cuba and SAHIC South 
America 2017 – uses the library and sent 45 screenshots 
to testfairy.com. The screenshots, shown in Figure 4, 
include (but are not limited to) information such as a 
search for attendees, a message to a contact, and a re­
sponse to a survey. Attached with the screenshots is in­
formation that describes the current view and activity 
name of the app as shown in the following request: 

https://collector-10.testfairy.com/services/
 
?method=testfairy.session.addScreenshot\
 
&timestamp=1504971161996\&seq=1\
 
&sessionToken=80775553-4252621-5418832-376287176
 
-bab9f09e42c3c2e13a083c070ca30ed203aa05b6\
 
&lastScreenshotTime=349\&interval=2000\&type=0\
 
&activityName=com.allintheloop.sahic.MainActivity
 

While this feature is typically used during beta testing, 
the app was not labeled as a beta version in the Google 
Play Store. The user is also not informed of the record­
ing, nor is she ofered the opportunity to consent to beta 
testing upon opening the app. Thus, any reasonable user 
of these apps would likely never expect screenshots of 
her interactions. 

https://collector-10.testfairy.com/services
http:testfairy.com


Proceedings on Privacy Enhancing Technologies ; 2018 (4):46–50 

To understand how pervasive this problem is, we ex­
amine all the apps in our dataset that include the Test-
Fairy library. Fortunately, we found only one (SAHIC) 
out of 16 apps calling any of the TestFairy API methods 
for screenshots, and this is consistent with our network 
tra�c analysis. Thus, despite a substantial privacy risk 
from this feature, we find that nearly all apps we tested 
are properly removing TestFairy methods before releas­
ing their apps in the Google Play Store. 

7.3 Photo Apps: Unexpected Sharing 

Many users regularly use the cameras on their phones 
to take photos for personal use, then edit those photos 
using apps installed on their phones. In fact, both An­
droid and iOS already provide powerful built-in ways 
to edit photos directly on the phone. That said, there 
is also a marketplace of photography apps that provide 
photo-editing features (e.g., filters, adding text, etc.). It 
is reasonable for most users to assume that such editing 
is performed on the device itself; however, we observed 
that several photography apps send the photos to their 
servers for processing without explicitly notifying users. 

An example of this behavior is Photo Cartoon Cam­
era - PaintLab (com.fotoable.paintlab), which up­
loads to their servers any photo that a user selects for 
editing, as well as any photo taken from the app (even 
before the user decides to edit the photo). Given that 
nothing else in the app indicates the need for an in­
ternet connection, the behavior is unexpected. Further, 
uploading photos taken from within the app before users 
decide to keep them exposes those users to further pri­
vacy risks from unintentional photo sharing. This be­
havior also appears in InstaBeauty - Makeup Selfie Cam 
(com.fotoable.fotobeauty), an app from the same de­
veloper, and in five other photo-editing apps. 

We crawled the categories of 8,689 unique apps in 
our dataset that were from the Google Play Store. Our 
crawler was able to identify the categories of 7,022 apps. 
Out of those 7,022 apps, 463 apps were part of the “Pho­
tography” category. Our experiments detected 6 apps 
exhibiting this uploading behavior. 

The privacy disclosures for these apps are not 
entirely clear. Fotoable, the developer of two afore­
mentioned apps, has a privacy policy disclosure that 
makes only a general statement that personal infor­
mation may be collected and used [10]. Three other 
apps, FaceApp (io.faceapp), Picas - Art Photo Filter, 
Picture Filter (com.picas.photo.artfilter.android), 
and Prisma Photo Editor (com.neuralprisma) specif­

ically include users’ photos as “personal information” 
collected [7, 19, 21]. However, this disclosure is arguably 
misleading as the app does not indicate uploading of 
a user’s photo while they are editing it. In one app, 
Artisto - Video & Photo Editor (com.smaper.artisto), 
the privacy policy does not even seem to apply to this 
app—rather, it appears to be a general privacy policy 
for the developer’s family of apps, and is focused on 
games [17]. Thus, it is reasonable to assume that users 
of these apps may not be aware of photo exfiltration and 
may not have consented to it. 

8 Limitations 

We now discuss some important issues and limitations of 
our study. From a set of 17,260 apps, we uncovered few 
instances of covert recording (i.e. apps taking pictures 
or videos without users intentionally doing so). On the 
one hand, this is good news: a very large fraction of 
apps are not abusing the ability to record media. On 
the other hand, it could also indicate that our analysis 
missed other cases of media leaks. 

Dynamic analysis limitations. A number of fac­
tors could lead to this result. First, our media extraction 
method is not perfect. For example, an app could trans­
form an audio recording into a diferent format (e.g., 
a text transcript or musical features such as beat and 
notes) that our system does not detect. Similarly, our 
approach does not stitch together a single media file 
transferred over multiple flows, or cases where a media 
file does not use a standard encoding format. Second, we  
may miss cases where multiple apps collude to subvert 
the permission model, e.g., when an app uses an In­
tent to launch another app [35]. Third, we do not detect 
media that is intentionally obfuscated when it is sent 
over the network, or encrypted at the application-layer 
(Mitmproxy does enable us to bypass TLS encryption). 

It is possible for automated interactions to trigger 
a legitimate media exfiltration that could be mistak­
enly classified as a media leak. To mitigate this issue, 
we regularly captured screenshots during the automated 
interactions, then manually verified that a media leak 
was not generated by an intentional trigger in the app, 
e.g., camera shutter or audio recording button. 

Static analysis limitations. We used static anal­
ysis to identify apps that might record media, namely 
by identifying corresponding API calls. It is well known, 
however, that the existence of an API call in a piece of 
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Fig. 4. Example screenshots collected by TestFairy. Left: Contact  info.  Center: Messaging  another user.  Right: Responses to a survey.  

code does not guarantee it will ever be executed. To ad­
dress this, we used dynamic analysis to filter out false 
positives. However, this does not address false negatives 
(where media API calls are reachable, but our auto­
mated interaction tool does not trigger them). 

Further, our static analysis approach focuses on 
methods from the Android SDK and not native code, 
so we may miss cases of media leaks. Likewise, we may 
miss leaks from dynamically loaded code. 

We rely on LibRadar and LibScout to identify third-
party libraries. However, these tools may not be able 
to detect obfuscated libraries, or new versions of previ­
ously identified libraries. Fortunately, these limitations 
did not hinder our ability to identify the sources of me­
dia leaks in our study. 

Future work. There are several ways to address 
the above issues. More sophisticated static analysis ap­
proaches could determine whether referenced methods 
are reachable during normal interactions with an app. A 
better understanding of how media may be sent over the 
network, and potentially transformed before transmis­
sion, would reduce our false negative rate. Our analysis 
could also incorporate analysis of native code that leaks 
media recordings. 

Lastly, while we focused our analysis on Android 
apps, we will investigate in future work whether iOS 
apps exhibit similar behavior, as e.g., AppSee and Test-
Fairy also provide iOS SDKs. 

9 Conclusion 

In this paper, we investigated the potential for, and spe­
cific instances of, multimedia recordings being sent over 
the internet by 17,260 popular Android apps across mul­
tiple app stores. We find that several apps leak content 

recorded from the camera and the screen over the in­
ternet, and in ways that are either undisclosed or un­
expected given the purpose of the app. Importantly, we 
find that third-party libraries record a video of a user’s 
interaction with an app, including at times sensitive in­
put fields, without any permissions or notification to the 
user. Further, several apps share users’ photos and other 
media over the internet without explicitly indicating 
this to the user. We also find that there is poor correla­
tion between the permissions that an app requests and 
the permissions that an app needs to successfully run its 
code. This opens up the potential for unexpected expo­
sure to additional media exfiltration with the inclusion 
of new libraries in future versions of the app. In ongo­
ing work, we are continuing to monitor how multimedia 
content leaks over the internet from mobile and IoT de­
vices, and assess the implications of such behavior. 
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